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Granular Synthesis for Display of Time-Varying
Probability Densities

John Williamson1 and Roderick Murray-Smith1,2

Abstract— We present a method for displaying time-varying
probabilistic information to users using an asynchronous granu-
lar synthesis technique. We extend the basic synthesis technique
to include distribution over waveform source, spatial position,
pitch and time inside waveforms. To enhance the synthesis in
interactive contexts, we “quicken” the display by integrating
predictions of user behaviour into the sonification. This includes
summing the derivatives of the distribution during exploration
of static densities, and using Monte-Carlo sampling to predict
future user states in nonlinear dynamic systems. These techniques
can be used to improve user performance in continuous control
systems and in the interactive exploration of high dimensional
spaces. This technique provides feedback from users potential
goals, and their progress toward achieving them; modulating
the feedback with quickening can help shape the users actions
toward achieving these goals. We have applied these techniques to
a simple nonlinear control problem as well as to the sonification
of on-line probabilistic gesture recognition. We are applying
these displays to mobile, gestural interfaces, where visual display
is often impractical. The granular synthesis approach is theo-
retically elegant and easily applied in contexts where dynamic
probabilistic displays are required.

I. I NTRODUCTION

A. Ambiguous Interfaces

The function of a human-computer interface is to interpret
the actions of the user to attempt to carry out the user’s
intention. In practice, a system cannot interpret a user’s
intention with absolute certainty; all systems have at least some
level of ambiguity. Conventionally, this ambiguity is ignored
in interactive systems; however, representing this ambiguity
and feeding back to the user should increase the quality
of interaction. Mankoff et al describe interfaces incorporat-
ing ambiguity in [1] and [2]. Representation of ambiguity
is particularly important in closed-loop continuous control
situations, where the user is constantly interacting with the
systems [3] to attempt to achieve some goal (see Figure
1). Formulating the ambiguity in a probabilistic framework,
we consider the conditional probability density functions of
sequences of actions associated with each potential goal in
the system, given the current context. The goal states can be
either discrete or continuous. The user’s aim is then to act
such that they maximize the system’s belief about the goal
they desire. The system uses its model of user behaviour to
update its beliefs, and presents the ambiguity to the user so that
they can act to correct any potential misinterpretation of their
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actions. Once the probability is sufficiently high, the system
can act on that interpretation.

In this context, providing suitable feedback about the distri-
bution of probabilities in the space of potential goals can assist
the user. Such feedback is of particular use if the display has
predictive power and can estimate and display the sensitivity
of future states to current user actions – “What can I do to
increase the probability of my intended goal?”. We wish to
sonify the time-varying properties of the distribution of goal
states given potential control actions on the part of the user.

B. Audio feedback

Audio can be used to present high-dimensional, dynamic
data, and is suitable for use when the eyes may be occupied
– for example with other visual displays, or with other tasks
such as walking, which require significant visual attention,
when using mobile devices.

A continuous feedback model requires that the probabilistic
model be able to dynamically update the probability associated
with each goal in real-time, in order to produce an audio
presentation of the changing probabilities. At each time-step
t, a vector of conditional probabilitiesPt = [p1 p2 . . . pn]
is updated, and this is displayed in audio. A particularly
suitable method for performing this translation is sonification
via granular synthesis.

C. Granular synthesis

1) Overview: Granular synthesis (see [4], [5], [6], [7]) is a
probabilistic sound generation method, based on drawing short
(10–200ms) packets of sound, called “grains” or “granules”,
from source waveforms. A large number of such packets
are continuously drawn from an sources, wheren is the
number of elements in the probability vector. For the discrete
case, these waveforms can either be synthesized or can be
pre-recorded sounds. In the case of a continuous probability
distribution, wheren is infinite, there must a continuous
parametric form for the source waveforms, which are then
generated in real-time as the grains are drawn. For example,
FM synthesis could be used to represent a one-dimensional
continuous distribution with the modulation index as the
source parameter. After the grains are drawn, they are then
enveloped with a Gaussian window so as to avoid auditory
discontinuities and the grains are then summed into an output
stream.

