University of Strathclyde
Department of Electronic and Electrical Engineering

Communications Division

Genetic algorithms for large

resource allocation problems.

Claude Muller

April 1995

Submitted to the University of Strathclyde
for the Degree of Doctor of Philosophy.

The copyright of this thesis belongs to the author under
the terms of the United Kingdom Copyrights Acts as
qualified by University of Strathclyde Regulation 3.49.
Due Acknowledgements must always be made of the use
of any material contained in, or derived from, this thesis.

Abstract

Telecommunications management systems must undergo some radical trans-
formations in order to support the next generation of giant gigabit networks.
In particular, Artificial Intelligence (AI) will be necessary to automate some
aspects of network management. This thesis concentrates on one particular
aspect of management, namely resource management.

A large number of telecommunications applications can be viewed as resource
allocation problems and the telecommunications operators require efficient
techniques to solve these problems. However, due to the complex nature
of these scheduling problems, large instances cannot be tackled easily by
conventional techniques such as the deterministic and analytical procedures
provided by Operational Research. Alternative approaches such as the ones
proposed by Al have to be considered.

This thesis examines genetic algorithms (GAs) - one of these Al techniques
- applied to vehicle routing problems with time-windows and technological
constraints - a special class of resource allocation problem. In particular,
this thesis proposes a new class of GAs. By working directly on the sched-
ules rather than using an indirect representation, these GAs overcome some
important limitations shown by traditional GA-based systems.

These direct GAs are examined over a wide range of problems. In a first set of
experiments, the direct GAs totally dominate the traditional GA-based sys-
tems. In a second study, which compares the performances of these new GAs
with the performances of random search, hill-climbing, simulated annealing
and tabu search, it is shown that there is no universally best algorithm. How-
ever, under certain conditions some algorithms should be preferred to others.
In particular, when time is available, the direct GAs should be chosen for the
solution of under-resourced problems.

Acknowledgements

I wish to thank Professor D.G.Smith for his support and encouragements during
the past four years. Also, I would like to thank Dr Evan Magill and Dr Patrick
Prosser whose advice, knowledge and critical supervision have been invaluable.
Special thanks also go to my two partners in this project, Chris and Craig. Thank
you for your help and friendship. Thanks, also, to Professor J.R. McDonald, and
to Professor P. Mars of Durham University, for acting as internal and external

examiners respectively.

I would also like to thank David, Lee and Grace - Glasgow would have been a
different experience without your early friendship. Just a shame that I have to
support United now!!! Also, I have been lucky enough to be part of a very friendly
group, thank you guys. I am so sorry, Peter, that 5-a-side is not our strong point.
May be, we should practice a little bit more, and go to Caffé Qui a little bit less.
Thanks are also due to Alasdair, Sheona, lain, Neil, Lois, and Lorna’s Mum and

Dad - 35 Kessington Road has been a great place to relax and be comforted.

Je voudrais également remercier mes parents pour leur nombreux encouragements et
leur assistance tout au long de ces 28 années. Merci a vous pour vos efforts. Finally,
I would like to thank my wife, Lorna, for all her help, support and patience. What
an understatement !!! Thank you very much, Lorna. Promise, I will try not to be

so impatient in the future ...

Contents

Acknowledgements
Contents

List of Figures
List of Tables
Acronyms

1 Introduction.
1.1 Objective.
1.2 The case for Genetic Algorithms.

1.3 Thesis outline.

2 Al & Telecommunications.
2.1 The Information Society. L.

2.2 Network Management.

11

ii

vii

X1i

2.2.1 Functional Division. 14

2.2.2 Telecommunications Management Networks. 16
2.2.3 Network and Service management. 18

2.3 Alin Network Management. 20
2.3.1 Expert Systems.. 22
2.3.2 Model-based Reasoning. 23
2.3.3 Constraint Satisfaction.. 24
2.3.4 Neural Networks. 24
2.3.5 Distributed Artificial Intelligence. 25

24 Conclusion. 26
3 Novel Approaches to Resource Allocation. 28
3.1 The resource allocation problem. 29
3.2 Genetic Algorithms. oL oL 33
3.2.1 Introduction. 33
3.2.2 Genetic algorithms: a brief description. 34
3.2.3 Genetic algorithms: the theory. 38
3.24 Thedriving forces. L. 41
3.2.5 GAs for resource allocation. 46
3.2.6 GAs for Vehicle Routing. 56
3.2.7 GAs for telecommunications. L. 59

111

3.3 Simulated Annealing. Lo 62

3.3.1 Introduction. 62
3.3.2 SA: A brief description.o 64
3.3.3 Thedriving forces. 67
3.3.4 Comparative studies. 69
3.4 Tabu Search. 72
3.4.1 Introduction. 72
3.4.2 TS: a brief description. 73
3.4.3 Thedrivingforces. T4
3.4.4 Applications of TS. 78
3.5 Brief comparison of GA, SAand TS. 79
Preliminary Studies. 82
4.1 A simple prototype. 82
4.2 A particular VRP.o 88
4.3 Conclusion. 93
Experimental Set-up. 97
5.1 The set of problems. 0L 97
5.2 An active constrained-based model. o000 100
5.3 The cost function.o 101
54 Direct GAs. 102

v

54.1 Crossover #1 104

5.4.2 Crossover #2. 107

543 Crossover #3. 108

6 Experiments and Discussions. 112
6.1 Genetic Algorithms. oo 113
6.1.1 Comparison of different genetic algorithms. 114

6.1.2 The effect of population size.. 133

6.1.3 GA with repair algorithm. 146

6.2 The 10 minute Beauty Contest. 154
6.3 CPU Intensive Experiments 165

7 Conclusion. 171
7.1 Summary. 171
7.2 Futurework. 174
7.2.1 Stochastic techniques and other problem-domains. 175

7.2.2 The objective function is a parameter. 177

7.2.3 Dynamic problems. Lo 177

7.2.4 A distributed and cooperative approach. 177

7.2.5 Integration with a graphical user interface. 179

7.3 Concluding remark. Lo o 181

List of Figures

2.1 The Information Society. 8
2.2 Network management. 15
2.3 TMN. . . e 17
2.4 A layered view of network management. 19
2.5 A selection of Al techniques. 22
3.1 A VRP and one of its possible solutions. 31
3.2 A chromosome. 35
3.3 Flow of a genetic algorithm. 36
3.4 The stochastic nature of GAs. L. 38
3.5 A chromosome and its schemata. 39
3.6 Building blocks.o 40
3.7 Representations for Resource Allocation Problems. a7
3.8 Indirect representation.o 48
3.9 Implementation of simulated annealing. 66
3.10 Tabu search - Short-term memory module. 73

vi

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

9.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Current domains and durations of the operations. 83

One optimal solution found by the genetic algorithm. 84
Object representation of a genetic algorithm. 85
Object representation of a chromosome. 87
A particular VRP.o 89
Job-centred and engineer-centred perspectives. 91
Evolution of performances with time. 93
The 36 problems. 98
Pseudo-code for Crossover #1.. 105
Crossover #1,step by step.o 106
Pseudo-code for Crossover #3. 110
Crossover #3,step by step.o 111
Selection function - an elitist strategy. 116
Ranking of GAs over 36 problems.. 119
GAs - When the best solution was found (% of 10 minutes). 122
Population free of duplicates: the larger, the harder. 135
Different population sizes, different ranking. 138
Ranking of GAs with or without repair algorithm. 147
Ranking of the search techniques for 10 minute runs. 157
Ranking of the search techniques for 4 hour runs. 165

Vil

6.9 Computational effort - Comparison between short and intensive runs. 166

7.1 Management system: observation, control, and presentation. 180

Viil

List of Tables

1.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

6.1

6.2

6.3

6.4

6.5

6.6

An example of exponential complexity.

Some resource allocation problems.
Operators for the sequencing representation.

Sequencing crossovers - A comparison.

GA, SA, and TS: A comparison.

Description of ajobset.
Optimal solution found by the genetic algorithm.

Performances of the two scheduling functions.

GAs performance - Average final cost.
GAs performance - Average amount of work done in minutes.

GAs performance - Average amount of travel time in minutes.

GAs performance - Average amount of work not done in minutes.
GAs performance - Ranking of GAs (versus cost).

GAs performance - Amount of iterations in 10 minutes.

1X

29

50

52

80

82

85

92

125

126

127

128

129

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

GAs performance - Amount of solutions rejected in 10 minutes. . . 131

GAs performance - When the best solution was found (% of 10 min-

utes). . . L 132
Average final cost for different population sizes. 140
Amount of iterations for different population sizes.. 141
% of chromosomes accepted for different population sizes. 142

Average final cost for different population sizes and acceptance policies.143
Ranking for different population sizes and acceptance policies. . . . 144

When the best solution is found (in % of 10 minutes) for different

population sizes and acceptance policies. 145
Effect of repair algorithm - Average final cost. 150
Effect of repair algorithm - Ranking of the algorithms. 151
Effect of repair algorithm - Amount of iteration in 10 minutes. . . . 152

Effect of repair algorithm - When the best solution was found (in %

of 10 minutes). 153
10 minute runs - Average final cost. L. 161
10 minute runs - Ranking of the search techniques. 162
10 minute runs - Amount of exploration in 10 minutes. 163

10 minute runs - When the best solution is found (in % of 10 minutes).164

4 hour runs - Average final cost. 168
4 hour runs - Ranking of the search techniques. 169
4 hour runs - Amount of exploration. 170

Acronyms

Al Artificial Intelligence

ATM Asynchronous Transfer Mode

AT&T American Telephone and Telegraph
Corporation

BISDN Broadband Integrated Services Digital Network

CAP Channel Assignment Problem

CCITT Comite Consultatif International Telegraphique

et Telephonique

CIM Computer Integrated Manufacturing
CNA-M Cooperative Networking Architecture-Management
CSP Constraint Satisfaction Problem

DAI Distributed Artificial Intelligence

DAR Dynamic Anticipatory Routing

DCF Data Communications Function

EDS Electronic Data Systems

FIFO First In - First Out

GA Genetic Algorithm

GUI Graphical User Interface

HC Hill-climbing

IN Intelligent Network

ISO International Standards Organisation
ITU International Telecommunications Union
ITU-TSS International Telecommunications Union -

Telecommunications Standards Sector

MF Mediation Function
NEF Network Element Function
NT&T Nippon Telephone and Telegraph Corporation

x1

OSF
PMX
PTT

QAP

QoS
RACE

RBOCs
RS

SA
SDH
SIP

TINA-C

TMN
TS
TSP
VC
VLSI
VP
VRP
WSF

Operations System Function

Partially Mapped Crossover operator

(Ministry of) Posts, Telegraphy and Telephony

(a general term for a public telecommunications operator)
Quadratic Assignment Problem

Quality of Services

Research and development in Advanced Communications
for Europe

Regional Bell Operating Companies

Random Search

Simulated Annealing

Synchronous Digital Hierarchy

Societa Italiana per I’Esercizio

delle Telecomunicazioni

Telecommunications Information Network Architecture
Consortium

Telecommunications Management Network

Tabu Search

Travelling Salesman Problem

Virtual Channel

Very Large Scale Integration

Virtual Path

Vehicle Routing Problem

Work Station Function

x11

Chapter 1

Introduction.

1.1 Objective.

This thesis investigates Genetic Algorithms (GAs) for solving large-scale resource
allocation problems, with special interest for problems in the field of telecommuni-

cations.
A large number of telecommunications applications can be viewed as resource allo-
cation problems; for instance:

e Work force management - this is concerned with the optimal allocation of a

work force to a set of construction or maintenance operations.

e Frequency allocation - the bandwidth employed for mobile phone is a limited
resource and, therefore the frequencies must be allocated efficiently in order

to maximise the number of channels.
e Allocation of bandwidth for video broadcasting networks.

e Design and dimensioning - given a description of network requirements and

1. Introduction. 2

a description of the available resources, it is possible to ensure that proposed

designs meet a specified level of service.

An automated and efficient management (or allocation) of both the workforce and

of the elements composing the network offers the opportunity to:

e reduce the cost of operating the network,

e improve the quality of service,

e provide service to a larger number of customers,
e compete in an open environment,

e and finally, increase profits.

Therefore, an efficient solution of this class of problems, both in terms of quality

and running time, is of major concern to telecommunications operators.

In this field of research, a major difficulty is that large problems are intractable.
Although conventional techniques, such as the analytical procedures proposed by
operational research, can now tackle problems of respectable size, there is still an

important need for approximate techniques.

Basically, these conventional techniques might require exponential time in the worst
case, and hence, might fail to provide a solution - for large instances - in reasonable

time.

Table 1.1, taken from [GARET79], illustrates this point and this table shows how
long it would take a computer to explore m™ states for different small values of m

and n. It is assumed that the computer performs an instruction in a micro-second.

1. Introduction. 3

m | n=10 | n=20 n=30 n=40 n=>50 n=60

2 |10.001 |1.0 17.9 12.7 35.7 36.6
second | second | minutes | days years centuries

3 |0.059 |58 6.5 3855 2 %107 1.3 x10*2
second | minutes | years centuries | millennia | millennia

Table 1.1: An example of exponential complexity.

By contrast, some instances of the problem used for the experiments (see Chapters

4-5-6) have an estimated search space of more than 10°% states’.

Clearly, an exhaustive exploration of such large search spaces cannot be performed
in reasonable time. Systematic or deterministic algorithms cannot, realistically,
guarantee that they will find the optimal solution of large instances. Observe that,
even a significant acceleration (2 or more orders of magnitude) of computer speed

would not be sufficient. These problems are simply intractable by nature.

Therefore, alternative approaches such as the ones proposed by Artificial Intelli-
gence (Al) have to be considered - approaches which sacrifice optimality for effi-

ciency.

1.2 The case for Genetic Algorithms.

A Genetic Algorithm 2 is an Al search technique. More precisely, it is a stochastic
procedure, i.e. random-based decisions take an important part in the search process.
This particular property has been one of the principal motivations for using GAs

to solve resource allocation problems.

Indeed, their stochastic nature might permit GAs to be more efficient than deter-

!By comparison, the universe has an estimated size of 108° atoms.
2Section 3.2.2 provides a brief tutorial on genetic algorithms.

1. Introduction. 4

ministic algorithms for handling the complex nature of some resource allocation
problems (see Section 3.1 for further explanation) and generally, GAs are regarded
as being an efficient means for the rapid exploration of large and complex search

spaces [GLOV8T7] [DAVI9la).

The application of GAs to resource allocation per se is not novel. However, this
research proposes a GA which overcomes some important limitations of many ex-
isting GA-based systems. In such systems, the GA works with an intermediate
representation and is used in association with a solution-builder (see Section 3.2.5).
The GA manipulates order-based chromosomes and the solution-builder uses these
order-based chromosomes to create schedules. These systems have a number of

weaknesses:

1. The indirect representation might not allow total exploration of the search
space, i.e. the intermediate representation might mask some parts of the real

search space.

2. This indirect approach has been applied successfully to a wide range of se-
quencing problems. However, this technique is likely to be disruptive when

applied to problems which are not pure sequencing problems.

3. This indirect approach means that, for each new chromosome, a new solution
is entirely created from scratch and this new solution is also entirely evalu-
ated from scratch. These two operations are extremely expensive in terms of

computational effort.

This research proposes and investigates a class of GAs which work directly on the
candidate-solutions, i.e. the solutions are the chromosomes. During the reproduc-
tion process, part of two solutions are mixed together to produce a new solution.
Therefore, there is no distortion due to an intermediate representation and the

search process is also accelerated as the GA is no longer generating and evaluating

1. Introduction. 5

a new solution entirely from scratch for each new chromosome.

The performances of these new GAs are studied over a wide range of vehicle routing
problems® (VRPs) - a special class of resource allocation problem, and compared
against the performances of other search techniques, namely random search (RS),
hill-climbing (HC), simulated annealing (SA), tabu search (TS) and also some GAs
using traditional (i.e. indirect) crossovers. VRPs have been used for these experi-
ments because the sponsor of this research project, British Telecom, is particularly

interested in finding efficient tools to solve these problems.

In this particular study, direct GAs totally dominate the indirect candidate over the
entire range of problems. Furthermore, the study shows that there is no universally
best algorithm in the set {GA,HC,RS,SA TS}, but it is shown that under certain

conditions, some algorithms should be preferred to others.

When time is available, GA should be preferred for the solution of under-resourced
VRPs. However, when the algorithm is only given a limited amount of time or

when the VRP is over-resourced, then SA should be preferred.

1.3 Thesis outline.

This thesis contains 7 chapters (including this introduction). Chapters 2 and 3 both
present some background material that readers familiar with telecommunications
and/or Al may wish to skip. Chapters 4 to 6 concentrate on the different studies
and Chapter 7 concludes this thesis. The remainder of this section now gives a

brief overview of each chapter:

e Chapter 2, "Al & Telecommunications”, examines the relationship between

AT and telecommunications and highlights the necessity for the use of Al in

3These problems are introduced in Chapter 3.

1. Introduction. 6

network management systems.

o Chapter 3, "Novel Approaches to Resource Allocation”, focuses on three search
techniques: genetic algorithms, simulated annealing and tabu search and re-

views some of their applications to large resource allocation problems.

o Chapter 4, "Preliminary Studies”, presents two early projects and draws some
initial conclusions. In the first project, an indirect GA is applied to a job-shop
scheduling problem and in the second study, an indirect GA is used to solve

a particular instance of the vehicle routing problem.

e Chapter 5, ”Ezperimental Set-up”, gives some detailed information (a) on the
36 problems used for the experiments, (b) on the model used to encode the
solutions, and (c) on the cost function. Finally, this chapter also introduces
and explains a new class of direct genetic algorithms especially designed for

vehicle routing problems.

o Chapter 6, ”Ezperiments and Discussions”, examines the performance of the
direct GAs introduced in the previous chapter. This chapter reports three

sets of experiments.

e Chapter 7, "Conclusion”, summarises the work that has been presented in the

previous chapters, discusses areas of future work, and concludes this thesis.

Chapter 2

Al & Telecommunications.

This chapter examines the relationship between two rapidly evolving technologies,
Artificial Intelligence and Telecommunications, and highlights the necessity for Al

in the next generation of management systems.

The Information Revolution has already started and the pace of this revolution will
accelerate in the next decade. The key component of this change, the telecommu-
nications network, will have to undergo some rapid and profound transformations.
Novel approaches such as Al will be necessary to automate some aspects of network

management.

2.1 The Information Society.

This section highlights the importance of information for the social and economic
developments of our society, and describes the rapid changes faced by the telecom-

munications industry as a result of this information revolution.

The information revolution started 150 years ago with the invention of telegraph

2. Al & Telecommunications. 8

Telecommunications

INFORMATION

SOCIETY

Entertainment

YEAR 1990 YEAR 2000

Figure 2.1: The Information Society.

and has known three main periods: the Wire Age (1844-1900), the Wireless Age
(1900-1970) and we are now entering the Age of the Information Society [DIZA89].

As illustrated in Figure 2.1, this information society can be described as the com-
ing together of the telecommunications, computing, cable television and entertain-
ment industries [RUDG93]. More precisely, the principal characteristic of this new
Age is the convergence (or synergy) between telecommunications and a number of

computing-related industries.

The Intelligent Network (IN) with its intensive use of databases and its flexible
architecture is a fine example for illustrating this convergence. In fact, the entire
network is becoming more and more like an enormous software package [MAY090].
Even at the lowest level, i.e. in the digital switch itself, the intelligence has moved
from the hardware platform to the software. Indeed, some telephones exchanges

are now using over 12 million lines of code [JOHN89a].

In order to accelerate the pace of this convergence, different industries (e.g. telecom-

2. Al & Telecommunications. 9

munications, computing and cable TV companies) have come closer together in the
recent past. Indeed, there have been many cross alliances, for instance, between
(1) telecommunications and software companies and (2) telecommunications and

cable TV companies !:

France Telecom and Cap Gemini Sogeti (Europe’s biggest software house)

SIP (Italy’s operator) and Finsiel (Europe’s second biggest software house)
[ECON93a]

McCaw Cellular Communications (America’s largest cell-phone operator and

a subsidiary of AT&T) and Microsoft

Sprint (America’s third-biggest long-distance telephone operator) and Elec-
tronic Data Systems (EDS, a subsidiary of General Motors and the world’s
biggest computer services group) [ECON94].

Another example of this convergence is the consortium, named TINA-C (Telecom-
munications Information Network Architecture-Consortium), recently launched by
BT?, Bellcore and NT&T, which aims at regrouping equipment suppliers, computer
makers, and software houses, and transforming telecommunications networks into

information networks [COMM92a].

The origins of this convergence lies in the fact that the importance of information
(and its processing) in our society is increasing rapidly; information is becoming
a strategic resource as vital as energy. It is likely that, in the near future, a
large section of the workforce will either create, process or disseminate information
[RACE90]. This means that the weight of the information-based industries - and

this is especially true for the telecommunications industry - within the economy is

1The merger of Bell Atlantic with Tele-Communications International (TCI) has been widely
publicised, but this merger collapsed in April 1994.
2formerly British Telecom.

2. Al & Telecommunications. 10

increasing rapidly. Already, in 1993, the world’s two most valuable companies were
NT&T and AT&T with a respective market capitalisation of $146 billion and $85
billion [DUBR93].

In Europe alone, broadband services could generate annual revenue for the carriers
of about $13.1 billion by the year 2000 [RACE90]. By that time, the European
Union expects the telecommunications industry to account for more than 7% of its

Gross National Product [ECON92a].

In order to meet these expectations, the telecommunications industry must undergo
some radical transformations. Indeed, while the computer industry has enjoyed an
extremely rapid growth, the pace for the telecommunications industry so far has
been slower [RACE90] and the lack of efficient means of telecommunications still

represents an obstacle in the development of the information society.

However, this situation is changing rapidly for political and economical reasons.
North America has lost its leadership in consumer electronics while Europe has lost
its position both in consumer electronics and in the computer industry. Therefore,
these two players cannot afford to lose their leading positions in the telecommuni-

cations industry.

Europe traditionally has had an important share of the telecommunications market
with successful companies such as Alcatel, Siemens, Ericsson, GPT and Philips. In
1991, these European companies sold nearly 55% of all the telecommunications
equipment worldwide with the remaining 45% shared between Japan (15%) and
North America (30%) [BELL93].

Europe must maintain this strong position despite the intensification of the compe-
tition. As a consequence, the European Union launched in 1987 a massive research
initiative, RACE (Research and Development in Advanced Communications for Eu-
rope) for the purpose of developing technological solutions (e.g. optical switching

systems, digital mobile systems) which aimed at introducing cost-effective broad-

2. Al & Telecommunications. 11

band services by the year 1996 [RACE90].

There is a second force which motivates the development of a successful telecommu-
nications industry: corporate users have indeed discovered how to use information
technologies as strategic tools. In other words, the ability to process and transfer
information quickly and accurately is becoming essential in order to maintain the
competitiveness of a business [WILL91]. For instance, the credit-card group VISA
implemented recently, a telecommunications system which demonstrates just how
important telecommunications services can be as corporate tools. This system,
called PS 2000 , is described as ”a vast information super-highway” with two com-
puter centres and 9 million miles of optical fibre connecting 18 400 banks around
the world. The total cost of this system was around $40 million; however, it is
expected that the PS 2000 system will reduce the cost resulting of counterfeiting
from $125 million to $20 million in just one year. Overall, the banks were expected

to save some $270 million in 1993 [ECON93c].

This example shows that private networks, and the associated services and informa-
tion management facilities that they provide, are becoming increasingly important
in the management of a company. Hence, from a company’s point of view, the

effective management of telecommunications services represents a strategic issue

affecting profitability [WILLO1].

Corporate users want the telecommunications industry to answer their needs, i.e.
they want a telecommunications market driven by the users. Many believe that
this will only be possible through the creation of a competitive market. Hence,
many large companies are putting pressure on governments and PTTs to increase

competition®. Until recently, a real competitive market was not a possible option.

In the USA, AT&T was broken up in 1984 and it still had 66% of the long distance

3For instance, Fiat, Europe’s second biggest car maker, is lobbying the European Union; it
claims that it could cut its $100 million-a year phone bill by at least $43 million if the European
telecommunications market was liberalised.

2. Al & Telecommunications. 12

traffic in 1992. In the same year, the regional Bell operating companies (RBOCs)
controlled, on average 75% of the local traffic [COMM92b]. In the United Kingdom,
the duopoly between BT and Mercury was also started in 1984 and BT still had
a 92% share of the market in 1992 [ECON92b]. Basically, the investment required
for the realisation of a physical network is immense and represents a considerable

barrier for any new competitor.

However, the deployment of new technologies such as cable TV, satellites and
cellular services allow new entrants to overcome this obstacle. For instance, in
[ECONO92b|, the author claims that a high capacity digital wireless network cover-
ing the whole of Britain could cost under $2 billion to build (around one order of

magnitude less than the original copper network).

To illustrate this new situation, AT&T has recently made a strategic alliance with
McCaw Cellular Communications which has a cellular network covering more than
40% of the US population. Such an alliance permits AT&T to re-enter the local loop
market and compete with the RBOCs [COMM92b] [ECON92¢|. AT&T, MCI and
Bell Atlantic have contracts with cable television companies that will allow them
to attack very lucrative sectors of telecommunications; video and data communi-
cations [BELL93] [ECON93b]. In the United Kingdom, a number of companies
will rapidly challenge the duopolists (i.e. BT and Mercury); for instance, Energis
(a telecommunications company owned by the National Grid company), Ionica,
British Rail Telecommunications, and British Waterways. On top of this, 39 cable
television companies have been granted a licence by the British government to offer

telecommunications services [FAGA93].

Thus, the telecommunications market will, very soon, be driven by the users’ re-
quirements and the principal demands will be service quality, open access, flexibility,
mobility and lower cost. More precisely, Nicholas and Yeomans, in [NICH93], give

the following list of basic requirements:

2. Al & Telecommunications. 13

e availability: same systems at any point of requirement, same operator at any

point of requirement, single point of accountability.

e open access: ability to inter-operate between systems, ability to inter-operate

between providers, ability to choose between systems or providers.

e open use: no utilisation restrictions, application independent, service inde-

pendent, technology independent.
e rational prices: transparent, non discriminating, commercially realistic.

e accountability: contractual, commercial, defined conditions, dispute process.

These demands introduce major challenges to all strands of the telecommunica-
tions industry [FITC91]| and in order to meet these demands, the operators must
transform their networks radically. The three branches of telecommunications, i.e.
transmission, switching, and management, will have to undergo significant trans-
formation. In the near future, SDH *(for transmission) and ATM 5(for switching)
will provide a network infrastructure capable of offering a wide range of services
with diverse traffic characteristics (e.g. bandwidth requirements, delay and loss
sensitivity, and burstiness level). In order to support this infrastructure, the way

the operators manage their networks will need to be revised entirely [HELL91].

2.2 Network Management.

To quote from [GUID90]|, "network management is about the people, procedures and
tools required effectively to manage a telecommunications network at each stage in
its life cycle (i.e. pre-service, in-service and future service).” Network management

can also be defined as the tasks of:

“SDH stands for Synchronous Digital Hierarchy.
5ATM stands for Asynchronous Transfer Mode.

2. Al & Telecommunications. 14

1. maintaining an efficient and reliable network,
2. increasing performance both in terms of quality and quantity,

3. while using a minimum of network resources.

Network management may, in fact, be viewed from different perspectives. For the
owner, the network is a business, and the primary objective is to provide as much
service whilst using the smallest possible investment (i.e. maximise profits); for the
operator, the network has to be robust, easy to maintain, analyse and expand and
finally, for the user the network must provide (as seen before) service quality, open

access, flexibility, mobility and low cost [LIEB88|.

