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Abstract

In this paper we define strong and weak common quadratic Lyapunov functions

(CQLF’s) for sets of linear time-invariant (LTI) systems. We show that the simul-

taneous existence of a weak CQLF of a special form, and the non-existence of a

strong CQLF, for a pair of LTI systems, is characterised by easily verifiable alge-

braic conditions. These conditions are found to play an important role in proving

the existence of strong CQLF’s for general LTI systems.

1 Introduction

The existence or non-existence of common quadratic Lyapunov functions (CQLF’s) for two or

more stable LTI systems is closely connected to recent work on the design and stability of

switching systems. In this context numerous papers have appeared in the literature [1, 2, 3, 4, 5]

in which sufficient conditions have been derived under which two stable dynamical systems

ΣAi : ẋ = Aix, Ai ∈ IRn×n, i ∈ {1, 2}

have a CQLF. If the matrix P = P T > 0, P ∈ IRn×n, simultaneously satisfies the Lyapunov

equations AT
i P +PAi = −Qi, i ∈ {1, 2}, where Qi > 0, then V (x) = xT Px is said to be a strong
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CQLF for ΣA1 and ΣA2 . If Qi ≥ 0 for i ∈ {1, 2} then V (x) is said to be a weak CQLF. This

technical note considers pairs of stable LTI systems for which a strong CQLF does not exist,

but for which a weak CQLF exists where −Q1 and −Q2 are both negative semi-definite and of

rank n− 1. We derive a result that can be used to determine necessary and sufficient conditions

for the existence of a strong CQLF for certain classes of stable LTI systems.

2 Mathematical Preliminaries

In this section we present some results and definitions that are useful in proving the principal

result of this note. Throughout, the following notation is adopted: IR and IC denote the fields

of real and complex numbers respectively; IRn denotes the n-dimensional real Euclidean space;

IRn×n denotes the space of n×n matrices with real entries; xi denotes the ith component of the

vector x in IRn; aij denotes the entry in the (i, j) position of the matrix A in IRn×n.

Where appropriate, the proofs of individual lemmas are presented in the Appendix.

(i) Stong and weak common quadratic Lyapunov functions : Consider the set of LTI

systems

ΣAi : ẋ = Aix, i ∈ {1, 2, ...M}. (1)

where M is finite and the Ai, i ∈ {1, 2, ...M}, are constant Hurwitz matrices in IRn×n

(i.e. the eigenvalues of Ai lie in the open left half of the complex plane and hence the ΣAi

are stable LTI systems). Let the matrix P = P T > 0, P ∈ IRn×n, be a simultaneous

solution to the Lyapunov equations

AT
i P + PAi = −Qi, i ∈ {1, 2, ...M}. (2)

Then, V (x) = xT Px is a strong quadratic Lyapunov function for the LTI system ΣAi if

Qi > 0, and is said to be a strong CQLF for the set of LTI systems ΣAi , i ∈ {1, ...,M},

if Qi > 0 for all i. Similarly, V (x) is a weak quadratic Lyapunov function for the LTI

National University of Ireland, Maynooth



Signals & Systems Group: NUIM/SS/2002/01 3

system ΣAi if Qi ≥ 0, and is said to be a weak CQLF for the set of LTI systems ΣAi ,

i ∈ {1, ...,M}, if Qi ≥ 0 for all i.

(ii) The matrix pencil σγ[0,∞)[A1, A2] : The matrix pencil σγ[0,∞)[A1, A2] is the parame-

terised family of matrices σγ[0,∞)[A1, A2] = A1 +γA2, γ ∈ [0,∞), where A1, A2 ∈ IRn×n.

We say that the pencil is non-singular if σγ[0,∞)[A1, A2] is non-singular for all γ ≥ 0.

Otherwise the pencil is said to be singular. Further, a pencil is said to be Hurwitz if its

eigenvalues are in the open left half of the complex plane for all γ ≥ 0.

(iii) The following result provides a useful test for the singularity of a matrix pencil.

Lemma 2.1 [6]: Let A1, A2 ∈ IRn×n with A1 non-singular. A necessary and sufficient

condition for singularity of the pencil σγ[0,∞)[A1, A2] is that the matrix product A−1
1 A2

has a negative (real) eigenvalue. (If A2 is also non-singular, then this is equivalent to

A1A
−1
2 having a negative (real) eigenvalue.)

(iv) The stability of ΣA and ΣA−1 : The relationship between a matrix, its inverse, and a

quadratic Lyapunov function will arise in our discussion. In this context we note the

following fundamental result ([7]). Consider the LTI systems

ΣA : ẋ = Ax, ΣA−1 : ẋ = A−1x,

where A ∈ IRn×n is Hurwitz. Then, any quadratic Lyapunov function for ΣA is also a

quadratic Lyapunov function for ΣA−1 .