In asynchronous granular synthesis, the grains are drawn
according to some distribution giving the probability of the
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Fig. 1. A model of user interaction in a closed-loop system. The outer dashed line shows the ideal path from intention to action. The inner purple line
indicates the internal control loops within the user (proprioceptive, etc.)

next grain being selected from one of the potential sources.
This gives a discrete approximation to the true distribution.
For values of around 50–1000 simultaneous grains this is a
relatively accurate representation of the probability distribu-
tion. In our implemented system, grains are generated such
that around 100–1000 are always active; as one grain finishes,
a new one may with some probability be drawn. As the name
implies, this causes the relative timing of the grains to be
uncorrelated.

Figure 2 shows the basic process. Asynchronous granular
synthesis gives a smooth continuous texture, the properties of
which are modified by changing the probabilities associated
with each grain source.

Fig. 2. Simple granular synthesis process. A much greater number of grains
would be used in real output for a smoother waveform. When a new grain
is created, a section of the source waveform is copied. The position of the
section is determined by the temporal distribution across the waveform. This
section is then enveloped. All of the currently active grains are summed to
produce the final output.

Additionally, a distribution can be defined over the time
inside the source waveform, giving the probability of a grain

being drawn from a specific time point in the wave. This allows
for effective probabilistic time-stretching. This is of use in
interfaces or systems where the process of progress towards
some goal is of importance (e.g gesture recognition).
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Fig. 3. Gaussian probability distribution over time in a source waveform.
This can be translated from left to right to produce a time-stretching effect.

Clearly, this sound generation method is an ideal feedback
mechanism for probabilistic audio display.

D. Spatial distribution example

An illustration is given in Figure 4 which shows how a
mixture of Gaussians could be used to map regions of a two-
dimensional state-space to sound. Each Gaussian is associated
with a specific sound. As the user navigates the space, the
timbre of the sound changes appropriately. Although here the
densities are in a simple spatial configuration, the technique
is general and is applicable to more abstract distributions.

E. Gesture Recognition

As an example of a more abstract system, a gesture recog-
niser can be sonified by associated each gesture model (such
as an HMM) with a source waveform, and each model’s
output probability then directly maps to the probability of
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Fig. 4. Mixture of Gaussian densities in a two-dimensional state space as
illustration of the basic concept. Each Gaussian is associated with a waveform.

drawing a grain from the source corresponding to that model.
The temporal distribution of the grains inside the source
waveforms maps to the estimate of progress through the
gesture. The design issue is then reduced to creating a suitable
probability model, and selecting appropriate waveforms as
sources. In practice, this produces a sound which is confused
and incoherent when ambiguity is high, resolving to a clear,
distinct sound as recognition progresses.

II. D ISPLAY QUICKENING

“Quickening” (see [8], [9]) is the process of adding predic-
tions of a user’s future states to the display of the current
state. In manual control problems this allows the user to
improve their performance; it has been shown that the addition
of even basic predictive power can significantly improve the
performance of humans in control problems (see [8]). In a
sense, the quickening is similar to the use of the integral and
derivatives of the error value in automatic PID controllers.

Such techniques are directly applicable to real-time sonifi-
cations of probabilistic information in interactive systems. By
providing the user with information as to the sensitivity of
potential goals to the control inputs that the user may apply,
faster and more robust exploration and control can be achieved.

The most basic quickening technique is the display of
derivatives (see Figure 6) of the variables under control; here
the variables are the time-varying probabilities. By displaying
the gradient of the density, as well as its current value, the
quality of feedback can be improved.

The granular audio display can be quickened by taking the
derivatives of each probabilityp with respect to time and then
forming the sum

v = p +
n∑

i=1

ki
dpi

dit
,

whereki is a scaling factor.v is then saturated to clip it to
the range(0, 1). This value can be treated as a probability and
directly sonified with the granular synthesis process described
above. The effect of this is that when the user is increasing the
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Fig. 6. A visual example of quickening. Here, the controlled object is the
central circle. The estimated velocity and acceleration vectors are shown.
Similar displays are used in helicopter displays to aid pilots in maneuvering
(see [10]).

probability of some goal, the proportion of grains drawn from
the source associated with this goal is increased; similarly the
proportion is decreased as the goal becomes less likely.

