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Chapter 1

Introduction

In this report we focus on experimental rather than first principles modelling. Owing to operating and
safety constraints, the available measured data from which we are required to construct an empirical
model is often concentrated mainly around equilibrium points with only relatively sparse data measured
far from equilibrium. A common approach in this situation is to build local models using the data in
vicinity of equilibrium points and then blend these models so as to obtain a nonlinear model covering the
operating envelope, e.g. [9].

Recently the use of non-parametric Gaussian processes (GP) for modelling dynamic systems has been
studied e.g. [5, 6, 2, 4, 7]. This is a probabilistic nonparametric approach to modelling. A key issue in
non-parametric GP models is that in their simplest form the computational burden is cubic in the number
of data points used. The computational burden is associated with matrix inversion and can be reduced
by employing approximate inverses. An alternative approach considered here is to summarise measured
data in the vicinity of an equilibrium point by a derivative observation i.e. a local linear model. This not
only accords well with engineering practice but has the potential to directly reduce the computational
burden.

The purpose of this report is to show how linear local models can be incorporated in GP models and
to contribute the derivation of uncertainty propagation through such models. The latter is important for
evaluation of GP dynamic systems model analysis.

The report is organised as follows. Gaussian process models are briefly described in the next chapter.
The case when input is random is described in the third chapter. The fourth chapter describes derivative
observations, their incorporation in GP model and illustrates their use with examples. The case when
the model with derivative observations has random inputs is described in the fifth chapter. Conclusions
are stated at the end.
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Chapter 2

Gaussian process model

2.1 Modelling with a Gaussian Process model

The Gaussian Process (GP) model fits naturally in the Bayesian modelling framework in which the
inference of a function f(x) is described by a posterior probability distribution:

p(f(x)|t,X) =
p(t|f(x),X)p(f(x))

p(t|X)
(2.1)

where p(t|f(x),X)p(f(x)) is the probability of the data given and D = {t,X} are the N input-output
data pairs, with xi ∈ <D (where xi is a row vector of X so that X is the N ×D matrix of inputs) and
ti ∈ R.

The idea of GP modelling is to place a prior directly on the space of admissible functions p(f(x)),
instead of parameterizing f(x).

2.1.1 The GP model

The simplest type of priors over functions is the Gaussian one.

A Gaussian process is a Gaussian random function, fully characterized by its mean and covariance
function. It can be viewed as a collection of random variables which have a joint multivariate Gaussian
distribution:1 f(x1), . . . , f(xn) ∼ N (0,Σ), where Σij gives the covariance between f(xi) and f(xj) and
is a function of the corresponding xi and xj : Σij = C(xi,xj). The covariance function C(., .) can be
of any kind, provided that it generates a positive definite covariance matrix Σ. Assuming a stationary
process,2 a common choice of covariance function is

C(xi,xj) = v exp

[
−1

2

D∑

d=1

wd(xd
i − xd

j )
2

]
(2.2)

or in vector form

C(xi,xj) = v exp
[
−1

2
(xi − xj)T W−1(xi − xj)

]
(2.3)

1For simplicity, we assume a zero-mean process.
2The stationarity assumption implies that the covariance between two points depends only on the distance between them

and is invariant to translation in the input space.
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where D is the input dimension and v, w1, . . . , wD are free parameters. Typically, covariance functions
are chosen such as (2.3) so that points close together in the input space are more correlated than points
far apart (a smoothness assumption). The parameter v controls the vertical scale of variation and the
wi’s are inversely proportional to the horizontal length-scale in dimension i (λi = 1/

√
wi). Since there is

one w parameter for each regressor component, it can be used as a tool to detect the relative importance
of the corresponding xi (Automatic Relevance Detection -ARD- tool introduced by [11]). Other forms of
covariance functions are discussed in [1, 13]. Note that the selection of covariance functions suitable for
robust generalization in typical dynamic systems applications is still an area open for research.

The use and properties of the Gaussian Process for modelling can be found in [12, 15] and we will
now recall the main results.

2.1.2 Inference

Let the input/target relationship be t = f(X) + ε. We assume an additive white noise with variance v0,3

ε ∼ N (0, v0), and put a GP prior on f(.) with covariance function as (2.3) with unknown parameters.
Within this probabilistic framework, we have t1, . . . , tN ∼ N (0,K) with Kij = Σij + v0δij , where δij = 1
if i = j, 0 otherwise.

Based on a set of N training data pairs, {xi, ti}N
i=1, we wish to find the predictive distribution of y

corresponding to a new given input x. We can write

t, t∗ ∼ N (0,KN+1) with KN+1 =





 K





k(x)




[
k(x)T

] [
k(x)

]




(2.4)

We can then divide this joint probability into a marginal and a conditional part. The marginal term
gives us the likelihood of the training data: t|X ∼ N (0,K), where t is the N×1 vector of training targets
and X the N ×D matrix of training inputs.

We need to estimate the unknown parameters of the covariance function, as well as the noise variance
v0. This is done via maximization of the log-likelihood

L(ΘΘΘ) = log(p(t|X)) = −1
2

log(| K |)− 1
2
tT K−1t− N

2
log(2π) (2.5)

where Θ is the vector of parameters, Θ = [w1 . . . wD v0 v]T and K is the N × N training covariance
matrix.

The optimization requires the computation of the derivative of L with respect to each of the param-
eters:

∂L(ΘΘΘ)
∂Θi

= −1
2
trace

(
K−1 ∂K

∂Θi

)
+

1
2
tT K−1 ∂K

∂Θi
K−1t (2.6)

Here, it involves the computation of the inverse of the N ×N covariance matrix K at every iteration,
which can become computationally demanding for large N . An alternative method is, in the Bayesian
framework, to put a prior on the parameters and compute their posterior probability (with the integration
done using Markov Chain Monte Carlo methods, see [13]).

3Correlated noise can also be considered, as shown in [10]
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2.1.3 Prediction

The conditional part of (2.4) provides us with the predictive distribution of t∗, p(t∗|t,X,x) = p(t,t∗)
p(t|X) . It

can be shown that this distribution is Gaussian with mean and variance

µ(x) = k(x)T K−1 t (2.7)

σ2(x) = k(x) − k(x)T K−1 k(x) + v0 (2.8)

where k(x) = [C(x1,x), . . . , C(xN ,x)]T is the N × 1 vector of covariances between the test and training
cases and k(x) = C(x,x) is the covariance between the test input and itself.

Clearly, what has been presented above is the modelling of a static function. However, it can be
readily extended to dynamic systems. Consider the following autoregressive model where the current
output depends on delayed outputs and control inputs:

y(k) = f(y(k − 1), y(k − 2), . . . , y(k − L),
u(k − 1), u(k − 2), . . . , u(k − L)) + ε (2.9)

where ε is a white noise and k denotes consecutive number of data sample.

Example

Let xk denote the state vector at k, composed of the previous outputs y and inputs u, up to a given
lag L: xk = [y(k − 1), y(k − 2), . . . , y(k − L), u(k − 1), u(k − 2), . . . , u(k − L)]. We wish to model this
dynamic system using a Gaussian Process and make multiple-step ahead predictions. A possible choice
of input and target vectors from N input and output data pairs for such system where the dimension of
GP model D is for example determined by double value of given lag L is as follows.

X =




x1

x2

...
xk

...
xN−L−1

xN−L




=




y(L) y(L− 1) . . . y(1) u(L) . . . u(1)
y(L + 1) y(L) . . . y(2) u(L + 1) . . . u(2)

...
...