Network management must accommodate these different demands.

2.2.1 Functional Division.

The problem with network management is that it is an enormous and complex
task which cannot be tackled by a single agent; there has to be a division of the
tasks and ISO (International Organisation for Standardisation) has separated the

different management functions into five classes [KLER88]:

e Accounting and commercial management determines and allocates costs,

and charges for the use of the network elements.

¢ Performance management monitors, evaluates and optimises the perfor-

mance of the network.

e Configuration management maintains precise information about the iden-

tity and status of every network element.

e Security management provides access protection and control over the net-

work elements.

2. Al & Telecommunications.

15

Bills Repair
USERS notification
gz?ir#;al, Request for
service,
\ payment
Usage Fault
Revenue . complaint
Accounting, Fault
commercial management
management Charging Service change,
information test
\ Alarms, \
diagnosis
. Dynamic .
Estimate optimisation Service change
Security
. Service alarms
Traffic change
statistic
Equipment .
Performance details) Security
management ng management
Routing Configuration
management
Forecasts / \
Service Equipment
change detalls

From [Fairley 91]

Figure 2.2: Network management.

e Fault management is concerned with detection, diagnosis, isolation and

repair of faults occurring in the network.

Figure 2.2, from [FAIR91|, provides a global view of network management; this
diagram also shows the relationships and the flow of data between these different

functions.

2. Al & Telecommunications. 16

2.2.2 Telecommunications Management Networks.

The management functions discussed in the previous section are performed by in-
dividual operations systems. In order to achieve a global, coherent and integrated
management, there is also a need for a management network which would pro-
vide the ability for the different operations systems to exchange information and

interact.

The CCITT® (Comité International Télégraphique et Téléphonique) Recommenda-
tion M.30 proposes a telecommunication management network (TMN) to facilitate

the exchange of information between operations systems and network elements

[CCITSS).

TMN will enable an operator to manage its own network efficiently but it will also
enable different operators to exchange information, to support interaction and to
encourage mutual co-operation. This network will have a crucial part to play in
the successful deployment of a competitive market, where several companies will
operate, where network control will take place in an open co-operative environment
(across geographical and technological boundaries) and finally, where the different

actors will have to interact and exchange information.
M.30 proposes five functional blocks:
e Operations System Function (OSF): performs the different management
functions.

e Mediation Function (MF): provides the links required between the net-

work elements and the operations systems.

e Data Communications Function (DCF): transports management mes-

8Following a reorganisation of the ITU (an agency of the United Nations dealing with telecom-
munications) in 1993, the CCITT has now been replaced by the ITU-TSS (international Telecom-
munications Union - Telecom Standards Sector).

2. Al & Telecommunications. 17

TMN ;
Operations :
. ws
Systems (OS) =
: Data Communications :
- . ws
X Network (DCN) =

Mediation E
! ! ws |

Device (MD) v F

Local Communications H
L ws

Network (LCN) P F
Q2
Q1
Network Network Network
Element (NE) Element (NE) Element (NE)

" " '

Figure 2.3: TMN.

sages between the different elements of the TMN.

e Network Element Function (NEF): the different elements which make

up the network.

e Work Station Function (WSF): provides an interface between the opera-
tor and the TMN.

The interconnections between the various TMN elements (i.e. NEF, MF, and OSF)
are made possible by the Q.1, Q.2, and Q.3 interfaces, either directly or via the
DCF. The F interfaces link the OSFs either to the WSFs or to the MFs. The G

interfaces (not displayed on Figure 2.3) provide the interfaces between the operator

2. Al & Telecommunications. 18

and the TMN, more precisely between the users and the WSFs. Finally, the X

interfaces support the dialogue between several separate TMNs [GUID90].

In addition to TMN, the ISO/NM Forum also proposes a framework for the co-
operative management of a full range of networks [EMBR90]. Both architectures
provide a communications infrastructure to allow for the transmission of monitoring

and control data.

2.2.3 Network and Service management.

A layered view of network management is also required: operators can no longer
simply maintain their networks and must also manage efficiently the numerous ser-
vices provided by both themselves and other parties. BT’s CNA-M architecture
[WILL91] and RACE [SMIT91] have introduced the concept of service management,
which is expressed as a distinct layer above network management. A telecommu-
nications service may involve several networks (e.g. voice and data) and several
operators (e.g. due to national boundaries). The service management layer will
integrate the traffic, manage the underlying networks and perform the interface

between customers and operators.

The CNA-M (Cooperative Networking Architecture-Management) is shown in Fig-
ure 2.4. Essentially, CNA-M divides network management into a hierarchy of man-
agement layers: business, service, network, and element management. The peak
of the pyramid indicates minimum operator involvement, while the base of the

pyramid indicates maximum operator involvement.

Each layer performs a well-defined class of functions. As seen earlier, the "service
layer” is responsible for the interface between the customers and the operator. In
[SINNO91], this layer is defined as ”the layer which must provide, create, monitor,

inform, maintain and account for the services of each customer”. The service layer

2. Al & Telecommunications. 19

Business

Management

Service
Management

Network

Management

Element

Management

Figure 2.4: A layered view of network management.

requests its information from the network layer. It also provides data to the business

layer, which monitors and manages the overall business.

This section has presented several propositions which should permit operators to
manage their networks in an efficient manner. However, the increasing complexity
of the network and its associated services means that a reduction of cost and the
improvement of quality can only be achieved through a new level of automation
[MAMD9Y1]. Modern systems can be monitored comprehensively, but the resulting
large volume of data must be filtered to identify relevant information. Conventional
computer applications provide a degree of automation to this process but, since

much of the data is incomplete and conflicting, human interaction remains essential.

In principle, Artificial Intelligence could limit the need for human intervention, and
so increase the level of automation [HASK90]. Hence, the application of Al to
management has appealed to many operators. The next section will focus on this

issue, and discuss the use of Al to help automate aspects of management (at each

2. Al & Telecommunications. 20

layer in the management hierarchy).

2.3 Al in Network Management.

” Artificial Intelligence is the science (and art) of developing com-
puter programs that emulate human-like thinking and reasoning. Un-
like conventional software that primarily manipulates data, Al programs
depend critically on the manipulation of knowledge.”[CEBU89]

To quote from [BODEQO], ”Artificial intelligence was conceived in the mid-1940s,
born in the early 1950s, and christened in 1956 (at a small meeting of computer
scientists, psychologist, and physiologists)”. Since then, AI has generated an im-
portant debate and a large section of the scientific community does not perceive
AT as "real science”, they would rather speak of the myths of Al (see [WEIZ90],
[PENRR89]).

A possible reason for this, is that the expectations have always been far too unre-

alistic. For instance, Herbert Simon and Allen Newell wrote in 1958:

"There are now in the world machines that think, that learn, and
that create. Moreover, their ability to do these things is going to increase
rapidly until - in the visible future - the range of problems they can
handle will be coextensive with the range to which the human mind has

been applied.” [SIMO58]

In the middle of the 90’s, this assertion is still unrealistic; indeed, not many 1994-A1
systems would satisfy this statement. In fact, at one time, the critics were very
important; so much so, that, in 1972, Sir James Lighthill nearly killed off British

research by writing in his review for the British government:

"In no part of the field have the discoveries made so far produced
the major impact that was then promised (in the 1950s).” [INDE93]

2. Al & Telecommunications. 21

Despite these problems, Al is not just a technology for the future; in fact, it can
offer very real benefits today and some products using AI technologies, are now
emerging. In 1993, the AT industry represented a market of over $600 million in
America and has reached a mature position [HARM94|. Various AI techniques
are now considered for the new generation of management systems. For instance,
RACE had 6 projects investigating the applicability of advanced information pro-
cessing techniques (including Al techniques) to network management in the areas of
maintenance, network and customer administration systems, and traffic and quality

of services (QoS) management [SMIT91].

AT techniques offer a number of advantages over traditional methods; in particular,
they can address ill-defined problems (e.g. missing and/or incoherent data), solve
problems that conventional algorithms find intractable (e.g. due to combinatorial

explosion) and, in some systems, can learn from past experience.

AT encompasses a wide range of techniques (e.g. knowledge acquisition and rep-
resentation, case-based reasoning, machine learning, robotics, simulation, virtual
reality, etc.). Figure 2.5 illustrates a limited subset of these techniques. In this
figure, AT has been divided into a number of classes. The first class is concerned
with high-level tasks such as planning, design or diagnosis; it includes expert sys-
tems, model based reasoning, constraint satisfaction, and also, natural language
and human-computer interfaces”. The second class, neural networks, is less proce-
dural and is more concerned with low level tasks such as perception and pattern
recognition. The third class, Distributed Artificial Intelligence (DAI), attempts to
solve a problem with a collection of agents rather than with a single agent. The last
class, Meta-heuristics, includes genetic algorithms, simulated annealing and tabu

search. These approaches are now considered separately.

7 Although these last two techniques will play an important part in the successful development
of the next generation of network interfaces, they will not be discussed further.

2. Al & Telecommunications. 22

ARTIFICIAL INTELLIGENCE (Al)

High level Low level DAI Meta-heuristics
Expert systems Neural networks Genetic algorithms
Model-based reasoning Simulated annealing
Constraint satisfaction Tabu search

Natural language

Human-computer interface (HCI)

Figure 2.5: A selection of Al techniques.

2.3.1 Expert Systems.

For many companies, expert systems have represented the first step towards Al
They are employed to solve complex tasks and are only knowledgeable in a narrow
domain. Under this paradigm, knowledge was originally represented as a set of ”if-
then” rules; they represent the rules of thumb, heuristics employed by the human

field-experts to solve their problems.

The principal advantages of expert systems are their simplicity and the flexibility
of their internal architectures which permit the rapid development of prototypes.
However, the acquisition and validation of the rules represent two major problems
[LIPPI1]. Also, expert systems have often been developed as prototypes or stand-

alone systems and they suffer from a lack of integration in their environments ®

8This might also be the case for all the other Al-based systems.

2. Al & Telecommunications. 23

[WRIG90]. Finally, their complexity means that expert systems cannot be consid-
ered for time-critical operations. All these limitations reduce the applicability of

these products to real world problems.

However, ranging from diagnosis through planning to traffic management applica-
tions, a large number of expert systems have been developed. In [LIEB88| and
in [MALC90], the authors provide general surveys, while design applications and
maintenance applications are reviewed in [LIRO91a] and [LIRO91b] respectively.

2.3.2 Model-based Reasoning.

Model-based systems [LIPP91], [MANN90] represent the second generation of Al
systems and attempt to overcome the limitations encountered by expert systems.
Currently, these systems can mainly be found in maintenance and diagnostic ap-

plications [LOES90].

These systems reason with a model of the network under control. This model
contains all the necessary information comprising information about the internal
behaviour of the components and the dependencies between them. For example,
given a set of fault symptoms reported by the network elements, the model-based
system reasons with the model and generates a set of fault hypotheses. These fault
hypotheses are then used to predict a behaviour (i.e. a set of symptoms). The
predicted and the observed symptoms are then compared in order to refine and

minimise the set of fault hypotheses.

Model-based systems are not limited by knowledge acquisition and their models can
be modified easily. Their principal limitations are (1) the definition of the correct
levels of abstraction for the different models [LIPP91] and (2) their computational
complexity. Time-critical applications (e.g. traffic management) will require an

important speed-up.

2. Al & Telecommunications. 24

2.3.3 Constraint Satisfaction.

Constraint satisfaction views a problem as a set of variables, where each variable
has a domain of values and a set of constraints that act between subsets of the
variables. The problem is then to find an assignment of values to variables, from
their respective domains, such that all the constraints acting between the variables
are satisfied [TSAN93]. Constraint satisfaction can be used to solve problems which
have a large number of constraints, for example, in machine vision, belief mainte-
nance, temporal reasoning, graph problems, floor plan design [KUMA92| and also
in design, planning [LUSH90] or scheduling applications [BURK91].

Unfortunately, the general CSP is NP-complete® and in the worst case, determin-
istic algorithms may require exponential time. Hence, for large instances, these

algorithms may fail to provide an answer in reasonable time.

2.3.4 Neural Networks.

A neural network is based on a massively parallel architecture where many primitive
processing elements interact with each other. Its principal task is to perform pattern
recognition and it can be trained to recognise a set of patterns [MASS90]. After
training, a neural network should be able to handle imperfect or incomplete data,

thus providing a degree of fault tolerance.

A number of neural network models are currently under investigation for telecom-
munications applications. For instance, multi-layer perceptions have been applied
mainly to speech recognition and vision [MYER90] [MCCU88|. Feed-backward
networks (e.g. Hopfield networks) have been applied to combinatorial optimisation
problems, large resource allocation problems [JOHN92| and traffic management

problems [MAMDO91] [MORRO91|. Neural networks can be used on-line for real-

9This term is explained in chapter 3.

2. Al & Telecommunications. 25

time applications and a number of VLSI (Very Large Scale Integration) and optical
neural networks are now available [HOWAS88] [PSAL90].

2.3.5 Distributed Artificial Intelligence.

DATis the branch of Al that deals with the interaction of intelligent agents [GASS89]
[ERCA91]. In other words, a DAI systems consists of a group of agents that may
interact by cooperation, by coexistence or by competition [CHAI92]. Traditionally,
each agent is in charge of a sub-part of the problem. Another alternative is to let
each agent solve the entire problem, i.e. the same problem is given to n agents. In
both cases, the agents communicate and exchange their findings during the search;
different levels of communication, co-operation and control among the agents can

be used to achieve a solution.

DAT represents a very promising technology for telecommunications. Several rea-
sons (e.g. complexity of the tasks, competitive environment, and geographical dis-
tribution) will force the distribution of management responsibilities among a large
number of intelligent agents [GRIF91]. Thus, the capacity to reason with incom-
plete, inconsistent, and distributed knowledge, the exchange of information and
co-operation between local agents will be essential in order to achieve a coherent
and global management. Some telecommunications applications are already using
DAT techniques; Lebouc and Stern propose a general architecture for distributed
network management [LEBO91], Lirov and Melaned solve design problems in a
distributed manner [LIRO91a], and Garijo and Hoffman use this technique to solve

operations and maintenance problems [GARI92].

2. Al & Telecommunications. 26

2.4 Conclusion.

This section now attempts to associate the four management layers presented in
Section 2.2.3 with the different Al techniques introduced in Section 2.3, i.e. decide

which AT techniques might be used for which management layer.

At the lowest level (e.g. element management), the time-response becomes criti-
cal. The main emphasis is not on providing the optimal answer, but rather it is
on providing a good solution quickly. The environment changes extremely rapidly,
and if the time-response is too slow, the solution becomes irrelevant as the problem
changes before the solution can be implemented. Al-based systems have to operate
on-line, and they should preferably be hardware-based (like neural networks) rather
than software-based. These systems have to process the information available (of-
ten incomplete and/or incoherent) and make their decision as quickly as possible,
hence iterative methods are not suitable for this kind of problems. Here, the main
objective of Al is to accelerate the control process, try to automate that process,

and if possible remove any human intervention from the control loop.

At the highest layers of the hierarchy, the main problem for the operator is that
he or she has to cope with an overwhelming amount of data. At this level, Al-
based systems should be used to assist the user, as decision-support or consultative
tools. They can operate off-line; the time-response is important but not critical.
The main challenge is to present the user with the right information at the right
time. At this level, it will be possible to use Al techniques for processing the raw
data and present only the relevant information. For example, model-based expert
systems can be used to hide the complexity of the network behind several layers of

abstraction.

The next chapter focuses on one particular aspect of management where Al can also
be particularly effective: Resource Management (e.g. network design, frequency

assignment, work force management). Three meta-heuristics, namely genetic al-

2. Al & Telecommunications. 27

gorithms, simulated annealing and tabu search are presented and some of their

applications to resource allocation problems are reviewed.

Chapter 3

Novel Approaches to Resource

Allocation.

This chapter investigates three iterative search techniques which offer some promis-
ing results for the solution of large resource allocation problems. These techniques
are genetic algorithms (GAs), simulated annealing (SA) and tabu search (TS). In
contrast with constructive techniques such as constraint satisfaction where the al-
gorithm works with an incomplete solution and constructs the final solution piece
by piece, these three methods work as follows: the algorithm starts with one (sev-
eral for GA) candidate solution and proceeds by transforming this solution into
another one, in an attempt to improve its quality. This cycle is repeated until

certain termination criteria are satisfied.

This chapter starts by introducing the general resource allocation problem. The

different techniques are then presented separately.

28

3. Novel Approaches.

29

3.1 The resource allocation problem.

In a paper entitled ”Why scheduling is hard (and how to do it anyway)?”, Parunak

defines a schedule, i.e. one feasible solution of a resource allocation problem, in the

following terms:

” A schedule is a subset of a cartesian product of three sets. There
is a set of tasks (What) that need to be done, there is a set of time-
periods (When) during which a task might be performed and finally,
there is a set of resources (Where) that tasks occupy as they execute.”

[PARUS]

In other words, Parunak defines the resource allocation problem as the task of

deciding What happens When and Where.

TSP VRP Scheduling Telecommunications
What | visits deliveries jobs calls
When | time-windows | time-windows | time-windows | time-frames
Where | N cities locations of machines network
customers elements

Several classes of resource allocation problems

Table 3.1: Some resource

allocation problems.

1

into the above definition (as illustrated in Table 3.1):

are now considered and are mapped

e A travelling salesman problem (TSP). In this classical problem, a salesman

has to visit N cities and returns to the city of origin. Each city is to be visited

once and only once, and the route is to be made as short as possible. In this

case, "What” is the set of visits, ”When” is the set of time-windows when

the different cities can be visited and ”Where” is the set of N cities.

! Applications of GA, SA and TS, in these 4 different problem-domains, are reviewed later in

this chapter.

3. Novel Approaches. 30

e A vehicle routing problem (VRP) consists of a workforce of engineers operat-
ing from one base, and a set of customers requesting a service (e.g. repair).
One possible objective might be to perform all jobs while minimising the total
distance travelled by the different engineers. Furthermore, this basic problem
might be complicated by several side-constraints, e.g. the engineers might
operate from several bases located in different parts of the map; the duration
of a job might be dependent on the skill of the engineer allocated to this par-
ticular job. In this problem-domain, ”What” represents the different services
performed by the engineers, ”When” is the set of time-windows and " Where”

1s the location of the customers.

To illustrate this class of problem, Figure 3.1 displays one possible solution of a
particular VRP (studied in more detail in Section 4.2). The squares represent
11 bases and the circles represent 250 jobs (geographically distributed). This
figure also shows the tours of the different engineers and a set of conflicting

jobs which have not been allocated.

e Scheduling tasks such as job shop scheduling, flow shop scheduling, wafer
fabrication and flexible manufacturing systems; ”What” may be a set of jobs
to be done, ”When” (as usual) may be a set of time-windows during which
the jobs can be done and ”Where” may be a set of machines that perform

the jobs.

o As discussed previously, a large number of telecommunications applications
can be regarded as resource allocation problems. In a telecommunications
environment, ”What” may be a set of calls with diverse traffic characteristics
(e.g. bandwidth requirements, delay and loss sensitivity, and burstiness level),
"When” may be a set of time-frames when the calls can be carried over the
network, and ”Where” may be a set of network elements - physical links,

switches, multiplexers - required for the completion of the different calls.

3. Novel Approaches. 31

AE=? vehicular Routing Problem.

Figure 3.1: A VRP and one of its possible solutions.

Resource allocation problems have attracted a lot of attention because their efficient
solution can generate massive benefits, e.g. reduction of cost and improvement
of quality. However, such problems can be extremely hard to solve; typically,
they are NP-hard [PARU87]. NP-hard problems are the hardest problems in the
classification of Garey and Johnson [GARET9]. In this classification, combinatorial

problems are divided into four classes, from P to NP-hard problems:

1. a P problem can be solved by a deterministic algorithm in polynomial time;
given the same input, a deterministic algorithm will always follow the same

sequence of instructions.

3. Novel Approaches. 32

2. an NP problem can be solved by a non-deterministic algorithm in polyno-
mial time; a non-deterministic algorithm can be viewed as a two-stage algo-
rithm, first the algorithm guesses a possible solution to the problem under

study and in a second stage, the algorithm verifies that guess.

3. an NP-complete problem is NP and is at least as hard as every other NP

problem.

4. an NP-hard problem is NP complete, and may be harder than NP, i.e.
it may require exponential time, even for a non deterministic algorithm. In
this case, the algorithm may fail to provide a solution (for large instances) in

reasonable time.

Observe that this decomposition is a worst case analysis for a whole class of prob-
lems but it says nothing about the complexity of a particular instance. It may be

the case that particular instances are easier to solve.

Furthermore, the solution of these resource allocation problems is rendered more

complicated by two other difficult tasks:

1. implementing a suitable model - or representation - of the problem.

2. designing an appropriate objective function.

The model must give a correct representation of the "real-world” problem and must
allow a total exploration of the search space, i.e. the set of all possible solutions. If
it provides an over-constrained ? view of the problem, some possible solutions might
not be accessible. On the other hand, if the representation is under-constrained,
the search technique might have to explore an unnecessarily large search space or

might create solutions which are not feasible.

2 A problem is said to be over-constrained when too many constraints are acting on the problem
and a problem is under-constrained when only a few constraints need to be satisfied.

3. Novel Approaches. 33

The objective function - or evaluation function - plays a crucial part in the search
process by judging and comparing the quality of the candidate solutions, and hence

by guiding the search technique in its exploration of the search space.

However, resource allocation problems have many conflicting objectives and the
objective function must reflect and balance the relative importance of these differ-
ent objectives. For instance, in a telecommunications environment, the evaluation
function may have to take into account the following objectives: minimise the
worst blocking probability of a set of call classes with diverse traffic characteris-
tics, maintain fairness among these classes, balance load on the network, maximise

throughput, maintain robustness, minimise delays.

The remainder of this chapter examines three search techniques, GA, SA and TS.
Each technique is described in some detail, and a number of applications are re-
viewed for each technique. The last section compares the three techniques and

concludes this chapter.

3.2 Genetic Algorithms.

3.2.1 Introduction.

In the real world, species can adapt to changing and complex environments mainly

because their evolution is dictated by two powerful mechanisms:

1. selection, i.e. survival of the fittest,

2. recombination, i.e. inheritance of genetic material.

Holland [HOLL92] used these two principles to develop GAs. In a few words, a GA

is a stochastic and iterative search procedure which works with a pool of candidate

3. Novel Approaches. 34

solutions. Iteration after iteration, the algorithms selects above-average solutions
for reproduction and recombines them. The ultimate objective of this iterative
process is to build a high quality - or optimal - solution from the information

present in the pool of solutions.

Holland’s original work is reported in a book entitled ”Adaptation in natural and
artificial systems” [HOLLT75]. His principal claims were (1) that, given some condi-
tions on the problem-domain, simple data structures, i.e. bit strings, could be used
to represent solutions of complex problems and (2) that a repeated cycle of appro-
priate selections and recombinations could rapidly improve the average quality of

a population of solutions.

These characteristics have advocated GAs for the solution of complex problems
that conventional algorithms, e.g. hill climbing, exhaustive tree search, cannot
handle easily. In particular, this technique is viewed as a promising search tech-
nique which gives the opportunity to explore large and complex search spaces in an
efficient manner [GLOV87] [DAVI91a]. For instance, GAs have been applied to the
following problem-domains: function optimisation [DAVI91b], travelling salesman
[GOLD85] [GREF8T], vehicle routing [THAN91], bin-packing [DAVI85a|, schedul-
ing [LAWT92], graph colouring [DAVI85a], [DAVI91b], routing for telecommunica-
tions networks [Cox et al 91] and multiple-fault diagnosis [LIEP91].

3.2.2 Genetic algorithms: a brief description.

How does a GA work?

A genetic algorithm works with a population of chromosomes (or strings) where
each chromosome (see Figure 3.2) represents one possible solution to the problem
under study; each element (or locus) of a chromosome describes one feature of the

problem, and each locus can be assigned different values (or alleles):

3. Novel Approaches. 35

Allele

|
V

ol1l1l1lolol1!l1]0]| = Astring(.e.achromosome)

Figure 3.2: A chromosome.

Originally, the different elements could only be assigned a binary® value (0 or 1); the
feature was either there or not. Other chromosomal representations have been de-
signed in order to apply GAs to problem-domains where the binary representation
is not suitable. Subsections 3.2.5 to 3.2.7 illustrate this last point, and in partic-
ular Section 3.2.5 discusses the applications of GAs within the resource allocation

domain.

There are many different ways in which to implement a GA; however, they all share
the same general principles (see Figure 3.3 for the basic GA cycle). Two possible

models - the steady-state model and the generational model - are now introduced.

The steady-state model works as follows: an initial population of chromosomes
is created randomly. Each chromosome is given a fitness value which is directly

related to the quality of the solution that its binary string represents.

Once this initial stage is finished the algorithm enters a loop. Two chromosomes
are selected with a probability which relates to their fitness; the chromosomes with
the best fitness being more likely to be selected. Copies of their strings are then
manipulated and recombined with different genetic-like operators, e.g. crossover,

mutation and inversion, in order to create a new chromosome. Once its fitness has

3The binary representation was preferred because it offered the finest granularity and greatest
flexibility, especially in identifying similarities between chromosomes.

3. Novel Approaches.

CREATE A POPULATION

SELECTION

CROSSOVER

REPLACEMENT

Are stopping criteria
satisfied ?

l YES

NO

Figure 3.3: Flow of a genetic algorithm.

36

been evaluated, the "child” is inserted in the population and the worst chromosome

of the population, i.e. chromosome with the worst fitness, is eliminated. This

cycle ”selection, reproduction, replacement” is repeated until a certain termination

criterion is satisfied.

The generational model is another, more popular alternative. Under this model,

the GA works with two populations: the old one and the new one. Parents (in

the old population) are selected for reproduction and they generate offsprings in

the new population; an entire population is generated at each population. In some

cases, a certain percentage of the old population might be copied - or cloned - in the

new population; the term of generational gap is used to describe this phenomenon.

3. Novel Approaches. 37

Comparison with other search techniques.

GAs differ from other search techniques in several ways:

1. Random-based decisions play an important part in the search process; basi-
cally, the final solution delivered by a GA depends on both the initial random
starting points, 1.e. the initial population, and the random-directed actions
performed by different operators during the search. Stochastic techniques
such as GAs provide an alternative for the solution of large combinatorial

problems as deterministic techniques cannot tackle these problems properly

[GARET9)].

The stochastic nature of GAs may give rise to quite different computational
behaviours, and this has been the principal motivation for advocating GAs

for the solution of NP-complete problems [PROS91].

Figure 3.4 illustrates this stochastic nature of GAs. Here, a GA has solved
a problem 10 times and on each occasion, it has reached a different solution.
This graph shows the reduction in terms of cost over 100 iterations for each of
the 10 runs. The shape of these curves is typical, most of the improvements
come at the start, and the end of the run only sees small improvements - or
no improvement at all. This is a common situation for most optimisation

algorithms.

2. Typically, search techniques move from point to point in the search space;
instead, GAs work with a population of solutions. For this reason, a GA can
be said to have a more global view of the search space than a conventional
algorithm and is less likely to be trapped in some inferior region of the search

space and, as a consequence, it is less likely to converge towards a poor local

optimum [GREF87].

3. Novel Approaches. 38

The stochastic nature of Genetic Algorithms.

23000.0

Cost

22000.0 \ \ | i i
\;

21000.0

0.0 50.0 100.0

Nb of Iterations.

Figure 3.4: The stochastic nature of GAs.

