Fast Algorithms for SDPs derived from the
Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan
School of ECE, Purdue University

8 September 2003
European Union RTN Summer School on Multi-Agent Control
Hamilton Institute

Fast Algorithms for SDPs derived from the
Kalman-Yakubovich-Popov Lemma

Venkataramanan (Ragu) Balakrishnan
School of ECE, Purdue University

8 September 2003
European Union RTN Summer School on Multi-Agent Control
Hamilton Institute

Joint work with Lieven Vandenberghe, UCLA
Anders Hansson and Ragnar Wallin, Linkoping University

FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)

FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)

Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)
Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

Fast algorithms for SDPs from KYP Lemma

FAST ALGORITHMS FOR KYP SDPs

Semidefinite Programming (SDP)

Convex optimization of the form:
minimize ¢!z
subjectto Fo+x1Fi+---+z,F, =0

Fy, I, ..., F, are given symmetric matrices, c is a vector, z is the vector of
optimization variables

FAST ALGORITHMS FOR KYP SDPs

Semidefinite Programming (SDP)

Convex optimization of the form:

minimize iz
subjectto Fo+x1Fi+---+z,F, =0

Fy, I, ..., F, are given symmetric matrices, c is a vector, z is the vector of
optimization variables

F(x)=Fy+ x1F1 + - -+ x,F, = 0 called an “LMI”
F > 0 means F is positive semidefinite, that is w” Fu > 0 for all vectors

LMIs are nonlinear, but convex constraints:
If F/(x) > 0and F(y) >~ 0, then

F(Ox+(1—Ny) =AF(z)+ (1 — \)F(y) = 0forall A € [0, 1]

FAST ALGORITHMS FOR KYP SDPs

SDP vs. LP
SDP: minimize cf'x
subjectto Fy+zFi+ -+ x,F, =0

Fy, I, ..., F, are given symmetric matrices, c is a vector, z is the vector of
optimization variables

LP: minimize c'z
subjectto alz <b;,i=1,...,N
Same linear objective

Linear matrix inequality constraint instead of linear scalar inequalities

FAST ALGORITHMS FOR KYP SDPs

More on LMIs

Matrices as variables:
Example: Lyapunov inequality

AP+ PA <0
A is given, P = P! is the variable
Can write it as an LMI In the entries of P

Better to leave LMIs in a condensed form

* saves notation
* |leads to more efficient computation

FAST ALGORITHMS FOR KYP SDPs

More on LMIs
Matrices as variables
Multiple LMIs F(z) = 0,..., FN)(z) = 0 same as single LMI

diag (FY(z),..., FMN)(z)) = 0

FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints Az + b > 0 (componentwise)

Can be rewritten as an LMI using diagonal matrices

FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints

Quadratic constraints:
Inequality (Ax + b)) (Axz +b) + cl'z + d < 0 is equivalent to the LMI

I Az + b

(Az+0)T —(Tz+d) | ~Y

FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints

Trace constraints:
Inequality P = PY, ATP+ PA <0, TrP < 1lisan LMI

FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints
Trace constraints

Norm constraints:
Inequality o,.x(A) < 1 is equivalent to LMI

I A
R

FAST ALGORITHMS FOR KYP SDPs

LMI examples

Many standard constraints can be written as LMIs

Linear constraints
Quadratic constraints
Trace constraints

Norm constraints

... mixtures of these constraints and many more

FAST ALGORITHMS FOR KYP SDPs

SDP applications

Systems and control (quite well-known)

FAST ALGORITHMS FOR KYP SDPs

SDP applications

Systems and control (quite well-known)

Circuit design

FAST ALGORITHMS FOR KYP SDPs

SDP applications
Systems and control (quite well-known)
Circuit design

Nonconvex optimization

FAST ALGORITHMS FOR KYP SDPs

SDP applications
Systems and control (quite well-known)
Circuit design
Nonconvex optimization

... many others

FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)
Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

Fast algorithms for SDPs from KYP Lemma

FAST ALGORITHMS FOR KYP SDPs

Kalman-Yakubovich-Popov lemma

Frequency-domain inequality, rational in frequency w, and affine in a design
vector x, expressed as

