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Semidefinite Programming (SDP)

Convex optimization of the form:

minimize iz
subjectto Fo+x1Fi+---+z,F, =0

Fy, I, ..., F, are given symmetric matrices, c is a vector, z is the vector of
optimization variables

F(x)=Fy+ x1F1 + - -+ x,F, = 0 called an “LMI”
F > 0 means F is positive semidefinite, that is w” Fu > 0 for all vectors

LMIs are nonlinear, but convex constraints:
If F/(x) > 0and F(y) >~ 0, then

F(Ox+(1—Ny) =AF(z)+ (1 — \)F(y) = 0forall A € [0, 1]
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SDP vs. LP
SDP: minimize cf'x
subjectto Fy+zFi+ -+ x,F, =0

Fy, I, ..., F, are given symmetric matrices, c is a vector, z is the vector of
optimization variables

LP: minimize c'z
subjectto alz <b;,i=1,...,N
Same linear objective

Linear matrix inequality constraint instead of linear scalar inequalities
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More on LMIs

Matrices as variables:
Example: Lyapunov inequality

AP+ PA <0
A is given, P = P! is the variable
Can write it as an LMI In the entries of P

Better to leave LMIs in a condensed form

* saves notation
* |leads to more efficient computation



FAST ALGORITHMS FOR KYP SDPs

More on LMIs
Matrices as variables
Multiple LMIs F(z) = 0,..., FN)(z) = 0 same as single LMI

diag (FY(z),..., FMN)(z)) = 0
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LMI examples

Many standard constraints can be written as LMIs

Linear constraints Az + b > 0 (componentwise)

Can be rewritten as an LMI using diagonal matrices
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LMI examples

Many standard constraints can be written as LMIs

Linear constraints

Quadratic constraints:
Inequality (Ax + b)) (Axz +b) + cl'z + d < 0 is equivalent to the LMI

I Az + b

(Az+0)T —(Tz+d) | ~Y



FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints

Trace constraints:
Inequality P = PY, ATP+ PA <0, TrP < 1lisan LMI
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LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints
Trace constraints

Norm constraints:
Inequality o,.x(A) < 1 is equivalent to LMI

I A
R
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LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints
Trace constraints

Norm constraints

... mixtures of these constraints and many more
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SDP applications
Systems and control (quite well-known)
Circuit design
Nonconvex optimization

... many others
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Kalman-Yakubovich-Popov lemma

Frequency-domain inequality, rational in frequency w, and affine in a design
vector x, expressed as

~ 0

I P

(jeol —IA>‘1B]* S [(ij—A)‘lB
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Kalman-Yakubovich-Popov lemma
If (A, B) is controllable, then

(JwI — A ] ZmM N) [(ij—A)_lB

I

hold for all w € R
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Kalman-Yakubovich-Popov lemma
If (A, B) is controllable, then

(ol = A)" ] Z@,M - [uwf—A)-lB

I

hold for all w € R

<

AP + PA PB a
ij—P 0 ]-I-Zﬂ?iMi—NiO

Is feasible (an LMI with variables P, x)



FAST ALGORITHMS FOR KYP SDPs

KYP Lemma consequences

Semi-infinite frequency domain inequality is exactly equivalent to LMI (no
sampling)

P serves as an auxiliary variable

Of enormous importance for systems, control, and signal processing
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KYP LMI applications

Linear system analysis and design:

w

YO

— Plant

Controller

* Problem: Design LTI controller for LTI plant
* Constraints specified as frequency domain inequalities on TF from w to z
* Youla parametrization used to express TF from w to z

p

T(jw,z) =Ti(jw) + T2 (jw) (Z wiQi(jw)) Ts5(jw),

1=1

* KYP Lemma used to obtain LMIs in variable x
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KYP LMI applications

Linear system analysis and design

Digital filter design:

* An FIR or more general filter design problem: Find = such that

satisfies frequency-domain constraints (i.e., for all & € [0, 27])

* KYP Lemma used to obtain LMIs in variable x

10
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KYP LMI applications
Linear system analysis and design

Digital filter design

Robust control analysis:

* Stability of interconnected systems via passivity or small-gain analysis
* Techniques that take advantage of uncertainty structure/nature

* Performance analysis via Lyapunov functions

10
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KYP SDP
Focus on:
minimize c'z + Tr(CP)

AP+ PA PB

subject to BT P .