3. The two previous features are integrated into an iterative process. Generation
after generation, using random-directed decisions, a GA first selects above-
average solutions for reproduction and then recombines them to produce a
new set of solutions. If a piece of information is present in many above-
average solutions, it will to be propagated to future generations. As stated
previously, the ultimate objective of this iterative process is to ”"build” the

optimal solution from the information present in the pool of solutions.

The following subsection introduces the theory behind GAs.

3.2.3 Genetic algorithms: the theory.

This subsection presents the schema (pl: schemata) theorem which provides a for-

mal platform for GAs and can be used to explain their internal mechanisms.

3. Novel Approaches. 39

What is a schema?

A schema is the generalisation or abstraction of a binary string; each element of a
schema can take the values: 0,1 or #, where # means that the value is irrelevant (0

or 1). For instance, the strings "1000” or ”0000” both contain the schema ”#000”.

chromosome ——&= Schemata
o001 o001 #0141
HHH OHH

OO0# H#H#L

O#1 HOH

Figure 3.5: A chromosome and its schemata.

Figure 3.5 shows a chromosome and its schemata. A chromosome of length L
contains 2 schemata. It means that the evaluation of one chromosome implies
the evaluation of 2L schemata. At each generation, a GA recombines the schemata

present in the different chromosomes of its population.

The schema theorem presented in the next paragraph demonstrates that the strength

of GAs lies in the efficient processing of these schemata [DAVI91al.

The Schema Theorem.

The Schema Theorem [HOLLT75] states that ”Assuming that selection chances
are proportional to chromosome fitness, a schema occurring in chromosomes with
above-average fitness will tend to occur more frequently in the next generation, and
one occurring in chromosomes with below-average fitness will tend to occur less fre-
quently (ignoring the disruptive effects of crossover and mutation)”. This theorem

immediately provides some answers to some important questions:

3. Novel Approaches.

e What are the basic assumptions behind GAs?

e Why does a GA work with a population of solutions?

e What is the importance of one string?

40

Optimal solution

- Good building block
—I:]— Poor building block

Above—average

HEH HEHR-
i HEHE T
M H

Below—average

i H H Hl
1 HEH HElH |-
1HHEMHHF

Figure 3.6: Building blocks.

Assuming a suitable problem-domain, the basic assumptions are that:

1. the optimal solution and the above-average solutions of a problem have some

similarities; they have some common schemata.

2. the recombination of schemata present in above-average solutions should lead

to the identification of the optimal solution.

Schemata can be viewed as building blocks. Given the assumption that a solution

consists of a series of these building blocks (see Figure 3.6), the difference between

an above-average solution and the optimal solution is that the optimal solution has

all the right building blocks whereas an above-average solution has some of these

building blocks but also some poor building blocks. Therefore, if a building block

is present in several above-average solutions, that building block is likely to be part

of the optimal solution.

3. Novel Approaches. 41

In order to identify similarities among above-average chromosomes, a GA must
work with a population of solutions. In fact, a chromosome by itself has no real
importance. The search is guided by the similarities, i.e. if a schema is present in a
large number of above-average chromosomes, this schema is likely to be propagated

to the next generation. However, what happens to an individual solution, i.e. the

chromosome, is not relevant [GREF87] [GLOV8T].

3.2.4 The driving forces.

This subsection analyses a number of mechanisms and parameters which influence
and guide the search process of a GA. As stated earlier, a GA has to (1) select
above-average solutions for reproduction and (2) recombine them to produce a new

set of solutions. Therefore, the different driving forces have two principal objectives:

1. Make sure that the recombination of similarities from above-average solutions
is fruitful, i.e. the recombination of two above-average solutions tends to

generate an above-average solution.

2. Maintain the best possible balance between solution quality and rapid con-
vergence. Different applications may have different needs: time-critical ap-
plications (e.g. traflic, routing of telecommunications networks) will sacrifice
optimality for a rapid convergence towards a satisfactory solution, whereas
applications with no (or minimal) time-constraints (e.g. design and dimen-

sioning applications) will favour optimality rather than rapid convergence.

Each driving force is now considered in turn:

3. Novel Approaches. 42

Representation/operators.

The data structure used to represent candidate solutions, i.e. the representation,
and the operators, i.e. crossover and mutation, cannot be considered separately; the
operators must be able to work with the representation implemented and therefore,
the choice of the data structure dictates the design of the operators. As a result,

these two elements can be viewed as a united driving force which must ensure that:

1. Genetic operations are not disruptive* and also children should inherit a max-

imum of information from their parents.

2. The resolution of the representation is adequate. In fact, the representation
can be seen as a discretisation of the search space. If the representation
is too restrictive (i.e. over-constrained), some regions of the ’'real’ search
space might not be accessible, while if the representation is too relaxed (i.e.
under-constrained), the GA may be force to explore an unnecessary large
search space. In both cases, the GA may not be able to converge towards the

optimal solution.

The internal algorithms - crossover and mutation - used to encode the operators, are
strongly dependent on the chromosomal representation adopted to solve a specific
problem. However, these problem-specific algorithms perform similar functions, i.e.
a crossover operator is always a crossover operator whatever representation is being

used. The following paragraphs analyse these generic functions.

Crossover and mutation.

The roles of the crossover and mutation operators can be described as follows:

%A crossover operation is said to be disruptive if in general, the recombination of two chromo-
somes tend to generate a solution with a worse fitness than its parents.

3. Novel Approaches. 43

The crossover operator acts by combining parts of two parents. Clearly, it recom-
bines groups of bits from two chromosomes and produces two new chromosomes.
It does not create any new genetic material but simply manipulates the informa-
tion already existing in the population. It is analogous to mating in biological

organismes.

Mutation operates on a single parent by randomly changing some part of it. It
is a background operator, i.e. it occurs rarely, and the main task of mutation is
to re-introduce diversity into the population during the search process in order to
avoid premature convergence®. In genetic terms, this operation is analogous to the

mutation of genes, in which the code for one amino acid changes to the code of a

different amino acid [SING94].

Crossover is the key-operator for GAs, mutation alone could not generate the re-

combination process achieved by the crossover operator [SCHA92].

However, the actions of the crossover might be disruptive and these disruptions
represent the main difficulty faced by GAs. The search performed by a GA is
reduced to a basic random search if the children cannot inherit sufficient information
from their parents and, therefore, the disruptions caused by the crossover must be

kept to a reasonable level.

For certain classes of problems, it might not be possible to design a suitable
crossover operator. For instance, crossover might be especially disruptive for prob-
lems with a high level of epistasis ® where the various elements of the chromosome
are severely constraining each other; the recombination of two above-average solu-
tions is not likely to produce an above-average solution. Davidor advocates pure

random search for a solution to these problems [DAVI9la].

5Premature convergence can be defined as the loss of diversity in the population before the
optimal solution has been found.

6In this context, the term ”epistasis” is related to the level of dependence existing among
the different elements of a chromosome. If many elements are heavily dependent on the values
assigned to other elements, the level of epistasis is said to be high.

3. Novel Approaches. 44

It is also worth mentioning that GAs might not be the appropriate tool for the
solution of problems with a low level of epistasis. In this case, the various elements
of a chromosome are not constraining each other; the values they are assigned are
more or less independent from each other and a hill-climbing procedure, focusing
on each individual element separately, will be preferred. It is simpler to implement

and, in this case, more efficient.

The initial population.

The initial population must supply a suitable sample of the search space to the
genetic algorithm. The diversity of the initial population must be sufficient so that

there is sufficient variety in the schemata to be processed.

In order to give a smart start to the GA, the initial population can be produced
with a heuristic rather than using a random method. However, Grefenstette, in
[GREF8T], reports that the seeding of the initial population with above-average
solutions generated by a heuristic can lead to a premature convergence. The author
concludes that this heuristic-seeding must be done with care. Our results confirm

this point (see Subsection 6.1.2).

The size of the population can also affect the efficiency of GAs. Very small popula-
tions may not create enough variety whereas large populations may be prohibitive

in terms of computational effort.

The selection function.

The selection function guides the search by determining which chromosomes are
used during the reproduction process; it also has a key role to play when deciding

between optimality and running time.

For (near) real time applications where a rapid solution is desired, Davidor advo-

3. Novel Approaches. 45

cates an exponential selection function: the best solutions are given an exponential
chance of being selected. This strategy leads to a rapid convergence towards a

good, but probably sub-optimal solution [DAVI91a].

For applications with no time-constraints, the primary concerns of the selection
function are (1) to guide the search efficiently and also (2) to avoid a premature
loss of diversity in the population [DAVI91b]. In particular, two critical situations

might emerge and the selection function must handle them.

1. One chromosome, i.e. a super individual, might have a much better cost than
the other members of the population. In this case, the selection function has
to attenuate the selection chance of this particular chromosome. If the proba-
bility of being selected is directly related to the fitness of the chromosomes, it
is likely that the super-individual will always be selected; the population will
then lose its diversity and a rapid convergence towards a local optimum will
happen. One possible solution is to normalise the situation and to make the
chance of selection of each chromosome directly proportional to its ranking
in the population, rather than to its individual fitness. This normalisation

technique limits the risk of domination by one super-individual.

2. All the chromosomes have a similar fitness. In this case, chromosomes with
the highest fitness must be given a better chance. In fact, in order to guide
the search efficiently, the selection function must introduce some pressure and

exaggerate the selection chances of the fittest chromosomes.

In summary, this subsection has discussed the importance of the different driving
forces. These different ingredients all have a critical part to play in the success or
failure of a GA. Firstly, assuming a suitable problem-domain, a representation and

its associated operators must be designed so that:

e the action of the crossover creates as little disruption as possible and tends

3. Novel Approaches. 46

to generate better solutions from one generation to the other,
e the resolution of the representation is adequate. It is necessary for the repre-

sentation to provide a correct and complete view of the search space.

Moreover, the operators, the initial population and the selection function must be
designed so that the best possible balance between optimality and running time is

kept.
The remainder of this section on GAs contains three subsections describing the
applications of GAs to the following problem-domains:

e Resource allocation (Subsection 3.2.5),

e Vehicle routing (Subsection 3.2.6),

e Telecommunications (Subsection 3.2.7).

3.2.5 GAs for resource allocation.

This subsection reviews a number of applications which use GAs for the solution

of resource allocation, i.e. scheduling, problems.

The chromosomal representation that these systems use influences the design of
the entire GA, that is, the design of the operators and the resolution of the search
space. Therefore, these applications are reviewed with respect to how they represent
the problems they try to solve and also, we present a study of the alternative

representation schemes, and comment on their effectiveness, or otherwise.

Figure 3.7 presents a number of possible representations which can be divided into

two broad classes:

e indirect representation,

3. Novel Approaches. 47

GAs and Resource Allocation

4/\

INDIRECT REPRESENTATION DIRECT REPRESENTATION

— T

Binary Sequencing Preference list

[CLEV8] [DAVIg5a] [DAVIg5b] [BAGCO1]
[NAKA91] [GOLD8S] [CLEV89] [BRUN93]
[OLIV87]
[CLEV89]
[WHIT89]
[SYSWO1]

[STAR91]

Figure 3.7: Representations for Resource Allocation Problems.

e and direct representation.

The next two paragraphs examine these two styles of representation.

The indirect representation.

The indirect representation is the most widely used. Davis was the first to propose
the two-fold ”GA-solution builder”” architecture [DAVI85a]. His claims were that
for certain classes of epistatic problems such as bin-packing and graph colouring,
the conventional, i.e. binary, representation is not suitable. The recombination of

two above-average solutions is not likely to produce above-average solutions, rather

7or schedule-builder when solving scheduling problems.

3. Novel Approaches. 48

. Chromosomes SCHEDULE- Schedwes
' BUILDER

Decision-

sequences

Figure 3.8: Indirect representation.

it is (highly) likely to produce illegal solutions. He, thus, presented an alternative
technique, where the GA was only doing part of the search and a solution-builder

was decoding the intermediate solutions manipulated by the GA.
Figure 3.8 illustrates how GA-based systems, using this representation, work.

The search process is shared by a GA and a schedule-builder. The GA uses an
intermediate representation for its chromosomes. These chromosomes are viewed
as decision sequences by the schedule-builder which uses them to generate legal
solutions. Thus, each chromosome is associated with a legal schedule and the

fitness of the chromosome is defined by the quality of the schedule.

Three different classes of indirect representations can be distinguished:

e binary representation,
e sequencing representation,

e and preference list.

These three sub-classes are now considered in turn.

3. Novel Approaches. 49

Binary representation. Nakano applied a conventional GA to three job-shop
problems; the largest problem had 20 jobs and 5 machines [NAKA91|. There were
some sequencing constraints, and each job had to be processed on different machines

following a given sequence.

Each bit of the chromosome was associated with a pair of jobs and a machine; the
value of the bit (0 or 1) defined the processing priority between the two jobs on

that particular machine.

As the search space covered by the binary representation was much larger than the
real search space, most of the solutions produced by the crossover operator were
illegal. As a consequence, a schedule-builder was needed to generate legal schedules.
Nakano claimed that the solution-quality achieved by the GA approached those
obtained by branch and bound methods. However, it is not clear what information
is transmitted from generation to generation and how children can inherit that

valuable information from their parents.

Cleveland and Smith compared a binary representation with some sequencing and
preference list representations on a series of problems on scheduling flow-shop re-
leases [CLEV89]. Their results are discussed later (see paragraph on preference

lists).

Sequencing representations. This approach has been the most popular to date
with the GA community for the solution of scheduling problems. Here, the problem
is reduced to a sequencing problem. Basically, the original problem is transformed
into the problem of finding an ordering (or sequence) such that the schedule gen-

erated from this ordering has a minimal cost.

Table 3.2 presents a collection of crossover operators which work with a sequencing
representation:

The principal difference between these operators is the information that each of

3. Novel Approaches.

50

Type Order-based | PMX Cycle Edge Position-based
(see below) | crossover | recombination
Reference | [DAVI85a] [GOLD85| | [OLIV87] [WHIT89] [SYSWO1]
Pressure(s) | 1. Order 1. Order 1. Position | 1. Adjacency | 1. Position
2. Position | 2. Position

Table 3.2: Operators for the sequencing representation.

them attempts to preserve during the reproduction operation. Under ”pressure” is

identified the objective(s) for each operator. These are amplified below.

The GA developed by Davis [DAVI85a] was the first to integrate a sequencing rep-
resentation and an order-based crossover. In this case, the objective of the crossover
was to preserve the relative order of the elements contained in the sequences. Dur-
ing crossover, one part of the sequence is inherited from one parent and the other
part is filled with the remaining elements, following the relative order of the other

parent.

The partially mapped crossover operator (PMX) has been proposed in [GOLD85];
this operator is an order-based crossover which also attempts to preserve the ab-
solute positions for one part of the child and the relative order for the other part.

However, Starweather et al. claimed that the PMX operator is more disruptive

than the order-based crossover [STAR91].

The cycle crossover has been designed by Oliver [OLIV87]. The objective of this
operator is to preserve positional information. Each position of the sequence is
guaranteed to inherit the value assigned to the same position in one of the two

parents.

The edge-recombination operator was specifically designed for the solution of TSPs
[WHIT89]. The authors claimed that the important information, i.e. the infor-
mation that children must inherit from their parents, for this particular class of

problems, is not the absolute positions or the relative order of the elements in the

3. Novel Approaches. 51

sequence. Rather, it is the fact that some elements are next to each other in the
sequence. Basically, the important information in a solution of a TSP is the fact
that city a is visited just before or just after city b, i.e. the fact that cities a and
b are adjacent in the tour. Hence, preservation of adjacency information is the

objective for this operator.

The position-based operator [SYSW91| had the same objective as the cycle crossover;
it attempts to preserve positional information. However, Starkweather et al. claimed

that this operator is more disruptive than the cycle crossover and is in fact a variant

of the order-based crossover [STAR91].

The performances of these different operators vary from one problem-domain to
another, and are, in fact, strongly dependent on the specific nature of the problem
in hand. For instance, in [OLIV87], the authors compared the performance of three
operators: the order-based crossover, the PMX and the cycle crossover on a single
30 cities TSP. The order-based crossover did 11% better than the PMX and 15%
better than the cycle crossover. They also compared (1) the tours achieved by a
GA with an order-based crossover and (2) the optimal solution; the best results

were within 0.25% of the optimal solution.

Syswerda, in [SYSWO91], compared three crossovers (order-based, position-based
and edge recombination) on a job-sequencing problem with resource, time and
set-up time constraints, and with 90 tasks to be scheduled on 30 resources. The
performances of the position-based and the order-based crossover mechanisms were
quite similar whereas the edge recombination operator produced rather poor results
and was, in fact, doing little better than random search. This operator, designed
especially for the solution of TSPs, was obviously not suitable for this type of

scheduling problems.

Starkweather et al., in [STAR91], compared six crossover operators on two different

problems: a 30 city TSP and a real world warehouse/shipping scheduling problem

3. Novel Approaches. 52

with 195 jobs. The six operators were: the edge recombination crossover, two
variants of the order-based crossover, the position crossover, the PMX and the

cycle crossover (see Table 3.3).

TSP Scheduling problem
1 | edge recombination position-based
2 | order-basec (1 and 2) | order-based (1)
3 | position-based PMX
4 | PMX order-based (2)
5 | cycle edge recombination
6| - cycle

Table 3.3: Sequencing crossovers - A comparison.

For the TSP, the ranking of the operators was as follows: (1) edge recombination
operator, (2) order-based crossovers, (3) position-based crossover, (4) PMX and (5)
cycle crossover. The edge recombination, the two order-based crossovers and the
position-based achieve similar results; they were all within 1 % of the optimal solu-
tion. Compared to the previous operators, both the PMX and the cycle crossover
performed poorly on this problem and they were respectively 10% and 20% away

from the optimal solution.

For the second problem, the scheduling problem, the ranking of the operators was
rather different. The edge recombination operator performed poorly compared
to its competitors. The position-based crossover and one of the two order-based
crossovers achieved the best result, followed by the PMX operator and the remain-

ing order-based crossover. The cycle crossover was again quite disappointing.

In summary, all these comparative studies show how much the performance of
the different operators depends on the specific nature of the problem in hand.
The edge recombination operator attempts to preserve adjacency and, thus, is
suitable for the solution of TSPs; however, it might not be the best choice for

scheduling problems where the notion of adjacency is not so important. The order-

3. Novel Approaches. 53

based crossover and the position-based crossover appear to be a suitable choice, for
instance, for problems with precedence constraints where the relative order might
be the relevant information. None of these studies has been favourable to the cycle
crossover; however, this operator might be required to apply GA to sequencing
problems where the absolute positions of the various elements in the sequence is of

prime importance.

Preference lists. This representation, proposed by Davis [DAVI85b] for the so-
lution of a small job shop scheduling problem is rather rich and complex. The
schedule-builder is, in fact, a simulator which must take decisions for each machine
at regular intervals; the decision can be to allocate a task to a machine or, the

machine may have either to wait for a job or be idle for a given time period.

The chromosome (here, preference list) dictates, for each of these decision points,
which decision the simulator should prefer. Clearly, for each decision point, the
chromosome provides an ordered list of possible decisions; each of these is attempted

by the simulator until one can be accomplished.

Davis [DAVI85b| designed three operators for this representation:

1. "Run-idle” attempted to limit the amount of waiting time experienced by the

different machines.

» »

2. ”scramble” ”scrambled” (or rearranged) the elements of a preference list.

3. "crossover” exchanged preference lists between solutions.

The principal limitation of this representation is that it is not a practical ap-
proach for large problems. The preference list must provide an ordered list for
each decision-point and for each machine, and therefore can become very large very

rapidly when the size of the problem increases.

3. Novel Approaches. 54

Cleveland and Smith undertook a comparative study of binary representations,
sequencing representations and preference lists [CLEV89]. Two complex single-
machine scheduling problems were used as the basis for the comparison. In fact,
the same problem was viewed from two different angles. In the first case, the
scheduling problem was reduced to a sequencing problem where the order in which
the jobs were released was the only concern. In the other case, the problem was
viewed as a more general timing problem and, absolute release times for each job

were required.

As expected, sequencing approaches performed much better than both the binary
representation and the preference list on the sequencing problem. The principal
difference between these three techniques was that both the binary representation
and the preference list introduced the notion of time in their representation whereas
the sequencing approaches were only concerned with the order of the jobs in the
decision-sequences. The authors concluded that the binary representation and the
preference list were, in a sense, too complex for this problem and could not guide

the search in an efficient manner.

The sequencing approaches showed their weakness on the second timing problem.
Indeed, in this problem where absolute release times were part of the solution,
both the binary representation and the preference list provided significantly better

results than the sequencing approaches.

In summary, three classes of indirect representations have been examined. Until
recently, indirect representations were the most popular choice for the solution of
scheduling problems. The principal reason for this was the relative simplicity of

the operators involved.

3. Novel Approaches. 55

Direct representations.

Direct representation has been proposed as a promising alternative for the solution
of resource allocation problems [BAGC91] [BRUN93|. The genetic operators are
more complex. However, they overcome most of the limitations encountered by

their indirect counterparts, with which they differ in two principal ways:

1. The GA works directly on the original search space, i.e. the schedules are the
chromosomes. There are no distortions introduced by an intermediate search

space.

2. The schedule builder is eliminated. More precisely, the scheduling function is
performed by the crossover operator. The GA performs as much of the search
as possible. Basically, all the variables are encoded in the representation and
hence, the schedule builder might not be needed at all or used at worst to

refine marginally the solutions proposed by the recombination process.

The definition of suitable operators, crossover and mutation, represent the princi-
pal problems with this class of representation. In comparison with the sequencing
representations, where the crossover operator only recombines two sequences of
elements, the task is here much more complex. The crossover must mix and recom-
bine two schedules and guarantee that, during this operation, the schedules have

inherited the important information from their parents.

Bagchi et al., in [BAGC91], used a job shop scheduling problem to compare three
different representations; the principal difference between these three representa-

tions being the amount of information encoded in the representation.

For the simplest representation, the original problem was reduced to a sequencing
problem and the chromosomes were lists, i.e. permutations, of jobs. The schedule-

builder had an important role to play in the search process. At the other end of

3. Novel Approaches. 56

the spectrum, the third representation integrated all variables and hence, the entire

search process was performed by the GA.

In this comparative study, the performance of the GA was directly related to the
amount of knowledge encoded in the representation; the more information that was

encoded the better was the performance.

In [BRUNO93|, the author also puts forward a strong case for the direct approach.
A large real-world problem was used to compare one sequencing representation and
one direct representation. Experiments were performed with different settings, i.e.
different sizes of populations, initialisation heuristics, number of iterations, selec-
tion methods. The direct approach with its "knowledge-augmented” representation

consistently outperformed the sequencing approach.

In conclusion, this section has presented two styles of representations, indirect and
direct. Until recently, the indirect style was favoured because of the simplicity of
its operators. However, direct approaches are now emerging. They do represent a
promising alternative to the more traditional indirect approaches and merit further

investigation.

3.2.6 GAs for Vehicle Routing.

This subsection reviews a number of applications which use GAs to solve VRPs.
All of the systems presented in this section use an indirect representation; each of

these systems is now presented in turn:

Thangiah et al.[THANO91] developed Gideon which addressed VRPs with time win-
dows and capacity constraints; the objective of this system was to "minimise the
number of vehicles and the distance travelled for servicing the set of customers

without being tardy or exceeding the capacity or travel time of the vehicles”.

3. Novel Approaches. 57

In Gideon, a three-stage strategy was adopted. In a first step, the region covered
by the different vehicles was divided into sectors; all the customers located in one
sector were serviced by the same vehicle. Then, a heuristic was used to build the
routes of the different engineers, i.e. given a cluster of jobs, the heuristic was
used to find the best possible route among these customers. Finally, a local search

(improvement) procedure was employed to refine the final answer.

Only the first step of the search involved a GA; each chromosome was a binary
string which represented a list of seed angles used to divide customers into clusters.
The objective of the GA was to find a set of seed angles minimising the total

distance travelled by the engineers.

The authors reported two comparative studies of Gideon with other techniques. In
[THANO1] , Gideon was compared to two local procedures developed by Solomon
[SOLO83]. Three different classes of VRPs were used:

o Class I: VRP where locations of customers were generated randomly,
o Class II: VRPs with clusters of customers,

e Class III: VRPs with semi-clusters of customers.

These problems also varied in terms of fleet size, vehicle capacity, travel times, time-
windows, and customer service times. In 41 out of 56 problems, Gideon performed
better than the local search procedures; the average reduction in terms of fleet size
was 3.9% and in terms of distance travelled by the vehicles, the average reduction
was 4.4%. In general, the improvements achieved by the GA were greater for

problems in Classes I and III than for problems in Class II.

In [THANO3], a set of 25 large problems (200 customers for each problem) was used
to compare the performance of Gideon with the performance of a greedy algorithm.
Again, the geographical distribution of the customers was used as a parameter to

divide the VRPs into 5 categories, each containing 5 problems.

3. Novel Approaches. 58

In the first class, the customers were uniformly distributed across the entire area,
while in the other four classes the 200 customers were regrouped respectively into
1,2,3 or 4 clusters. Within each class, the problems varied in terms of time deadlines,

and varied from loose to tight constraints.

In this comparative study, three sets of experiments were performed. In the first
set, the different problems were solved solely by using the greedy algorithm. In the
second set, the greedy algorithm was augmented by a post-optimisation procedure

and finally, Gideon was used in the third set of experiments.

In terms of solution quality, Gideon performed well for problems where the cus-
tomers were distributed uniformly and/or with tight time deadline constraints. On
the other hand, the association, greedy algorithm and post-optimisation, achieved
good results for problems in which customers were tightly clustered and with loose

time deadlines.

In terms of computational effort, the comparison is more delicate. In most cases,
both versions of the greedy algorithm, i.e. with and without the post-optimisation,
outperformed Gideon. However, in some cases, the greedy algorithm augmented by

the post-optimisation procedure was extremely slow in providing an answer.

Blanton and Wainwright also used a GA to solve VRPs with time-windows and
capacity constraints [BLAN93]. Their principal claim was that traditional operators
usually associated with the sequencing representation (e.g. order-based, position-
based, cycle crossovers) were not suitable for the solution of problems with multiple
constraints. In order to overcome this limitation, a new class of crossovers was
developed, namely the merge cross operators, which use global precedence, i.e.

priority, information during the recombination process.

Basically, a global precedence arrangement indicates, for each pair of customers,
the order in which the customers should be processed. Different criteria (e.g. time-

windows of the different customers, distances or capacities) might be used to gen-

3. Novel Approaches. 59

erate different arrangement and hence, different crossovers.

Twelve merge cross operators, using different arrangement criterion (or combination
of criterion) were compared with three traditional crossovers, PMX, cycle crossover
and the edge recombination operator, on four different problems with 15, 30, 75 and
99 customers respectively. In each case, the best solution was achieved by one of the
merge cross operators. As a group, these operators outperformed the traditional
operators. However, no merge cross operator was consistently better than the rest
of its competitors. This raises some serious doubts concerning the robustness of
these operators. In fact, the success or failure of a given merge cross operator

appears to be greatly dependent on the specific characteristics of the problem in

hand.

All the systems presented in this subsection used an indirect representation. No
GA with a direct representation has yet been implemented to solve VRPs. The
comparison in Section 3.2.5, where systems developed by Bagchi et al. and Bruns
outperformed their competitors, motivates the investigation of this class of repre-

sentation for the solution of VRPs.

3.2.7 GAs for telecommunications.

This short section presents three recent applications of GAs in the field of telecom-

munications.

Many features of typical telecommunications problems motivates a GA solution.
Indeed, a large number of telecommunications applications have large and complex
search spaces and/or have severe time-constraints. In both cases, conventional
techniques might fail to provide an answer in reasonable time, and non-deterministic

search techniques such as GAs may be well-suited for the solution of these problems.

