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Abstract 
 

Exact or approximate solutions to constrained linear model 
predictive control problems can be pre-computed off -line in 
an explicit form as a piecewise linear state feedback defined 
on a polyhedral partition of the state space. This leads to 
eff icient real-time computations and admits implementation at 
high sampling frequencies in real-time systems with high 
reliabilit y and low software complexity. In this paper, an 
explicit model predictive controller for a gas-liquid separation 
plant is designed and experimentally tested. 
 
1 Introduction 
 

Model predictive control (MPC) has become the accepted 
methodology to solve complex control problems related to 
process industries. It allows the design of multi -input multi -
output (MIMO) control systems that minimize a quadratic 
performance index in the presence of input and output 
constraints imposed on the system. Recently, several methods 
for explicit solution of MPC problems have been developed. 
The main motivation behind explicit MPC is that an explicit 
state feedback law avoids the need for real-time optimization, 
and is therefore potentially useful for applications where 
MPC has not traditionally been used. In addition to embedded 
system applications, this technology is also suitable for 
certain small -scale process control applications. In particular, 
low-level control of fairly simple unit processes is typically 
implemented using conventional PI/PID control rather than 
MPC. Some reasons are the need for high reliabilit y, fast 
processing and low software complexity, as these are 
typically executed in a highly reliable computer environment. 
On the other hand, explicit MPC is ideally suited for such 
problems as it offers the benefits of constrained MIMO 
control with low complexity and high reliabilit y for such 
small -scale problems. 
 

In [1] it was recognized that the constrained linear MPC 
problem can be posed as a multi -parametric quadratic 
program (mp-QP), when the state is viewed as a parameter to 

the problem. It was shown that the solution (the control input) 
has an explicit representation as a piecewise linear (PWL) 
state feedback on a polyhedral partition of the state space, see 
also [2,8,11,12], and they develop an mp-QP algorithm to 
compute this function. 
 

In [6,9,10], algorithms that determine an approximate explicit 
PWL state feedback solution by imposing an orthogonal 
search tree structure on the partition, have been developed. 
They lead to more eff icient real-time computations. The 
present paper considers the application of one of these 
algorithms to the design of an explicit model predictive 
controller for a laboratory gas-liquid separation plant, 
including experimental evaluation. 
 
2 Approximate approach to explicit MPC 
 
2.1 Explicit MPC and exact mp-QP 
 

Formulating a linear MPC problem as an mp-QP is briefly 
described below, see [1] for further details. Consider the 
linear system: 

)()()( tButAxtx +=+ 1        (1) 

where nRtx ∈)(  is the state variable, mRtu ∈)(  is the input 

variable, nnRA ×∈ , mnRB ×∈  and (A,B) is a controllable 
pair. For the current )(tx , MPC solves the optimization 

problem: 

{ }
))(,(min))((

,...,

* txUJtxV
TT

Nt
T
t uuU 1−+≡

=  (2) 

subject to: 

0

0

110

1

1

≥=

≥+=

=
−=≤≤

=≤≤

++

++++

+

+

kCxy

kBuAxx

txx

Nkuuu

Nkyyy

tkttkt

kttkttkt

tt

kt

tkt

,

,

)(

,...,,,

,...,,

||

||

|

maxmin

max|min

 (3) 

with the cost function given by: 
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and symmetric 0>R , 0≥Q , 0>P . The final cost matrix P 

may be taken as the solution of the algebraic Riccati equation. 
With the assumption that no constraints are active for Nk ≥  
this corresponds to an infinite horizon LQ criterion, and the 
MPC is stabili zing [5]. It is shown in [1] that by substituting: 
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in the optimization problem defined by (2), (3) and (4), this 
can be rewritten in the form: 
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The column vector { } sTT
Nt

T
t RuuU ∈≡ −+ 1,..., , Nms ⋅= , is 

the optimization vector, 0>= THH , and H, F, Y, G, W, E 
are easily obtained from Q, R, and (2) – (5) (since only the 
optimizer U is needed, the term involving Y is usually 

removed from (6)). Further, by defining )(txFHUz T1−+≡ , 
sRz ∈ , the optimization problem (6) is transformed into the 

following equivalent problem [1]: 
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where ( )xFFHYxxVxV TT
z
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TFGHES 1−+≡ . The vector x is the current state, which 
can be treated as a vector of parameters. The number of 
inequaliti es is denoted q and the number of free variables is 

Nms ⋅= . Then ssRH ×∈ , sqRG ×∈ , 1×∈ qRW , nqRS ×∈ . 
 

