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Concept drift — fundamental problem
in Statistical Learning related to data
streams

Improvement of Sequential Learning
due to recognition of novelties and
elimination of anomalies

Maintaining data quality in Edge
Computing environments
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Contributions

* Adaptive mechanism for novelty detection

 Methodology to investigate impact of time
and frequency on model re-training

o Technique for automated creation of labeled
dataset

 Technique to cope with adaptability changes
imposed by concept drift

Comprehensive experimental evaluation
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» Multivariate Greenhouse datasets:

* Collected streams of humidity, air temperature »

and soil temperature every 3 minutes

* Generate two 2D datasets with features with
strongest correlation

* Soil & Air Temperature datasets (D1)
*  Humidity & Air Temperature dataset (D2)

» OCSVM

* Learns a decision boundary that separates
inliers from novelties

* Parameters v and y control the shape of the
boundary and number of Support Vectors
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OCSVM: One-Class SVM

Novelty Detection nu=0.03 gamma=0.04

— learned frontier
O training ebservations
@ test observations
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error train: 442/13047 ; errors test: 114/3262 ;

Fig.2 Learnt frontier D1
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Novelty Detection nu=0.03 gamma=0.04

— learned frontier
O trainin g observations
@ test observations
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error train: 744/13047 ; errors test: 204/3262 ;

Fig.1 Learnt frontier D2
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* Local training of the OCSVM model on the window of size W

* Each data point may have an impact on the underlying concepts
e Retrain the model every single data point

* Label the data vector as novelty (-1) or inlier (1)

* Monitor the number of unnecessary re-trainings by comparing the labels of
data points before and after retraining
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et Fixed-frequency Model () s
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* Local Training of the OCSVM model on the window of size W
e Retrain the model with fixed-frequency H > 1
e Case 1l: frequency H<W

* During retraining some previous knowledge is still available
e Case 2: frequency H =W
* Previous model is completely forgotten

* FMA reduces model complexity and increases computational efficiency

* Initialization of parameter H requires knowledge of the data and the concepts
they represent.
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NGRSl  Performance Evaluation

* Unnecessary re-trainings (n) [ Metric [ CMA [ FMA |

R | .. Unnecessary retrainings n | D1:12341; D2:11772 | DI1:18; D2:7
Total re-trainings Total retrainings DI1:15309; D2:14698 | D1:30; D2:15

Novelt ter ¢ D1:2605; D2:3537 D1.Case-1:5542

 Novelty Counter (c) ovely cotmEr e D1 Cae. 26013

D2.Case-1:6084

* Average #5Vs (E[m]=v) D2.Case-2:6480
e Number of marginal non-inliers (/) Average #SVs Elm| = v D1:36; D2:32 g}gzzgjig
D2.Case-1:33

D2.Case-2: 33




Number of Novelties
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Fig.4 Novelties in D2 dataset
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CMA
—— FMA: HeW
—— FMA: H>=W
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Fig.3 SVs in D2 dataset
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Fig.5 Marginal non-inliers in D2 dataset
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11 Conclusions

Higher number of novelties identified by FMA e
occurs due to sparse re-trainings; CMA is -
better in incorporating novelty patterns into

the model.
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Based on the number of SVs, the models have
comparable complexity, but the amount of
memory resources required by FMA are

predictable.

Low amount of marginal non-inliers in CMA
indicates ability to represent the data
accurately; in FMA non-inliers indicate the rate
at which the model turns obsolete



Mechanism successfully identifies
novelties, adapting to concept drifts in a
resource-efficient way

Future Work: investigation of other
One-Class (SVM) variants and
confidence-driven novelty detection and

forecasting.

> Distifbuted.Co

=

EeNY

' ;'S“c‘h‘oéﬁ%f"'(_;é)_mp"L’\Jting;'SEienc :
" Esseate: Pervasive &

mputing ==

s




University ~ Essence: A
Qf Glasgow . Distributed Computing

Thank you =