Clitherow and Fisher, from Bellcore, developed a GA to solve small design problems

3. Novel Approaches. 60

(from 5 to 30 nodes) [CLIT89]. In fact, two GAs were implemented. The first GA
used conventional operators whereas the second was equipped with problem-specific
operators. These problem-specific operators were two mutation mechanisms whose
actions were dictated by a rule base, a set of heuristics used usually by human

experts to design a network manually.

In both GAs, each element of the chromosome represented the capacity of a par-
ticular link between two nodes, i.e. there was one element for each link of the

network.

The GAs were given a smart start; the initial population was not purely random.
For each element of the chromosome, the probability distribution used to define the

initial capacity was centred around an approximate solution.
The principal results of the study were that:
1. The GA equipped with the two problem-specific mutation operators consis-
tently outperformed the conventional GA,
2. The number of iterations required for convergence increased as the network

grew in size; hardly a surprising outcome !

Cox proposed an algorithm for the dynamic anticipatory routing (DAR) of calls
in circuit-switched telecommunications networks [COX91]; this scheduling problem
was concerned with the capacity reservation for services such as video broadcasting

where demand can be planned in advance.

The elements of the problem were:

1. The configuration of the network, e.g. number of nodes, links and capacities,

2. The traffic pattern which was described in probabilistic terms,

3. Novel Approaches. 61

3. A call table describing the individual calls requested (e.g. source node, des-

tination node, desired start time, duration)

4. A loss function defining a penalty cost for each call type.

The objective was to find a dynamic routing policy minimising the average loss per

unit of time resulting from blocked calls.

The DAR algorithm incorporated a two-fold procedure:

1. In the first part, the algorithm was using the traffic pattern only to solve
the problem in a probabilistic manner and provide a path assignment rule to
each call. This path assignment rule was, in fact, a small set of path selection
probabilities mapping call 7 into path j with probability p(z, 7). The objective
was to minimize the expected penalty cost, generated by blocked calls, per

unit time.

2. The objective of the second part, called the bandwidth packing algorithm, was
to improve the initial assignments made in the first part, by using information
relevant to the current situation: (a) the current state of the network and (b)

a list of call requests with their characteristics.

Four different algorithms, namely a greedy algorithm, a pairwise exchange heuristic,
uniform random search, and a GA were implemented to perform the bandwidth-
packing task. The performance of the four algorithms was compared using a 50 node
test problem. All perform reasonably well. The worst one, uniform random search,
was only 8% away from the optimal solution. In comparison to its competitors, the
GA performed well, but was outperformed by a hybrid algorithm: GA followed by

the pairwise exchange procedure.

Finally, Liepins and Potter reported a GA approach for diagnosing multiple faults

in a microwave communications system [LIEP91]. The authors defined multiple

3. Novel Approaches. 62

diagnosis as the identification of a set of faults that best corresponds to a set of
alarms. First, the original diagnosis problem was mapped into a set covering prob-

lem and the GA was used to find the optimal answer to this constrained problem.

In conclusion, two important observations can be made from the reviews presented

here:

1. The performances achieved by the different GAs, presented in the three pre-
vious sections, compared generally favourably with those achieved by their

competitors.

2. Subsection 3.2.5, "GAs for resource allocation”, has highlighted the reason
why a direct representation is an appropriate choice. This style of represen-

tation should be investigated for the solution of VRPs.

3.3 Simulated Annealing.

3.3.1 Introduction.

SA is an iterative and stochastic search procedure which was first introduced by
Kirkpatrick et al. [KIRK83] and Cerny [CERN85]. The principal characteristic
of SA is that it provides a mechanism which (potentially) prevents a local search

algorithm from being trapped in a local minimum.

Local search algorithms are often used to solve large combinatorial problems for

which exact algorithms do not exist or cannot provide an answer in reasonable time.

Usually, a local search algorithm works as follows: the algorithm starts with an
initial solution which might be either chosen at random or provided by another

search procedure.

3. Novel Approaches. 63

A rearrangement operator is used to generate a neighbour ® of the current solution;
a neighbour can be defined as a similar solution which differs (from the original

solution) only by a single change which is performed by the rearrangement operator.

Then, the difference of quality between the current solution and its newly generated
neighbour is calculated. If the neighbour is of better quality, it becomes the new
current solution. If not, the original current solution is kept. Thus, a local search
algorithm can be viewed as a descent algorithm. Only moves which decrease the
cost, i.e. downhill moves, are accepted. Moves which increase the cost, i.e. uphill

moves, are always rejected.

These two steps of neighbour generation and comparison are repeated until no
improvement can be detected in the neighbourhood of the current solution. Thus,

this final solution is guaranteed to be a local minimum.

However, this local minimum might be distant from the optimal solution. In fact,
the principal limitation of local search algorithms is that they do not provide a
mechanism which would allow an escape from local minima. If the algorithm has
reached a local minimum, the search can go no further. There is no exception to

this rule, even if the local minimum found is of poor quality in global terms.

A simple answer to this problem is to repeat the local search from different starting
points and keep the best solution found. In this case, different parts of the search
space are explored and, intuitively, the algorithm is more likely to find a final
solution of better quality. However, this naive approach does not always overcome

the underlying problem.

SA is an alternative approach. Basically, this procedure accepts uphill moves with
a controlled probability and is therefore less likely than a local search algorithm to

be trapped in a poor local minimum.

8and therefore, the neighbourhood is the set of all the neighbours.

3. Novel Approaches. 64

SA has been used to tackle some classical combinatorial problems, e.g. travel-
ling salesman [GOLD86], graph partitioning [JOHN89b]|, graph colouring problems
[JOHNO91] and has given some mixed results.

The remainder of this section consists of five subsections. Subsection 3.3.2 intro-
duces SA and describes its internal algorithm. Subsection 3.3.3 examines the role
played by the different parameters. Subsection 3.3.4 reports the results of some
comparative studies of SA with conventional techniques when applied to different

classes of combinatorial problems.

3.3.2 SA: A brief description.

SA originated from an analogy drawn between thermodynamics and combinatorial
optimisation. In this context, the search for an optimal solution in a combinatorial
optimisation problem is analogous to the production of a crystal using an annealing

technique.

The annealing technique works as follows: first, a solid is melted at a high temper-
ature and then, the temperature is slowly and gradually lowered with most of the

time spent at temperatures near freezing.

At high temperatures, the atoms of the system can move about freely. In the
ground states, the particles are arranged in a highly structured manner and the

energy of the system is minimal; the annealing technique has produced a crystal.

These ground states and this pure crystal can only be obtained if the temperature
is reduced in slow stages. Otherwise, if the cooling process is too quick®, the system
will not reach its minimum energy state and the crystal will have many defects and

only locally optimal structures. Basically, the period of time at each temperature

®The process in which the temperature is instantaneously lowered is defined as quenching. In
the context of simulated annealing, local search is analogous to quenching.

3. Novel Approaches. 65

must be sufficiently long to reach equilibrium.

The Metropolis algorithm [METRS53] developed for the simulation of a collection of

atoms in equilibrium at a given temperature is the central part of a SA algorithm.

This

algorithm works as follows:

An atom is given a random displacement and the resulting change in the

energy level of the system, AE, is calculated.

If AE is negative, the newly generated configuration is accepted as the new

configuration.

If AE is positive, the case is treated in a probabilistic manner. The probability

of acceptance is given by:

P(AE) = ezp(—AE/KyT)

where K is the Boltzmann constant and 7' is the temperature.

If P(AE) is greater than a random number between 0 and 1 then the newly
generated configuration is accepted, otherwise it is rejected and the original

configuration remains the current configuration.

In summary, the Metropolis algorithm allows both uphill and downhill moves to

occur. However, there is an important difference: a downhill move is always ac-

cepted, whereas an uphill move is only accepted with a certain probability which

decreases with the temperature, i.e. the lower the temperature, the less likely an

uphill move will occur.

The SA algorithm is illustrated in pseudo-code in Figure 3.9. The inner loop of this

algorithm is a Metropolis algorithm and the outer loop determines the changes in

temperature. A SA algorithm works as follows:

3. Novel Approaches. 66

S := initial-solution;
T := initial-temperature;
WHILE (not frozen)
DO BEGIN
WHILE (not equilibrium)
DO BEGIN
S’ := nearby-solution(S);
A := change-in-cost(S, §');
IF (A > 0)
THEN accept S’ with probability ezp(—A/T) as S
ELSE accept S’ as S
END
T := reduce-temperature(T');
END
END;

O 00 ~ O O W W N

—_ =
= o

==
U W N

Figure 3.9: Implementation of simulated annealing.

First, an initial solution and an initial temperature are chosen; this initial temper-
ature is set high, so that the term ezp(—A/T) ° tends to be large and large uphill

moves are allowed.

The SA algorithm attempts a certain number of moves at each temperature and
the Metropolis algorithm is used to define the validity of these moves. At each
temperature, the algorithm must proceed long enough for the solution to reach a

state of equilibrium.

The temperature is gradually dropped, and as T decreases, the term ezp(—A/T)
decreases, minimising uphill changes to the system. Eventually, as 7" tends to zero,
exp(—A/T) also tends to zero, and no uphill moves can take place, i.e. freezing

occurs.

10Note that T is a control parameter using the same units than the cost function and therefore,
the Boltzmann constant K} is not required anymore.

3. Novel Approaches. 67

3.3.3 The driving forces.

This subsection analyses the different parameters which guide and influence the

search performed by a SA algorithm. These parameters are:

1. A neighbourhood and a set of operators which define (1) the search space the

algorithm has to explore and (2) how a neighbour solution can be generated.
2. An initial temperature selected so that it allows most uphill moves.

3. A temperature function which defines how the temperature is reduced during
the search. The rate of reduction in 7" affects the granularity of the schedule.
If T' decreases too fast then quenching would occurs and it would generate a

non-optimal solution (i.e. a glass instead of the desired crystal).

4. The number of iterations to be performed at each temperature.

Neighbourhood/operators.

The design of a suitable neighbourhood is critical to the success or failure of SA.
Eglese [EGLE90] claims that a search space with a ”"smooth” topology where the
local optima are shallow should be preferred to a search space with a "bumpy”
topology where there are many deep local minima. Eglese, in the same paper,
also covered constrained problems. The two traditional technique for solving such
problems were proposed: (1) restrict the search space to solutions which conform
to all the constraints or (2) allow solutions which do not satisfy all constraints but
which are then given a penalty. The author claimed that the second technique is

likely to generate a simpler search space with a smoother topology.

3. Novel Approaches. 68

The annealing schedule.

The initial temperature, the temperature function and the number of iterations
performed at each temperature define the annealing schedule which is also called the

cooling schedule. Eglese reported several classes of annealing schedules [EGLE90]:

1. The original annealing schedules [KIRK83]. The initial temperature is set
high enough to allow most uphill moves. A proportional temperature function
(i,e. T(t+1) = aT'(t)) is implemented and the decrements becomes smaller
and smaller as ¢ increases so that an important part of the search is performed
at low temperatures. At a given temperature, equilibrium is reached and
the algorithm moves to a lower temperature when a sufficient number of
transitions have been accepted, subject to a constant upper bound. This
original annealing schedule can be modified in several ways: for instance, the
number of iterations performed at each temperature might be kept constant,

or be proportional to the size of the problem in hand, and so on.

2. Hajek [HAJES88] proposed an important theoretical result, stating that, in
order to reach an optimal solution, there was no requirement to attain equi-
librium at a succession of reducing temperatures. Rather, the main condition
was for the cooling to be carried out sufficiently slowly. This result meant
that there is a balance between a large reduction in temperature and a small
number of iterations at a fixed temperature. It also generated a spectrum of

alternatives for an annealing schedule, with the two extremes being:

e The annealing schedule proposed by Lundy and Mees [LUND86] where
only one iteration is performed at each temperature and the following

temperature function is used:

T(t+1) = T(¢)/(1 + BT(¢))

3. Novel Approaches. 69

where B is a constant. This function provides a slower temperature
reduction than the proportional function used by Kirkpatrick et al.
[KIRK83].

e The annealing schedule proposed by Connolly [CONN88| where the tem-
perature is kept constant during the search. This can be viewed as a ran-
dom search which accepts uphill moves with the probability ezp(—CA)
and C is kept constant during the entire search process. Connolly used
this method for the solution of quadratic assignment problems ' (QAP).
This work achieved results which outperformed the results achieved by
the annealing schedule proposed by Kirkpatrick et al. [KIRK83|. The
author also claimed that, for this class of problems, a sequential gener-

ation of neighbours was superior to a random generation.

3.3.4 Comparative studies.

This subsection reports the results of several papers which compared the perfor-
mances of SA with the performance of other search procedures on different classes
of combinatorial problems. For each paper, this study (1) presents the class of
problems being examined and (2) examines and compares the results achieved by

the SA algorithm and its competitors.

Golden and Skiscim used SA to solve routing and location problems, in particular

travelling salesman problems (TSPs) and p-median location problems'? [GOLD86].

A set of TSPs of varying sizes (between 25 and 318 cities) were used to compare

the results achieved by SA'® with those of:

11The quadratic assignment problem can be defined as the assignment of inter-communicating
objects to locations such that the total cost of communicating is minimise.

12The p-median problem is to locate p facilities at various nodes of a network in such a way
that the sum of the distances from each node in the network to its nearest facility is minimised.

13In these tests, the SA algorithm implemented used a 2-opt procedure as its main operator.

3. Novel Approaches. 70

1. A specialised heuristic for the TSP; the CCAO procedure. The authors de-
scribed the CCAO heuristic as a "hybrid procedure that use the convez hull
of points as the starting sub-tour and insert nodes using a combination of
the greatest angle method and the cheapest insertion criteria.” Also, a branch

exchange heuristic was used as a post-optimisation procedure.

2. The classic 2-opt procedure of Lin and Kernighan [LIN73].

SA was consistently outperformed by the CCAQO procedure, both in terms of quality
and running time, and could only provide better results than the 2-opt procedure

on a single problem.

For the p-median problems, SA was compared with a local search procedure, specif-
ically designed for this class of problems. In general, this procedure required con-
siderably less computational effort than SA and provided results of comparable

quality.

Golden and Skiscim also studied the relationship between problem size and running
time and concluded that, in practice, SA required a computational effort which

grows faster than cubically.

Johnson et al. used SA for the solution of graph partitioning problems and com-
pared its performance with standard local search algorithms [JOHN89b|. The graph
partitioning problem is the problem of partitioning the vertices of a graph into two
equal size sets in order to minimise the number of edges with end points in both
sets. The authors used two classes of graphs for their comparison: (1) random and

(2) geometric graphs.

For random graphs, SA outperformed its competitors both in terms of quality
and running time, particularly, when the density and/or the size of the graph
increased. However, for geometric graphs, the situation was reversed and local

search procedures performed better than SA. By way of summary, the authors

3. Novel Approaches. 71

offered a few general observations from their extensive series of tests and it appeared

that:

e SA required long running times,
e the best way to add time was to add it uniformly at each temperature,
e there was no gain spending much time at high temperatures,

e the temperature function provided by Kirkpatrick et al. [KIRK83] was as

good as other techniques, e.g. logarithmic cooling, linear cooling,

e there may be an advantage in starting with a good solution rather than a

randomly generated one,

e replacing ezp(—A/T) by an approximation or a look-up table could provide an

important speed-up without degrading the quality of the solutions achieved.

Finally, Johnson et al. also examined the performances of SA for the solution of
graph colouring and number partitioning problems [JOHNO91]. Given a graph and
n colours, the graph colouring problem is to assign a colour to each node of the
graph such that no pair of nodes connected by a link have the same colour. In
the sequence partitioning problem a sequence of real numbers a4, a1, ..., a, in the

interval [0, 1] must be partitioned into two sets Al and A2 such that:

d, -)

a; €A1 a;€EA2

is minimised.
For graph colouring problems, three implementations of SA, with different internal
representations, were tested and in general, achieved good final solutions at the ex-

pense of long calculation times. The authors viewed number partitioning problems

as a class of deceptive problems for local search heuristic, and hence, SA. The tests

3. Novel Approaches. 72

confirmed their view and SA was outperformed by its competitors both in terms of

solution quality and running time.

3.4 Tabu Search.

3.4.1 Introduction.

Tabu Search !* (TS) is a neighbourhood search technique which was first developed
by Glover [GLOV86] [GLOV88] [GLOV89b]. Like SA, TS can escape from a local
optimum by accepting uphill moves but in contrast with SA (and GA for that
matter), most implementations of TS are wholly deterministic; the major exception
being the probabilistic Tabu Search proposed by Faigle and Kern [FAIG92] which
selects moves based on probabilities. The term tabu refers to the fact that the
algorithm prevents the occurrence of some moves during the search; these moves

are tabu. The objectives of TS can be stated as follows:

e To avoid being trapped in a local optimum.

e To avoid cycling, i.e. avoid wasting computational effort by re-visiting points

in the search space.

e To maintain a correct balance between intensification and diversification, i.e.
balancing between focusing the search effort in a specific (promising) area of

the search space and encouraging the exploration of new regions.

In order to achieve these aims, the algorithm simulates a number of memory mod-

ules with different time spans (short-, intermediate- and long-term). These modules

14This technique was originally developed in North America. This explains why it is called tabu
search instead of taboo search.

3. Novel Approaches.

Create initial solution

;

Current solution

;

New current
solution

Either transfer to
medium— or long—
term modules or
terminate

£

Best solution
found so far.

restrictions

- Choose the best possible move .
(subject to tabu restrictions and
aspiration criteria)
New current solution
Is stopping criteria
satisfied? New tabu
restrictions
Yes, No,
stop continue
Update tabu —

Figure 3.10: Tabu search - Short-term memory module.

73

constrain the search in different ways, and their interactions provide the means for

answering the above objectives.

The remainder of this section consists of 4 subsections. In Subsection 3.4.2, the

central part of TS, i.e. the short-term memory module, is described step by step.

Subsection 3.4.3 examines the roles played by the different driving forces of TS

while Subsection 3.4.4 reviews a number of applications.

3.4.2 TS: a brief description.

3. Novel Approaches. T4

TS can be implemented in many ways and this paragraph describes the central
part of most implementations (see Figure 3.10); this module corresponds to the
short-term memory of TS. Given an initial solution S, the algorithm explores the
entire neighbourhood N(S) of S and consider all possible moves in both uphill and
downhill direction. All moves are considered except for a certain number of tabu

15 are also considered). The

moves (tabu moves which meet the aspiration criteria
algorithm then continues its search by moving to S’ (and S’ becomes S); S’ being
the solution with the highest evaluation in the neighbourhood even if it implies

an uphill move. With this mechanism ', TS avoids being trapped; it does not

terminates when it reaches a local optimum.

This cycle "exploration, selection” is repeated until a certain termination criterion is
satisfied. At this point and depending on the implementation, either the algorithm
terminates or the solution is passed on to the medium- and long-term memory

modules.

3.4.3 The driving forces.

Tabu Search is composed of three modules:

e a short-termm memory module which, at each iteration, seeks to make the best
possible move. This module is constrained by the tabu restrictions and the
aspiration criteria (this module was described in some detail in the previous

section).

e a medium-term memory module which intensifies the search.

15Basically, a move is admissible either if it is not tabu or if its tabu status can be overridden
by the aspiration criteria.

16With this mechanism, at the end of the search, the current solution S might not be the best
solution encountered during the search. In order to overcome this problem, TS keeps a record of
its best solution.

3. Novel Approaches. 5

¢ a long-term memory module which diversifies the search.

Each driving force, namely the tabu restrictions, the aspiration criteria, the medium-

term memory and the long-term memory modules, are now considered in turn:

Tabu restrictions.

In order to avoid being trapped in a local optimum, TS allows non-improving moves.
However, this means that the algorithm could cycle around the same solutions 7
unnecessarily. The aim of the tabu restrictions is to prevent this cycling behaviour.
The tabu restrictions can be implemented as follows: each time a move is made, its
”inverse '®” is added to a FIFO (First In - First Out) list called the tabu list. This
list has a maximum length of T' (called the tabu tenure). This limit means that a

move only remains tabu for a limited amount of time °.

In order to avoid cycling, the ideal situation would be to record each solution al-
ready visited during the past search and to forbid the algorithm to re-visit these
points. Unfortunately, this approach is not acceptable for large-scale applications.
For such applications, the storage of all previous solutions would require a pro-
hibitive amount of memory and the cost of comparing the current solution against
(potentially) all previous solutions would also be prohibitive. This explains why

TS only records attributes of a limited number of past solutions.

It should be noted that an algorithm may have several tabu lists, with each list
dealing with a specific set of attributes. In this case, Glover recommends that each

tabu tenure (i.e. lengths of the tabu lists) should be different. His point is that,

7For instance, the following situation may arise, the algorithm takes a non-improving move
to escape from a local optimum, only to return to that point in the very next move because the
algorithm is designed so that it always choose the best possible move.

18Tabu restrictions are also often used to prevent repetitions as well as reversals.

19In many applications, T is set to 7. In this case, once a move is added to the tabu list, it
remains tabu for 7 iterations.

3. Novel Approaches. 76

some attributes might contribute more strongly to a tabu restriction than others
and, hence they should be given a briefer tabu tenure in order to avoid making the

restrictions too severe [GLOV89a).

This "attribute approach” is not without problems. An attribute is not specific
to one single solution. Therefore, once an attribute is pushed into the tabu list,
it prevents the algorithm from visiting a number of solutions rather than masking
one single point. Some of these solutions have never been visited before and are
therefore perfectly valid; the algorithm should be able to visit these points. In this
sense, it can be said that the tabu restrictions over-constrain the search. These
non-desirable effects of the tabu restrictions are counter-balanced by the aspiration

criteria.

The aspiration criteria.

The aspiration criteria is used to override the tabu restrictions. As these restric-
tions over-constrain the search, it is indeed necessary for the algorithm to have a
mechanism which, on specific occasions, relaxes these constraints and allows a tabu
move to take place. For instance, an algorithm may decide that if a tabu move
results in a solution better than any solution visited so far, the tabu restrictions
should be relaxed and the tabu move should be accepted [DEWES89]. In [LAGU91],
the authors have observed that, in a run of 1000 iterations, an average of 7 tabu

moves are executed as a result of meeting the aspiration criteria.

The medium-term memory module.

This module is used within TS ”to achieve regional intensification” [GLOV89a]. In
other words, this module tries to detect features such as values received by partic-
ular variables which are common to above-average solutions. In order to achieve

this, the best solutions found by the short-term memory module are recorded and

3. Novel Approaches. 7

compared. For instance, in a traveling salesman problem, the algorithm might then
notice that some edges are often part of good solutions. Once this learning stage
is completed, the algorithm uses this new knowledge to focus the search and tries
to generate solutions that exhibit these features. This can be achieved by restrict-

ing the set of possible moves during the period of regional search intensification

[GLOV89al.

The long-term memory module.

This module is used within TS ”to achieve global diversification” [GLOV89a]. While
the previous module tries to intensify the search in some promising regions of the
search space, this module tries to direct the search towards regions which have not
been explored yet; this technique gives a global view of the search space to the

algorithm.

In this sense, TS is similar to GAs. Indeed, with their pools of solutions, GAs also
have this global view. However, while GAs give a random sampling of the search
space, TS (more precisely the long-term memory) tries to generate solutions which
are definitely different from the past solutions. Glover describes the objective of

this long-term memory as follows:

"The objective is to create evaluation criteria that can be used by
a heuristic search process which is specifically designed to produce a
new starting point, thus generating such a point by purposeful instead
of random means. These evaluation criteria penalize the features that
long-term memory finds to be prevalent in previous executions of the

search process.” [GLOV89a].

3. Novel Approaches. 78

3.4.4 Applications of TS.

Compared with GA and SA, introduced in 1975 and 1983 respectively, TS is still
in its infancy and there are few applications of TS available. The same can be said
for detailed or comparative studies of TS. Therefore, this subsection only reviews

a limited number of applications.

In [MALES89], the authors performed two sets of experiments. In the first one,
SA and TS are compared over a number of travelling salesman problems (up to
100 cities) and TS consistently outperforms SA. In the second set of experiments,
the authors implemented parallel versions of TS and SA; in both cases, the overall
system consists of a number of agents and each agent is solving the entire problem.
In parallel TS, each agent performs a tabu search with different parameters, i.e.
different attributes and aspiration criteria. Periodically, the agents are stopped and
then the best solution is communicated to all the agents and the agents re-start from
this new initial solution. In parallel SA, all the agents have a different annealing
schedule. The main observation in this set of experiments is that both parallel
TS and SA achieve a super-linear speed-up when compared with the original SA
and TS. Since then, a similar phenomenon was reported in [CLEA91] where it is
claimed that this super-linear speed-up was due to the fact that the different agents
use the extra information (gained from cooperation with the other agents) to guide

and focus the search in the most promising regions of the search space.

Perry also implemented a parallel TS for the solution of a time-constrained schedul-
ing problem ?° [PERR90]. The problem is the allocation of surface-to-air-missiles
to counter a number of threats. TS was used mainly because it is an iterative
approach and hence, a solution can be provided (if needed) at any time. An initial

solution is provided very rapidly, then, TS is used to refine this original solution.

20In this case, the main point of using a parallel algorithm is to increase the number of feasible
schedules that can be generated in a given period of time.

3. Novel Approaches. 79

Unfortunately, the authors provides few details concerning its application.

In [ADEN92|, the authors compared the performance of TS against the perfor-
mances of some greedy heuristics over 480 flow shop problems of different sizes. TS
dominates its opponents in most cases. In [LAGU91], TS is used to solve a single
machine scheduling problem. This problem is a sequencing problem and the objec-
tive is to minimise the sum of the set-up costs and delay penalties of the schedule.
In this paper, the authors compare two moves operator for TS: swap and insert.
The different algorithms are compared over some (relatively) small problems: 20
jobs, 35 jobs problems where the optimal solution can be found in less than 30
seconds. This study shows that insert is better than swap. Finally, a hybrid TS al-
lowing both swap and insert moves was implemented. A second set of experiments
showed that this hybrid version performed better than any one of the two original

algorithms.

3.5 Brief comparison of GA, SA and TS.

GA, SA and TS originate from three different metaphors. GA replicates the princi-
ples of the theory of Evolution, i.e. selection and inheritance. SA is drawn from an
analogy between thermodynamics and combinatorial problems and TS simulates

three different types of memory (short-, medium-, and long-term).

Table 3.4 presents the key-features and the driving forces of these three techniques.
First, they all are iterative and do not construct their final solution piece by piece.
Rather, they start their search with an initial solution (or an initial population for
GA) and gradually, iteration after iteration, improve the quality of that solution.

Both GA and SA are stochastic and TS is, in most implementations, deterministic.

SA is a neighbourhood search technique; it works with only one solution and at

3. Novel Approaches.

80

crossover, mutation,
selection function.

cooling rate,
initial temperature.

GA SA TS

Type global neighbourhood neighbourhood (and

possibly global)

stochastic stochastic deterministic
iterative iterative iterative

Solution- pool one one

candidate(s)

Driving forces | initial population, equilibrium, tabu restrictions,

aspiration criteria,
medium-term memory,

long-term memory.

Table 3.4: GA, SA, and TS: A comparison.

each iteration, this solution is only slightly altered. On the other hand, GA works
with a pool of solutions and what happens to a particular chromosome is of little
importance. This global view of the search space gives GA the opportunity to
detect similarities among above-average solutions and then, GA can favour the

propagation of these similarities during the search process.

When comparing SA and GA, it could be said that GA uses its population to
leap from solution to solution in the search space whereas SA only goes from one
solution to its neighbour. Our results in Chapter 6 show that these two algorithms

have totally different computational behaviour.