...
...

...
...

...
y(k − 1) y(k − 2) . . . y(k − L) u(k − 1) . . . u(k − L)

...
...

...
...

...
...

...
y(N − 2) y(N − 3) . . . y(N − L− 1) u(N − 2) . . . u(N − L− 1)
y(N − 1) y(N − 2) . . . y(N − L) u(N − 1) . . . u(N − L)




(2.10)
for input matrix with D = 2L components (also regressors, columns) and

t =




y(L + 1)
y(L + 2)

...
y(k + 1)

...
y(N − 1)

y(N)




(2.11)

for target vector.
* * *

Multi-step ahead predictions can be achieved by iteratively making repeated one-step ahead predic-
tions up to the desired time span and at the same time feed back the predictive mean (estimate of the
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output). This approach is of course approximate, because we neglect noise on the lagged outputs on the
right-hand side, but is similar to that widely used, for example, when modelling dynamic systems with
neural networks or fuzzy models. The obtained variance is still the indicator of regions where model can
be more or less trusted, but the values of predicted mean and variance are not correct.

In [2], iterative multi-step ahead prediction is done by feeding back the predictive mean, as well as the
predictive variance at each time-step, thus taking the uncertainty attached to each intermediate prediction
into account. This means that input at which we wish to predict becomes a normally distributed random
variable, which is discussed in the next chapter.
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Chapter 3

Prediction at a new random input
for a GP model

In this chapter, we are summarising the results of extensions of the GP modelling framework for dealing
with random inputs. We first look at making a prediction for a new random input x, when the training
inputs are noise-free, a situation that might arise for instance when making multiple-step ahead prediction
of a noise-free time-series by propagation of the uncertainty. More elaborate information on this topic
can be found in [3].

3.1 Prediction at a random x

In the previous chapter, we saw how based on observed data and on a new input x, the predictive
distribution of the corresponding f(x) was readily obtained. We recall that p(f(x)|D,x), where D =
{t,X} is the set of observed targets and corresponding inputs, is Gaussian with mean and variance

µ(x) = k(x)Tβββ =
N∑

i=1

βiC(x,xi) (3.1)

σ2(x) = C(x,x)− k(x)T K−1k(x) = C(x,x)−
N∑

i,j=1

K−1
ij C(x,xi)C(x,xj) (3.2)

where βββ = K−1t and C(x,xi) is the covariance between f(x) and f(xi).

If we now wish to make a prediction at x ∼ Nx(u,ΣΣΣx), we need to integrate the predictive distribution
over the possible x’s, that is

p(f(x)|D,u,ΣΣΣx) =
∫

p(f(x)|D,x)p(x)dx (3.3)

where p(x) = Nx(u,ΣΣΣx) and p(f(x)|D,x) has mean µ(x) and variance σ2(x).

Now, as p(f(x)|D,x) is a nonlinear function of x, this integral cannot be solved analytically without
approximation.
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3.1.1 Numerical approximation

One way of solving this integral is to go for a numerical approximation, that is

p(f(x)|D,u,ΣΣΣx) ' 1
T

T∑
t=1

p(f(x)|D,xt) (3.4)

where xt is a sample from p(x). This can be done easily enough using MCMC methods.

3.1.2 Analytical approximation

We are more interested in a Gaussian analytical approximation, that is, in computing the mean and
variance of p(f(x)|D,u,ΣΣΣx) only.

The expressions for mean and variance are [3]:

m(u,ΣΣΣx) = Ex[µ(x)] (3.5)

where we denote by m(u,ΣΣΣx) the expectation of y|D,u,ΣΣΣx and

v(u,ΣΣΣx) = Ex[σ2(x)] + Ex[µ(x)2]− (Ex[µ(x)])2 (3.6)

where v(u,ΣΣΣx) is the variance of y|D,u,ΣΣΣx.

3.2 The special case of the Gaussian covariance function

We consider the Gaussian covariance function given by (2.3):

C(xi,xj) = v exp
[
−1

2
(xi − xj)T W−1(xi − xj)

]
(3.7)

Since it is not really a Gaussian distribution, it is denoted by N for notational convenience (not by N as
Gaussian distributions), because it just denotes some function of the same parametric form. We write it
as we would a Gaussian distribution for xi, centered on xj :

C(xi,xj) = τNxi(xj ,W) with τ = (2π)D/2|W|1/2v (3.8)

3.2.1 Prediction at x ∼ Nx(u,ΣΣΣx)

We have seen in section 3.1 that in order to predict at a noisy input, we needed to integrate the predictive
distribution over the input distribution (equation (3.3)). Then, a Gaussian analytical approximation of
this integral reduced the problem to computing the mean and variance of p(f(x)|D,u,ΣΣΣx).

Since p(x) is a Gaussian distribution, if the covariance function C(., .) happens to be also Gaussian,
as given by (3.8), we can use the product of Gaussians (3.9) and solve these integrals exactly.
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Nx(a,A)Nx(b,B) = zNx(c, C)

C = (A−1 + B−1)−1, c = C(A−1a + B−1b)
z = Na(b, A + B) or z = Nb(a,A + B)

(3.9)

Note that z is usually found expressed as z = (2π)−D/2|A + B|1/2 exp
[− 1

2 (a− b)T (A + B)−1(a− b)
]
.

The exact derivations can be found in [3]. Here we are presenting just the final results.

The new predictive mean is equivalent to that obtained for a noise-free test input, except that the co-
variance between the noisy input and the noise-free training input is computed using a modified covariance
function which accounts for the uncertainty on the test input. We can write

m(u,ΣΣΣx) =
∑N

i=1 βiCmod1(u,xi) (3.10)

where

Cmod1(u,xi) = v|I + W−1ΣΣΣx|−1/2 exp
[
−1

2
(u− xi)T (W + ΣΣΣx)−1(u− xi)

]
(3.11)

That is to say, the correlation length is ‘lengthened’ to account for the uncertainty on the new input
and the vertical amplitude of variation (formally controlled by v) is accordingly diminished.

The new predictive variance is

v(u,ΣΣΣx) = v + τ2
N∑

i,j=1

(βiβj −K−1
ij )Nxi(xj , 2W)Nu

(
xi + xj

2
,ΣΣΣx +

W
2

)
−m2(u,ΣΣΣx) (3.12)

As in the case of new predictive mean this can be written using modified covariance functions

v(u,ΣΣΣx) = v +
∑N

i,j=1(βiβj −K−1
ij )Cmod2(xi,xj)Cmod3(u,xb)−m2(u,ΣΣΣx) (3.13)

where Cmod2(xi,xj) = τNxi(xj , 2W)

Cmod2(xi,xj) = v02−
D
2 exp

[
−1

2
(xi − xj)T (

W
2

)−1(xi − xj)
]

= v02−
D
2 exp

[
−1

2

D∑

d=1

wd

2
(xd

i − xd
j )

2

]
(3.14)

and Cmod3(u,xb) = τNu

(
xi+xj

2 , W
2 + ΣΣΣx

)
.

Cmod3(u,xb) = v0

∣∣∣∣
1
2
I + W−1ΣΣΣx

∣∣∣∣
−1/2

exp

[
−1

2
(u− xb)T

(
W
2

+ ΣΣΣx

)−1

(u− xb)

]
(3.15)

with xb = xi+xj

2 .