Comment : Suppose that V (x) is a strong CQLF for the stable LTI systems ΣA1 , ΣA2 .

It is easily verified that the same function V (x) will be a strong quadratic Lyapunov

function for the systems Σσγ[0,∞)[A1,A2] and Σσγ[0,∞)[A1,A−1
2 ] for all γ ∈ [0,∞). Hence,

σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ] are both necessarily Hurwitz for all γ ∈ [0,∞). Thus

the non-singularity of these two pencils is a necessary condition for the existence of a

CQLF for the systems ΣA1 , ΣA2 .
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(v) Lemma 2.2 : Let u, v, x, y ∈ IRn be any four non-zero vectors. There exists a non-singular

T ∈ IRn×n such that each component of the vectors Tu, Tv, Tx, Ty is non-zero.

(vi) Lemma 2.3 : Let x, y, u, v be 4 non-zero vectors in IRn such that for all Hermitian ma-

trices P ∈ IRn×n, xT Py = −kuT Pv with k > 0. Then either

x = αu for some real scalar α, and y = −(
k

α
)v or

x = βv for some real scalar β and y = −(
k

β
)u.

3 Main results

We consider pairs of stable LTI systems for which no strong CQLF exists, but for which a weak

CQLF exists with Qi, i ∈ {1, 2}, of rank n− 1. Our principal result, Theorem 3.1, establishes a

set of easily verifiable algebraic conditions, that are satisfied when such a weak CQLF exists.

Theorem 3.1 : Let A1, A2 be two Hurwitz matrices in IRn×n such that a solution P = P T ≥ 0

exists to the non-strict Lyapunov Equations

AT
i P + PAi = −Qi ≤ 0, i ∈ {1, 2} (3)

for some positive semi-definite matrices Q1, Q2 both of rank n − 1. Furthermore suppose that

no strong CQLF exists for ΣA1 and ΣA2 . Under these conditions, at least one of the pencils

σγ[0,∞)[A1, A2], σγ[0,∞)[A1, A
−1
2 ] is singular. Equivalently, by lemma 2.1, at least one of the

matrix products A1A2 and A1A
−1
2 has a real negative eigenvalue.

Comment : The following facts are established in Theorem 3.1.

(a) Vectors x1, x2 ∈ IRn×n exist such that Q1x1 = 0 and Q2x2 = 0.

(b) Let H1 and H2 be two hyperplanes in the space of symmetric matrices defined by the

following equations (in the free parameter H) :

H1 : xT
1 HA1x1 = 0, H2 : xT

2 HA2x2 = 0. (4)
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Then, H1 and H2 define the same plane.

(c) There is some real α0 > 0 with xT
1 HA1x1 = −α0x

T
2 HA2x2, for all H = HT .

Proof of Theorem 3.1 : As Q1 and Q2 are of rank n − 1, there are non-zero vectors x1, x2

such that

xT
1 Q1x1 = 0, xT

2 Q2x2 = 0. (5)

The proof of Theorem 3.1 is split into two main stages.

Stage 1 : The first stage in the proof is to show that if there exists a Hermitian matrix P

satisfying

xT
1 PA1x1 < 0, xT

2 PA2x2 < 0 (6)

then a strong CQLF exists for ΣA1 and ΣA2 .

Note that as xT PA1x is a scalar for any x, we can write xT Q1x = 2xT PA1x. The same obviously

holds for xT Q2x.

Now assume that there is some P satisfying (6). We shall show that by choosing δ1 > 0

sufficiently small, it is possible to guarantee that AT
1 (P +δ1P )+(P +δ1P )A1 is negative definite.

Firstly, consider the set

Ω1 = {x ∈ IRn : ‖x‖ = 1 and xT PA1x ≥ 0}.

Note that if the set Ω1 was empty, then any positive constant δ1 > 0 would make AT
1 (P +δ1P )+

(P + δ1P )A1 negative definite. Hence, we assume that Ω1 is non-empty.

The function that takes x to xT PA1x is continuous. Thus Ω1 is closed and bounded, hence

compact. Furthermore x1 (or any non-zero multiple of x1) is not in Ω1 and thus xT PA1x is

strictly negative on Ω1.

Let M1 be the maximum value of xT PA1x on Ω1, and let M2 be the maximum value of xT PA1x

on Ω1. Then by the final remark in the previous paragraph, M2 < 0. Choose any constant
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δ1 > 0 such that

δ1 <
|M2|

M1 + 1
= C1

and consider the Hermitian matrix

P + δ1P .