Primarily, TS is a neighbourhood search technique; like SA, it uses a move operator
to jump from neighbour to neighbour. However, the long-term memory module 2
provides TS with a global view of the search space. In contrast to GA, this global
view 1s not provided by a random sampling of the search space; rather TS tries to
generate (using a deterministic heuristic) new starting points which are radically

different from past ones.

In conclusion, GA, SA, and TS are three Al search techniques which can be used

210bserve that this module is absent from most TS implementations.

3. Novel Approaches. 81

to solve large combinatorial problems. They use their intelligence to explore large

search spaces and find optimal or, more realistically, near-optimal solutions.

Chapter 4

Preliminary Studies.

This chapter describes two preliminary studies. First, a GA using an indirect rep-
resentation is used to solve a simple scheduling problem. Then, a similar indirect
GA is applied to a particular instance of the VRP. These two studies highlight the
limitations of indirect approaches and advocate the adoption of a direct represen-

tation.

4.1 A simple prototype.

This prototype was used initially as an introduction to GAs. The objective of the

GA was to find a schedule minimising the total tardiness * of a job set.

operations | A B C D E F G H 1 J
duration 10 10 10 10 40 20 10 40 25 25
domain 20-50 | 20-40 | 30-40 | 20-99 | 50-200 | 80-200 | 100-200 | 0-200 | 0-150 | 0-150

Table 4.1: Description of a job set.

!Tardiness is the amount of time between the moment when a task should have been completed
and the moment when the task is actually completed.

82

4. Preliminary Studies. 83

A =

. =1

c =
—

TIME

Figure 4.1: Current domains and durations of the operations.

Table 4.1 details the operations which make up the job set. The domain of an
operation represents the set of possible values for the start-time of the operation,
i.e. the time-window when the operation can be started. The different operations
form a job set which must be performed on a single resource and this resource can

only handle one operation at a time.

Figure 4.1 displays a Gantt chart which gives a graphical representation of this
problem. The domains of the different operations are represented by a large hori-
zontal white box. Within this large white box, a smaller box represents the duration

of the operation.

The GA uses a steady-state model (described in section 3.2.2) and the representa-

tion employed for the chromosome is as follows:

01,02,....,0N

This is a simple order-based representation; o; refers to the ith operation to be

4. Preliminary Studies. 84

instantiated. Each chromosome of the initial population is created randomly and

represents one possible ordering of the job set.

A fr—
B _

p—

TIME

Figure 4.2: One optimal solution found by the genetic algorithm.

A schedule-builder uses the chromosome to generate a schedule; the order imposed
by the chromosome is strictly followed and the schedule-builder assigns the earliest
possible start-time to each operation. Each start-time has to be compatible with the
previous decisions. If a start time cannot be found in the domain of the operation,
the schedule-builder relaxes the problem and allocates a late start-time which is set

to be as early as possible.

The different chromosomes are ranked ? with respect to the total tardiness of their
schedules and the probability of a chromosome being selected for reproduction is
directly proportional to its rank in the population. The search is pursued until
either an optimal solution, i.e. a solution with no tardiness, has been found or the

maximum number of iterations has been reached.

2The best chromosome is the one which has the smallest tardiness.

4. Preliminary Studies. 85

The following table presents one optimal solution found by the GA with a popula-

tion of 20 chromosomes and 500 iterations:

operations | A | B |C | D | E F |G H 1(1J
start-time | 50 | 40 | 30 | 60 | 175 | 80 | 165 | 100 | 0 | 140

Table 4.2: Optimal solution found by the genetic algorithm.

This optimal solution is also displayed in Figure 4.2; the solid black bars show
the scheduling decisions, the length of the bar corresponds to the duration of the

operation and its position represents the start-time of the operation.

During this project, an object-oriented approach has been used with Sun Common
Lisp 4.0, CLOS (Common Lisp Object System), SPE (Symbolic Programming En-
vironment 1.2) and Lispview 1.0 running on a SPARCstation IPC under Unix.

Figures 4.3 and 4.4 show object representations of both a GA and a chromosome.

SPE: Listener<2:

Help Edit Text Search Show Stop Package File Module

#<Genetic-Agent FHZTFSEVE:
iz an instance of the class GEMETIC-AGENT
The following =lots have allocation : INSTAMCE

MAME "agentl"

TYPE GEMETIC_ALGORITHH

OBJECTIVE MIL

STATUS ACTIVE

FITTEST #F<Chromosaome FxZ7FEZY4E>

SIZE 28

«CHROMO* {#<Chromosome #FXZAASAEE: #<Chromosome FRZ81CCEE> #<Chrom',

osame FxRZAY9F9E> #F<Chromaosome FRZ5ZAZ8E> #<Chromozome FxZAY9ABSE:> #F<Chromosaome #Fxb
ZHIABECE #<Chromozome #FxZB82FYCE:> #<Chromosome #FX281879E: #<Chromosome #FRZA99EFE:,
#F<Chromosaome FxZAHASQ56> ...}

INIT_POPULATIOM_FCT INIT

SCHEDULIMG_FCT SCHEDULIMG
EWALUARTION_FCT EWALUATION
SELECTION_FCT SELECTION
CROSSOVER_FCT CROSSOVER
MUTATIOM_FCT MIL
IMYERSION_FCT MIL
OATA_COLLECTIOM_FCT MIL
(8

Figure 4.3: Object representation of a genetic algorithm.

4. Preliminary Studies. 86

Each instance of the class genetic-agent (see Figure 4.3) has the following slots:

name: unique name given by the user, when the GA is created, for manipulation

purposes.
type: type of the object, i.e. genetic algorithm.

objective: documentation string describing the objective of the GA, e.g. minimise

total tardiness.

status: status of the process associated with the object (i.e. init, active, inactive

or terminated).

fittest: fittest element of the population.

size: size of the population, i.e. number of chromosomes in the population.
chromo: list of chromosomes present in the population.
init_population_fct: function called by the process to create the population.

scheduling_fct: function called by the process to translate, i.e. map, order-based

chromosomes into schedules.
evaluation_fct: function called by the process to evaluate the schedules.

selection_fct: function called by the process to select two parents from the popu-

lation.

crossover_fct: function called by the process to perform the crossover operation.
mutation_fct: function called by the process to perform the mutation operation.
inversion_fct: function called by the process to perform the inversion operation.

data_collection _fct: function called by the process to collect data during the

search.

4. Preliminary Studies. 87

PE: Listener«2:

Help Edit Text Search Show Stop Package File Module

;333 3PE: Lisp Listener
» (describe (first (schromos (first sgas)))])

#F<Chromozome #FxZ47219E>
ig ahn instance of the class CHROMOSOME
The following slots have allocation @ INSTHMCE

G-STRING CENAM oY g 3BY ¢Mg" 165Y ("j" LFSY {"h" 4E) ("F" 8EY ("a" 5@
:I I:"E" 2@@} l["d" BB:I |:|||,.||| 18@))

OBJECTIVE MIL

TARDIMESS G

FITHNESS 5]

ME_JOBS_LATE 2

HISTORY (Magentl'y

CHILOREM 5]

BIRTH g8

i |

Figure 4.4: Object representation of a chromosome.

Each instance of the class chromosome (see Figure 4.4) has the following slots:

g-string: An order-based representation of the problem. Each couple of this string

represents an operation and its allocated start-time.
tardiness: total tardiness of the jobs set.
fitness: fitness of the chromosome.

nb_jobs_late: number of operations that the scheduling function has not scheduled

properly, i.e. number of operations with a late start time.
children: number of children of the chromosome.

birth: date of birth of the chromosome, i.e. number of cycles between the creation

of the population (i.e. date 0) and the birth of the chromosome.

4. Preliminary Studies. 88

4.2 A particular VRP.

In this project, a GA is used to find near optimal solutions to one particular instance

of the VRP. This VRP has the following parameters:

1. a workforce of 118 engineers operating from 11 bases,
2. a set of 250 jobs geographically distributed,

3. the objective of performing all the jobs while minimising the total distance

travelled. The following cost function is used:

Cost = Travel + Z (Duration; + 60)
1€Conflicts
where the first term represents the total distance travelled by the different
engineers and the second term represents a penalty related to the conflicting
jobs; for each job which has not been assigned to an engineer, the cost is

increased by the duration of the job and a penalty of 60 points.
This initial problem has been further complicated by a number of side-constraints:

e Technological constraints (I): each job can only be performed by a sub-set
of the workforce. On average, an engineer is only qualified to perform 57
jobs out of the 250 possible jobs. A significant number of jobs can only be

performed by a few engineer. This may create some bottleneck situations.

e Technological constraints (II): the duration of a job depends on the engineer
allocated to perform that job. The difference can be as large as 60%, say

between an expert and an apprentice.

e Time windows (i.e, temporal constraints): a job can only be performed during
a certain period of time. There are 3 classes of time-windows: all day, morning

and afternoon.

4. Preliminary Studies. 89

Figure 4.5: A particular VRP.

Figure 4.5 gives a graphical representation of this problem. The squares represent
the 11 bases, where the 118 engineers start and finish their tours, and the circles
represents the 250 jobs which have to be performed. All these elements are located
within an area of 10 miles by 10 miles. Figure 3.1 in Section 3.1 displays a partial

solution to this problem.

The GA works with an indirect representation of the problem; hence, it is used in
association with a schedule-builder. As seen in Section 3.2.5 and in the previous
prototype, the schedule-builder uses the chromosome as a decision sequence; it
follows the order of the chromosome and makes a decision for every element of the

chromosome. In fact, two indirect representations have been investigated in this

4. Preliminary Studies. 90

work:

1. The GA has a job-centred perspective. Each element of a chromosome rep-
resents a different job. The schedule-builder follows the ordered list and
attempts to attach each job to an engineer. This strategy is similar to the

operation-centred perspective adopted by ISIS [FOX84].

2. The GA has an engineer-centred perspective: each element of a chromosome
represents a different engineer. The schedule-builder attempts to build a tour

for each engineer successively. This strategy is similar to the resource-centred

perspective adopted by OPIS [SMIT90].

The schedule-builder works as follows. First, it assumes that all the jobs are
conflicting (as soon as a job is allocated to an engineer, it is removed from
the set of conflicting jobs). The algorithm attempts to attach the current
engineer to all the jobs he/she can do and which are still in the conflict list,
i.e. jobs which have not been allocated yet. Then, the algorithm moves to

the next engineer in the chromosome.

The two strategies are illustrated in Figure 4.6. Two GAs have been implemented:
one with a job-centred perspective and one with an engineer-centred perspective.

Both GAs have the following set-up:

e population: 100 chromosomes.
e crossover: The PMX crossover operator (described in Section 3.2.5).

e mutation: The mutation operator works with a single chromosome; two ele-
ments of the chromosome swap position. This operation is performed after

the crossover operation, on 4% of the children.

e inversion: The inversion operator also works with a single chromosome; it

inverts the order of the elements between two randomly-chosen points of the

4. Preliminary Studies. 91

JOB-CENTRED PERSPECTIVE:

Engineers
Schedule
Order—based chromosome of jobs .
Intelligent . .
- engineers with tours
J31J32 33 ... J27 J108 J12 J1 — Schedule- =
(E1-J2 J4 J7) (E2-J6 J67 J89) ..
Builder
- conflict list
J78 J68 ...
ENGINEER-CENTRED PERSPECTIVE: Jobs
Schedule
Order-based chromosome of engineers Intelligent . .
- engineers with tours
RN Schedule- —_—
B1E3 B45... E24 E78 B189 (E1-J2 34 J7) (E2-6 J67 J89) ..
Builder
- conflict list
J78 J68 ...

Figure 4.6: Job-centred and engineer-centred perspectives.

chromosome. This operation is performed after the crossover operation, on

4% of the children.

e Termination criteria: The GA is stopped after 100 iterations which is around

20 minutes on a SPARCstation IPC with LISP.

e Model: The two GAs use a steady-state model and the chromosomes are

selected according to their rank in the population.
e Due to the stochastic nature of GAs, each algorithm is run 20 times.
Experiments were performed (1) to examine the quality of the schedules produced

by the two different schedule-builders, i.e. job- and engineer-centred, and (2) to

examine the performances of the two GAs.

4. Preliminary Studies. 92

Perspective | u min max |o
JOB 24387 | 22770 | 25954 | 523
ENG 23168 | 22097 | 25191 | 419

Table 4.3: Performances of the two scheduling functions.

For each schedule-builder, a set of experiments has been carried out to check the
quality of the schedules produced. In each case, 1000 random strings have been
generated and processed through the schedule-builder. In the case of the job-
centred function, each string was a random permutation of the list of jobs. For
the engineer-centred function, each string was a random permutation of the list of

engineers.

Table 4.3 presents the performances of the two schedule-builders. The column g
gives the average cost achieved by the function (out of 1000 tries), min gives the

minimum, max gives the maximum, and o gives the standard deviation.

On average, the engineer-centred function produces better solutions than the job-
centred function. The main reason is that the engineer-centred function can handle
bottleneck engineers in a more efficient manner and, hence, can schedule more jobs
than the job-centred function. Observe that the two standard deviations are rela-
tively small compared to the average values. This suggest that the schedules are
quite similar to each other. This might limit the performances of both GAs, which
might not have enough information (more precisely, enough variety in their respec-
tive pool of solutions) to guide their search through the solution space in an efficient

manner.

The two curves, displayed in Figure 4.7, show how the GAs performs on this partic-
ular problem. As expected, the engineer-centred GA dominates its opponent from
start to finish. The two curves are concave and as the search goes on, the average

additional improvement found per iteration diminishes. At the end of the search

4. Preliminary Studies. 93

\ | | | |

7 L S "ENG' — -
- "JOB" -¢--

D2TO0 | -

Cost
&

20350 P N

2000 [--+vevbo e s

21650 | | |
0 20 40 60 80 100
Number of iterations

Figure 4.7: Evolution of performances with time.

(in this case, after 100 iterations), the improvements are marginal. This suggests
that both GAs have converged towards a solution. The main reason for such an

early convergence is the relatively small size of the populations.

4.3 Conclusion.

The two studies presented in this chapter were used (originally) as an introduction
to GAs. In order to solve the two problems under study, a traditional and indirect

approach was adopted. The GA, in both cases, was working in association with a

schedule-builder.

In the first study, this association (GA and schedule-builder) was capable of reach-

ing optimal solutions, i.e. solutions with no tardiness. This was facilitated by the

4. Preliminary Studies. 94

fact that the algorithm only had to explore a relatively small search space. In the
second study, both GAs (with job-centred and with engineer-centred perspectives)

were capable of improving on their initial solutions.

However, the indirect approach has some important drawbacks. First, this type of
representation may not allow a total exploration of the search space, i.e. it may
compromise completeness. This is because the GA works with an indirect view of
the problem, e.g. list of jobs, and it may be the case that the optimal solution, or
more generally, good quality solutions, cannot be produced by the schedule-builder

from any lList of jobs.

Moreover, despite the fact that indirect GAs have been successfully applied to a
wide range of sequencing problems such as the traveling salesman problem, there is
no guarantee that this approach will be equally successful when applied to problems

that are not pure sequencing problems.

The last point can be explained as follows. Indirect GAs tend to preserve the
relative order of the elements in the chromosome during a crossover operation; the
main assumption is that the solution-builder will generate good quality solutions,
if provided with well-ordered chromosomes. This indirect strategy is likely to be
disruptive when applied to problems which are not (100%) sequencing problems.
Clearly, indirect GAs might not guide their search properly. In the worst case, a
schedule-builder might generate the same solution for any ordered list. This will
be the case if the elements within the list are identical. For example, assume an
indirect GA working with an engineer-based perspective where all the engineers
are identical and are therefore inter-changeable. Any possible permutation of this
ordered list will generate the same schedule (or more exactly, schedules with the

same cost).

Finally, the schedule-builder generates new solutions entirely from scratch at each

crossover. This new solution is then entirely evaluated from scratch. These two

4. Preliminary Studies. 95

operations are extremely expensive in terms of computational effort.

Again, the above limitations advocate the implementations of a direct approach
similar to the ones reported previously by Bagchi et al. [BAGC91] and Bruns
[BRUN93].

More generally, these two studies also suffer from a number of important limitations.
First, the performances of the algorithms are not compared against the performance
of random search; neither are they compared against the performances of other
search techniques. Hence, it is not possible to know if the algorithm guides its
search in an efficient manner or if the algorithm is just another form of random
search; neither is it possible to know how the algorithm compares relatively to other

search techniques.

Another important limitation of these two projects is the fact that only one problem
is studied. Here, there is the danger of designing an algorithm that is very good at

solving a particular problem but nothing else.

In conclusion, an algorithm should be tested against a wide range of problems, each
with different characteristics. Its performance should also be compared against
those of other techniques. It will then become possible to define the most suitable
techniques and parameters for each class of problems. It will also be possible to
see how robust a particular technique is, to determine how well it can handle dif-
ferent classes of problems. Finally, such an extensive study should provide enough
information about the different techniques and about the problems to anticipate

the behaviour of the algorithms and the quality of their answers.

The next two chapters report three sets of experiments which follow the above
recommendations. In this study, direct GAs are applied to a wide range of ve-
hicle routing problems. These problems have a substantial range of variation in
each of three dimensions, i.e. work load, time constraints and specialisation con-

straints. Moreover, the performances of these direct GAs are compared against the

4. Preliminary Studies.

performances of other search techniques.

96

Chapter 5

Experimental Set-up.

This chapter is divided into four sections. In Section 5.1, the set of vehicle routing
problems used for the experiments is described. Then, Section 5.2 presents the
common model - or data structure - that has been used to represent the solutions
of the different problems. Section 5.3 defines the objective function and Section
5.4 introduces a new class of GAs - especially designed for the solution of VRPs -

which overcomes many limitations of traditional GA-based systems.

5.1 The set of problems.

Thirty six problems with diverse characteristics have been generated. In order to
perform a study as wide ranging as possible, extremes classes of problems have
been considered. In particular, this work has examined how three parameters:
workload, time constraints (also called time windows) and specialisation constraints
(also called technological constraints) can affect the performance of different search

techniques.

97

5. Experimental Set-up. 98

A problem can be under-resourced, critically resourced or over-resourced, it can
have loose or tight time constraints and loose or tight specialisation constraints.
Thus, there are twelve different parameter setting and three problems are created
at each parameter setting, hence, the thirty six problems. These twelve parameter
settings and the associated thirty six problems can be positioned on different points
of a cube (see Figure 5.1). On this cube, each point represents three problems and

one parameter setting.

under—resourced,
over—constrained

under—resourc_ed, 3
under—constrained

I ncreasi ng
| oad

L -
- over-resourced,
over—constrained
I ncreasing
speci al i sation
over-resourced,
_—

under—constrained -
I ncreasing tenporal
constraints

Figure 5.1: The 36 problems.

The 6 points on the left face of the cube represent problems with loose time win-
dows. As we move down an edge (any edge) we move from under-resourced prob-
lems to over-resourced problems. Moving left to right we increase the tightness of
the temporal constraints, and all problems on the right hand face have the tight-
est temporal constraints. Moving into the page we increase the tightness of the

specialisation constraints.

5. Experimental Set-up. 99

A different data set !, i.e. engineers and jobs, is generated randomly for each

problem, and this data set respects the following rules:

All the jobs are located within a 5 kilometres radius of a central location.

Hence, all the 36 problems are urban.
Several jobs can shared the same location.

All problems have 200 jobs, the durations of these jobs are drawn randomly
from the distribution {15,30,45,60,75,90,105,120 minutes} and each duration
is equally likely.

10% of the jobs are compulsory. If one of these high priority jobs is not
allocated, then the search algorithm must create some space in the schedule,

for example, by removing one of the low priority jobs.

The level of time windows (7') is either loose (7" = 0) or tight (7' = 2). If
T =0, all jobs can be done at any time during the working hours. If 7' = 2,
45% of the jobs can only be done in the morning, 45% can only be done in

the afternoon, and 10% can be done at any time - morning and afternoon.

Under-resourced problems have 30 engineers, critically resourced have 40 and

over-resourced have 50.

The level of specialisation constraints (.5) is either loose (5=0) or tight (S =
3). If S =0, all jobs can be done by any engineer, and if S = 3, 80% of the
jobs can be done by 20% of the engineers, and 20% of the jobs can be done
by 80% of the engineers.

There is only one base station. All the engineers start their tours from this

base station after 9am and come back to this base station for 5pm.

1The problem generator which was used to create these problems is presented in more detail
in Annexe I.

5. Experimental Set-up. 100

Engineers travel at 12mph. Manhattan distances are assumed and engineers travel
up and down, left and right, but not diagonally. Working hours are 9am to 5pm
(or 540 to 1020 measured in minutes from midnight). Morning is from 9am to noon
(or 540 to 720) and afternoon is from noon to 5pm (or 720 to 1020). No overtime

is allowed, engineers must be back at the base station for 5pm.

From now on, the following convention will be used to refer to a problem or to a

set of problems:
problem E-T-S-N

where E indicates the number of engineers, T and S indicate the tightness of the
time windows and of the specialisation constraints, and N is a number used to
distinguish between the three problems generated at each point of the cube. For
instance, the expression ” problems 30-*-2-* refers to the set of problems with 30

engineers and tight specialisation constraints.

5.2 An active constrained-based model.

All the search techniques use a common representation of the VRP. A solution is
represented as a list of engineers, and each engineer has his own ordered list of jobs
(his tour). For an m engineer problem, there is always the n + 1th engineer (the
virtual engineer) that is able to do all work. Therefore, if a job has not yet been
allocated to any of the n engineers it will reside in the tour of the n + 1th engineer.
This tour is frequently referred to as the ”conflict list” or as the set of ”jobs not

done”.

A constraint-based approach ? is taken when representing an engineer’s tour. A

tour is represented as a sequence of jobs, such that it is possible to perform each job

2This mechanism is required so that the search process does not take an over-constrained

5. Experimental Set-up. 101

within its time window, travel between jobs in the given sequence, and return to the
base before the end of the day (i.e. a legal tour using a least commitment strategy).
When a job is inserted into a tour, constraint propagation takes place, updating
(restricting) the time windows of the jobs within that tour. Symmetrically, when
a job is removed from a tour, constraints are retracted, and the time windows may
be relaxed. Therefore, central to the representation of the VRP is a constraint
maintenance system that gives an active representation of tours. This constraint

maintenance system was implemented by Craig Brind.

5.3 The cost function.

The principal objective is to perform all the jobs and a second objective is to
minimise the total distance travelled by the workforce. The following cost function

1s used to attribute a cost for each solution:

cost(s) = C.D(s) + T(s)

where C is a constant, D(s) is the sum of the jobs not done in minutes, and 7'(s) is
the sum of the travels in minutes of the engineers. The travel time for an engineer

3

assumes Manhattan distance ® covered at a given speed (in this case 12mph), and

1s measured in minutes.

In some early tests, a small value had been chosen for C (C = 3). However, in
some instances, the different algorithms were trading work for travel, i.e. algorithms
could get a lower cost by doing less work and, hence, much less travel. This situation

was undesirable. The objective of performing all the jobs is indeed more important

view of the problem (resulting in lost opportunities) or an under-constrained view of the problem
(resulting in infeasible solutions).
3Given two locations < z1,y; > and < 3,y >, the Manhattan distance is |21 — 23|+ |y1 — y2|.

5. Experimental Set-up. 102

than the reduction of travel, and the cost function has to reflect this obligation.

By choosing a large enough value for the coeflicient C' we hope that it is not possible
to trade travel for work done. Put another way, given any two solutions s’ and s,
where cost(s') < cost(s"), D(s') < D(s"). Therefore, we can make an improvement
to s by increasing the amount of work done, i.e. reduce the amount of work not
done, or by reducing the amount of travel. It should be impossible to reduce the
cost of s by reducing the amount of work done in s (increasing the amount of work

not done in s).

All the experiments were run using a coeflicient C' = 600. Hence, the cost of a
solution is 600 times the durations of the jobs not done plus the different travels
and, problems with large cost solutions are typically under-resourced, i.e. work is

left undone.

5.4 Direct GAs.

The GAs presented in this section are designed with the principal objective of
overcoming the many limitations of traditional GA-based systems. This research
follows the initial works of Bagchi et al. and Bruns reviewed in Section 3.2.5. These
GAs work directly * on the solution-candidates, i.e. the schedules are the chromo-
somes. There is no longer any schedule-builder. More precisely, the scheduling
function is performed directly by the crossover operator. Each element (or locus)
of a chromosome represents one engineer, and each one of these loci can be assigned
different tours (or alleles). During the reproduction process, parts of two schedules
are mixed together to produce one new schedule. Direct crossovers can be split up

into two broad categories:

4From now on referred to as the “direct” GAs.

5. Experimental Set-up. 103

e Direct crossovers using a random-based inheritance procedure, where a chro-

mosome inherits random parts of both parents.

e Direct crossovers using a knowledge-based inheritance procedure, where a
chromosome inherits the best parts (with respect to one or several given
parameter(s)) of its parents. A knowledge-based crossover gives more intelli-
gence to the GA; the operator identifies the best parts, i.e. tours, of a schedule

and favours their inheritance during the crossover operation.

Different knowledge-based crossovers can be envisaged, e.g. a crossover may favour
the inheritance of tours with a large number of jobs, tours representing a large
amount of work, or tours with a low percentage of travel. For instance, when
solving under-resourced problems, a GA may attempt to preserve tours with large
amounts of work being done. These tours are likely to be well ”packed” and,
hence, are likely to represent good building blocks for the creation of good-quality

solutions.

However, it is expected that these crossovers may not be as robust as random-
based crossovers. For instance, in the case of over-resourced problems, the previous
crossover, trying to preserve tours with large amounts of work, may not be desirable.
Here, all jobs will be performed as the problem is over-resourced and, hence, the
primary objective will become the reduction of travel. This crossover will misguide
the search. In this case, a random-based crossover ° will be more adaptable or

rather, less deterministic and will reach a better solution.
In this study, a number of direct crossovers have been implemented and tested.

They are now presented in some detail:

o Crossover #1 and #2 use the same overall algorithm. The principal differ-

ence is that Crossover #1 uses a random-based inheritance procedure and

Sentirely driven by random decisions.

5. Experimental Set-up. 104

Crossover #2 uses a knowledge-based inheritance procedure.

o Crossover #3 and #4 attempt to overcome some limitations shown by both
Crossover #1 and #2. They are both based on the same overall algorithm;
Crossover #3 uses a random-based inheritance procedure and Crossover #4

uses a knowledge-based inheritance procedure.

Observe that these crossovers use the tours of two chromosomes, i.e. the parents,

to produce one chromosome, i.e. the chald.

5.4.1 Crossover #1

Initially, two parents have been selected for reproduction and the chzld is empty,

i.e. all the jobs are in the child’s conflict list. This crossover is a three stage process:

1. Inherit from parent; : the child inherits half its tours from parent;. For
example, if the problem is under-resourced and there are 30 engineers, 15
tours are copied from parent; to the child. All the jobs present in these tours

are then removed from the child’s conflict list.

2. Inherit from parent, : for each job still in the child’s conflict list, the
crossover tries to allocate the job to the same engineer as in parent,. For
example, if job Jg is done by engineer E3 in parent,, then the crossover tries
to allocate job Jg to engineer E3 in the chzld. All jobs which are successfully

allocated are removed from the child’s conflict list.

3. Repair: for each job still in the child’s conflict list, the crossover tries to allo-
cate the job to any engineer. Again, all jobs which are successfully allocated

are removed from the child’s conflict list.