The examples illustrating simulation with random input can be found in [2, 5, 7].
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3.3 The special case of the linear covariance function

Here we give a full derivation for the linear covariance function.

We consider the linear covariance function given by

C(xi,xj) = xT
i Wxj (3.16)

where W is a diagonal matrix of hyperparameters.

The predictive mean for the case when x is not random is

µ(x) = k(x)Tβββ (3.17)

βββ = K−1t = (XT WX)−1t (3.18)

k(x) = C(x,X) = XWxT (3.19)

Therefore
µ(x) = (XWxT )T (XWXT )−1t (3.20)

µ(x) = x(XW)T (XWXT )−1t (3.21)

And predictive variance is
σ2(x) = C(x,x)− k(x)T K−1k(x) (3.22)

σ2(x) = xWxT − (XWxT )T (XWXT )−1(XWxT ) (3.23)

We can write

σ2(x) = xWxT − (XWxT )T (XWXT )−1(XWxT )
= xWxT − x(XW)T (XWXT )−1(XW)xT

= x(W − (XW)T (XWXT )−1(XW))xT

= xαααxT (3.24)

where ααα = W − (XW)T (XWXT )−1(XW).

New predictive mean

According to (3.5), we have to compute

m(u,ΣΣΣx) = Ex[µ(x)]

=
∫

x(XW)Tβββp(x)dx

=
∫

xp(x)dx(XW)Tβββ (3.25)

since
∫

xp(x)dx = Ex[x] = u, we can write

m(u,ΣΣΣx) = u(XW)Tβββ (3.26)

It is apparent that m(u,ΣΣΣx) = µ(u).
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New predictive variance

According to (3.6) the variance is given by

v(u,ΣΣΣx) = Ex[σ2(x)] + Ex[µ(x)2]− (Ex[µ(x)])2 (3.27)

The last component is
(Ex[µ(x)])2 = m(u,ΣΣΣx)2 (3.28)

And the others are:

Ex[σ2(x)] =
∫

σ2p(x)dx

=
∫

xαααxT p(x)dx

=
∫

xαααxTNx(u,ΣΣΣx)dx (3.29)

Using formula for expectation of a quadratic form under a Gaussian1 we obtain

Ex[σ2(x)] = uαααuT + Tr[αααΣΣΣx] (3.30)

where ααα = W − (XW)T (XWXT )−1(XW).

Let calculate first

µ(x)2 = (XWxT )TββββββT (XWxT )

= x(XW)TββββββT (XW)xT

= xγγγxT (3.31)

where γγγ = (XW)TββββββT (XW).

Similarly we

Ex[µ(x)2] =
∫

xγγγxT p(x)dx

=
∫

xγγγxTNx(u,ΣΣΣx)dx (3.32)

and again using formula for expectation of a quadratic form under a Gaussian we obtain

Ex[µ(x)2] = uγγγuT + Tr[γγγΣΣΣx] (3.33)

where γγγ = (XW)TββββββT (XW).

So the new variance is

v(u,ΣΣΣx) = uαααuT + Tr[αααΣΣΣx] + uγγγuT + Tr[γγγΣΣΣx]−m(u,ΣΣΣx)2

= uαααuT + Tr[αααΣΣΣx] + v0 + uγγγuT + Tr[γγγΣΣΣx]− u(XW)TββββββT (XW)uT

= uαααuT + Tr[αααΣΣΣx] + v0 + uγγγuT + Tr[γγγΣΣΣx]− uγγγuT (3.34)

v(u,ΣΣΣx) = uαααuT + Tr[αααΣΣΣx] + Tr[γγγΣΣΣx] (3.35)

With a very little calculation it can be shown that v(u,ΣΣΣx = 0) = σ2(u).
1 Z

(x−µµµ)TΣΣΣ−1(x−µµµ)Nx(u,ΣΣΣx)dx = (µµµ− u)TΣΣΣ−1(µµµ− u)Tr[ΣΣΣ−1ΣΣΣx]

10



Chapter 4

Incorporating derivative observations

4.1 Derivative observations

The Gaussian process modelling framework is readily extended to include situations where derivatives of
a function are observed as well as (or instead of) the values of the function itself. Some results on this
topic can be found in [8, 14]. Since differentiation is a linear operation, the derivative of a GP remains a
GP. To work with derivative observations we need only replace the Gaussian covariance function in a GP
model with the appropriate derivative covariance function. The output (target) vector t which before
consisted solely of output measurements now also contains derivative observations. The corresponding
input (training) data are the values of the regressor associated with each derivation observation.

Example

Again consider the following autoregressive model from equation (2.9) where the current output depends
on delayed outputs and control inputs:

y(k) = f(y(k − 1), y(k − 2), . . . , y(k − L),
u(k − 1), u(k − 2), . . . , u(k − L)) + ε (4.1)

where ε is a white noise and k denotes consecutive number of data sample.

A possible (but not necessary) choice of data grouping in input matrix with D = 2L components and
target vector is as follows.

X =




Yoeq Uoeq

Yeq Ueq

Yeq Ueq

...
...

Yeq Ueq

...
...




t =




Yoeq1

Yeq

[ ∂f
∂y(k) ]

...
[ ∂f
∂u(k) ]

...




(4.2)

where

Yoeq1 is a vector of target response points out of equilibria;
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Yoeq is a vector of input response points out of equilibria;

Uoeq is a matrix of input input points out of equilibria;

Yeq is a vector of equilibria response points;

Ueq is a matrix of equilibria input points;

[∂f
∂y ] is a vector of derivative observations of response component (vector of a linear model coefficient in

different points);

[∂f
∂u ] is a vector of derivative observations of input component (vector of a linear model coefficient in

different points).

There exist all together D derivative observation vectors ([∂f
∂y ] and [∂f

∂u ]), one for each component of
input matrix. This means that dimensions of input matrix are (n+D ·nD)×D and dimensions of target
vector are (n + D ·nD)× 1 where n is a number of function equilibrium and nonequilibrium observations
(input-output data points) and nD is a number of derivative observations (input-output data points in
equilibrium points where derivative observations are derived).

* * *

Since the identification data is changed the covariance matrix must also be changed. We can define
the covariance relating any two data points as

C(xi,xj) = v exp

[
−1

2

D∑

d=1

wd(xd
i − xd

j )
2

]
(4.3)

in the case of two functional observations,

C(
∂xi

∂xi
,xj) = −vwd(xd

i − xd
j ) exp

[
−1

2

D∑

d=1

wd(xd
i − xd

j )
2

]
(4.4)

in the case of mixed derivative and functional observation and

C(
∂xi

∂xi
,
∂xj

∂xj
) = vwe(δe,d − wd(xe

i − xe
j)(x

d
i − xd

j )) exp

[
−1

2

D∑

d=1

wd(xd
i − xd

j )
2

]
(4.5)

in the case of two derivative observations, where δe,d is Kronecker operator between eth component
derivative in vector xi and dth component derivative in vector xj .

Example

A corresponding ordering of covariance functions in covariance matrix for the data ordering in the previous
example would be

K =




[
C(xi,xj)

] [
C(xi,

∂xj

∂xj
)
]

d=1
. . .

[
C(xi,

∂xj

∂xj
)
]

d=D

[
C(∂xi

∂xi
,xj)

]
d=1

[
C(∂xi

∂xi
,

∂xj

∂xj
)
]

e=1,d=1
. . .