It has been shown that the optimization problem (7) is a 
multi -parametric quadratic program (mp-QP) and its solution 

can be found in an explicit form )(** xzz =  [1]: 
 

Theorem 1 Consider the mp-QP (7) and suppose 0>H . The 

solution )(* xz  (and )(* xU ) is a continuous PWL function of 

x defined over a polyhedral partition of the parameter space, 

and )(* xVz  is a convex (and therefore continuous) piecewise 

quadratic function. 
 

Algorithms for iteratively constructing a polyhedral partition 
of the state space and computing the PWL solution are given 
in [1,2,8,11,12]. 
 
2.2 Approximate mp-QP algor ithm 
 

In [9,10], an algorithm that determines an approximate 
explicit PWL state feedback solution of possible lower 
complexity is developed. The idea is to require that the state 
space partition is represented as a binary search tree (quad-
tree [4], cf. Figure 1), i.e. to consist of orthogonal hypercubes 
organized in a hierarchical data-structure. This allows 
extremely fast real-time search. When searching the tree, only 
n scalar comparisons are required at each level. 

 
Figure 1: Quad-tree partition in a 2-dimensional state space. 

 

 
Figure 2: k – d tree partition in a 2-dimensional state space. 

 
The main idea of the approximate mp-QP algorithm is to 

compute the solution of the problem (7) at the n2  vertices of 

a considered hypercube 0X  by solving up to n2  QPs. Based 

on these solutions, a feasible local li near approximation 

)(ˆ xz0  to the PWL optimal solution )(* xz , valid in the whole 

hypercube 0X , is computed by using the following result [3]: 
 

Lemma 1. Consider the bounded polyhedron fXX ⊆0  with 

vertices { }Mvvv ,...,, 21  (here fX  is the feasible set: 

})()({ 3satisfyingURtxX n
f ∃∈= ). If 0K  and 0g  solve 

the QP: 
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subject to: 
( ) { }MiWSvgvKG ii ,...,,, 2100 ∈+≤+      (9) 

then the least squares approximation 000 gxKxz +=)(ˆ  is 

feasible for the mp-QP (7) for all 0Xx ∈ . 
 

If the maximal cost function error in the hypercube 0X  is 

smaller than some prescribed tolerance, no further refinement 

of 0X  is needed. Otherwise, 0X  is partitioned into n2  

equal-sized hypercubes and the procedure described above is 
repeated for each of these. 
 



In this paper, an improved version of the approximate mp-QP 
algorithm is used which is based on a k - d tree partition of the 
state space (Figure 2) as a more flexible and powerful 
alternative to the generalized quad-tree (Figure 1). With the k 
- d tree [4], a hyper-rectangle is split i nto two equal parts and 
thus only one scalar comparison is required at each level 
when searching the tree. Also, the k - d tree allows the 
incorporation of heuristic rules that split the hyper-rectangle 
at the axis along which the change of error is maximal (before 
splitti ng). It has been shown in [6] that the use of such 
heuristics reduces the complexity of the partition 
significantly. 
 

The complexity is further reduced by implementing control 
input trajectory parameterization as it is described in [13]. 
The idea is to use an input trajectory parameterization with 
less degrees of freedom in order to reduce the dimension of 
the optimization problem. The most common approach is to 
pre-determine the time-instants at which the control input iu  

is allowed to change (input blocking): 
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The described approximate mp-QP algorithm is guaranteed to 
terminate with an approximate feasible solution that satisfies 
a specified maximum allowed error in the cost function [10]. 
 