5. Experimental Set-up. 105

1 FUNCTION Crossoverl(parentl, parent2)

2 BEGIN

3 child = new-chromosome();

4 child = inherit-half(parentl);

5 FOR job IN conflict-list(child)

6 DO BEGIN

7 decision = nil;

8 eng = who-is-doing(job,parent2);

9 IF eng != CONFLICT-LIST

10 THEN decision = try-to-allocate(job,eng,child);
11 IF decision = true

12 THEN remove-from-conflict-list(job,child);
13 END

14 FOR job IN conflict-list(child)

15 DO BEGIN

16 decision = nil;

17 FOR all engineers While decision = nil

18 DO BEGIN

19 decision = try-to-allocate(job,eng,child);
20 IF decision = true

21 THEN remove-from-conflict-list(job,child);
22 RETURN child;

23 END:;

Figure 5.2: Pseudo-code for Crossover #1.

The pseudo-code for Crossover#1 is given in Figure 5.2 and Figure 5.3 provides a
graphical description of the actions taken during a Crossover#1 operation. In this

example, there are 4 engineers, F; to E4, and 20 jobs to allocate, J; to Jyo.

5. Experimental Set-up.

106

0 . PARENT 1 PARENT 2
- J10 - - - - - -
s J4 J8 - J20 J5 J19 J2 - s)
TEP1 J3 J9 J14 J19 J4 J8 J11 J17 TEP
J2 J5 J13 J16 J12 J7 J20 J13 J1.34
a || || a2 || a7 a || || s]| 9 32317
E2, El E2 E3 E4 El E2 E3 E4
E3
Conflicts list: Conflicts list:
J6, J11, J15, J18 J3, J10, J14, J16, J18
1 W Inherit tours from PARENT 1 2l Inherit unallocated jobs from PARENT 2
CHILD CHILD
- J10 - - - J10 - -
T~ | - J8 - - - J8 J2 - -—
- J9 J14 - - J9 J14 -
- J5 J13 - J4 J5 J13 -
- J7 J12 - J1 J7 J12 J17
E1l E2 E3 E4 El E2 E3 E4
Conflicts list: Conflicts list:
J1, 32,33, J4, 36, J11, J15, J3, J6, J11, J15,
J16, J17, J18, J19, J20. J16, J18, J19, J20.

3 W Repair Child

CHILD
- o= || =
STEP 3 J6 J8 J2 -
> |3 || || || 00
13.36, w || ||as ||
J11, J19 u || || a2 || a7

El E2 E3 E4

Conflicts list:

J15, J16, J18, J20

Figure 5.3: Crossover #1, step by step.

5. Experimental Set-up. 107

In the first stage, the child inherits half its tours from parent;. There are four
engineers so two tours are copied, tours of engineers E; and E3 have been selected
randomly; they are now copied from parent; into the child (step 1). At this point,
twelve jobs are still in the child’s conflict list. For each of these jobs, the crossover
tries to allocate the job to the same engineer as in parent,. In this example, it
has been possible to allocate jobs Ji, Js, Js, and Ji7 to the same engineer as in
parenty (step 2). There are still eight jobs remaining in the child’s conflict list.
The crossover now tries to allocate them to any possible engineer. Jobs Js, Js, J11,

and Jig are inserted during this operation (step 3).

5.4.2 Crossover #2.

This crossover follows the same sequence of steps as Crossover #1, but uses a
knowledge-based inheritance procedure. That is, the chzld still inherits half the
tours of parent;. However, the inheritance is no longer random-based. It is now
knowledge-based and the chzld inherits the best tours of parent;, i.e. the child
inherits the best half of parent;. Again, the definition of best tour might be related
to the number of jobs in a tour, the sum of the durations of the jobs in a tour, or
some measure of profit (whatever that measure may be). The rest of the algorithm,

i.e. steps 2, 3, and 4, is identical to Crossover #1.

Separate tests - done in the early stages of the implementation - showed that the
above crossovers (#1 and #2) are extremely disruptive and a GA equipped with

either one of these crossovers performs only marginally better than random search.

5. Experimental Set-up. 108

5.4.3 Crossover #3.
Crossover #3 follows a three stage process:

1. Inheritance from parent; : the entire chromosome, i.e. tours and conflict
list, is copied from parent; to the child. At this point, the child is a clone of

parent;.
2. Inheritance from parent, :

(a) The crossover now decides which tours will be copied from parent, to
the child. 50% of the tours in parent, must be inherited by the child.
For instance, if the problem has four engineers, the crossover may decide

randomly that the tours of F, and E3 will be copied.

(b) Before the crossover can actually copy these tours from parent, to the
chald, it must work on the child so that future duplications and omissions

of jobs in the child can be avoided:

i. The selected tours (e.g E5 and Ej) are deleted from the child’s sched-
ule and their jobs are pushed into the child’s conflict list.

ii. Jobs allocated to the selected engineers in parent, are identified. All
these jobs are then deleted from the child both in the child’s tours
and in the child’s conflict list.

iii. Once this prerequisite work is done, the selected tours are copied

from parent, to the chald.

3. Repair child: for each job present in the conflict list, the algorithm attempts
to allocate the job to any engineer. As usual, all jobs which are successfully

allocated are removed from the child’s conflict list.

The pseudo-code for Crossover #3 is given in Figure 5.4 and Figure 5.5 provides a

graphical description of the actions taken during a Crossover #3 operation.

5. Experimental Set-up. 109

Figure 5.5 shows how Crossover #3 works. First, the entire schedule is copied from
Parent; to child (step 1). Then, a random decision on which tours are to be copied
from Parent, to child is taken. Here, tours 2 and 3 will be inherited from Parent,
(step 2). At this stage, the algorithm removes all the jobs from the child’s tours 2
and 3 and pushes them into the child’s conflict list. Jobs Js, J7, Js, Jo, J10, J12,
Jis, and Ji4 are moved to the child’s conflict list (step 3). All the jobs allocated to
tours 2 and 3 in Parent, are deleted from the child (both tours and conflict list);
jobs Ja, Js, J7, Js, J11, J1s, J19, and Jyg are deleted (step 4). Child inherits the
selected tours from Parent,; tours 2 and 3 are copied from parent, (step 5). The
final action is to repair the child and attempt to insert unallocated jobs into the

schedule; here, jobs Js, Jg, J10, J12 are inserted.

Crossover #4.

This crossover follows the same sequence of steps as Crossover #3, but, like Crossover
#2, it uses a knowledge-based inheritance procedure and the child inherits the best
half of Parent,. The rest of the algorithm, i.e. steps 2, 3 and 4, is identical to
Crossover #3.

The performance of these direct GAs are examined in the next chapter.

5. Experimental Set-up.

CO ~ O O v W N =

N NDNDNNDNDNDNNNRFE PR, PR PR R P22 2O
O 00~ OO Ok WN P OWOOWNOOULE W R~ O

FUNCTION Crossover3(parentl, parent2)
BEGIN
list-of-tours = tours-selection();
FOR tour IN list-of-tours
DO BEGIN
remove-tour(tour,child);
END
FOR tour IN list-of-tours
DO BEGIN
list-of-jobs = push-jobs(tour,parent2)
END
FOR job IN list-of-jobs
DO BEGIN
delete-job(job,child)
END
FOR tour IN list-of-tours
DO BEGIN
copie-tour(tour,parent2,child)
END
FOR job IN conflict-list(child)
DO BEGIN
decision = nil;
FOR all engineers While decision = nil
DO BEGIN
decision = try-to-allocate(job,eng,child);
IF decision = true
THEN remove-from-conflict-list(job,child);
RETURN child;
END;

Figure 5.4: Pseudo-code for Crossover #3.

110

5. Experimental Set-up.

111

Copy

entire

solution

Remove

E2, E3

Copy
E2, E3

0 M PARENT 1

- J10 | | = -
Ja J8 - J20
J3 J9 Ji4 || J19
J2 J5 J13 J16
J1 J7 J12 Ji7
E1l E2 E3 E4
Conflicts list:
Jeé, J11, J15, J18
1 M COPY PARENT 1
CHILD
- J1I0 || = -
| J8 - J20
J3 J9 Ji4 | | 319
J2 J5 J13 Ji6
Ji J7 J12 J17
E1l E2 E3 E4
Conflicts list:
J6, J11, J15, J18
3 [l REMOVE TOURS
CHILD
— | J4 - - J20
J3 - - J19
J2 - - J16
J1 - - J17
E1l E2 E3 E4

Conflicts list:

~— J5, J6, J7, J8, J9, J10,

J11,J12, J13, J14, J15, J18

5l COPY TOURS FROM PARENT 2

CHILD

N - J19 J2
J4 J8 Ji1

J3 J7 J20
Ji J6 J15

Insert
J5,J9,
- J10, J12

E1l E2 E3
Conflicts list:

J5, J9, J10, J12, J13,
J14,J18

J15, J19, J20

PARENT 2
J5 J19 J2 -
J4 J8 Ji1 Ji7
J12 J7 J20 J13
J1 J6 J15 J9
El E2 E3 E4
Conflicts list:

J3, J10, J14, J16, J18

2 M INHERIT FROM PARENT 2

RANDOM DECISION: Tours 2 and 3
will be inherited from PARENT 2

4 B DELETE DUPLICATIONS

CHILD
J4 — - -
J3 -— -— J16
Jl -— - Ji7
E1l E2 E3 E4
Conflicts list:
J5, J9, J10, J12, J13,
J14, 318
6l REPAIR CHILD
CHILD
J10 J9 - -_—
J5 J19 J2 -_—
J4 J8 J11 J12
J3 J7 J20 J16
J1 J6 J15 Ji7
El E2 E3 E4
Conflicts list:
J13, J14, 18

Delete Jobs
J2, 36, J7, 38, J11,

Figure 5.5: Crossover #3, step by step.

Chapter 6

Experiments and Discussions.

This chapter is divided into three sections; each section reports a separate set of

experiments:

1. In Section 6.1, the direct GAs introduced in Chapter 5 are compared against
an indirect GA, and random search. Two models - steady-state and genera-
tional - are implemented. A study is then performed to determine the effect
of different population sizes on a given direct GA. Finally, this section reports
on the performance of a direct GA associated with a local repair algorithm.
Each technique is given ten minutes of CPU time (on a SPARCstation IPC)

per problem.

2. In Section 6.2, the best direct GA is compared against random search, hill
climbing, simulated annealing and tabu search. Again, each technique is given

ten minutes of CPU time per problem.

3. Section 6.3 repeats the previous comparative study. However, in this case,

each technique is given the equivalent * of four hours of CPU time per problem.

In fact, these CPU intensive experiments were executed on a DEC Alpha 3000/300; each
algorithm was given one hour of CPU time and the DEC Alpha was roughly four time faster than

112

6. Experiments and Discussions. 113

The different algorithms were written in C and runs were performed on two SPARC-

stations IPC and one DEC Alpha 3000/300 under the UNIX operating system.

6.1 Genetic Algorithms.

This section examines GAs in some detail and addresses a number of issues:

1. Which GA is the best among a set of possible models and crossovers. The
behaviour of several GAs are studied over a set of problems and the conditions

under which one GA is better than another are defined.
2. The effect of different population sizes on the performance of direct GAs.

3. A repair algorithm is associated with a direct GA and the behaviour of this
new hybrid algorithm is studied.

During this study, each algorithm has been applied 5 times to each problem and
the start value of each run was chosen randomly, so that an indication of the
average behaviour can be obtained. Comparisons between algorithms are based on
the average values resulting from these trials. CPU time is limited such that each
algorithm is only allowed 10 minutes on each problem. Therefore, to investigate the
performance of an algorithm on a single point of the cube takes about 150 minutes
- there are 3 problems at each point, and the algorithm is applied 5 time to each
problem, 10 minutes for each application. To apply a single algorithm to all 36
problems takes 30 hours and 12 algorithms are examined in this section. Therefore,
it took approximately 360 hours on a SPARCstation IPC to perform the set of

experiments reported in this section.

a SPARCstation IPC.

6. Experiments and Discussions. 114

6.1.1 Comparison of different genetic algorithms.

During this study, a number of GAs have been implemented. Here, we examine the
performances of these different algorithms and compare them over the entire range

of problems. Four GAs are compared and RS is used as the reference algorithm:

1. The first GA is the only indirect GA of this comparative study; it uses a gener-
ational model and the partially mapped crossover ? (PMX). The chromosome
is an ordered list of engineers. The schedule-builder * takes the ordered list
of engineers and allocates jobs to each engineer in turn. This first GA will be

referred to as PMX.

2. The second GA is a direct GA; it uses a generational model and the random-

based direct Crossover #3. This GA will be referred to as Direct3.

3. The third GA is also a direct GA; it uses the steady-state model and the
random-based Crossover #3. This GA will be referred to as Direct3-s.

4. The fourth GA is again a direct GA; it uses a steady-state model and the
intelligent direct Crossover #4. This crossover uses the amount of work done

to sort the different tours of a solution and tries to preserve the best tours.

This GA will be referred to as Direct4-s.

5. RS performs a random sampling of the search space and keeps a record of
the best solution found during the search. RS enters a loop and at each
iteration the algorithm creates a random solution via the schedule builder,
and then evaluates that solution. The cost of the current solution § is then

compared with the cost of the best solution found so far (Spest). If cost(S) <

2This order-based crossover attempts to preserve the absolute positions of elements for one
part of a child and the relative order for the other part. This crossover is described more fully in
Subsection 3.2.5

3This schedule-builder is used by RS to generate all its solutions and also by all the direct GAs
to create their initial populations.

6. Experiments and Discussions. 115

cost(Spest) then Spest is replaced by S, otherwise Spest remains unchanged and

S is relinquished. This cycle is repeated until the time limit is reached.

In the early stages of this project, some C libraries (developed by L Corcoran, these
libraries are available on the Internet) were used to implement PMX and Direct3.
Here, the GA uses a generational model: an entire population is created at each
iteration. In fact, this model works with two populations: the old one and the new
one. The old population is used to generate the new population. Parents in the
old population are selected for reproduction and they generate offspring in the new
population. 30% of the old population is copied (or cloned) to the new population
at each generation. This corresponds to a generational gap of 30%. A roulette
selection technique was adopted where each member of the population is allocated

a slice of a roulette wheel; the slice is proportional to the fitness of the chromosome.

Under this model, a GA might converge prematurely. Such a convergence may
happen well before the ten minutes limit and when this situation occurs, the GA
is stopped. Furthermore, this first model also suffers from some serious limitations
in terms of computational efficiency and memory requirement. This prompted the
decision to design a new GA. During the design of this new algorithm, the main
emphasis was on the design of an efficient algorithm, i.e. this new model had to be

fast and memory efficient.

The second-generation GAs, Direct3-s and Direct4-s, use a steady-state model.
Initially, a set of m solutions is generated and sorted by fitness. The selection
function works as follows. First, a number, z, is generated randomly in the range 1
ton —1. Then, a number y is generated, where 1 < y < z and the yth chromosome
is selected for reproduction. Once two parents have been selected, the crossover
operator generates one child which is then inserted at the correct position in the
population and the weakest member of the population is deleted. This cycle of

selection, recombination and replacement is repeated until the 10 minute limit is

6. Experiments and Discussions. 116

reached.

Figure 6.1 shows that with this selection function fitter chromosomes have a much
higher chance of being selected. To plot this graph, the selection function was run
10 million times. There were 100 chromosomes in the pool, ranked with respect to
their cost from the best one to the worst one. The fittest chromosome was selected

on 518692 occasions and the worst chromosome was only selected on 902 occasions.

450000

300000

150000

Number of selection

0
0 10 20 30 40 50 60 70 80 90 100
Rank in population

Figure 6.1: Selection function - an elitist strategy.

This selection strategy was adopted because the GA has a strict time-limit of
10 minutes. In this situation, this selection function provides a suitable balance

between exploration of the solution space and rapid convergence.

Moreover, in order to prevent a premature convergence, the GA does not accept
the insertion of duplicates in the population. Basically, a chromosome cannot be
inserted if it is identical, in terms of cost, to a chromosome already present in the
population. When this situation occurs, the chromosome is simply rejected and the

algorithm generates a new chromosome. Finally, during these first experiments, the

6. Experiments and Discussions. 117

four GAs have a population of 100 chromosomes and none of them uses a mutation

operator.

Tables 6.1, 6.2, 6.3, 6.4 present the performances of the five algorithms over the
full range of problems. A table entry gives the average value taken over the 5
applications of the algorithm to a given problem. There are five columns for each
problem; each column corresponds to a different algorithm. Hence, if we scan across

a row, we can compare algorithms on specific problems.

The data is analysed from 4 perspectives. Table 6.1 gives the average final cost
reached by the five algorithms for the different problems. Table 6.2 gives the average
amount of work done. Table 6.3 gives the average travel time. Table 6.4 gives the

average amount of work not done.

Table 6.1 shows that, in general, the five algorithms find solutions with comparable
costs, 1.e. the solutions are in the same order of magnitude. This is a remarkable
result as the cost function used in these tests does not have a smooth topology.
Indeed, as discussed earlier, the cost of a solution is 600 times the duration of the
jobs not done plus the different travel time and, thus even a marginal improvement
in terms of work done leads to a significant reduction of cost. Despite this, the five
algorithms generate (in most cases) solutions of similar cost. This signifies that,
generally, a problem is equally difficult for the five algorithms. If one algorithm
finds a given problem difficult, then all the others will find this particular problem
difficult as well.

However, there are some noticeable exceptions. For instance, on the 40-2-0-3 prob-
lem, the average costs for RS, PMX, Direct3 and Direct3-s are 56334, 47417, 12963
and 12861 respectively but Direct4-s manages an average cost of only 1984.

This results from the fact that only Direct4-s can allocate all the work, while RS,
PMX, Direct3 and Direct3-s still have 20, 75, 18 and 18 minutes respectively of

work not done. As this example shows, massive differences (in terms of cost) can

6. Experiments and Discussions. 118

be expected between two algorithms if one manages to allocate all the jobs and the
other one does not. In this case, it can be said that the problem under study is easy
for Direct4-s but hard for the other techniques. The situation where the different
algorithms do not have the same behaviour only occurs in the 40-* problems with

time-windows and technological constraints.

These differences in performance suggest that these particular problems are critical,
i.e. some of the algorithms can allocate all the work, some cannot. Clearly, it
appears that the load of the engineers is a key parameter that determines whether

all the work is allocated or causes some to remain undone.

Typically, the 30-* problems are under-resourced and all the algorithms generate
solutions with large costs. The best solution is simply the one which minimises the

amount of work not done Travel is only a secondary objective here.

The 50-* problems are over-resourced and all the jobs are done. Hence, the re-
duction of travel becomes the primary concern and the best solution is the one
that minimises travel. Since all jobs are allocated, travel offers the only scope for

improvement.

For the 40-* problems in the middle of the spectrum, the situation is more delicate.
Some problems have solutions in which all the work is done, and some have solu-
tions in which some jobs remain unallocated. Clearly, these problems are critically
resourced and they are the most interesting problems. It is of little interest to
an enterprise to solve a problem by continually having excessive resources, or to

continually fail to meet those objectives due to under-resourcing.

Tables 6.1 and 6.2 show that the solution with the largest amount of work done is
always the best solution. This was guaranteed by the cost function. Furthermore,
the best solution also tends to be the one which minimises travel. For instance,
on the 30-0-0-1 problem, Direct4-s allocates the largest amount of work (12972)
but it also has the smallest amount of travel (1286). Clearly, in this case, the best

6. Experiments and Discussions. 119

solution is doing more work and less travel than the other solutions. This is a
typical situation and suggests that reduction of travel is of prime importance. This

observation will be used in Section 6.1.3 to create a repair algorithm.

Table 6.5 ranks the algorithms. Given a problem instance P;, the performance of
algorithm A; is compared against the others. If an algorithm A; finds a better
cost than an algorithm A;, then the algorithm A; is awarded one point. If the two
algorithms find solutions of equal value, then both get zero points. In total, an
algorithm can score a maximum of four points and a minimum of 0 points for a

given problem instance.

Figure 6.2 summarises the average, the minimum and the maximum scores for each

algorithm over the entire set of 36 problems.

Algorithm | average | min | max
RS 0.42
PMX 0.58
Direct3 2.86
Direct3-s | 2.97
Direct4-s | 3.16

NINNOO
el el Bl B

Figure 6.2: Ranking of GAs over 36 problems.

From Table 6.5 and Figure 6.2 , it can be seen that the three direct GAs totally
dominate RS and the indirect candidate, PMX. In this particular set of experi-
ments, there is no single example where PMX or RS provide a better solution than
Direct3, Direct3-s or Direct4-s. Furthermore, in most cases, there is a significant
gap between the solutions of RS and PMX, and the solutions of the three direct
GAs. The average costs achieved by the PMX algorithm are remarkably similar to
those achieved by RS; these two algorithms achieve average scores of 0.42 (for RS)
and 0.58 (for PMX). These are very low scores compared with the scores of the
three direct GAs. Clearly, the association of order-based GA and schedule-builder

6. Experiments and Discussions. 120

is not suitable for this type of problem, i.e. the PMX algorithm does not guide its

search properly.

Among the three direct GAs, there is no overall champion. Direct3, Direct3-s and

Direct4-s have comparable average scores of 2.86, 2.97 and 3.16.

The GA using the knowledge-based crossover, Direct4-s, achieves the best score of
3.16. As expected, this crossover is especially effective on the 30-* problems and
on the critical 40-* problems. On this particular set of problems, i.e. 12 under-
resourced 30-* problems and 6 critical 40-* problems, Direct4-s reaches the best
solution on 17 occasions and is only once beaten by Direct3-s. However, on the
50-* problems, Direct4-s is outperformed by Direct3 and Direct3-s; both of these

GAs use the same random-based direct crossover.

These results come as no surprise. Direct4-s uses its intelligence to inherit the best
tours during the crossover operation; in this case, the best tours are the ones which
have the largest amount of work done. This knowledge-based crossover is particu-
larly effective on under- or critically-resourced problems where the algorithm must
use all its intelligence in order to reduce the amount of work not done. However, on
the 50-* problems, where travel is the only scope for improvement, this technique
does not guide the search properly and the two random-based direct GAs (Direct3

and Direct3-s) are more effective.

Direct3-s is particularly effective on the 50-* problems, where out of 12 instances
it scores the maximum 4 points on 9 occasions. In general, Direct3-s is marginally
better than Direct3. As these two algorithms use the same crossover, this differ-
ence suggests that, on average, the steady state model is more effective than the

generational model.

Table 6.6 gives a guide to the amount of exploration performed by a given technique
over a given problem in 10 minutes. The RS column shows the number of schedules

created. The four other columns show the number of crossover operations. The two

6. Experiments and Discussions. 121

algorithms, PMX and Direct3, experienced premature convergence in a number of
instances, hence the two columns PMX and Direct3, also show (between brackets)

the real amount of time in seconds spent by the algorithm before convergence.

In general, RS and PMX perform fewer iterations than the three direct GAs. Also,
PMX performs slightly fewer iterations than RS. These results were expected. RS
is a blind search, i.e. a new solution is generated and evaluated from scratch at
each operation. These two operations are extremely expensive in terms of compu-
tational effort. The indirect GA, PMX, has the same behaviour, i.e. generation
and evaluation from scratch for each crossover, but on top of this, PMX also has

to generate order-based chromosomes and this small overhead explains the slightly

bigger value of RS over PMX.

In the case of the direct GAs, the crossover operator combines two solutions so a
direct GA only has to reschedule part of a solution. Therefore, the exploration of
a single point in the search space will be substantially less expensive than for RS

or PMX.

Looking at the RS column, it can be seen that more exploration takes place over
problems with specialisation. Generally, RS examines 3 times as many points in
the 30-*-3 problems as in the 30-*-0 problems. This also holds for the 40-* and the

50-* problems. PMX and the three direct GAs also experience this phenomenon.

Moving from under-resourced to over-resourced problems, direct GAs perform more
exploration. This is because, in under-resourced problems, the computational cost
of these GAs is dominated by the repair of chromosomes trying to insert as many
jobs in the schedule as possible. In over-resourced problems, however, less repair is

required and more exploration takes place.

Direct3-s always performs more iterations than Direct3. This is another indication
that the steady-state model is more efficient than the generational model. Table 6.6

also shows that PMX and Direct3 converge extremely rapidly in some cases. For

6. Experiments and Discussions. 122

instance, on the 40.2.3.1 problem, the two GAs converge and stop after only 202 and
56 seconds respectively. This suggests that the generational model is not capable
of maintaining sufficient diversity within the population during the search. This
might be due to the selection technique which gives too much emphasis to the fittest
elements, but it might also be due to some other factors such as the population

being too small, or the lack of a mutation operator.

Total convergence cannot happen under the steady state model. Indeed, this model
does not accept duplicates and thus, the population cannot converge towards a
uniform population. However, if the level of diversity is not kept at a proper level,
the search might stagnate and the algorithm might well be spending most of its
time creating solutions which will be rejected because they are already present in

the population. This problem becomes more acute with large populations.

Table 6.7 shows the number of solutions rejected, in 10 minutes, by the two GAs,
Direct3-s and Direct4-s. These are the only algorithms which use the steady state
model. When compared with Table 6.6, which presents the number of solutions
visited in 10 minutes, this table suggests that both Direct 3-s and Direct 4-s are

spending most of their time creating solutions which are rejected immediately.

Algorithm | average | min | max
RS - - -
PMX - - -
Direct3 -
Direct3-s | 42.5% | 11% | 83%
Direct4-s | 27.6% | 1% | 8%

Figure 6.3: GAs - When the best solution was found (% of 10 minutes).

Table 6.8 shows, for each problem, when the best solution was found during the
search, and Figure 6.3 summarises this information. Both tables show the con-

sequence of the lack of diversity in the population. In most cases, the two GAs

6. Experiments and Discussions. 123

find their best solutions relatively early during the search, i.e. they do not use the
full 10 minutes, and this situation is even more acute when solving problems with
tight technological constraints. This might be due to the fact that in these types
of problems, the different GAs perform far more iterations, and therefore, the loss

of diversity happens earlier in the 10 minutes.

Several options can be suggested in order to overcome this loss of diversity:

1. Incorporate a mutation operator. Here, a possible mutation would be to
randomly move a job from one engineer to another. However, this type of
action is already performed during the crossover operation by the internal
repair algorithm, i.e. implicit mutation, and hence, this operator is not an

option worth considering here.

2. Adopt a new selection function. Rather than using an exponential selection
function such as the one displayed in Figure 6.1, one possible option would
be to normalise the situation and to make the selection probability of each
chromosome directly proportional to its ranking in the population, rather
than to its individual cost. This normalisation technique would limit the risk
of domination by one single super-individual. However, this technique was

implemented in the generational model and did not improve the situation.

3. Increase the size of the population. Very small populations might not create
enough variety. However, larger populations might be prohibitive in terms
of computational effort and this must be considered in a time-constrained

environment.

The following section will investigate this last option.

In conclusion, the direct GAs totally dominate PMX over the entire set of problems.

In this particular study, the indirect GA is not directing its search properly and

6. Experiments and Discussions. 124

appears to be just another form of random search. Crossover #3 (the random-
based crossover) should be preferred for the solution of over-resourced problems
and Crossover #4 (the knowledge-based crossover) should be preferred for both
under-resourced and critical problems. The steady-state model is overall the best

option.