[
C(∂xi

∂xi
,

∂xj

∂xj
)
]

e=1,d=D
...

...
...

...[
C(∂xi

∂xi
,xj)

]
d=D

[
C(∂xi

∂xi
,

∂xj

∂xj
)
]

e=D,d=1
. . .

[
C(∂xi

∂xi
,

∂xj

∂xj
)
]

e=D,d=D




(4.6)
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k(x) =




[
C(xi,x)

]

[
C(∂xi

∂xi
,x)

]
d=1

...[
C(∂xi

∂xi
,x)

]
d=D




(4.7)

k(x) =
[
C(x,x)

]
= v (4.8)

* * *
The GP model acts to integrate and smooth the noisy derivative observations. Derivative observations
around an equilibrium point can be interpreted as observations of a local linear model about this equi-
librium point. This means that the derivative observations can be synthesised using standard linear
regression. Such synthetic derivative observations can then be used to summarise training points in the
vicinity of equilibrium points, thereby effectively reducing the number of data points in the model for
computational purposes. It is important to note that a local linear input-output model such as a transfer
function model only specifies a derivative observation up to a co-ordinate transformation. In this paper
we always use lagged inputs and outputs as our state co-ordinates for simplicity but of course other
choices are possible.

Input data may or may not contain information about noise. If noise information for function points
is available it is added to covariance matrix diagonal elements corresponding to these data. For the points
with no information about noise output signal variance hyperparameter v0 is learned as in Chapter 2.

When standard identification methods are used for derivative observation, noise information for each
local model is also obtained. The covariance matrices of each linear local model obtained at identification
(see [14]) are added to overall covariance matrix for the corresponding derivative component.

The predictive distribution has mean and variance respectively given by equations (2.7) and (2.8).

Example

Modelling

Consider the nonlinear dynamic system described by equation

y(k + 1) = 0.5y(k) + tanh(y(k) + u3(k)) (4.9)

We are interested in exploring the potential for achieving an accurate model using derivative observations
at equilibrium points plus a small number of function observations at off-equilibrium points. We selected
ten equilibrium points uniformly spanning the operating region of interest. At each equilibrium point we
applied a small-scale pseudo random binary signal with mean 0 and magnitude 0.03; the corresponding
output signal is contaminated with normally distributed measurement noise in the range [-0.001,0.001].
A linear approximation to the local dynamics at the equilibrium point was identified using the Matlab
algorithm IV4. In addition to this equilibrium information, a small, sparse set of off-equilibrium input-
output data consisting of only 6 data points was selected (larger numbers of off-equilibrium observations
were also studied and this number was chosen as a compromise between the accuracy of achieved fit and
number of data points used). A nonparametric Gaussian process prior model was then constructed. To
summarise, the model made use of the following training information:

• Ten equilibrium input-output values spanning the operating region of interest.
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• The set of coefficients of the identified linear models representing partial derivatives of the output.

• The six input-output values that were sampled out of equilibrium points.

The response on validation data together with process response is given in Figure 4.1. We assess the
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Figure 4.1: Response on validation data: GP model response - dash-dot line, process response - solid line

goodness of the fit of the validation signal by computing the following cost functions:

• average absolute test error

AE =
1
N

∑
| ŷ − y |= 0.0467 (4.10)

where N is the number of validation points, y the process response (target) and ŷ is the model
output (predictive mean);

• average squared test error

SE =
1
N

∑
(ŷ − y)2 = 0.0124 (4.11)

• minus log-predictive density error

LD =
1

2N

∑
(log(2π) + log(σ2) +

(ŷ − y)2

σ2
)

= −0.826 (4.12)

where σ2 is the predictive variance.

The response is comparable to that in [5], where a GP model without derivative observations based on
200 data points was constructed. More descriptive of quality of the nonparametric model here (that
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contains only 36 points) is the error between the process and the GP model in the operating region
u(k) ∈ [−1, 1], y(k) ∈ [−2, 2], see Figure 4.2. It can be seen from the figure that the model covers the
surprisingly wide area out of equilibrium locus.
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Figure 4.2: Error between GP model and process where solid line presents equilibrium locus and dots
are training points

Control

The nonlinear model predictive control approach considered here is a receding horizon strategy which
is essentially the same as in [7] (where a Gaussian process model without derivative observations was
used). The model used for control is fixed, identified off-line, which means that the control algorithm is
not an adaptive one. The moving-horizon minimisation problem is of the form [7]

min
U(k)

[r(k + P )− ŷ(k + P )]2 (4.13)

where r is reference trajectory, U(k) = [u(k) . . . u(k + P )] is input signal, P is the coincidence point
(the point where a match between output and reference value is expected). The optimisation algorithm,
which uses Matlab Optimization toolbox routine for unconstrained optimisation, is solved at each sample
time over a prediction horizon of length P , for a series of moves which equals to control horizon Nu.
The process model is the Gaussian process model obtained in previous step, which includes derivative
observations. As with other nonlinear predictive control algorithms the computation burden is significant.
This and other issues of interest for applied NMPC are discussed in the paper [7].

In our case the reference trajectory r is defined so that it approaches the set-point exponentially from
the current output value. This means that the closed-loop system should behave close to the first order
system when the process model is a good description of the process itself. The coincidence point for the
chosen MPC was selected as P = 8 and the control horizon Nu = 1. The set-point for the closed-loop
system was chosen in such a way that it covers a large portion of the operating region, forcing the closed-
loop system to exercise far from equilibrium. The closed-loop response of the unconstrained control is
given in Figure 4.3. It can be seen from Figure 4.3 that the closed-loop response follows the desired
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set point very well including during demands for large set point changes that take the system far from
equilibrium point (but remaining within the operating envelope u(k) ∈ [−1, 1], y(k) ∈ [−2, 2]).

0 10 20 30 40 50 60 70 80 90 100
−0.5
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0.5

1

1.5
Closed−loop response and set−point

Time

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5
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Figure 4.3: Response of GP model based predictive control - solid line and set point - dashed line (upper
figure) and control signal (bottom figure)

The example shows that a grey-box model consisting of local linear models obtained from data around
equilibrium points, the corresponding equilibrium points and a very small number of data out of equilib-
rium points can be effectively used for predictive control. Moreover, the data used to obtain the grey-box
model is well suited to the kind of data usually available in practice when carrying out experimental
modelling. The model obtained is relatively small in comparison with a GP model that does not make
use of derivative observations, while the model quality is comparable. This makes it very suitable for
applications.

In the case information about variance at random input is given this would enable calculation of
propagated model variance and construction of robust predictive control as it is possible with GP model
that does not include derivative observations [7].

* * *
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Chapter 5

Prediction at a new random input
for GP model with derivative
observations

Investigation to derive propagation of model uncertainties of the GP model which contains derivative
observations is presented in this chapter.

5.1 Introduction

When derivative observations are used for system modelling, they are always used in combination with
function observations (points). This means that input data is combination of function and derivative
observations and also that prediction and variance of output have to be calculated taking both sorts of
data in account.

As shown previously predicted mean value and variance at random input can be obtained as

m(u,ΣΣΣx) = Ex[µ(x)] (5.1)
v(u,ΣΣΣx) = Ex[σ2(x)] + Ex[µ(x)2]− Ex[µ(x)]2 (5.2)

As we have already said the input matrix is put together from function points and derivative points
and corresponding target from corresponding targets.