~ 0

I P

(jeol —IA>‘1B]* S [(ij—A)‘lB

FAST ALGORITHMS FOR KYP SDPs

Kalman-Yakubovich-Popov lemma
If (A, B) is controllable, then

(JwI — A] ZmM N) [(ij—A)_lB

I

hold for all w € R

FAST ALGORITHMS FOR KYP SDPs

Kalman-Yakubovich-Popov lemma
If (A, B) is controllable, then

(ol = A)"] Z@,M - [uwf—A)-lB

I

hold for all w € R

<

AP + PA PB a
ij—P 0]-I-Zﬂ?iMi—NiO

Is feasible (an LMI with variables P, x)

FAST ALGORITHMS FOR KYP SDPs

KYP Lemma consequences

Semi-infinite frequency domain inequality is exactly equivalent to LMI (no
sampling)

P serves as an auxiliary variable

Of enormous importance for systems, control, and signal processing

FAST ALGORITHMS FOR KYP SDPs

KYP LMI applications

Linear system analysis and design:

w

YO

— Plant

Controller

* Problem: Design LTI controller for LTI plant
* Constraints specified as frequency domain inequalities on TF from w to z
* Youla parametrization used to express TF from w to z

p

T(jw,z) =Ti(jw) + T2 (jw) (Z wiQi(jw)) Ts5(jw),

1=1

* KYP Lemma used to obtain LMIs in variable x

FAST ALGORITHMS FOR KYP SDPs

KYP LMI applications

Linear system analysis and design

Digital filter design:

* An FIR or more general filter design problem: Find = such that

satisfies frequency-domain constraints (i.e., for all & € [0, 27])

* KYP Lemma used to obtain LMIs in variable x

10

FAST ALGORITHMS FOR KYP SDPs

KYP LMI applications
Linear system analysis and design

Digital filter design

Robust control analysis:

* Stability of interconnected systems via passivity or small-gain analysis
* Techniques that take advantage of uncertainty structure/nature

* Performance analysis via Lyapunov functions

10

FAST ALGORITHMS FOR KYP SDPs

KYP SDP
Focus on:
minimize c'z + Tr(CP)

AP+ PA PB

subject to BT P .

+ Zle CIZZMZ t N

where ce RP,C € S", Ae R"", B R™™ M; € """ N e S"™"

11

FAST ALGORITHMS FOR KYP SDPs

KYP SDP

Focus on:
minimize ¢’z + Tr(CP)

AP+ PA PB

subject to BT P 0

le CIZZMZ t N
where ce RP,C € S", Ae R"", B R™™ M; € """ N e S"™"

(Extension to multiple LMIs in multiple variables straightforward)

minimize ¢’z + S0 Tr(Cp P

subject to { Bng 0

:|+Zf1szkziNk7 kEk=1,...

K.

11

FAST ALGORITHMS FOR KYP SDPs

Numerical solution of SDPs

All SDPs are convex optimization problems:

Generic algorithms will work in polynomial-time
Matlab “LMI Control Toolbox” available
Moderate size problems solved quite easily

But...

12

FAST ALGORITHMS FOR KYP SDPs

Numerical solution of SDPs

All SDPs are convex optimization problems:

Generic algorithms will work in polynomial-time
Matlab “LMI Control Toolbox” available
Moderate size problems solved quite easily

But...

KYP SDPs tend to be of very large scale
Large problem sizes due to:

underlying problems themselves
auxiliary variable P

Rest of the talk on efficient solution of KYP SDPs using convex duality

12

FAST ALGORITHMS FOR KYP SDPs

Rewrite SDP as

minimize
subject to

Convex duality

CTCE

FQ—|—£81F1—|—"'—|—QJPFP—

13

FAST ALGORITHMS FOR KYP SDPs

Primal SDP

Dual SDP

Convex duality

minimize ¢’z
subjectto Fo+z1Fi+---+ax,Fp,—5=0
S =0

maximize —TrFyZ
subjectto Z >0
TWF,Z =c¢, 1=1,....m

13

FAST ALGORITHMS FOR KYP SDPs

Convex duality

T

Primal SDP minimize c¢'x
subjectto Fo+z1Fi+---+ax,Fp,—5=0
S>=0

Dual SDP maximize —TrEyZ
subjectto Z >0
TWF,Z =c¢, 1=1,....m

If Z is dual feasible, then —TrFyZ < p*
If is primal feasible, then ¢!z > d*
Under mild conditions, p* = d*