By separately considering the cases x ∈ Ω1 and x /∈ Ω1, ‖x‖ = 1, it follows that for all non-zero

vectors x of norm 1

xT (AT
1 (P + δ1P ) + (P + δ1P )A1)x < 0

provided 0 < δ1 < |M2|
M1+1 . Since the above inequality is unchanged if we scale x by any non-zero

real number, it follows that AT
1 (P + δ1P ) + (P + δ1P )A1 is negative definite. By a standard

result of systems theory, this implies that the matrix P + δ1P is positive definite.

The same argument can be used to show that there is some C2 > 0 such that

xT (AT
2 (P + δ1P ) + (P + δ1P )A2)x < 0

for all non-zero x, for 0 < δ1 < C2. So, if we choose δ less than the minimum of C1, C2, we

would have a positive definite matrix

P1 = P + δP

which defined a strong CQLF for ΣA1 and ΣA2 .

Stage 2 : So under our assumptions, no Hermitian solution P exists satisfying equations (6).

We now show that such a solution P would exist unless one of the two pencils σγ[0,∞)[A1, A2],

σγ[0,∞)[A1, A
−1
2 ] was singular.

As there is no Hermitian solution to (6), any Hermitian H that makes the expression xT
1 HA1x1

negative will make the expression xT
2 HA2x2 positive. More formally

xT
1 HA1x1 < 0 ⇐⇒ xT

2 HA2x2 > 0 (7)

for Hermitian H. It follows from this that

xT
1 HA1x1 = 0 ⇐⇒ xT

2 HA2x2 = 0.
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The expressions xT
1 HA1x1, xT

2 HA2x2, viewed as functions of H, define linear functionals on the

space of Hermitian matrices. Moreover, we have seen that the null sets of these functionals are

identical. So they must be scalar multiples of each other. Furthermore, (7) implies that they

are negative multiples of each other. That is,

xT
1 HA1x1 = −kxT

2 HA2x2 (8)

with k > 0, for all Hermitian matrices H.

Now Lemma 2.3 implies that either x1 = αx2 and A1x1 = −( k
α)A2x2 or x1 = βA2x2 and

A1x1 = −( k
β )x2. Consider the former situation to begin with. Then we have

A1(αx2) = −(
k

α
)A2x2

⇒ (A1 + (
k

α2
)A2)x2 = 0

and thus the pencil σγ[0,∞)[A1, A2] is singular. It follows from Lemma 2.1 that the matrix A1A
−1
2

has a negative eigenvalue.

On the other hand, in the latter situation, we have that

x2 =
1
β

A−1
2 x1

Thus

A1x1 = −(
k

β2
)A−1

2 x1

⇒ (A1 + (
k

β2
)A−1

2 )x1 = 0

Thus, in this case the pencil σγ[0,∞)[A1, A
−1
2 ] is singular. It follows from Lemma 2.1 that the

matrix A1A2 has a negative eigenvalue. This completes the proof of Theorem 3.1.

Comment: A crucial point in the proof of theorem 3.1 is that there is a unique hyperplane

containing the matrix P which separates the sets {P : AT
1 P + PA1 < 0} and {P > 0 : AT

2 P +

PA2 < 0}. For the question of CQLF existence for three or more LTI systems, such a hyperplane

need not exist and alternative methods would need to be considered.
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4 Application of main result

In this section we present an example to illustrate the use of Theorem 3.1.

Example (Second order systems) : Let ΣA1 and ΣA2 be stable LTI systems with A1, A2 ∈

IR2×2. We note the following easily verifiable facts.

(a) If a strong CQLF exists for ΣA1 and ΣA2 then the pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ]

are necessarily Hurwitz.

(b) If A1 and A2 satisfy the non-strict Lyapunov equations (3) then the matrices Q1 and Q2

are both rank 1 (rank n− 1).

(c) If a strong CQLF does not exist for ΣA1 and ΣA2 then a positive constant d exists such

that a strong CQLF exists for ΣA1−dI and ΣA2 . By continuity a non-negative d1 < d exists

such that A1−d1I and A2 satisfy Theorem 3.1 and one of the pencils σγ[0,∞)[A1−d1I,A2]

and σγ[0,∞)[A1−d1I, A−1
2 ] is necessarily singular. Hence, it follows that one of the pencils

σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ] is not Hurwitz.

Items (a)-(c) establish the following facts. Given two stable second order LTI systems ΣA1 and

ΣA2 , a necessary condition for the existence of a strong CQLF is that the pencils σγ[0,∞)[A1, A2]

and σγ[0,∞)[A1, A
−1
2 ] are Hurwitz. Conversely, a necessary condition for the non-existence of

a strong CQLF is that one of the pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ] is not Hurwitz.