For xi,xj ∈ RD, the covariance between f(xi) and f(xj) is given by

Cov[f(xi), f(xj)] = C(xi,xj) = v0 exp

[
−1

2

D∑

d=1

wd(xd
i − xd

j )
2

]
(5.3)

or

C(xi,xj) = v0 exp
[
−1

2
(xi − xj)T W−1(xi − xj)

]
(5.4)

where W−1 = diag[w1 . . . wD] or W = diag[1/w1 . . . 1/wD]. Which we can write

C(xi,xj) = τNxi(xj ,W) (5.5)
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with τ = (2π)D/2|W|1/2v0.

If we are now looking at the covariance between the derivative point f ′d(xi) = ∂f(xi)

∂xd
i

, i.e. dth compo-
nent of the derivative at xi, and f(xj), we have

Cov[f ′d(xi), f(xj)] =
∂C(xi,xj)

∂xd
i

= −wd(xd
i − xd

j )C(xi,xj) (5.6)

That we can also write
C ′xd

i
(xi,xj) = −τwd(xd

i − xd
j )Nxi(xj ,W) (5.7)

5.1.1 Predictive mean and variance corresponding to a new x for function
points

The case with the Gaussian covariance function has already been described and results were as follows.

Let the vector of covariances between function points and test points be denoted as kx with its ith

component kix(x), then the predictive mean corresponding to a new x is given by

µ1(x) =
∑

i

βikix(x) = τ
∑

i

βiNx(xi,W) (5.8)

and the predictive variance by

σ2
1(x) = k(x)−

∑

i,j

K−1
ij kix(x)kjx(x) (5.9)

= v − τ2
N∑

i,j

K−1
ij Nx(xi,W)Nx(xj ,W) (5.10)

5.1.2 Predictive mean and variance corresponding to a new x for derivative
points

If the training points consist of the dth components of the derivatives at x1, . . . ,xN , {f ′d(xi)}N
i=1, then,

the ith component of the vector k′x, giving the covariances between these training points and the test
input, is given by

k′ix(x) = C ′xd
i
(xi,x) = −τwd(xd

i − xd)Nx(xi,W) (5.11)

and the covariance between the new test input and itself is

k(x) = C ′xd
i
(x,x) = 0 (5.12)

Therefore, the predictive mean is given by

µd(x) =
∑

i

βik
′
ix(x) = −τ

D∑

d=1

wd

∑

i

βi(xd
i − xd)Nx(xi,W) (5.13)
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and the predictive variance by

σ2
d(x) = k(x)−

∑

i,j

K−1
ij k′ix(x)k′jx(x) (5.14)

= −τ2
D∑

e,d=1

wewd

∑

i,j

K−1
ij (xe

i − xe)(xd
j − xd)Nx(xi,W )Nx(xj ,W ) (5.15)

where e and d denote indices of different derivative components. This results from a product of two
covariance vectors each containing covariances for all derivative components.

5.2 Predictive mean for a new x ∼ Nx(u,ΣΣΣx)

We need to compute m(u,ΣΣΣx) = Ex[µ(x)], that is,

m(u,ΣΣΣx) = Ex[µ(x)] =
∫

k(x)Tβββp(x)dx (5.16)

where k(x) is covariance between entire input data and test vector and can be written as

k(x) =
[

Cov(f(xi), f(x))
Cov(f ′(xi), f(x))

]
=

[
kx

k′x

]
(5.17)

where k′x denotes covariance between input and test points for all derivative components.

m(u,ΣΣΣx) = Ex[µ1(x)] + Ex[µd(x)] =
[∫

kT
xβββ(1)p(x)dx∫

k
′T
x βββ(d)p(x)dx

]
(5.18)

where βββ =
[
βββ(1)

βββ(d)

]

Let us solve the integrals separately. The indices (·) will be from now on left out for notational
convenience.

The solution for the part representing function points is known

Ex[µ1(x)] = m1(u,ΣΣΣx) =
∑

i βiCmod1(u,xi) (5.19)

And for the part representing derivative points is as follows.

We need to compute md(u,ΣΣΣx) = Ex[µd(x)], that is,

Ex[µd(x)] = −τ

D∑

d=1

wd

∑

i

βi

∫
(xd

i − xd)Nx(xi,W)p(x)dx

= −τ

D∑

d=1

wd

∑

i

βi

[
xd

i l
1
i − l2i

]
(5.20)

with

l1i =
∫

Nx(xi,W)p(x)dx (5.21)

l2i =
∫

xdNx(xi,W)p(x)dx (5.22)
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where p(x) = Nx(u,ΣΣΣx).

For both integrals, we need to compute the product of Nx(xi,W) with p(x) = Nx(u,ΣΣΣx). We have

Nx(xi,W)Nx(u,ΣΣΣx) = ziNx(ci,C) (5.23)

with

C = (W−1 + ΣΣΣ−1
x )−1

ci = C(W−1xi + ΣΣΣ−1
x u)

zi = Nu(xi,W + ΣΣΣx)

(5.24)

Programming of expression for ci is made easier and avoids cases when ΣΣΣx is rank deficient if Matrix
Inversion Lemma ((A+XBXT )−1 = A−1−A−1X(B−1 +XT A−1X)−1XT A−1) and relation (AB)−1 =
B−1A−1 are used.

ci = (xiW−1 + uΣΣΣ−1
x )C (5.25)

= (xiW−1 + uΣΣΣ−1
x )(W−1 + ΣΣΣ−1

x )−1 (5.26)
= xiW−1(W−1 + ΣΣΣ−1

x )−1 + uΣΣΣ−1
x (W−1 + ΣΣΣ−1

x )−1 (5.27)
= xiW−1(W −W(W + ΣΣΣ)−1W) + u(W−1ΣΣΣ + ΣΣΣ−1ΣΣΣ)−1 (5.28)
= xi(I− (W + ΣΣΣ)−1W) + u(W−1ΣΣΣ + I)−1 (5.29)

So that

l1i = zi

∫
Nx(ci,C)dx = zi (5.30)

l2i = zi

∫
xdNx(ci,C)dx = zic

d
i (5.31)

where cd
i is the dth component of ci.

We then have

Ex[µd(x)] = −τ

D∑

d=1

wd

∑

i

βi

[
xd

i l
1
i − l2i

]
= −τ

D∑

d=1

wd

∑

i

βizi[xd
i − cd

i ] (5.32)

Replacing zi by its expression,

md(u,ΣΣΣx) = −τ

D∑

d=1

wd

∑

i

βiNu(xi,W + ΣΣΣx)[xd
i − cd

i ] (5.33)

or
Ex[µd(x)] = −∑D

d=1 wd

∑
i βi(xd

i − cd
i )Cmod1(xi,u) (5.34)

with cd
i , dth component of (W−1 + ΣΣΣ−1

x )−1(W−1xi + ΣΣΣ−1
x u) and Cmod1(xi,u) = τzi, that is

Cmod1(xi,u) = v0|I + W−1ΣΣΣx|−1/2 exp
[
−1

2
(xi − u)T (W + ΣΣΣx)−1(xi − u)

]
(5.35)
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Case of diagonal ΣΣΣx If ΣΣΣx = diag[vx1 . . . vxD], we have W + ΣΣΣx = diag[w−1
1 + vx1 . . . w−1

D + vxD], so
that we can write

Cmod1(xi,u) = v0

(
D∏

d=1

(1 + wdvxd)

)−1/2

exp

[
−1

2

D∑

d=1

(w−1
d + vxd)

−1(xd
i − ud)2

]
(5.36)

The final expression for m(u,ΣΣΣx) is

m(u,ΣΣΣx) = Ex[µ1(x)] + Ex[µd(x)] (5.37)

5.3 Predictive variance for a new x ∼ Nx(u,ΣΣΣx)

It is given by
v(u,ΣΣΣx) = Ex[σ2(x)] + Ex[µ(x)2]− Ex[µ(x)]2 (5.38)

and we already have Ex[µ(x)]2 = m(u,ΣΣΣx)2.