At optimum, Sopt Zopt = F (Topt) Zopt = 0

13

FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithms

Solve primal and dual problem together:

minimize 'z + TrEFyZ

subjectto Fy+z1Fi+---+x,F,—5S=0
S>>0, Z*>0
TrFiZ:Ci, 1= 1,...,m

14

FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithms
Solve primal and dual problem together:
minimize 'z + TrEFyZ
subjectto Fy+z1Fi+---+x,F,—5S=0

S=0,2>=0
TrFiZ:Ci, 1=1,....,m

(Optimal value is zero!)

14

FAST ALGORITHMS FOR KYP SDPs

Why primal-dual algorithms?

At every iteration, we have upper and lower bounds, thus guaranteed
accuracy

Early termination possible
Other advantages at algorithmic level

15

FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithm outline

For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
FO—I—ZE‘lFl—I—'"—I-LEpr—S:O
S>=0,Z>0
TrFZ'Z:Ci, 1=1,...,m

(More general case, with infeasible starting points, essentially the same)

16

FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
F0—|—$1F1—|—"°—|—$pr—S:O

S=0.7Z%0
W2 =c¢,1=1,....m

At each iteration:

Compute product SZ. Ifitis “small”, stop
Otherwise, take steps AS, AZ, and Ax such that

AZIJ1F1—|—°'°—|—A33pr—AS:O)

TTHAZ =0,i=1,...,m \ (maintain feasibility)
S+AS>0, Z4+AZ >0

16

FAST ALGORITHMS FOR KYP SDPs

Primal-dual algorithm outline
For simplicity, suppose we have a feasible point, i.e., z, Z and S s.t.
F0—|—$1F1—|—"°—|—$pr—S:O

S>=0,Z>=0
W2 =c¢,1=1,....m

At each iteration:

Compute product SZ. Ifitis “small”, stop
Otherwise, take steps AS, AZ, and Ax such that

A$1F1—|—°'°—|—A33pr—AS:O)

TTHAZ =0,i=1,...,m \ (maintain feasibility)
S+AS>0, Z4+AZ >0

/

(S + AS)(Z 4+ AZ) is made “smaller” (address objective)

16

FAST ALGORITHMS FOR KYP SDPs

Solving search equations

1. Az Py + -+ Az, F, — AS =0

2. TTEEAZ =0,i=1,....m

3. (S+AS)(Z+ AZ) is made “smaller”
4. S+ AS =0, Z+AZ >0

17

FAST ALGORITHMS FOR KYP SDPs

Solving search equations

1. Az Py + -+ Az, F, — AS =0

2. TTEEAZ =0,i=1,....m

3. (S+AS)(Z+ AZ) is made “smaller”
4. S+ AS =0, Z+AZ >0

(1), (2) linear equations

17

FAST ALGORITHMS FOR KYP SDPs

Solving search equations

1. Az Fy+ -+ Az, F, — AS = 0 (1), (2) linear equations

2. TBEAZ =0,9=1,...,m _ _
_ } ~ (3) accomplished via
3. (S+AS)(Z+ AZ) is made “smaller Newton step, another

4. S+AS >0, Z+AZ >0 linear equation

17

FAST ALGORITHMS FOR KYP SDPs

Solving search equations

1. Az Fy+ -+ Az, F, — AS = 0 (1), (2) linear equations

2. TerAZ:O,z:l,,m _ _
_ } ~ (3) accomplished via
3. (S+AS)(Z+ AZ) is made “smaller Newton step, another

4. S+AS >0, Z+AZ >0 linear equation

Solution strategy:

First, eliminate AS from the linear equations

Next eliminate AZ

Solve a dense linear system in variable Ax
Reconstruct AZ and AS

S+ AS >0, Z+ AZ > 0 ensured using line search

17

FAST ALGORITHMS FOR KYP SDPs

Outline

A Dbrief introduction to Semidefinite Programming (SDP)
Focus: LMIs from the Kalman-Yakubovich-Popov Lemma

Fast algorithms for SDPs from KYP Lemma

18

FAST ALGORITHMS FOR KYP SDPs

General-purpose implementation for KYP SDPs

minimize ¢’z + Tr(CP)

AP+ PA PB

Subject to BT Pp 0

171;):1 x, M; = N

A c R’I’LX’I’L’ B c RnX].
(A, B) controllable
p+ n(n + 1)/2 variables

19

FAST ALGORITHMS FOR KYP SDPs

Primal and dual KYP SDPs

Primal SDP
minimize ¢’z + Tr(CP)
. ATP+ PA PB)
Subject to BTP 0 +) oM = N
Dual SDP maximize —Tr(NZ)

SUbjeCt to Ay + leAT -+ BT + Bz =C
TrM;Z = ¢

Z11 z
— -
Z [gT 2Zn-|—1] i ¥

20

FAST ALGORITHMS FOR KYP SDPs

Primal and dual KYP SDPs

Primal SDP
minimize ¢’z + Tr(CP)
. ATP+ PA PB)
Subject to BTP 0 +) oM = N
Dual SDP maximize —Tr(NZ)

SUbjeCt to Ay + leAT -+ BT + Bz =C

TrM;Z = ¢
AR z
P >_
o [1 2zp4] =0

(For future reference z = [z1, z,,.1]7)

20

FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

T
WAZW + AYAP + APA APB] ZAZEM

BTAP

AAle -+ AleAT -+ AZBT -+ BA%T

W = 0; values of W, D change at each iteration

21

FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

T
WAZW + AYAP + APA APB] ZAZEM

BTAP
AAle -+ AleAT -+ AZBT -+ BA%T

W = 0; values of W, D change at each iteration

For convenience:

ATP+ PA PB

IC<P): BTP 0 ?

M(z) = S, @i,

21

FAST ALGORITHMS FOR KYP SDPs

Search equations for KYP SDPs

ATAP + APA APB
WAZW + BTAP] ZA:I:M = D
AAZ1 + AZ1 AT + AzBT + BAzT = 0

W = 0; values of W, D change at each iteration

For convenience:

ATP+ PA PB
IC<P)_ BTP O ’
Then,

KM(AZ) = AANZ + AZ AT + AZBT + BAZT, M2U(AZ) = {TtM;AZ}

21

FAST ALGORITHMS FOR KYP SDPs

Standard method of solving the search equations

WAZW + K(AP)+ M(Az) = D
K*(AZ) =
MAI(AZ) = 0

-

22

FAST ALGORITHMS FOR KYP SDPs

Standard method of solving the search equations

WAZW + K(AP)+ M(Az) = D
K*(AZ) = 0
MAI(AZ) = 0

General-purpose solvers eliminate AZ from first equation:

KW HIC(AP) + M(Az))W 1) KW —tpw—H)
MW HK(AP) + M(Az)YW™ 1) = My —tpw—1)

A dense set of linear equations in AP, Ax

Cost: At least O(n%)

22

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 1

WAZW + K(AP) + M(Ax)
Ka(AZ) =
MaU(AZ) =

-

23

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 1

WAZW + K(AP) + M(Ax) = D
AAZ1 + AZ1AT + AZBT + BAZT =
MaI(AZ) = 0

-

Use second equation to express AZ;; in terms of Az:

AVATE= Z?:l AZZXZ, where AXZ 47 XZAT 4 BGZT 4 GiBT =0

Thus AZ =B(Az) = AT oAz,

23

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 1

WAZW + K(AP) + M(Ax) = D
AAZ1 + AZ1AT + AZBT + BAZT =
MaI(AZ) = 0

-

Use second equation to express AZ;; in terms of Az:

AVATE= Z?:l AZZXZ, where AXZ 47 XZAT 4 BGZT 4 GiBT =0

Thus AZ =B(Az) = AT oAz,

Substituting in first and third equations gives

WB(A2)W + K(AP) + M(Az) = D
Mi(B(Az)) =

-

23

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 2

WB(A)W + K(AP) + M(Az) =
M (B(Az)) =

Note that G = (A P) for some AP < B*I(G) =0

-

24

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Step 2

WB(A2)W + K(AP) + M(Az) = D
M (B(Az)) =

-

Note that G = (A P) for some AP < B*I(G) =0

Use to eliminate A P:

B*Y(WB(A2)W) + B*Y(M(Az)) = B*¥(D)
MM(B(Az) = 0

n + p + 1 linear equations in n + p 4+ 1 variables Az, Ax

24

FAST ALGORITHMS FOR KYP SDPs

Alternative method: Summary

Reduced search equations of the form
P11 Pio Az | _ | ¢
PL 0 Ax 0
Cost of solving is O(n?) operations (if we assume p = O(n))
From Az, Az, can find AZ, AP in O(n?) operations
Need to precompute X;s (O(n?))

Py, is independent of current iterates and can be pre-computed, in O(n?)

Constructing P;; requires constructing terms such as Tr(X; W1, X,;W;;) and
Wlqu;ng (a|SO O(n4))

Overall cost dominated by O(n?)

25

FAST ALGORITHMS FOR KYP SDPs

Numerical example

KYP IPM SeDuMi (primal)
n =p | prep. time | time/iter. time/iter.
25 0.1 0.07 0.1
S10) 1.2 0.3 7.4
100 21.7 3.3 324.7
200 438.3 31.6

CPU time in seconds on 2.4GHz PIV with 1GB of memory

KYP-IPM: Matlab implementation of alternative method

SeDuMi (primal): SeDuMi version 1.05 applied to primal problem

Prep. time is time to compute matrices X;

#iterations in both methods is comparable (7-15)

26

FAST ALGORITHMS FOR KYP SDPs

Further reduction in computation

27

Use factorization of A to compute terms such as Tr(X; W1, X,;Wi1) without
computing X, I.e., without explicitly solving

AX; + XA + Bel +,BY =0, i=1,...,n

Advantages: no need to store matrices X, faster construction of reduced
search equations

Possible factorizations: eigenvalue decomposition, companion form, ...

For example, if A has distinct eigenvalues A = V diag (\)V 1, easy to write
down search equations in O(n?), in terms of V and \

FAST ALGORITHMS FOR KYP SDPs

Existence of distinct stable eigenvalues

By assumption, (A, B) is controllable; hence can arbitrarily assign
eigenvalues of A + BK by choosing K

Choose T' = [! , and replace LMI by equivalent LMI

K 1]
ATP+ PA PB al
T T
T ([e 0]+ZmiMi>T>T NT
1 =1

N
+ > @ (T"M;T) = T"NT
1=1

(A+ BK)'P+ P(A+ BK) PB
BTP 0

Conclusion: Can assume without loss of generality that A is stable with
distinct eigenvalues

28

FAST ALGORITHMS FOR KYP SDPs

Five randomly generated problems with p = 50, n = 100, ..., 500

Numerical example

KYP IPM (fast) KYP IPM SeDuMi (primal)

) prep. time | timel/iter | prep. time | time/iter | prep. time | time/iter
100 1.3 1.2 21.7 3.3 — 324.7
200 10.1 8.9 438.3 31.6
300 32.4 27.3
400 72.2 62.0
500 140.4 119.4

KYP-IPM (fast) uses eigenvalue decomposition of A to construct reduced

search equations

Preprocessing time and time/iteration grow as O(n?>)

29

FAST ALGORITHMS FOR KYP SDPs

Conclusions
SDPs derived from the KYP-lemma

A useful class of SDPs, widely encountered in systems, control and signal
processing

Difficult to solve using general-purpose software

Generic solvers take O(n%) computation

Fast solution using interior-point methods

Custom implementation based on fast solution of search equations
(cost O(n*) or O(n?))

30