+ Zle CIZZMZ t N

where ce RP,C € S", Ae R"", B R™™ M; € """ N e S"™"
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KYP SDP

Focus on:
minimize ¢’z + Tr(CP)

AP+ PA PB

subject to BT P 0

le CIZZMZ t N
where ce RP,C € S", Ae R"", B R™™ M; € """ N e S"™"

(Extension to multiple LMIs in multiple variables straightforward)

minimize ¢’z + S0 Tr(Cp P

subject to { Bng 0

:|+Zf1szkziNk7 kEk=1,...

K.

11
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Numerical solution of SDPs

All SDPs are convex optimization problems:

Generic algorithms will work in polynomial-time
Matlab “LMI Control Toolbox” available
Moderate size problems solved quite easily

But...

12



FAST ALGORITHMS FOR KYP SDPs

Numerical solution of SDPs

All SDPs are convex optimization problems:

Generic algorithms will work in polynomial-time
Matlab “LMI Control Toolbox” available
Moderate size problems solved quite easily

But...

KYP SDPs tend to be of very large scale
Large problem sizes due to:

underlying problems themselves
auxiliary variable P

Rest of the talk on efficient solution of KYP SDPs using convex duality

12
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Rewrite SDP as

minimize
subject to

Convex duality

CTCE

FQ—|—£81F1—|—"'—|—QJPFP—

13
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Primal SDP

Dual SDP

Convex duality

minimize ¢’z
subjectto Fo+z1Fi+---+ax,Fp,—5=0
S =0

maximize —TrFyZ
subjectto Z >0
TWF,Z =c¢, 1=1,....m

13
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Convex duality

T

Primal SDP minimize c¢'x
subjectto Fo+z1Fi+---+ax,Fp,—5=0
S>=0

Dual SDP maximize —TrEyZ
subjectto Z >0
TWF,Z =c¢, 1=1,....m

If Z is dual feasible, then —TrFyZ < p*
If  is primal feasible, then ¢!z > d*
Under mild conditions, p* = d*

At optimum, Sopt Zopt = F (Topt) Zopt = 0

13
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Primal-dual algorithms

Solve primal and dual problem together:

minimize 'z + TrEFyZ

subjectto Fy+z1Fi+---+x,F,—5S=0
S>>0, Z*>0
TrFiZ:Ci, 1= 1,...,m

14



FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithms
Solve primal and dual problem together:
minimize 'z + TrEFyZ
subjectto Fy+z1Fi+---+x,F,—5S=0

S=0,2>=0
TrFiZ:Ci, 1=1,....,m

(Optimal value is zero!)

14
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Why primal-dual algorithms?

At every iteration, we have upper and lower bounds, thus guaranteed
accuracy

Early termination possible
Other advantages at algorithmic level

15
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Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
FO—I—ZE‘lFl—I—'"—I-LEpr—S:O
S>=0,Z>0
TrFZ'Z:Ci, 1=1,...,m

(More general case, with infeasible starting points, essentially the same)

16
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Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
F0—|—$1F1—|—"°—|—$pr—S:O

S=0.7Z%0
W2 =c¢,1=1,....m

At each iteration:

Compute product SZ. Ifitis “small”, stop
Otherwise, take steps AS, AZ, and Ax such that

AZIJ1F1—|—°'°—|—A33pr—AS:O )

TTHAZ =0,i=1,...,m \ (maintain feasibility)
S+AS>0, Z4+AZ >0

16



FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
F0—|—$1F1—|—"°—|—$pr—S:O

S>=0,Z>=0
W2 =c¢,1=1,....m

At each iteration:

Compute product SZ. Ifitis “small”, stop
Otherwise, take steps AS, AZ, and Ax such that

A$1F1—|—°'°—|—A33pr—AS:O )

TTHAZ =0,i=1,...,m \ (maintain feasibility)
S+AS>0, Z4+AZ >0

/

(S + AS)(Z 4+ AZ) is made “smaller” (address objective)