The expression for overall Ex[σ2(x)] can be written as

Ex[σ2(x)] = v −
∫

k(x)T K−1k(x)p(x)dx

= v −
∫

k(x)T K−1k(x)Nx(u,ΣΣΣx)dx

= v −
∫ [

kT
xK−1

ij(1)kx kT
xK−1

ij(1d)k
′
x

kT ′
x K−1

ij(1d)kx kT ′
x K−1

ij(d)k
′
x

]
Nx(u,ΣΣΣx)dx

= v −
[ ∫

kT
xK−1

ij(1)kxNx(u,ΣΣΣx)dx
∫

kT
xK−1

ij(1d)k
′
xNx(u,ΣΣΣx)dx∫

kT ′
x K−1

ij(1d)kxNx(u,ΣΣΣx)dx
∫

kT ′
x K−1

ij(d)k
′
xNx(u,ΣΣΣx)dx

]
(5.39)

where K−1 =

[
K−1

ij(1) K−1
ij(1d)

K−1
ij(1d) K−1

ij(d)

]

As we again calculate the integrals separately we will be, from the reason of convenience, using the
following notation

Ex[σ2
1(x)] = −

∫
kT
xK−1

ij(1)kxNx(u,ΣΣΣx)dx (5.40)

Ex[σ2
1d(x)] = −

∫
kT
xK−1

ij(1d)k
′
xNx(u,ΣΣΣx)dx (5.41)

Ex[σ2
d(x)] = −

∫
kT ′
x K−1

ij(d)k
′
xNx(u,ΣΣΣx)dx (5.42)

Be aware that K−1
ij(·) means only the corresponding part of the overall inverse covariance matrix K−1.

The indices (·) will be from now on left out for notational convenience.

The expression for Ex[σ2
1(x)] is

Ex[σ2
1(x)] = τ2

∑
i,j K−1

ij

[
Nxi(xj , 2W)Nu

(
xi+xj

2 ,ΣΣΣx + W
2

)]
(5.43)
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Replacing σ2
d(x) by its expression (equation (5.15)) and taking care of the case when we are looking

at the covariance of different dth components, we need to compute

Ex[σ2
d(x)] = −τ2

D∑

e,d=1

wewd

∑

i,j

K−1
ij

∫
(xe

i − xe)(xd
j − xd)Nx(xi,W)Nx(xj ,W)p(x)dx

= −τ2
D∑

e,d=1

wewd

∑

i,j

K−1
ij

∫
(xe

i x
d
j − xe

i x
d − xexd

j + xexd)Nx(xi,W)Nx(xj ,W)p(x)dx

= −τ2
D∑

e,d=1

wewd

∑

i,j

K−1
ij [xe

i x
d
jL

1
ij − xe

i L
2d
ij − xd

jL
2e
ij + L3

ij ] (5.44)

with

L1
ij =

∫
Nx(xi,W)Nx(xj ,W)p(x)dx (5.45)

L2d
ij =

∫
xdNx(xi,W)Nx(xj ,W)p(x)dx (5.46)

L3
ij =

∫
xexdNx(xi,W)Nx(xj ,W)p(x)dx (5.47)

Using (3.9), we have Nx(xi,W)Nx(xj ,W) = Nxi(xj , 2W)Nx

(
xi+xj

2 , W
2

)
. And again, the product

Nx

(
xi+xj

2 , W
2

)
with p(x) = Nx(u,ΣΣΣx) is

Nx

(
xi + xj

2
,
W
2

)
Nx(u,ΣΣΣx) = zijNx(cij ,C) (5.48)

with

zij = Nu

(
xi + xj

2
,
W
2

+ ΣΣΣx

)

cij = C

((
W
2

)−1 xi + xj

2
+ ΣΣΣ−1

x u

)

C =

((
W
2

)−1

+ ΣΣΣ−1
x

)−1

(5.49)

Again, as in the expression (5.29) we can simplify calculation of cij to

cij =
xi + xj

2
(I− (

W
2

+ ΣΣΣ)−1 W
2

) + u((
W
2

)−1ΣΣΣ + I)−1 (5.50)

So that we have

L1
ij = Nxi(xj , 2W)zij

∫
Nx(cij ,C)dx = Nxi(xj , 2W)zij (5.51)

L2d
ij = Nxi(xj , 2W)zij

∫
xdNx(cij ,C)dx = Nxi(xj , 2W)zijc

d
ij (5.52)

L3
ij = Nxi(xj , 2W)zij

∫
xexdNx(cij ,C)dx = Nxi(xj , 2W)zij(Ced + ce

ijc
d
ij) (5.53)

where cd
ij is the dth component of cij with regard to index i and Ced is the (e, d) entry of the D × D

matrix C with regard to temporary indices.
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Therefore,

Ex[σ2
d(x)] = −τ2

D∑

e,d=1

wewd

∑

i,j

K−1
ij [xe

i x
d
jL

1
ij − (xe

i + xd
j )L

2
ij + L3

ij ]

= −τ2
D∑

e,d=1

wewd

∑

i,j

K−1
ij Nxi

(xj , 2W)zij [xe
i x

d
j − (xe

i c
d
ij + xd

j c
e
ij) + Ced + ce

ijc
d
ij ]

(5.54)

and replacing zij by its expression, we have

Ex[σ2
d(x)] = −τ2

D∑

e,d=1

wewd

∑

i,j

K−1
ij Nxi

(xj , 2W)Nu

(
xi + xj

2
,
W
2

+ ΣΣΣx

)

[xe
i x

d
j − (xe

i c
d
ij + xd

j c
e
ij) + Ced + ce

ijc
d
ij ]

(5.55)

Let Cmod2(xi,xj) = τNxi(xj , 2W). We have

Cmod2(xi,xj) = v02−
D
2 exp

[
−1

2
(xi − xj)T (

W
2

)−1(xi − xj)
]

= v02−
D
2 exp

[
−1

2

D∑

d=1

wd

2
(xd

i − xd
j )

2

]
(5.56)

Also, let Cmod3(u,xb) = τNu

(
xi+xj

2 , W
2 + ΣΣΣx

)
, that is

Cmod3(u,xb) = v0

∣∣∣∣
1
2
I + W−1ΣΣΣx

∣∣∣∣
−1/2

exp

[
−1

2
(u− xb)T

(
W
2

+ ΣΣΣx

)−1

(u− xb)

]
(5.57)

where xb = xi+xj

2 .