Together these conditions yield the following known result [5, 2]:

A necessary and sufficient condition for the LTI systems ΣA1 and ΣA2, A1, A2 ∈ IR2×2 both

Hurwitz , to have a strong CQLF is that the pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ]

are Hurwitz.

or in the equivalent matrix product form [8]:

A necessary and sufficient condition for the LTI systems ΣA1 and ΣA2, A1, A2 ∈ IR2×2 both

Hurwitz , to have a strong CQLF is that the matrix products A1A2 and A1A
−1
2 have no

negative real eigenvalues.
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5 Concluding remarks

In this paper a result related to strong and weak CQLF’s has been derived. It is shown that if a

strong CQLF does not exist for a pair of stable LTI systems, but a weak CQLF of a specific form

exists, then at least one of the matrix pencils A1 + γA2, A1 +λA−1
2 is singular for some positive

γ (orλ) (and at least one of the matrix products A1A2 or A1A
−1
2 has a negative eigenvalue).

It is possible to adapt the method of proof of theorem 3.1 to obtain corresponding results for

discrete-time systems involving the bilinear or Cayley transform C(A) = (A− I)(A + I)−1 ([9]).
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Appendix

Proof of Lemma 2.2 : Consider the norm ‖A‖∞ = sup{|aij | : 1 ≤ i, j ≤ n} on IRn×n, and

let z be any non-zero vector in IRn. Then it is easy to see that the set {T ∈ IRn×n : det(T ) 6=

0, (Tz)i 6= 0, 1 ≤ i ≤ n} is open. On the other hand, if T ∈ IRn×n is such that (Tz)i = 0 for

some i, an arbitrarily small change in an appropriate element of the ith row of T will result in a

matrix T ′ such that (T ′z)i 6= 0. From this it follows that arbitrarily close to the original matrix

T , there is some T1 ∈ IRn×n such that T1z is non-zero component-wise.

Now to prove the lemma, simply select a non-singular T0 such that T0x is non-zero component-

wise. Suppose that some component of T0y is zero. By the arguments in the previous paragraph,
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it is clear that we can select a non-singular T1 ∈ IRn×n such that each component of T1x and

T1y is non-zero. Now it is simply a matter of repeating this step for the remaining vectors u

and v to complete the proof of the lemma.

Proof of Lemma 2.3 : We can assume that all components of x, y, u, v are non-zero. To

see why this is so, suppose that the result was proven for this case and we were given four

arbitrary non-zero vectors x, y, u, v. We could transform them via a single non-singular trans-

formation T such that each component of Tx, Ty, Tu, Tv was non-zero (Lemma 2.2). Then

for all Hermitian matrices P we would have (Tx)T P (Ty) = xT (T T PT )y, and hence, that

(Tx)T P (Ty) = −k(Tu)T P (Tv). Then Tx = αTu and thus x = αu or Tx = βTv and x = βv.

So we shall assume that all components of x, y, u, v are non-zero. Suppose that x is not a scalar

multiple of u to begin with. Then for any index i with 1 ≤ i ≤ n, there is some other index j

and two non-zero real numbers ci, cj such that

xi = ciui, xj = cjuj , ci 6= cj (9)

Choose one such pair of indices i, j. Equating the coefficients of pii, pjj and pij respectively in

the identity xT Py = −kuT Pv yields the following equations.

xiyi = −kuivi (10)

xjyj = −kujvj (11)

(xiyj + xjyi) = −k(uivj + ujvi) (12)

If we combine (9) with (10) and (11), we find

yi = − k

ci
vi (13)

yj = − k

cj
vj (14)

Using (10)-(14) we find ciuiyj + cjujyi = −k(uivj + ujvi). Hence, uivj(
cj−ci

cj
) = ujvi(

cj−ci

ci
).

Recall that ci 6= cj so we can divide by cj − ci and rearrange terms to get

ci

cj
= (

vi

vj
)(

uj

ui
) (15)
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But using (9) we find

ci

cj
= (

xi

xj
)(

uj

ui
) (16)

Combining (15) and (16) yields

vi

vj
=

xi

xj
(17)

Thus xi = cvi, xj = cvj for some constant c. Now if we select any other index k with 1 ≤ k ≤ n,

and write xk = ckuk then ck must be different to at least one of ci, cj . Without loss of generality,

we may take it that ck 6= ci. Then the above argument can be repeated with the indices i and

k in place of i and j to yield

xi = cvi, xk = cvk. (18)

But this can be done for any index k so we conclude that x = cv for a scalar c. So we have

shown that if x is not a scalar multiple of u, then it is a scalar multiple of v.

To complete the proof, note that if x = βv for a scalar β then by (10), βviyi = −kuivi for all i.

Thus y = −( k
β )u as claimed. The same argument will show that if x = αu for a scalar α, then

y = −( k
α)v. Q.E.D
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