A. Spatial exploration example

As a simple practical example of the quickened display,
the spatial exploration task from Section I-D was augmented
with the first derivative. This aids users in their exploration of
the space by rapidly increasing the intensity of the feedback
as the users move towards the center of a goal, so that they
can rapidly determine which direction will give the greatest
increase (or decrease) in probability.

In particular, the quickening is of use in accurately ascer-
taining the modes of the distribution. As a user approaches and
then overshoots the mode, there is a rapid increase followed
by a equally rapid decrease in the intensity of the feedback
for that goal, allowing for faster and more accurate targeting.

In a higher-dimensional exploration tasks, the quickening
is particularly useful for finding subtle gradients which may
be difficult to perceive with an unaugmented display. As
the dimension increases, increasing the weightingki of the
derivatives can help compensate for the spreading out of the
density.

III. M ONTE-CARLO SAMPLING FOR TIME-SERIES

PREDICTION

Monte-Carlo sampling is a common statistical method for
approximating probability densities by drawing a large number
of discrete samples from the probability density function. This
is often more tractable than directly integrating the target
distribution. As the number of samples tends to infinity the
samples converge to the target distribution.

There is a particularly elegant link between granular syn-
thesis and Monte-Carlo sampling of probability distributions
– each sample taken in the process can be directly mapped to
a single grain in the output. Few other sonification methods
would be suitable for directly representing the output of
the Monte-Carlo sampling process; approximations to the
distribution would be required. In the case when there are
more grains playing than samples taken (this may be the case
if sampling is computationally expensive, and therefore the
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Fig. 5. Mapping from a number of gesture recognition models to an audio display

sampling is sparse) the grains can be matched to samples in
a round-robin manner.

Given a model of the dynamics of a particular interactive
system where there may be both uncertainty in the current state
and uncertainty in the model, it is possible to use Monte-Carlo
sampling to approximate the distribution of states at some
point in the future. This can be done by drawing a number
of samples around the current state, and propagating these
forward according to the dynamics model, adding appropriate
noise at each step to account for the uncertainty in the model.

A. Simple dynamic system

As a practical example of the Monte-Carlo techniques, a
simple dynamic system, consisting of a simulated ball-bearing
rolling across a non-linear landscape, has been constructed
(see Figure 8). In this system, the bearing has a stateS =
[x ẋ ẍ y ẏ ÿ]. The height component is not included in the
simulation as the bearing is constrained so that it cannot leave
the surface. There is assumed to be uncertainty in this state
value; here we assume Gaussian noise. The landscape model
is also considered to be uncertain, in this case with a spatially
varying uncertainty. In Figure 8 the light-coloured green/red
grid on top of the main solid surface shows the uncertainty
(two standard deviation bound).

Prediction proceeds by simulating perturbations around the
current state, producingN perturbed samples. Increasing the
number of samples results in a more accurate representing
of the target distribution, but at a cost of increasing the
computational load. The model simulation is then applied to
these samples for each time-step, until the process reaches
t = T , whereT is a predefined time horizon (see Figure 7).
Note that the state perturbation is only applied at the first step,
not at each of the intermediate computations. In this example,
normal ranges of the parameters are 20–40 forN and 30–
80 for T . Appropriate values of the time horizon depend on
the the integration constant in the simulation process and the
response time of the user. In this example, there is no model
of the future control actions of the user; control actions are
assumed to be constant for the duration of the prediction.

Users can browse through the space of future distributions
by allowing the time horizonT to be directly controlled. We
have implemented a system with an InterTrax headtracker in

• Given a stateS = [s1 s2 . . . sN ] at t = 0,
and assuming Gaussian noise, produce

a1 = S +N (0, Σs) . . . aN = S +N (0,Σs),

to get a vector

At=1 = [a1 a2 ... an],

whereΣs is the state noise covariance.
• Then, for eacht until t = T , calculate

At+1 = f(At) +N (0, Σm(At)),

wheref is the model function andΣm is the
model noise covariance.

• Each elementa1 . . . aN of At=T is then
mapped to a grain.