Note that in the special case where ΣΣΣx is diagonal, we have

Cmod3(u,xb) = v0

(
D∏

d=1

(
1
2

+ wdvxd

))−1/2

exp

[
−1

2

D∑

d=1

(w−1
d /2 + vxd)

−1(ud − xd
b)

2

]
(5.58)

We can then write

Ex[σ2
d(x)] =

−
D∑

e,d=1

wewd

∑

i,j

K−1
ij (xe

i x
d
j − (xe

i c
d
ij + xd

j c
e
ij) + Ced + ce

ijc
d
ij)Cmod2(xi,xj)Cmod3(u,xb)

(5.59)

with Ced the (e, d) entry of
((

W
2

)−1
+ ΣΣΣ−1

x

)−1

, that is Ced = (2wd + vxd)−1 and cd
ij is the dth element

of C
((

W
2

)−1 xi+xj

2 + ΣΣΣ−1
x u

)
with C = diag[(2w1 + vx1)−1 . . . (2wD + vxD)−1], in the case of a diagonal

ΣΣΣx.
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We approach the computation of Ex[σ2
1d(x)] in the similar way as before

Ex[σ2
1d(x)] = τ2

D∑

d=1

wd

∑

i,j

K−1
ij

∫
(xd

i − xd)Nx(xi,W)Nx(xj ,W)p(x)dx

= τ2
D∑

d=1

wd

∑

i,j

K−1
ij

[
xd

i

∫
Nx(xi,W)Nx(xj ,W)p(x)dx

−
∫

xdNx(xi,W)Nx(xj ,W)p(x)dx
]

= τ2
D∑

d=1

wd

∑

i,j

K−1
ij Nxi(xj , 2W)zij [xd

i − cd
ij ] (5.60)

and replacing zij by its expression, we have

Ex[σ2
1d(x)] = τ2

D∑

d=1

wd

∑

i,j

K−1
ij Nxi(xj , 2W)Nu(

xi + xj

2
,
W
2

+ ΣΣΣx)[xd
i − cd

ij ] (5.61)

Let Cmod2(xi,xj) = τNxi(xj , 2W) as in equation (5.56) and Cmod3(xi,xj) = τNu(xi+xj

2 , W
2 +ΣΣΣx) as in

equation (5.57).

We can then write

Ex[σ2
1d(x)] =

∑D
d=1 wd

∑
i,j K−1

ij [xd
i − cd

ij ]Cmod2(xi,xj)Cmod3(u,xb) (5.62)

where xb = xi+xj

2 .

Similarly for overall Ex[µ(x)2], we have

Ex[µ(x)2] =
∫

k(x)TββββββT k(x)p(x)dx

=
∫

k(x)TββββββT k(x)Nx(u,ΣΣΣx)dx

=

[
kT
xββββββT

ij(1)kx kT
xββββββT

ij(1d)k
′
x

kT ′
x ββββββT

ij(1d)kx kT ′
x ββββββT

ij(d)k
′
x

]
Nx(u,ΣΣΣx)dx

=

[ ∫
kT
xββββββT

ij(1)kxNx(u,ΣΣΣx)dx
∫

kT
xββββββT

ij(1d)k
′
xNx(u,ΣΣΣx)dx∫

kT ′
x ββββββT

ij(1d)kxNx(u,ΣΣΣx)dx
∫

kT ′
x ββββββT

ij(d)k
′
xNx(u,ΣΣΣx)dx

]
(5.63)

where ββββββT =

[
ββββββT

ij(1) ββββββT
ij(1d)

ββββββT
ij(1d) ββββββT

ij(d)

]

And we again calculate the integrals separately we will be, from the reason of convenience, using the
following notation

Ex[µ1(x)2] = ββββββT
ij(1)

∫
kT
xkxNx(u,ΣΣΣx)dx (5.64)

Ex[µ1d(x)2] = ββββββT
ij(1d)

∫
kT
xk′xNx(u,ΣΣΣx)dx (5.65)

Ex[µd(x)2] = ββββββT
ij(d)

∫
kT ′
x k′xNx(u,ΣΣΣx)dx (5.66)

Be aware that ββββββT
ij(·) again means only the corresponding part of the overall ββββββT . The indices (·) will be

from now on left out for notational convenience.
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Expression for Ex[µ1(x)2] is

Ex[µ1(x)2] = τ2
∑

i,j βiβj

[
Nxi

(xj , 2W)Nu

(
xi+xj

2 ,ΣΣΣx + W
2

)]
(5.67)

Ex[µd(x)2] can be calculated as

Ex[µd(x)2] = τ2
D∑

e,d=1

wewd

∑

i,j

βiβj

∫
(xe

i − xe)(xd
j − xd)Nx(xi,W )Nx(xj ,W )p(x)dx

= τ2
D∑

e,d=1

wewd

∑

i,j

βiβj [xe
i x

d
jL

1
ij − xe

i L
2d
ij − xd

jL
2e
ij + L3

ij ] (5.68)

Ex[µd(x)2] =
D∑

e,d=1

wewd

∑

i,j

βiβj(xe
i x

d
j − (xe

i c
d
ij + xd

j c
e
ij) + Ced + ce

ijc
d
ij)Cmod2(xi,xj)Cmod3(u,xb)

(5.69)

Similarly for Ex[µ1d(x)2], we have

Ex[µ1d(x)2] = −τ2
D∑

d=1

wd

∑

i,j

βiβj

∫
(xd

i − xd)Nx(xi, W )Nx(xj ,W )p(x)dx (5.70)

Ex[µ1d(x)2] = −∑D
d=1 wd

∑
i,j βiβj [xd

i − cd
ij ]Cmod2(xi,xj)Cmod3(u,xb) (5.71)

So that finally, the predictive variance is expressed as

v(u,ΣΣΣx) = v + Ex[σ2
1(x)] + 2Ex[σ2

1d(x)] + Ex[σ2
d(x)]

+ Ex[µ1(x)2] + 2Ex[µ1d(x)2] + Ex[µd(x)2]−m(u,ΣΣΣx)2
(5.72)

5.4 Application to multi-step ahead iterative prediction

We wish to apply these results to the multi-step ahead prediction task of dynamic system response. We
focus on the iterative approach, which consists in making repeated one-step ahead predictions up to the
desired horizon. As we do so, we also suggest to propagate the uncertainty (induced by the successive
predictions) as we predict ahead in time.

In the following, we consider the time series yt1 , . . . , yt and assume the following state-space model

yt = f(xt) + ε with

xt = [yt−1, . . . , yt−L]T
(5.73)

where ε is a white noise with variance v.

Assuming the time-series is known up to time t, we wish to predict k steps ahead: that is to say, to
find the predictive distribution of yt+k corresponding to xt+k = [yt+k−1, . . . , yt+k−L]T .
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The naive way of doing so is by considering xt+k = [ŷt+k−1, . . . , ŷt+k−L]T , where ŷt+k−i is the point
estimate of yt+k−i.

Using the results derived in the previous section, we propose to predict k-steps by propagating the
uncertainty as we predict ahead in time so that now, each yt+k−i is a Gaussian random variable, with
known mean and variance, so that we have an L× 1 random state xt+k = [yt+k−1, . . . , yt+k−L]T , which
correponds to x ∼ N (u,ΣΣΣx) of the previous section.

Here is a sketch of what we do:

• t + 1: xt+1 = [yt, . . . , yt−L]T . Since the time-series is known up to time t, the predictive mean
and variance of the corresponding yt+1 are simply given by µ(xt+1) and σ2(xt+1), computed using
(5.13) and (5.14) resp.

• t + 2: xt+2 = [yt+1, yt, . . . , yt+1−L]T . Now, we have yt+1 ∼ N (µ(xt+1), σ2(xt+1)) so that we have

xt+2 ∼ N







µ(xt+1)
yt

...
yt+1−L


 ,




σ2(xt+1) 0 . . . 0
0 0 . . . 0
...