16
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Solving search equations

1. Az Py + -+ Az, F, — AS =0

2. TTEEAZ =0,i=1,....m

3. (S+AS)(Z+ AZ) is made “smaller”
4. S+ AS =0, Z+AZ >0

17
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Solving search equations

1. Az Py + -+ Az, F, — AS =0

2. TTEEAZ =0,i=1,....m

3. (S+AS)(Z+ AZ) is made “smaller”
4. S+ AS =0, Z+AZ >0

(1), (2) linear equations

17
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_ } ~ (3) accomplished via
3. (S+AS)(Z+ AZ) is made “smaller Newton step, another

4. S+AS >0, Z+AZ >0 linear equation

17



FAST ALGORITHMS FOR KYP SDPs

Solving search equations

1. Az Fy+ -+ Az, F, — AS = 0 (1), (2) linear equations

2. TerAZ:O,z:l,,m _ _
_ } ~ (3) accomplished via
3. (S+AS)(Z+ AZ) is made “smaller Newton step, another

4. S+AS >0, Z+AZ >0 linear equation

Solution strategy:

First, eliminate AS from the linear equations

Next eliminate AZ

Solve a dense linear system in variable Ax
Reconstruct AZ and AS

S+ AS >0, Z+ AZ > 0 ensured using line search

17



FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)
Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

Fast algorithms for SDPs from KYP Lemma
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General-purpose implementation for KYP SDPs

minimize ¢’z + Tr(CP)

AP+ PA PB

Subject to BT Pp 0

171;):1 x, M; = N

A c R’I’LX’I’L’ B c RnX].
(A, B) controllable
p+ n(n + 1)/2 variables

19
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Primal and dual KYP SDPs

Primal SDP
minimize ¢’z + Tr(CP)
. ATP+ PA PB )
Subject to BTP 0 + ) oM = N
Dual SDP maximize —Tr(NZ)

SUbjeCt to Ay + leAT -+ BT + Bz =C
TrM;Z = ¢

Z11 z
— -
Z [ gT 2Zn-|—1 ] i ¥

20



FAST ALGORITHMS FOR KYP SDPs

Primal and dual KYP SDPs

Primal SDP
minimize ¢’z + Tr(CP)
. ATP+ PA PB )
Subject to BTP 0 + ) oM = N
Dual SDP maximize —Tr(NZ)

SUbjeCt to Ay + leAT -+ BT + Bz =C

TrM;Z = ¢
AR z
P >_
o [ 1 2zp4 ] =0

(For future reference z = [z1, z,,.1]7)

20



FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

T
WAZW + AYAP + APA APB] ZAZEM

BTAP

AAle -+ AleAT -+ AZBT -+ BA%T

W = 0; values of W, D change at each iteration

21



FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

T
WAZW + AYAP + APA APB] ZAZEM

BTAP
AAle -+ AleAT -+ AZBT -+ BA%T

W = 0; values of W, D change at each iteration

For convenience:

ATP+ PA PB

IC<P): BTP 0 ?

M(z) = S, @i,

21



FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

ATAP + APA APB
WAZW + BTAP ] ZA:I:M = D
AAZ1 + AZ1 AT + AzBT + BAzT = 0

W = 0; values of W, D change at each iteration

For convenience:

ATP+ PA PB
IC<P)_ BTP O ’
Then,

KM(AZ) = AANZ + AZ AT + AZBT + BAZT, M2U(AZ) = {TtM;AZ}

21
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Standard method of solving the search equations

WAZW + K(AP)+ M(Az) = D
K*(AZ) =
MAI(AZ) = 0

-

22
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Standard method of solving the search equations

WAZW + K(AP)+ M(Az) = D
K*(AZ) = 0
MAI(AZ) = 0

General-purpose solvers eliminate AZ from first equation:

KW HIC(AP) + M(Az))W 1) KW —tpw—H)
MW HK(AP) + M(Az)YW™ 1) = My —tpw—1)

A dense set of linear equations in AP, Ax

Cost: At least O(n%)

22
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Alternative method: Step 1

WAZW + K(AP) + M(Ax)
Ka(AZ) =
MaU(AZ) =

-

23
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Alternative method: Step 1

WAZW + K(AP) + M(Ax) = D
AAZ1 + AZ1AT + AZBT + BAZT =
MaI(AZ) = 0

-

Use second equation to express AZ;; in terms of Az:

AVATE= Z?:l AZZXZ, where AXZ 47 XZAT 4 BGZT 4 GiBT =0

Thus AZ =B(Az) = AT oAz,
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Alternative method: Step 1

WAZW + K(AP) + M(Ax) = D
AAZ1 + AZ1AT + AZBT + BAZT =
MaI(AZ) = 0

-

Use second equation to express AZ;; in terms of Az:

AVATE= Z?:l AZZXZ, where AXZ 47 XZAT 4 BGZT 4 GiBT =0

Thus AZ =B(Az) = AT oAz,

Substituting in first and third equations gives

WB(A2)W + K(AP) + M(Az) = D
Mi(B(Az)) =

-

23



FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 2

WB(A)W + K(AP) + M(Az) =
M (B(Az)) =

Note that G = (A P) for some AP < B*I(G) =0

-

24



FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 2

WB(A2)W + K(AP) + M(Az) = D
M (B(Az)) =

-

Note that G = (A P) for some AP < B*I(G) =0

Use to eliminate A P:

B*Y(WB(A2)W) + B*Y(M(Az)) = B*¥(D)
MM(B(Az) = 0

n + p + 1 linear equations in n + p 4+ 1 variables Az, Ax

24
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Alternative method: Summary

Reduced search equations of the form
P11 Pio Az | _ | ¢
PL 0 Ax 0
Cost of solving is O(n?) operations (if we assume p = O(n))
From Az, Az, can find AZ, AP in O(n?) operations
Need to precompute X;s (O(n?))

Py, is independent of current iterates and can be pre-computed, in O(n?)

Constructing P;; requires constructing terms such as Tr(X; W1, X,;W;;) and
Wlqu;ng (a|SO O(n4))

Overall cost dominated by O(n?)

25
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Numerical example

KYP IPM SeDuMi (primal)
n =p | prep. time | time/iter. time/iter.
25 0.1 0.07 0.1
S10) 1.2 0.3 7.4
100 21.7 3.3 324.7
200 438.3 31.6

CPU time in seconds on 2.4GHz PIV with 1GB of memory

KYP-IPM: Matlab implementation of alternative method

SeDuMi (primal): SeDuMi version 1.05 applied to primal problem

Prep. time is time to compute matrices X;

#iterations in both methods is comparable (7-15)

26
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Further reduction in computation

27

Use factorization of A to compute terms such as Tr(X; W1, X,;Wi1) without
computing X, I.e., without explicitly solving

AX; + XA + Bel +,BY =0, i=1,...,n

Advantages: no need to store matrices X, faster construction of reduced
search equations

Possible factorizations: eigenvalue decomposition, companion form, ...

For example, if A has distinct eigenvalues A = V diag (\)V 1, easy to write
down search equations in O(n?), in terms of V and \



FAST ALGORITHMS FOR KYP SDPs

Existence of distinct stable eigenvalues

By assumption, (A, B) is controllable; hence can arbitrarily assign
eigenvalues of A + BK by choosing K

Choose T' = [ ! , and replace LMI by equivalent LMI

K 1]
ATP+ PA PB al
T T
T ([ e 0 ]+ZmiMi>T>T NT
1 =1

N
+ > @ (T"M;T) = T"NT
1=1

(A+ BK)'P+ P(A+ BK) PB
BTP 0

Conclusion: Can assume without loss of generality that A is stable with
distinct eigenvalues

28
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Five randomly generated problems with p = 50, n = 100, ..., 500

Numerical example

KYP IPM (fast) KYP IPM SeDuMi (primal)

) prep. time | timel/iter | prep. time | time/iter | prep. time | time/iter
100 1.3 1.2 21.7 3.3 — 324.7
200 10.1 8.9 438.3 31.6
300 32.4 27.3
400 72.2 62.0
500 140.4 119.4

KYP-IPM (fast) uses eigenvalue decomposition of A to construct reduced

search equations

Preprocessing time and time/iteration grow as O(n?>)

29
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Conclusions
SDPs derived from the KYP-lemma

A useful class of SDPs, widely encountered in systems, control and signal
processing

Difficult to solve using general-purpose software

Generic solvers take O(n%) computation

Fast solution using interior-point methods

Custom implementation based on fast solution of search equations
(cost O(n*) or O(n?))
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