Fig. 7. The Monte-Carlo time-series prediction used in the bearing example.

which users can look up and down to project the predictions
closer and further in time interactively.

Uncertainty in the model is in the case modelled by adding
Gaussian noise to the surface height at each time step, thus dif-
fusing the samples in regions of high uncertainty. A more re-
alistic approach would be to draw realizations of the potential
landscapes from a process which has reasonable smoothness
constraints, such as a Gaussian process (see [11]), drawing one
realization for each of the sample paths. This would ensure that
the predicted trajectories would have appropriate dynamics.

The audio output proceeds as described in Section I-C.1,
except that each grain now corresponds directly to one sample
at the time horizon in the Monte-Carlo process. This gives
an audio display of the density at timet = T , given that
the user keeps their control actions as they are. This could
be extended to include models of potential user behaviour by
predicting likely future control actions and applying these as
the simulation progresses. In this case a method for feeding
back the particular control actions that lead to the final state
is required.



PROCEEDINGS OF THE INT. WORKSHOP ON INTERACTIVE SONIFICATION, BIELEFELD, JAN. 2004 5

Fig. 8. Monte-Carlo sampling of the distribution of future states in a simple
control task. Each sample at the horizon (the orange arrows) corresponds to
an output grain. The depressions each have a sound source associated with
their mode. The region in green has high model uncertainty.

Fig. 9. Sampling where the future trajectory passes through the region of
high model uncertainty.

B. Application

This display method is suitable for any continuous-control
system where there is uncertainty, assuming that there also
exists a reasonable model of the system which is amenable
to Monte-Carlo sampling. The quality of the predictions and
therefore the feedback is completely dependent on the accu-
racy of the model of the system and the model of the user.

Potential application areas of this technique include aids
for helicopter control problems, where particular regions of
the state-space would include hovering, stalling, or non-
equilibrium transient states, for example. The pilot can then
respond to this feedback with sufficient time to react. This
audio presentation also gives pilots awareness of the system’s
sensitivity to their control actions; they can interactively ex-
plore the outcomes of control changes.

On a more basic level, we are currently augmenting a
text-entry system based on continuous movement (see [12])
with the Monte-Carlo granular display to provide feedback in
situations where the visual sense is already heavily loaded. In
this case, we do sampling over a probability distribution given

by a language model and a model of the user’s dynamics. The
result of the sampling is a ranked list of words (goals) and
their associated probabilities.

The augmentation of the display with prediction, whether in
the form of complex time-series prediction or basic projection
along derivatives means that (apparent) latencies in interfaces
can be reduced. This can be used to produce more responsive
systems, and since the bound on acceptable latencies for
auditory feedback is very low (around 100-200ms is the
maximum before serious degradation of performance occurs
[13]), this can be a very significant advantage. However, this
is only feasible in cases where a reasonable model of the
interface is known or can be learned. In the worst case, a poor
and overconfident model of the system can lead to feedback
that is an active hindrance. If, however, the model makes poor
mean predictions, but has an appropriate level of uncertainty
in these predictions, it will still be of some benefit to the user,
if the uncertainty is displayed appropriately, as described in
this paper. The more accurate the model becomes, the more
useful the feedback.

Particle filters/Condensation filters (see [14]) can be sonified
in a similar manner. Each of the particles in the filter can be
mapped to a single grain of audio. Such filters are widely
used in tracking tasks and recognition task. For example, the
particle filtering gesture recognition system described by Black
et al [15] is ideally suited to a granular auditory display. The
distribution over potential models is mapped to the distribution
over waveforms, and the distributions over phase and velocity
map to distributions over time inside those waveforms. Such
a display completely represents the uncertainty present in the
recognition system.

IV. CONCLUSIONS

We have presented a flexible and powerful technique for
the sonification of time-varying probability distributions in the
context of continuous human-computer interfaces. This dis-
play allows the straightforward representation of probabilities
of hypothesized user goals. In combination with predictive
models to display the distribution of states at some point in
the future, the interaction properties of an interface can be
improved. Any interactive system where some type of Monte-
Carlo sampling can be applied can be sonified in this manner.
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