6. Experiments and Discussions.

generational steady
model state model
RS PMX Direct3 | Direct3-s | Direct4-s

30-0-0-1 | 975696 982923 690824 660190 588086
30-0-0-2 | 775956 768757 467641 426173 384688
30-0-0-3 | 617570 622975 293034 293033 251543
30-0-3-1 | 763409 765237 529049 516432 435282
30-0-3-2 | 815645 803022 584880 530766 487509
30-0-3-3 | 1092715 | 1078299 | 849329 824090 793437
30-2-0-1 | 909188 898370 786606 703645 649560
30-2-0-2 | 772461 767042 700241 651570 608226
30-2-0-3 | 1499448 | 1499493 | 1421860 | 1423532 1409089
30-2-3-1 | 1364732 | 1339495 | 1213344 | 1225979 1180816
30-2-3-2 | 1154086 | 1148643 | 1054976 | 993695 919782
30-2-3-3 | 909303 885900 781294 784890 765036
40-0-0-1 | 2246 2260 1367 1333 1335
40-0-0-2 | 2231 2236 1325 1335 1338
40-0-0-3 | 2186 2173 1299 1307 1322
40-0-3-1 | 2315 2298 1481 1555 1582
40-0-3-2 | 2200 2192 1476 1460 1527
40-0-3-3 | 2382 2405 1529 1562 1640
40-2-0-1 | 445075 454055 417804 387155 392486
40-2-0-2 | 54407 63443 54321 23583 5436
40-2-0-3 | 56334 47417 12963 12861 1984
40-2-3-1 | 22329 13401 2453 2273 2176
40-2-3-2 | 2279 2325 2083 1989 1954
40-2-3-3 | 191368 184196 142638 120974 108409
50-0-0-1 | 2313 2297 1415 1359 1374
50-0-0-2 | 2235 2233 1325 1402 1422
50-0-0-3 | 2234 2217 1317 1320 1280
50-0-3-1 | 2276 2277 1522 1575 1625
50-0-3-2 | 2365 2313 1521 1545 1654
50-0-3-3 | 2325 2317 1530 1610 1633
50-2-0-1 | 2184 2225 1684 1689 1776
50-2-0-2 | 2107 2101 1493 1560 1560
50-2-0-3 | 2119 2107 1549 1554 1581
50-2-3-1 | 2184 2189 1843 1867 1891
50-2-3-2 | 2354 2390 2112 2106 2049
50-2-3-3 | 2385 2416 1950 1988 2058

Table 6.1: GAs performance - Average final cost.

125

6. Experiments and Discussions.

Table 6.2:

generational steady
model state model
RS PMX | Direct3 | Direct3-s | Direct4-s
30-0-0-1 | 12327 | 12315 | 12801 12852 12972
30-0-0-2 | 12285 | 12297 | 12798 12867 12936
30-0-0-3 | 12279 | 12270 | 12819 12819 12888
30-0-3-1 | 12156 | 12153 | 12546 12567 12702
30-0-3-2 | 12144 | 12165 | 12528 12618 12690
30-0-3-3 | 12267 | 12291 | 12672 12714 12765
30-2-0-1 | 12183 | 12201 | 12387 12525 12615
30-2-0-2 | 12111 | 12120 | 12231 12312 12384
30-2-0-3 | 11889 | 11889 | 12018 12015 12039
30-2-3-1 | 11424 | 11466 | 11676 11655 11730
30-2-3-2 | 11835 | 11844 | 12000 12102 12225
30-2-3-3 | 11103 | 11142 | 11316 11310 11343
40-0-0-1 | 13155 | 13155 | 13155 13155 13155
40-0-0-2 | 12780 | 12780 | 12780 12780 12780
40-0-0-3 | 13410 | 13410 | 13410 13410 13410
40-0-3-1 | 12990 | 12990 | 12990 12990 12990
40-0-3-2 | 13575 | 13575 | 13575 13575 13575
40-0-3-3 | 13230 | 13230 | 13230 13230 13230
40-2-0-1 | 13287 | 13272 | 13332 13383 13374
40-2-0-2 | 13293 | 13278 | 13293 13344 13374
40-2-0-3 | 13560 | 13575 | 13632 13632 13650
40-2-3-1 | 13422 | 13437 | 13455 13455 13455
40-2-3-2 | 13635 | 13635 | 13635 13635 13635
40-2-3-3 | 13560 | 13572 | 13641 13677 13698
50-0-0-1 | 13860 | 13860 | 13860 13860 13860
50-0-0-2 | 13575 | 13575 | 13575 13575 13575
50-0-0-3 | 13215 | 13215 | 13215 13215 13215
50-0-3-1 | 13335 | 13335 | 13335 13335 13335
50-0-3-2 | 13740 | 13740 | 13740 13740 13740
50-0-3-3 | 13830 | 13830 | 13830 13830 13830
50-2-0-1 | 13185 | 13185 | 13185 13185 13185
50-2-0-2 | 13290 | 13290 | 13290 13290 13290
50-2-0-3 | 13710 | 13710 | 13710 13710 13710
50-2-3-1 | 13470 | 13470 | 13470 13470 13470
50-2-3-2 | 13215 | 13215 | 13215 13215 13215
50-2-3-3 | 13335 | 13335 | 13335 13335 13335

GAs performance - Average amount of work done in minutes.

126

6. Experiments and Discussions.

generational steady
model state model
RS PMX | Direct3 | Direct3-s | Direct4-s

30-0-0-1 | 1896 | 1923 | 1424 1390 1286
30-0-0-2 | 1956 | 1957 | 1441 1373 1288
30-0-0-3 | 1970 | 1975 | 1434 1433 1343
30-0-3-1 | 2009 | 2037 | 1649 1632 1482
30-0-3-2 | 2045 | 2022 | 1680 1566 1509
30-0-3-3 | 1915 | 1899 | 1529 1490 1437
30-2-0-1 | 1988 | 1970 | 1806 1645 1560
30-2-0-2 | 2061 | 2042 | 1841 1770 1626
30-2-0-3 | 1848 | 1893 | 1660 1532 1489
30-2-3-1 | 2132 | 2095 | 1944 1979 1816
30-2-3-2 | 2086 | 2043 | 1976 1895 1782
30-2-3-3 | 2103 | 2100 | 1894 1890 1836
40-0-0-1 | 2246 | 2260 | 1367 1333 1335
40-0-0-2 | 2231 | 2236 | 1325 1335 1338
40-0-0-3 | 2186 | 2173 | 1299 1307 1322
40-0-3-1 | 2315 | 2298 | 1481 1555 1582
40-0-3-2 | 2200 | 2192 | 1476 1460 1527
40-0-3-3 | 2382 | 2405 | 1529 1562 1640
40-2-0-1 | 2275 | 2255 | 2004 1955 1886
40-2-0-2 | 2207 | 2243 | 2121 1983 1836
40-2-0-3 | 2334 | 2417 | 2163 2061 1984
40-2-3-1 | 2529 | 2601 | 2453 2273 2176
40-2-3-2 | 2279 | 2325 | 2083 1989 1954
40-2-3-3 | 2368 | 2396 | 2238 2174 2209
50-0-0-1 | 2313 | 2297 | 1415 1359 1374
50-0-0-2 | 2235 | 2233 | 1325 1402 1422
50-0-0-3 | 2234 | 2217 | 1317 1320 1280
50-0-3-1 | 2276 | 2277 | 1522 1575 1625
50-0-3-2 | 2365 | 2313 | 1521 1545 1654
50-0-3-3 | 2325 | 2317 | 1530 1610 1633
50-2-0-1 | 2184 | 2225 | 1684 1689 1776
50-2-0-2 | 2107 | 2101 1493 1560 1560
50-2-0-3 | 2119 | 2107 | 1549 1554 1581
50-2-3-1 | 2184 | 2189 | 1843 1867 1891
50-2-3-2 | 2354 | 2390 | 2112 2106 2049
50-2-3-3 | 2385 | 2416 | 1950 1988 2058

Table 6.3: GAs performance - Average amount of travel time in minutes.

127

6. Experiments and Discussions.

generational steady
model state model
RS PMX | Direct3 | Direct3-s | Direct4-s
30-0-0-1 | 1623 | 1635 | 1149 1098 978
30-0-0-2 | 1290 | 1278 | 777 708 639
30-0-0-3 | 1026 | 1035 | 486 486 417
30-0-3-1 | 1269 | 1272 | 879 858 723
30-0-3-2 | 1356 | 1335 | 972 882 810
30-0-3-3 | 1818 | 1794 | 1413 1371 1320
30-2-0-1 | 1512 | 1494 | 1308 1170 1080
30-2-0-2 | 1284 | 1275 | 1164 1083 1011
30-2-0-3 | 2496 | 2496 | 2367 2370 2346
30-2-3-1 | 2271 | 2229 | 2019 2040 1965
30-2-3-2 | 1920 | 1911 1755 1653 1530
30-2-3-3 | 1512 | 1473 | 1299 1305 1272
40-0-0-1 | 0 0 0 0 0
40-0-0-2 | 0 0 0 0 0
40-0-0-3 | 0 0 0 0 0
40-0-3-1 | 0 0 0 0 0
40-0-3-2 | 0 0 0 0 0
40-0-3-3 | 0 0 0 0 0
40-2-0-1 | 738 753 693 642 651
40-2-0-2 | 87 102 87 36 6
40-2-0-3 | 90 75 18 18 0
40-2-3-1 | 33 18 0 0 0
40-2-3-2 | 0 0 0 0 0
40-2-3-3 | 315 303 234 198 177
50-0-0-1 | O 0 0 0 0
50-0-0-2 | 0 0 0 0 0
50-0-0-3 | 0 0 0 0 0
50-0-3-1 | 0 0 0 0 0
50-0-3-2 | 0 0 0 0 0
50-0-3-3 | 0 0 0 0 0
50-2-0-1 | 0 0 0 0 0
50-2-0-2 | 0 0 0 0 0
50-2-0-3 | 0 0 0 0 0
50-2-3-1 | 0 0 0 0 0
50-2-3-2 | 0 0 0 0 0
50-2-3-3 | 0 0 0 0 0

128

Table 6.4: GAs performance - Average amount of work not done in minutes.

6. Experiments and Discussions.

generational steady
model state model
RS | PMX | Direct3 | Direct3-s | Direct4-s
30-0-0-1 1 0 2 3 4
30-0-0-2 | 0 1 2 3 4
30-0-0-3 1 0 2 3 4
30-0-3-1 1 0 2 3 4
30-0-3-2 | 0 1 2 3 4
30-0-3-3| 0 1 2 3 4
30-2-0-1| 0 1 2 3 4
30-2-0-2 | 0 1 2 3 4
30-2-0-3 1 0 3 2 4
30-2-3-1| 0 1 3 2 4
30-2-3-2 | 0 1 2 3 4
30-2-3-3 | 0 1 3 2 4
40-0-0-1 0 2 4 3
40-0-0-2 0 4 3 2
40-0-0-3 1 4 3 2
40-0-3-1 | 0 1 4 3 2
40-0-3-2 | 0 1 3 4 2
40-0-3-3 1 0 4 3 2
40-2-0-1 1 0 2 4 3
40-2-0-2 1 0 2 3 4
40-2-0-3 1 2 3 4
40-2-3-1 | 0 1 2 3 4
40-2-3-2 1 0 2 3 4
40-2-3-3 | 0 1 2 3 4
50-0-0-1 | 0 1 2 4 3
50-0-0-2 | 0 1 4 3 2
50-0-0-3 | 0 1 3 2 4
50-0-3-1 1 0 4 3 2
50-0-3-2 | 0 1 4 3 2
50-0-3-3 | 0 1 4 3 2
50-2-0-1 1 0 4 3 2
50-2-0-2 | 0 1 4 2 3
50-2-0-3 | 0 1 4 3 2
50-2-3-1 1 0 4 3 2
50-2-3-2 1 0 2 3 4
50-2-3-3 1 0 4 3 2

Table 6.5: GAs performance - Ranking of GAs (versus cost).

129

6. Experiments and Discussions.

generational steady
model state model
RS PMX Direct3 Direct3-s | Direct4-s

30-0-0-1 | 1400 | 1292 (616) | 5603 (602) | 8190 9700
30-0-0-2 | 1400 | 1292 (615) | 6296 (570) | 11100 13830
30-0-0-3 | 1400 | 1292 (618) | 7548 (552) | 14990 18880
30-0-3-1 | 4400 | 4175 (603) | 5657 (179) | 36560 42050
30-0-3-2 | 4400 | 3944 (572) | 5032 (169) | 36210 38900
30-0-3-3 | 4600 | 4352 (601) | 6337 (234) | 26640 29130
30-2-0-1 | 1400 | 1346 (620) | 5086 (529) | 7460 7970
30-2-0-2 | 1420 | 1360 (622) | 5344 (551) | 7400 8590
30-2-0-3 | 1500 | 1428 (616) | 4188 (603) | 4820 4910
30-2-3-1 | 4680 | 4420 (605) | 5208 (221) | 18360 17650
30-2-3-2 | 4800 | 3903 (520) | 4120 (163) | 21830 24470
30-2-3-3 | 5200 | 4896 (604) | 5820 (194) | 24030 25660
40-0-0-1 | 1400 | 1292 (623) | 7656 (321) | 64000 69340
40-0-0-2 | 1400 | 1292 (623) | 8690 (346) | 60500 60270
40-0-0-3 | 1400 | 1292 (625) | 7765 (334) | 70140 50050
40-0-3-1 | 4500 | 4243 (605) | 7969 (149) | 157340 113300
40-0-3-2 | 4500 | 4243 (603) | 7629 (151) | 149060 113670
40-0-3-3 | 4700 | 4080 (552) | 8309 (147) | 171480 130280
40-2-0-1 | 1500 | 1360 (608) | 6174 (364) | 15160 15340
40-2-0-2 | 1500 | 1278 (576) | 3427 (133) | 81730 78210
40-2-0-3 | 1500 | 1237 (560) | 3998 (117) | 91110 82450
40-2-3-1 | 4600 | 1373 (202) | 3359 (56) 186310 127170
40-2-3-2 | 4600 | 3576 (498) | 4896 (74) 177130 154750
40-2-3-3 | 4200 | 3359 (518) | 3930 (89) 85420 87750
50-0-0-1 | 1400 | 1292 (626) | 8187 (330) | 66540 65010
50-0-0-2 | 1400 | 1278 (620) | 8826 (352) | 73420 64250
50-0-0-3 | 1400 | 1292 (624) | 8064 (306) | 75420 49720
50-0-3-1 | 4200 | 4025 (606) | 6963 (138) | 142350 111230
50-0-3-2 | 4300 | 4080 (604) | 7534 (146) | 143190 125800
50-0-3-3 | 4400 | 4148 (604) | 7316 (145) | 163200 114920
50-2-0-1 | 1500 | 1360 (611) | 7956 (281) | 67400 75030
50-2-0-2 | 1400 | 1319 (610) | 8078 (297) | 74340 72610
50-2-0-3 | 1500 | 1360 (614) | 8404 (312) | 66440 78000
50-2-3-1 | 4500 | 4066 (584) | 6596 (122) | 174430 116160
50-2-3-2 | 4000 | 3753 (605) | 5521 (96) 164700 129830
50-2-3-3 | 4800 | 4528 (603) | 6922 (121) | 172670 130680

Table 6.6: GAs performance - Amount of iterations in 10 minutes.

130

6. Experiments and Discussions. 131

generational steady
model state model
RS | PMX | Direct3 | Direct3-s | Direct4-s

30-0-0-1 | - - - 5267 7599
30-0-0-2 | - - - 8046 11174
30-0-0-3 | - - - 11013 15438
30-0-3-1 | - - - 31190 29854
30-0-3-2 | - - - 27821 30805
30-0-3-3 | - - - 22864 25715
30-2-0-1 | - - - 4703 6079
30-2-0-2 | - - - 4343 6693
30-2-0-3 | - - - 3287 3968
30-2-3-1 | - - - 16256 15049
30-2-3-2 | - - - 18238 20237
30-2-3-3 | - - - 21745 22994
40-0-0-1 | - - - 62868 68570
40-0-0-2 | - - - 59203 59222
40-0-0-3 | - - - 69049 49167
40-0-3-1 | - - - 155762 111778
40-0-3-2 | - - - 146885 111803
40-0-3-3 | - - - 169267 128575
40-2-0-1 | - - - 13719 14178
40-2-0-2 | - - - 78269 75347
40-2-0-3 | - - - 87596 80357
40-2-3-1 | - - - 184238 122417
40-2-3-2 | - - - 171470 152128
40-2-3-3 | - - - 82859 82768
50-0-0-1 | - - - 65246 63942
50-0-0-2 | - - - 72024 62893
50-0-0-3 | - - - 74018 48799
50-0-3-1 | - - - 141087 110428
50-0-3-2 | - - - 141676 124813
50-0-3-3 | - - - 161978 113756
50-2-0-1 | - - - 66178 74005
50-2-0-2 | - - - 73108 71386
50-2-0-3 | - - - 65288 77084
50-2-3-1 | - - - 172891 114196
50-2-3-2 | - - - 160497 126058
50-2-3-3 | - - - 170053 129504

Table 6.7: GAs performance - Amount of solutions rejected in 10 minutes.

6. Experiments and Discussions. 132

generational steady
model state model
RS | PMX | Direct3 | Direct3-s | Direct4-s

30-0-0-1 | - - - 74 78
30-0-0-2 | - - - 37 39
30-0-0-3 | - - - 44 37
30-0-3-1 | - - - 23 9
30-0-3-2 | - - - 11 19
30-0-3-3 | - - - 22 22
30-2-0-1 | - - - 58 41
30-2-0-2 | - - - 67 46
30-2-0-3 | - - - 83 65
30-2-3-1 | - - - 36 23
30-2-3-2 | - - - 39 8
30-2-3-3 | - - - 25 23
40-0-0-1 | - - - 45 24
40-0-0-2 | - - - 54 12
40-0-0-3 | - - - 55 35
40-0-3-1 | - - - 50 42
40-0-3-2 | - - - 34 40
40-0-3-3 | - - - 25 12
40-2-0-1 | - - - 50 33
40-2-0-2 | - - - 66 18
40-2-0-3 | - - - 50 27
40-2-3-1 | - - - 24 41
40-2-3-2 | - - - 15 1
40-2-3-3 | - - - 39 14
50-0-0-1 | - - - 48 41
50-0-0-2 | - - - 47 17
50-0-0-3 | - - - 63 24
50-0-3-1 | - - - 30 28
50-0-3-2 | - - - 46 24
50-0-3-3 | - - - 42 34
50-2-0-1 | - - - 56 8
50-2-0-2 | - - - 34 30
50-2-0-3 | - - - 55 62
50-2-3-1 | - - - 27 6
50-2-3-2 | - - - 28 5
50-2-3-3 | - - - 27 6

Table 6.8: GAs performance - When the best solution was found (% of 10 minutes).

6. Experiments and Discussions. 133

6.1.2 The effect of population size.

This section investigates the effects of different population sizes on the performance
of GAs. The principle objective here is to reduce the loss of diversity by increasing
the size of the population. Only one single direct GA is studied and, again, RS is
used as the reference algorithm. Direct4-s has been chosen for these tests because
this algorithm achieves the best performance on the hard problems where some

work remains undone, i.e. under-resourced 30-* and critical 40-* problems.

This algorithm was run with three different population sizes: 100, 200 and 400
chromosomes. Therefore, the performance of four different runs are reported in the

next tables: RS, Direct4-s:100, Direct4-s:200 and Direct4-s:400.

Analysis of the results in the previous section show that there is no instance where
work is being traded for travel, i.e. a low cost solution is always better than a high
cost solution (never does less work). Consequently, work done, travel or work not
done are no longer reported. Hence, the data is only analysed from one perspective:
final cost. Table 6.9 gives the average final cost reached by the algorithms on the

different problems.

Direct4-s:200 always performs better than Direct4-s:100 and, in general, Direct4-
5:400 performs better than Direct4-s:200. However, there are some noticeable ex-
ceptions where Direct4-s:200 achieves better solutions than Direct4-s:400. For in-
stance, on problems with no technological or temporal constraints, i.e. 30-0-0-*,
40-0-0-* and 50-0-0-*, Direct4-s:200 always performs significantly better. On the
last two groups (40-0-0-* and 50-0-0-*), even the “smallest” GA, Direct4-s:100, is
reaching far better solutions than direct4-s:400. Intriguingly, in these two examples,

the performances of Direct4-s:400 are comparable to the performances of RS.

An explanation for these peculiar results can be found in Table 6.10 which shows

the amount of exploration performed by the four algorithms in 10 minutes. As

6. Experiments and Discussions. 134

expected, Direct4-s:100 performs more iterations than Direct4-s:200 which in turn
performs more iterations than Direct4-s:400. Clearly, larger populations require
more time to create the initial population, and thus, less time is available for the

actual search.

However, a linear relationship should be expected, such that if the population size
is doubled, the time required to create the initial population should double as well.
Unfortunately, in some cases, the relationship seems to be much worse than linear.
In some instances, 10 minutes are not even sufficient for Direct4-s:400 to create its
initial population. For instance, this is the case for all the 40-0-0-* and all the 50-0-
0-* problems. Figure 6.4 shows the time in seconds that the schedule-builder needs
in order to create an initial population free of duplicates for the 30-0-0-1 problem.

The situation is even more acute for any of the 40-0-0-* or 50-0-0-* problems.

The last point “free of duplicates” is the main problem here. If duplicates were
allowed, then the relationship would be linear. However, in order to limit the
risk of premature convergence, duplicates are not accepted, and as the search goes
on, it seems harder and harder for the schedule-builder to create a new, not yet
visited, solution and this explains the exponential behaviour. After a certain stage,
the schedule-builder is spending most of its time generating solutions which are

rejected immediately.

Table 6.11 illustrates this problem; this table reports the percentage of schedules
accepted when 100, 500, 1000, 2000 or 5000 schedules are created. For instance,
when the schedule-builder creates 100 solutions for a 30-0-0-1 problem, 98% are
accepted and 2% are rejected because they are duplicates. when the schedule-

builder creates 5000 schedules only 33.9%, i.e. 1693 schedules are accepted.

Table 6.11 shows that the situation is particularly serious for problems with no
constraints, i.e. 30-0-0-*, 40-0-0-*, and 50-0-0-* problems, and also for most of the

50-* problems with the noticeable exception of the 50-2-3-* problems.

6. Experiments and Discussions. 135

4000

3000

Time

2000

1000

0 500 1000 1500 2000 2500
size of population

Figure 6.4: Population free of duplicates: the larger, the harder.

This phenomenon raises an important issue. It suggests a negative answer to the
question “Could a GA benefit from a smart start?” In other words, if a GA uses
an intelligent schedule-builder to generate its initial population, will the algorithm

find better solutions?
For instance, several methods could be envisaged for the development of an intel-
ligent schedule-builder:

e Jobs could be allocated to engineers in a round-robin manner, resulting in a

more equitable distribution of jobs to engineers.

o Geographical information could be taken into account, such that tours radiate

from the base, resulting in natural clusters of jobs.

6. Experiments and Discussions. 136

e Some look-ahead techniques might be employed such that critical jobs and

engineers can be identified and scheduled before all others.

In this study, a rather naive schedule-builder was used. As seen earlier, it takes
an ordered list of engineers and allocate jobs to each engineer in turn. During
this operation, not a single heuristic is used. However, this basic schedule-builder
is already generating a large amount of duplicates and unfortunately, one should
expect a more intelligent schedule-builder to be even more deterministic * and

generate even more duplicates.

In these circumstances, it seems unlikely that a GA could benefit from a good start,
i.e. if the smart schedule-builder is too deterministic. Clearly, with an intelligent
schedule-builder, the different solution-candidates in the initial population tend to
be similar - good quality solutions but similar solutions. The GA may converge
rapidly towards a sub-optimal solution, thus losing the benefits of a good starting
point. Obviously, the best option would be an intelligent schedule-builder which
creates radically different solutions and thus maintains the level of diversity in the

population.

Nevertheless, there might be the possibility of seeding the initial population; i.e,
only a limited section of the population is generated by the intelligent method, the
rest (say 80% for instance) is generated by the normal, i.e. naive, method. This
approach might provide the best compromise, since the GA would have access to
a limited set of good quality solutions but at the same time, the population would

have a sufficient level of diversity.

In conclusion, there are two conflicting observations. First, the presence of dupli-
cates in the population has to be avoided because it leads to a loss of diversity

which, in turn, leads to a premature convergence towards a sub-optimal solution.

4Ultimately, the “best” schedule-builder would always generate the same solution, i.e. this
solution would be the “optimal” solution.

6. Experiments and Discussions. 137

On the other hand, if duplicates are rejected, then the GA might spend most of its

time generating solutions which are rejected straight away.

In consequence, a GA might improve its performances by accepting duplicates

despite the possible loss of diversity.

Two GAs which accept duplicates are studied in the remainder of this section:

1. The first GA only accepts duplicates when the initial population is being
created, but rejects then during the rest of the search. This GA will be

referred to as Dupli-1.

2. The second GA accepts duplicates at any time during the search. This GA
will be referred to as Dupli-2.

Both Dupli-1 and Dupli-2 use the steady-state model and Crossover #4, they
also both have a population of 400 chromosomes. Hence, direct comparisons with

Direct4-s:100, Direct4-s:200 and Direct4-s:400 are possible.

Table 6.12 gives the average final cost reached by RS, Direct4-s:100, Direct4-s:200,
Direct4-s:400, Dupli-1 and Dupli-2. Table 6.13 gives the ranking of these algorithms
for the different problems and Figure 6.5 summarises this information. It gives the
average score, the minimum and the maximum score for each algorithm over the
entire set of problems; in this case, each algorithm can score a minimum of 0 point

and a maximum of 5 points.

On average, Dupli-1 and Dupli-2 find the best solutions and, hence, have the best
scores of all the algorithms: 4.05 for Dupli-1 and 3.05 for Dupli-2. Dupli-1 seems

to be a more robust algorithm.

Of the 50-* problems, the 50-2-3-1 problem is the only instance (out of 12) where
the best solution is not found by either Dupli-1 or Dupli-2. In the same manner,

on the easy 40-* problems (40-* problems where all the work is done), the best

6. Experiments and Discussions. 138

Algorithm average | min | max
RS 0.0 0 0
Direct4-s:100 | 1.27 1 2
Direct4-s:200 | 3.11 2 5
Direct4-s:400 | 3.05 1 5
Dupli-1 4.05 2 5
Dupli-2 3.5 1 5

Figure 6.5: Different population sizes, different ranking.

solution is typically found either by Dupli-1 or by Dupli-2 as well. Therefore,

“accept duplicates” appears to be a good policy on over-resourced problems.

The situation is more delicate for under-resourced problems. For instance, on the
30-* problems, Dupli-1 and Dupli-2 together can only manage 4 pole-positions.
Generally, Dupli-2 is performing rather poorly on these problems. Direct4-s:200 is
particularly effective on problems with no technological constraints and Direct4-

$:400 works well on problems with tight technological constraints.

Table 6.7 (in the previous section) showed that the level of rejection was especially
important in the case of over-resourced problems. In these situations, the GA was
spending most of its search rejecting schedules. By accepting duplicates, the GA
converges more rapidly, but at least, the algorithm is moving around in the search
space. The level of rejection is not so important in under-resourced problems and

these “accept duplicates” policies might not be desirable.

Table 6.14 shows (for the 6 algorithms) when the best solutions were found (in %)
on the different problems. Observe that the results for Dupli-2 might be slightly
misleading. Dupli-2 accepts duplicates at any time during the search, hence there
can be several copies of the best solution in the population. In the worst case,
if the population has converged, each member of the population is a copy of the
best solution. Despite this, this table only indicates when the last copy of the best

solution was created.

6. Experiments and Discussions. 139

Table 6.14 shows that, typically, when the population size is increased, the algo-
rithm finds its best solution at a later stage. This behaviour was expected. First,
the generation of a larger initial population requires more computational effort, so
the genetic search starts later. More importantly, a larger population helps to delay
premature convergence and hence, the algorithm can use the extra-time to produce

better solutions.