3 Model of the gas-liquid separation plant 
 

We consider a sub-process within a semi-industrial 
installation which is used for reduction of NOx in eff luent 
gasses and technological waste water treatment by means of 
neutralisation with CO2 contained in flue gasses [14]. The 
role of the separation unit (Figure 3 from [14]) is to capture 
flue gasses under low pressure from eff luent channels by 
means of water flow and to carry them over under high 
enough pressure to the downstream (neutralisation) stage. 
 

 
Figure 3: Process scheme of the separation unit. 

The flue gasses coming from the eff luent channels are 
“pooled” by the water flow into the water circulation pipe 
through the injector I1. The water flow is generated by the 
pump P1 (water ring). The speed of the pump is kept constant. 
The pump feeds the mixture of water and gas into the 
separator R1 where gas is separated from water. Hence the 
accumulated gas in R1 forms a sort of “gas cushion” with 
increased internal pressure. Owing to this pressure, flue gas is 
blown out from R1 into the next neutralisation unit. On the 
other side the “cushion” forces water to circulate back to the 
reservoir R2. The quantity of water in the circuit is constant. If 
for some reason additional water is needed, the water supply 
path through the valve V5 is utili sed. 
 

The complete non-linear model of the gas-liquid separator is 
given in [14]. A linearized model can be obtained from the 
existing non-linear model: 
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where 
���

1 and 
���

1 denote the change of separator gas 
pressure p1 and liquid level h1 from the steady-state values 
( sppp 111 −=∆∆ , shhh 111 −=∆∆ ), and 

���
1 and 

���
2 are 

respectively the changes in the positions 1v  and 2v  of the two 

valves ( svvv 111 −=∆∆ , svvv 222 −=∆∆ ). The linear model 

corresponds to the following steady state: 
74620415204150 2111 .,.,.,. ==== ssss vvmhbarp (12) 

and the way to compute the elements of the matrices cA  and 

cB  is given in details in [14]. From the continuous-time 

model, a linear discrete-time model corresponding to 
sampling interval sTs 1=  is obtained, with the following 

state and control matrices: 
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B  (13) 

The state variables are ][barpx 11 ∆∆=  and ][mhx 12 ∆∆= , and 

the control variables are 11 vu ∆∆=  and 22 vu ∆∆= . The 

following input and rate constraints are imposed on the valve 
positions 1v  and 2v : 

10 1 ≤≤ v , 862500 2 .≤≤ v   (14) 

660330 1 .. ≤≤− v
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 (15) 

which by taking into account the steady state values (12) are 
represented as the following constraints on the control inputs 

1u  and 2u : 
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In order to avoid the steady state offset of the model 
predictive controller, two more states are added to the model 
(13), which take into account the integral error: 



)()()( txTtxtx s 133 1 +=+ , )()()( txTtxtx s 244 1 +=+  (18) 

Thus, the linear discrete-time model of the gas-liquid 
separation unit becomes: 
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4 Real-time performance of explicit model 
predictive controller for the gas-liquid 
separation plant 
 
4.1 Design of explicit model predictive controller for the 
gas-liquid separation plant 
 

The approximate mp-QP approach [10] is applied to design 
an explicit MPC controller for the gas-liquid separation plant. 
The MPC minimizes the cost function (4) subject to the 
system equation  (19) and the input constraints (16). The rate 
constraints (17) are not taken into account during the design 
of the MPC controller. Instead, a rate limiter is placed at the 
output of the controller in its real-time implementation, that 
guarantees the satisfaction of the rate constraints. In (4), P is 
chosen as the solution of the discrete algebraic Riccati 
equation and the cost matrices are: 

}.,.,,.{ 000100050100050diag=Q , },{ 11diag=R  (20) 

The horizon is 500=N  and the time instants at which the 
input variables can change are: 

]

[

310308306304302300110108106104

10210050454035302520151051
1

=uN
 (21) 

][ 30010050454035302520151051
2

=uN (22) 

which makes totally 36 optimization variables. The state 
space to be partitioned is 4-dimensional and is defined by 

],[],[].,.[].,.[ 60103320205050 −×−×−×−=X . The size of the 

regions on each of the state variables is restricted to be larger 
than 010

�
1 .=x , 0040

�
2 .=x , 060

�
3 .=x  and 70

�
4 .=x . 