...
...

...
0 . . . . . . 0







Now, the predictive mean and variance of the corresponding yt+2 are given by m(xt+2) and v(xt+2),
computed using (5.34) and (5.72) resp.

• t+3: xt+3 = [yt+2, yt+1, . . . , yt+2−L]T , with yt+1 ∼ N (µ(xt+1), σ2(xt+1)) and yt+2 ∼ N (m(xt+2), v(xt+2)).
We have

xt+3 ∼ N







m(xt+2)
µ(xt+1)

yt

...
yt+2−L




,




v(xt+2) Cov[yt+2, yt+1] 0 . . . 0
Cov[yt+1, yt+2] σ2(xt+1) 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 . . . . . . . . . 0







And the predictive mean and variance of the corresponding yt+3 are given by m(xt+3) and v(xt+3),
computed using (5.34) and (5.72) resp.

etc, etc.

Finally, at t + k, we have xt+k = [yt+k−1, yt+k−2, . . . , yt+k−−L]T such that

xt+k ∼ N







m(xt+k−1)
m(xt+k−2)

. . .
m(xt+k−L)


 ,




v(xt+k−1) Cov[yt+k−1, yt+k−2] . . . Cov[yt+k−1, yt+k−L]
Cov[yt+k−2, yt+k−1] v(xt+k−2) . . . Cov[yt+k−2, yt+k−L]

. . . . . . . . . . . .
Cov[yt+k−L, yt+k−1] Cov[yt+k−L, yt+k−2] . . . v(xt+k−L)







and we finally get the corresponding m(xt+k) and v(xt+k), again computed using (5.34) and (5.72) resp.

5.4.1 Cross-covariance terms

As seen, at time t + l, we have the random input vector xt+l = [yt+l−1, . . . , yt+l−L]T ∼ N (u,ΣΣΣx) with
mean u formed by the predictive mean of the lagged outputs yt+l−τ , τ = 1, . . . , L, given by (5.13), or by
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(5.34), depending on l, and the diagonal elements of the L × L input covariance matrix ΣΣΣx contain the
corresponding predictive variances.

We now need to compute the cross-covariance terms Cov[yt+l−i, yt+l−j ] for i, j = 1 . . . L with i 6= j.
This corresponds to computing Cov[yt+l,xt+l], disregarding the last (oldest) element of xt+l.

We then have
Cov[yt+l,xt+l) = E[yt+lxt+l]− E[yt+l]E[xt+l] (5.74)

with E[yt+l] = m(xt+l) given by (5.34) and we denote E[xt+l] by ut+l, formed of the lagged predictive
means. We have

E[yt+lxt+l] =
∫ ∫

yt+lxt+lp(yt+l,xt+l)dyt+ldxt+l

=
∫ ∫

yt+lxt+lp(yt+l|xt+l)p(xt+l)dyt+ldxt+l

=
∫

xt+lµ(xt+l)p(xt+l)dxt+l

with

µ(xt+l) =
N∑

i=1

βiki(xt+l) +
N1∑

i=N+1

βik
1
i (xt+l) + · · ·+

ND∑

i=ND−1+1

βik
D
i (xt+l)

= τ

N∑

i=1

βiNxt+l
(xi,W)− τ

D∑

d=1

wd

Nd∑

i=Nd−1+1

βi(xd
i − xd

t+l)Nxt+l
(xi,W) (5.75)

Again we will not indicate the ranges of the i, d indices anymore. Always refer to (5.75). Let y = yt+l

and x = xt+l for notational convenience. We need to solve

E[yx] = τ

N∑

i=1

βi

∫
xNx(xi,W)p(x)dx− τ

D∑

d=1

wd

N∑

i=1

βi

∫
x(xd

i − xd)Nx(xi,W)p(x)dx

= τ

N∑

i=1

βili − τwd

N∑

i=1

βi(xd
i li − lli)

with

li =
∫

xNx(xi,W)p(x)dx (5.76)

lli =
∫

xxdNx(xi,W)p(x)dx (5.77)

As already seen in the previous section, we have Nx(xi,W)p(x) = ziNx(ci,C) with zi, ci,C given by
(5.24). So that we have

li = zi

∫
xNx(ci,C)dx = cizi (5.78)

lli = zi

∫
xxdNx(ci,C)dx = (C[d] + cd)zi (5.79)

27



where C[d] is dth column of matrix C and cd such that ith entry of cd is cd
i = cic

d
i ;

E[yx] = τ
∑

i

βilici − τ
∑

d

wd

∑

i

βi(zicix
d
i − zi(C[d] + cd))

= τ
∑

i

βizici − τ
∑

d

wd

∑

i

βizi(cix
d
i − (C[d] + cic

d
i ))

=
∑

i

βiciCmod1 −
∑

d

wd

∑

i

βi(cix
d
i − (C[d] + cic

d
i ))Cmod1

(5.80)

and finally

Cov(yT+k,xT+k) = (
∑

i

βiciCmod1 −
∑

d

wd

∑

i

βi(cix
d
i − (C[d] + cic

d
i ))Cmod1)−m(k − 1)uT+k (5.81)

Example

We use the same example as in the previous chapter. This time the input has double magnitude in
comparison with before. The results can be seen in Figure 5.1. Propagation of uncertainty and mean
causes that standard deviations are larger in some areas and mean value is also effected by the propagation
as expected.
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Figure 5.1: Response on validation data: GP model response without propagation of uncertainty - grey
lines, GP model response with propagation of uncertainty - black lines
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Chapter 6

Conclusions

This report shows how linear local models can be incorporated in GP models and contributes the deriva-
tion of uncertainty propagation through such models. Incorporation of derivative observations, obtained
as coefficients of local linear models in equilibrium points with regular linear regression method, means
joining local linear models and GP models. Local model networks have problem retaining local informa-
tion when optimised to fit the process globally. GP models have problem with model dimensions when a
lot of data is used for identification. Joining this two approaches can result in global models containing
global and local information, of acceptable GP model dimensions and suited to the kind of data usually
available in practice when carrying out experimental modelling (a lot of data in vicinity of equilibria
points and few data far from equilibria).

The main contribution of our work is the derivation of prediction at a new random input for GP model
with derivative observations which enables multi-step-ahead prediction (simulation) of such models. The
obtained results still need to be validated with MCMC method and on examples of dynamic systems with
simulation and experimentally.

Presented work is a part of widespread research activities on GP for dynamic systems in the world.
These activities are at present mainly as follows:

• modelling with mixtures of models - local GP models with linear covariance functions and their
optimisation based on blended (readily available) local variance information and not, as common,
on data recorded out of equilibria points (at University College Cork, Cork);

• evaluation of GP models experimentally on measured data (Jozef Stefan Institute, Ljubljana and
University of Glasgow, Glasgow);

• investigation of GP modelling tools for nonlinear systems structure identification - scheduling vari-
able identification (at Hamilton Institute, Maynooth and University of Strathclyde, Glasgow) and
identification of local models blending functions (at University College Cork, Cork);

• control using GP models and incorporating variance directly in cost function e.g. as a soft constraint
(at University of Glasgow, Glasgow and Jozef Stefan Institute, Ljubljana);

• reinforcement learning of GP models for control, calculation of gradients for more efficient optimi-
sation etc. (at Max Planck Institute, Tübingen);

• GP models predictive control and its semi-industrial application (Jozef Stefan Institute).
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