The prescribed tolerance on the cost function approximation 
error is 50.=εε . 
 

The resulting MPC controller has 2693 regions in its state 
space partition and 24 levels of search. With one scalar 
comparison required at each level of the k-d tree, 24 
arithmetic operations are required in the worst case to 
determine which region the state belongs to. Totally, 40 
arithmetic operations are needed in real-time to compute the 
two control inputs with this MPC controller (24 comparisons, 
8 multiplications and 8 additions). 
 
4.2 Real-time experiments 
 

The real-time experiments were pursued in the environment 
schematically shown in Figure 4. This environment 
encompasses supervisory control on two levels: upper level 
with Factory Link SCADA system and lower procedural and 

basic control levels implemented in two PLCs. This is one of 
possible configurations of control, which can be found in 
industry. 
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Figure 4: Scheme showing environment for control and 

experimentation. 
 
User-friendly experimentation with the process plant is 
enabled through interface with Matlab/Simulink environment. 
This interface enables PLC access with Matlab/Simulink 
using DDE protocol via Serial Communication Link RS232 
or TCP/IPv4 over Ethernet IEEE802.3. Control algorithms for 
experimentation can be prepared in Matlab code or as 
Simulink blocks and extended with functions/blocks, which 
access PLC. This interface also enables user-friendly data 
acquisition for Matlab users. In our case all control schemes 
were put together as Simulink blocks and tested at the plant 
operating points as described in the previous section. 
 

In Figures 5 to 8, the real-time performance of the 
approximate explicit MPC controller, in closed-loop with the 

plant is shown. The set point is barpp s 5011 .* ==  and 

mhh s 4111 .* == . The experimental results (the solid line) are 

compared with the exact MPC trajectory (the dotted line) 
computed by solving the optimization problem at each time 
instant, based on the process model and with the simulated 
approximate trajectory (the dashed line). The latter two 
curves (the dotted curve and the dashed curve) are difficult to 
distinguish since they are almost matching. It can be seen 
from the figures that the explicit MPC controller brings the 
plant to the desired set-point despite of the error in the steady 
state process model and the transient performance is close to 
that of the optimal trajectory. The set point changes are 

handled by using the new set-point values *
1p  and *

1h  when 



determining the values of the state variables *
111 ppx −=  

and *
112 hhx −= , where 1p  and 1h  are the measured 

variables. 
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Figure 5: Trajectory of 1v  (position of valve 1). 
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Figure 6: Trajectory of 2v  (position of valve 2). 

 
 
It can be seen from Figure 6 that there is a slight chattering of 
the signal for the second valve. This can be explained as 
follows. The signal we depict has come out of analog digital 
converter which has 10 bit A/D converter resolution that 
means approximately 0.1 % of quantization noise on the 
range 0 to 1 which was used in our case. Afterwards this 
signal has gone through the controller with gain of about 10 
which amplified the quantization noise to about 1% (as it can 
be seen in the figure). This is not a problem for the valve and 
actually even helps beating the small dead zone contained in 
valve and makes it react faster when the change of control 
signal occurs. 
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Figure 7: Trajectory of 1p  (pressure in the separator). 
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Figure 8: Trajectory of 1h  (liquid level in the separator). 

 
 
5 Conclusions 
 

An approximate explicit MPC approach has been 
experimentally tested on a two-input two-output laboratory 
gas-liquid separation plant. The approach achieves 
performance close to that of conventional MPC, but requires 
only a fraction of the real-time computational machinery, 
leading to fast and reliable computations. It therefore provides 
an interesting alternative to conventional PI/PID control for 
low-level process unit control. A further benefit of the 
approach is that the use of a nonlinear plant model does not 
appear to make the real-time implementation more complex 
[7], in strong constrast to conventional MPC. The main 
limitation of the approach is that the complexity of state space 
partition tends to increase rapidly with the state space 
dimension, which makes the approach unsuitable for larger 
problems. 
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