Dupli-1 exhibits a typical behaviour, it finds its best solutions earlier when solving
problems with tight technological constraints. On problems with no such con-
straints, Dupli-1 finds its best solutions in the latter stages of the search, i.e. after
90-95% of the search. This suggests that this algorithm might benefit from longer

runs; there is still scope for significant improvement at the end of the 10 minutes.

In conclusion, larger populations should provide a higher level of variety in the pool
and, hence, help the GA to reach better solutions by preventing premature conver-
gence. However, the limitations of the schedule-builder mean that the algorithm
spends a prohibitive amount of time creating large populations unless duplicates
are allowed in the population. This study also clearly suggests that a GA might not
be able to benefit from a smart schedule-builder which affects the level of diversity

in the population.

6. Experiments and Discussions.

RS Direct4-s:100 | Direct4-s:200 | Direct4-s:400

30-0-0-1 | 975696 588086 526785 553823
30-0-0-2 | 775956 384688 319818 325189
30-0-0-3 | 617570 251543 175831 186656
30-0-3-1 | 763409 435282 374021 325324
30-0-3-2 | 815645 487509 451450 354138
30-0-3-3 | 1092715 | 793437 712334 651047
30-2-0-1 | 909188 649560 582873 642311
30-2-0-2 | 772461 608226 554164 584830
30-2-0-3 | 1499448 | 1409089 1380200 1396575
30-2-3-1 | 1364732 | 1180816 1123114 1083411
30-2-3-2 | 1154086 | 919782 851285 804407
30-2-3-3 | 909303 765036 750542 654992
40-0-0-1 | 2246 1335 1249 2201
40-0-0-2 | 2231 1338 1256 2217
40-0-0-3 | 2186 1322 1215 2157
40-0-3-1 | 2315 1582 1450 1406
40-0-3-2 | 2200 1527 1394 1338
40-0-3-3 | 2382 1640 1512 1495
40-2-0-1 | 445075 392486 370864 352839
40-2-0-2 | 54407 5436 1750 1841
40-2-0-3 | 56334 1984 1717 1719
40-2-3-1 | 22329 2176 1960 1860
40-2-3-2 | 2279 1954 1838 1708
40-2-3-3 | 191368 108409 46982 9122
50-0-0-1 | 2313 1374 1276 2276
50-0-0-2 | 2235 1422 1252 2189
50-0-0-3 | 2234 1280 1210 2183
50-0-3-1 | 2276 1625 1513 1465
50-0-3-2 | 2365 1654 1519 1469
50-0-3-3 | 2325 1633 1477 1452
50-2-0-1 | 2184 1776 1628 2165
50-2-0-2 | 2107 1560 1487 2049
50-2-0-3 | 2119 1581 1498 2075
50-2-3-1 | 2184 1891 1771 1642
50-2-3-2 | 2354 2049 1965 1876
50-2-3-3 | 2385 2058 1882 1835

Table 6.9: Average final cost for different population sizes.

140

6. Experiments and Discussions.

RS Direct4-s:100 | Direct4-s:200 | Direct4-s:400

30-0-0-1 | 1400 | 9700 8150 4170
30-0-0-2 | 1400 | 13830 11450 4410
30-0-0-3 | 1400 | 18880 15900 6030
30-0-3-1 | 4400 | 42050 37800 32960
30-0-3-2 | 4400 | 38900 38340 30450
30-0-3-3 | 4600 | 29130 27140 22470
30-2-0-1 | 1400 | 7970 6660 3570
30-2-0-2 | 1420 | 8590 6970 3700
30-2-0-3 | 1500 | 4910 4100 2930
30-2-3-1 | 4680 | 17650 18470 15940
30-2-3-2 | 4800 | 24470 20830 19410
30-2-3-3 | 5200 | 25660 22380 21280
40-0-0-1 | 1400 | 69340 27660 0
40-0-0-2 | 1400 | 60270 25080 0
40-0-0-3 | 1400 | 50050 26550 0
40-0-3-1 | 4500 | 113300 89390 45640
40-0-3-2 | 4500 | 113670 85160 44770
40-0-3-3 | 4700 | 130280 83880 47090
40-2-0-1 | 1500 | 15340 11950 5930
40-2-0-2 | 1500 | 78210 54100 7570
40-2-0-3 | 1500 | 82450 42580 13220
40-2-3-1 | 4600 | 127170 99340 59430
40-2-3-2 | 4600 | 154750 92290 50350
40-2-3-3 | 4200 | 87750 80080 71420
50-0-0-1 | 1400 | 65010 30140 0
50-0-0-2 | 1400 | 64250 25650 0
50-0-0-3 | 1400 | 49720 25570 0
50-0-3-1 | 4200 | 111230 76650 28260
50-0-3-2 | 4300 | 125800 81400 34650
50-0-3-3 | 4400 | 114920 76610 34730
50-2-0-1 | 1500 | 75030 41920 0
50-2-0-2 | 1400 | 72610 31950 0
50-2-0-3 | 1500 | 78000 30160 0
50-2-3-1 | 4500 | 116160 104020 55650
50-2-3-2 | 4000 | 129830 99450 55770
50-2-3-3 | 4800 | 130680 93960 54070

Table 6.10: Amount of iterations for different population sizes.

141

6. Experiments and Discussions.

100 | 500 | 1000 | 2000 | 5000
30-0-0-1 | 98 82.4 | 70.4 | 55.15 | 33.86
30-0-0-2 | 97 83.4 | 71.2 | 54.55 | 34.2
30-0-0-3 | 95 83 71.6 | 55.3 33.86
30-0-3-1 | 99 92.4 | 88.1 | 79.15 | 61.66
30-0-3-2 | 99 92.4 | 89.2 | 79.05 | 60.64
30-0-3-3 | 98 91.6 | 85.5 | 76.35 | 5b.58
30-2-0-1 | 99 90.2 | 84.1 | 72.8 50.7
30-2-0-2 | 96 89.6 | 82.7 | 70.5 49.92
30-2-0-3 | 98 90.4 | 84 2.7 52.92
30-2-3-1 | 99 96.6 | 94.8 | 90.55 | 78.42
30-2-3-2 | 99 97.8 | 94.7 | 90 77.06
30-2-3-3 | 98 96.2 | 94.3 | 89.05 | 77.26
40-0-0-1 | 82 45.4 | 28.3 | 16.25 | 7.42
40-0-0-2 | 81 48.4 | 29.8 | 174 7.96
40-0-0-3 | 84 | 45.2 | 27.9 | 15.8 7.48
40-0-3-1 | 97 87 79.5 | 68.1 50.94
40-0-3-2 | 97 91.6 | 85.5 | T4.5b 56.64
40-0-3-3 | 96 90.6 | 84.4 | 73.8 56.34
40-2-0-1 | 99 95.8 | 90.7 | 84.5 69.34
40-2-0-2 | 99 94.4 | 90 81.15 | 62.8
40-2-0-3 | 97 95.2 | 91 84.45 | 68.9
40-2-3-1 | 98 96.8 | 94.6 | 89.9 78.4
40-2-3-2 | 97 97 94.2 | 87.4 75.42
40-2-3-3 | 99 97 93.8 | 88.25 | 73.9
50-0-0-1 | 84 | 45 28 16.7 8.04
50-0-0-2 | 88 46.8 | 29.3 | 17.7 8
50-0-0-3 | 84 | 45 29.1 | 16.5 7.48
50-0-3-1 | 86 50 32.3 | 20 10.96
50-0-3-2 | 85 52.2 | 35.6 | 22.4 13.3
50-0-3-3 | 87 53.8 | 35.9 | 23.25 | 13.26
50-2-0-1 | 85 47.8 | 27.9 | 16.25 | 1.7
50-2-0-2 | 81 44.6 | 27.9 | 16.5 7.74
50-2-0-3 | 79 43 27 15.7 7.12
50-2-3-1 | 97 90.6 | 84.1 | T1.4 52.24
50-2-3-2 | 98 95.4 | 93.2 | 84.5 67.24
50-2-3-3 | 98 90.8 | 84.3 | 73.95 | 56.14

Table 6.11: % of chromosomes accepted for different population sizes.

142

6. Experiments and Discussions. 143
RS Direct4-s:100 | Direct4-s:200 | Direct4-s:400 | Dupli-1 | Dupli-2
30-0-0-1 | 975696 588086 526785 553823 535779 559222
30-0-0-2 | 775956 384688 319818 325189 308984 341434
30-0-0-3 | 617570 251543 175831 186656 193840 201057
30-0-3-1 | 763409 435282 374021 325324 301907 413671
30-0-3-2 | 815645 487509 451450 354138 379346 438829
30-0-3-3 | 1092715 | 793437 712334 651047 690690 744747
30-2-0-1 | 909188 649560 582873 642311 645932 636926
30-2-0-2 | 772461 608226 554164 584830 577598 550580
30-2-0-3 | 1499448 | 1409089 1380200 1396575 1387475 | 1387506
30-2-3-1 | 1364732 | 1180816 1123114 1083411 1088868 | 1126788
30-2-3-2 | 1154086 | 919782 851285 804407 802645 854868
30-2-3-3 | 909303 765036 750542 654992 691023 701913
40-0-0-1 | 2246 1335 1249 2201 1240 1150
40-0-0-2 | 2231 1338 1256 2217 1199 1123
40-0-0-3 | 2186 1322 1215 2157 1212 1135
40-0-3-1 | 2315 1582 1450 1406 1416 1402
40-0-3-2 | 2200 1527 1394 1338 1329 1397
40-0-3-3 | 2382 1640 1512 1495 1458 1424
40-2-0-1 | 445075 392486 370864 352839 345682 342030
40-2-0-2 | 54407 5436 1750 1841 1824 9033
40-2-0-3 | 56334 1984 1717 1719 1739 1832
40-2-3-1 | 22329 2176 1960 1860 1845 2042
40-2-3-2 | 2279 1954 1838 1708 1691 1839
40-2-3-3 | 191368 108409 46982 9122 27135 61440
50-0-0-1 | 2313 1374 1276 2276 1289 1139
50-0-0-2 | 2235 1422 1252 2189 1252 1174
50-0-0-3 | 2234 1280 1210 2183 1182 1115
50-0-3-1 | 2276 1625 1513 1465 1447 1423
50-0-3-2 | 2365 1654 1519 1469 1420 1443
50-0-3-3 | 2325 1633 1477 1452 1443 1442
50-2-0-1 | 2184 1776 1628 2165 1589 1527
50-2-0-2 | 2107 1560 1487 2049 1479 1352
50-2-0-3 | 2119 1581 1498 2075 1454 1436
50-2-3-1 | 2184 1891 1771 1642 1700 1725
50-2-3-2 | 2354 2049 1965 1876 1836 1912
50-2-3-3 | 2385 2058 1882 1835 1789 1851

Table 6.12: Average final cost for different population sizes and acceptance policies.

6. Experiments and Discussions.

RS | Direct4-s:100 | Direct4-s:200 | Direct4-s:400 | Dupli-1 | Dupli-2
30-0-0-1 0 1 5 3 4 2
30-0-0-2 | O 1 4 3 5 2
30-0-0-3 | O 1 5 4 3 2
30-0-3-1 0 1 3 4 5 2
30-0-3-2 | 0O 1 2 5 4 3
30-0-3-3| O 1 3 5 4 2
30-2-0-1 0 1 5 3 2 4
30-2-0-2 | 0O 1 4 2 3 5
30-2-0-3 | O 1 5 2 4 3
30-2-3-1 0 1 3 5 4 2
30-2-3-2 | 0O 1 3 4 5 2
30-2-3-3| O 1 2 5 4 3
40-0-0-1 0 2 3 1 4 5
40-0-0-2 | O 2 3 1 4 5
40-0-0-3 | O 2 3 1 4 5
40-0-3-1 0 1 2 4 3 5
40-0-3-2 | 0 1 3 4 5 2
40-0-3-3 | O 1 2 3 4 5
40-2-0-1 0 1 2 3 4 5
40-2-0-2 | 0 5 3 4 1
40-2-0-3 | O 1 5 4 3 2
40-2-3-1 0 1 3 4 5 2
40-2-3-2 | 0 1 3 4 5 2
40-2-3-3 | 0 1 3 5 4 2
50-0-0-1 0 2 4 1 3 5
50-0-0-2 | O 2 3 1 4 5
50-0-0-3 | O 2 3 1 4 5
50-0-3-1 0 1 2 3 4 5
50-0-3-2 | O 1 2 3 5 4
50-0-3-3 | O 1 2 3 4 5
50-2-0-1 0 2 3 1 4 5
50-2-0-2 | O 2 3 1 4 5
50-2-0-3 | O 2 3 1 4 5
50-2-3-1 0 1 2 5 4 3
50-2-3-2 | 0O 1 2 4 5 3
50-2-3-3 | O 1 2 4 5 3
Table 6.13: Ranking for different population sizes and acceptance policies.

144

6. Experiments and Discussions.

RS | Direct4-s:100 | Direct4-s:200 | Direct4-s:400 | Dupli-1 | Dupli-2
30-0-0-1 | - 78 62 91 96 99
30-0-0-2 | - 39 54 94 91 99
30-0-0-3 | - 37 76 92 97 99
30-0-3-1 | - 9 61 63 64 99
30-0-3-2 | - 19 40 43 67 99
30-0-3-3 | - 22 41 79 62 99
30-2-0-1 | - 41 89 95 93 97
30-2-0-2 | - 46 80 92 94 98
30-2-0-3 | - 65 82 95 92 98
30-2-3-1 | - 23 52 82 73 83
30-2-3-2 | - 8 64 78 62 99
30-2-3-3 | - 23 63 74 90 99
40-0-0-1 | - 24 42 0 94 99
40-0-0-2 | - 12 64 0 97 99
40-0-0-3 | - 35 59 0 90 99
40-0-3-1 | - 42 45 66 73 99
40-0-3-2 | - 40 34 64 56 99
40-0-3-3 | - 12 34 63 67 99
40-2-0-1 | - 33 73 88 96 99
40-2-0-2 | - 18 41 94 88 99
40-2-0-3 | - 27 48 86 96 99
40-2-3-1 | - 41 27 74 76 99
40-2-3-2 | - 1 24 67 52 99
40-2-3-3 | - 14 18 64 64 99
50-0-0-1 | - 41 58 0 81 99
50-0-0-2 | - 17 53 0 94 99
50-0-0-3 | - 24 40 0 93 99
50-0-3-1 | - 28 47 67 75 99
50-0-3-2 | - 24 56 68 68 99
50-0-3-3 | - 34 35 67 74 99
50-2-0-1 | - 8 48 0 87 99
50-2-0-2 | - 30 44 0 94 99
50-2-0-3 | - 62 39 0 84 99
50-2-3-1 | - 6 46 62 55 99
50-2-3-2 | - 5 47 59 59 99
50-2-3-3 | - 6 47 71 65 99

145

Table 6.14: When the best solution is found (in % of 10 minutes) for different
population sizes and acceptance policies.

6. Experiments and Discussions. 146

6.1.3 GA with repair algorithm.

In this section, a GA is coupled with a repair algorithm 5. In their original form,
GAs are regarded as an efficient tool for detecting promising regions in large solu-
tion spaces. However, they might not be well equipped for climbing these promising
peaks. Rather than merely exploring the search space, an efficient algorithm also
needs to perform some sort of local improvement or repair. The association “re-
pair algorithm and GA” might provide a better balance between exploration and
exploitation; the GA explores the search space and the repair algorithm performs

a local search in the neighbourhood of the solutions provided by the GA.

This hybrid algorithm follows the same cycle as the previous steady-state GAs.
However, once the crossover operator has generated a new solution, this solution
is transferred to the repair algorithm. Once the repair algorithm has completed its

task, the newly modified solution is finally inserted in the population.

The main objective of the repair algorithm is to improve the quality of the schedules.

This can be achieved in two different ways:

1. Reduce the total distance travelled by the engineers.

2. Reduce the amount of work not done. This option provides the best scope
for improvement. A reduction in work not done will generate a significant

reduction of cost.

The repair algorithm, adopted in this study, works as follows: first, the VRP is
viewed as a set of independent TSPs and a tour improvement heuristic [BRIN94]
is used to rearrange the different tours. The main motivation here, is not a mere
reduction of travel, rather the main concern is to rearrange the tours, so that each

engineer spends a minimum time travelling and a maximum time working. Once

50bserve that a repair algorithm is already implemented in each direct crossover. The repair
algorithm, presented in this section, is a more complex algorithm.

6. Experiments and Discussions. 147

this first stage is completed, the repair algorithm attempts to insert unallocated
jobs in the schedule where the tour improvement heuristic has created some empty

slots.

In this section, Direct4-s:200, Dupli-1 and Dupli-2 are coupled with the repair
algorithm. Table 6.15 presents the final costs of six algorithms: Direct4-s:200,
Direct4-s:200 with repair, Dupli-1, Dupli-1 with repair, Dupli-2 and finally Dupli-2

with repair.

Table 6.16 gives the ranking of these algorithms over the different problems; this
information is summarised in Figure 6.6 which gives the average, the minimum and
the maximum scores for each algorithm over the entire set of problems. In this
case, one algorithm can score a maximum of 5 points and a minimum of 0 points

for a given problem.

Algorithm average | min | max
Direct4-5:200 1.38 0 5
Direct4-5:200 2.63 S

+ repair

Dupli-1 2.75 1 5
Dupli-1 + repair | 2.66 0 5
Dupli-2 2.22 0 5
Dupli-2 + repair | 3.33 0 5

Figure 6.6: Ranking of GAs with or without repair algorithm.

Overall, the addition of the repair algorithm appears to be beneficial. The average
score of Direct4-s:200 jumps from 1.38 to 2.63 when the repair algorithm is added
(and from 2.22 to 3.33 for Dupli-2). However, Dupli-1 does not seem to benefit
from this association, its average score drops from 2.75 down to 2.66. These last
results should be considered carefully as the difference between the two scores is

minimal.

Before the addition of the repair algorithm, the ranking between the algorithms was

6. Experiments and Discussions. 148

Dupli-1 > Dupli-2 > Direct4-s:200 (where the relation “>” is read as “generally

achieves a better score than”).

The repair algorithm modifies the previous ranking, which now becomes Dupli-2
with repair > Dupli-1 with repair > Direct4-s:200. This modification is due mainly

to the fact that Dupli-1 does not take advantage of the repair algorithm.

Dupli-2 with repair has the best score overall and it performs well on 50-* prob-
lems. However, this algorithm finds relatively poor solutions for under-resourced

problems.

With under-resourced and critical problems, i.e. all 30-* and some 40-* problems,
there is no clear champion. Direct4-s:200 manages 3 pole-positions, Direct4-s:200
with repair also manages 3, Dupli- 1 manages 4, Dupli-1 with repair manages 6,

Dupli-2 manages 1 and finally Dupli-2 with repair also manages 1 pole- position.

The repair algorithm is especially effective on the 50-* problems. Furthermore,
Table 6.15 indicates that the repair algorithm is especially useful when solving
problems with tight technological constraints. This result is quite unexpected.
Indeed, technological constraints limit the possible rearrangements of the different
tours and, thus a high level of technological constraint should reduce the scope for

improvement.

Table 6.17 shows the amount of exploration performed by the different algorithms
in 10 minutes. As expected, the addition of the repair algorithm drastically alters
the computational behaviour of the different algorithms: the number of iterations
performed in 10 minutes drops considerably when the repair algorithm is added. At
each iteration, the repair algorithm rearranges all the tours of the current solutions
and then tries to insert unallocated jobs in the schedule. These two operations
require a significant amount of time, and this overhead means that the GA is
performing fewer iterations. In other words, the hybrid algorithm is doing more

exploitation and less exploration. As a direct consequence, a smaller number of

6. Experiments and Discussions. 149

solutions are visited. However, it also means that each one of these iterations is

likely to generate a better solution.

Finally, Table 6.18 shows for the 6 algorithms when the best solutions were found
(in %) for the different problems. The principal observation is that, when coupled
with a repair algorithm, a GA tends to find its best solution at a later stage. This
is especially true for problems with tight technological constraints. This result
suggests that these hybrid algorithms would also benefit from longer runs. Each
iteration demands more computational effort and 10 minutes is apparently not a

sufficient for the GA to perform sufficient exploration.

In general, the association GA-repair algorithm is fruitful and this is especially true
for over-resourced problems. This hybrid algorithm has a different behaviour from
a “pure 100 %” GA; it performs fewer iterations, i.e. less exploration and more

exploitation. Results suggest that longer runs could be beneficial.

6. Experiments and Discussions.

Direct4-s | Direct4-s | Dupli-1 | Dupli-1 | Dupli-2 | Dupli-2
200 200 repair repair
repair

30-0-0-1 | 526785 553813 535779 | 615070 | 559222 | 609660
30-0-0-2 | 319818 321592 308984 | 393661 | 341434 | 364844
30-0-0-3 | 175831 173961 193840 | 251505 | 201057 | 231668
30-0-3-1 | 374021 348769 301907 | 312679 | 413671 | 377560
30-0-3-2 | 451450 373937 379346 | 361335 | 438829 | 424366
30-0-3-3 | 712334 712298 690690 | 685255 | 744747 | 706887
30-2-0-1 | 582873 584639 645932 | 683744 | 636926 | 696327
30-2-0-2 | 554164 550484 577598 | 595691 | 550580 | 601013
30-2-0-3 | 1380200 | 1396475 | 1387475 | 1419982 | 1387506 | 1430746
30-2-3-1 | 1123114 | 1124798 | 1088868 | 1097834 | 1126788 | 1106827
30-2-3-2 | 851285 806175 802645 | 788203 | 854868 | 851209
30-2-3-3 | 750542 718002 691023 | 669351 | 701913 | 716188
40-0-0-1 | 1249 1177 1240 1224 1150 1100
40-0-0-2 | 1256 1172 1199 1176 1123 1061
40-0-0-3 | 1215 1166 1212 1204 1135 1026
40-0-3-1 | 1450 1380 1416 1378 1402 1352
40-0-3-2 | 1394 1332 1329 1326 1397 1297
40-0-3-3 | 1512 1436 1458 1414 1424 1392
40-2-0-1 | 370864 352730 345682 | 378092 | 342030 | 370829
40-2-0-2 | 1750 1739 1824 1806 9033 1730
40-2-0-3 | 1717 1679 1739 1821 1832 1724
40-2-3-1 | 1960 2003 1845 1863 2042 1950
40-2-3-2 | 1838 1705 1691 1668 1839 1745
40-2-3-3 | 46982 64915 27135 23461 61440 46922
50-0-0-1 | 1276 1246 1289 1297 1139 1179
50-0-0-2 | 1252 1171 1252 1255 1174 1067
50-0-0-3 | 1210 1152 1182 1220 1115 1044
50-0-3-1 | 1513 1429 1447 1422 1423 1360
50-0-3-2 | 1519 1454 1420 1386 1443 1354
50-0-3-3 | 1477 1469 1443 1443 1442 1369
50-2-0-1 | 1628 1566 1589 1598 1527 15634
50-2-0-2 | 1487 1386 1479 1446 1352 1326
50-2-0-3 | 1498 1457 1454 1425 1436 1400
50-2-3-1 | 1771 1675 1700 1642 1725 1583
50-2-3-2 | 1965 1886 1836 1824 1912 1862
50-2-3-3 | 1882 1877 1789 1793 1851 1756

Table 6.15: Effect of repair algorithm - Average final cost.

150

6. Experiments and Discussions.

Direct4-s | Direct4-s | Dupli-1 | Dupli-1 | Dupli-2 | Dupli-2
200 200 repair repair
repair
30-0-0-1 5 3 4 0 2 1
30-0-0-2 4 3 5 0 2 1
30-0-0-3 4 5 3 0 2 1
30-0-3-1 2 3 5 4 0 1
30-0-3-2 0 4 3 5 1 2
30-0-3-3 1 2 4 5 0 3
30-2-0-1 5 4 2 1 3 0
30-2-0-2 3 5 2 1 4 0
30-2-0-3 5 2 4 1 3 0
30-2-3-1 2 1 5 4 0 3
30-2-3-2 1 3 4 5 0 2
30-2-3-3 0 1 4 5 3 2
40-0-0-1 0 3 1 2 4 5
40-0-0-2 0 3 1 2 4 5
40-0-0-3 0 3 1 2 4 5
40-0-3-1 0 3 1 4 2 5
40-0-3-2 1 2 3 4 0 5
40-0-3-3 0 2 1 4 3 5
40-2-0-1 1 3 4 0 5 2
40-2-0-2 3 4 1 2 0 5
40-2-0-3 4 5 2 1 0 3
40-2-3-1 2 1 5 4 0 3
40-2-3-2 1 3 4 5 0 2
40-2-3-3 2 0 4 5 1 3
50-0-0-1 2 3 1 0 5 4
50-0-0-2 1 4 2 0 3 5
50-0-0-3 1 3 2 0 4 5
50-0-3-1 0 2 1 4 3 5
50-0-3-2 0 1 3 4 2 5
50-0-3-3 0 1 2 3 4 5
50-2-0-1 0 3 2 1 5 4
50-2-0-2 0 3 1 2 4 5
50-2-0-3 0 1 2 4 3 5
50-2-3-1 0 3 2 4 1 5
50-2-3-2 0 2 4 5 1 3
50-2-3-3 0 1 4 3 2 5

Table 6.16: Effect of repair algorithm - Ranking of the algorithms.

151

6. Experiments and Discussions.

Direct4-s | Direct4-s | Dupli-1 | Dupli-1 | Dupli-2 | Dupli-2
200 200 repair repair
repair

30-0-0-1 | 8150 3170 4720 2020 4830 2050
30-0-0-2 | 11450 4040 5540 2280 6770 2550
30-0-0-3 | 15900 4830 5870 2530 9260 2810
30-0-3-1 | 37800 9990 32540 8110 37560 8900
30-0-3-2 | 38340 9770 34510 8230 35260 8750
30-0-3-3 | 27140 8760 24410 7280 25350 7560
30-2-0-1 | 6660 2860 3720 1930 4150 1940
30-2-0-2 | 6970 2970 3880 2030 4060 2090
30-2-0-3 | 4100 2010 3000 1560 2990 1560
30-2-3-1 | 18470 7080 17540 6210 17910 6640
30-2-3-2 | 20830 8120 19680 6830 21140 7300
30-2-3-3 | 22380 8920 21990 7350 23280 7890
40-0-0-1 | 27660 7770 9270 4790 72060 7000
40-0-0-2 | 25080 7590 7650 4490 60810 6740
40-0-0-3 | 26550 8040 8550 4640 65450 7260
40-0-3-1 | 89390 14280 45250 11830 150930 | 14630
40-0-3-2 | 85160 13780 42860 10940 153620 | 14570
40-0-3-3 | 83880 14260 49660 11900 153150 | 15100
40-2-0-1 | 11950 4480 6290 3020 8980 3020
40-2-0-2 | 54100 9890 10760 4680 50350 6530
40-2-0-3 | 42580 10280 8830 4590 63510 7630
40-2-3-1 | 99340 17590 62880 13850 151400 | 17240
40-2-3-2 | 92290 16530 55920 12460 149370 | 16340
40-2-3-3 | 80080 156340 72390 12280 83900 14230
50-0-0-1 | 30140 8160 10140 4810 60620 7140
50-0-0-2 | 25650 7740 8040 4650 64610 6530
50-0-0-3 | 25570 6940 9900 4790 57250 7310
50-0-3-1 | 76650 13770 44190 12020 132980 | 14510
50-0-3-2 | 81400 13730 45200 11510 132790 | 14510
50-0-3-3 | 76610 13860 44030 11810 134910 | 14800
50-2-0-1 | 41920 10290 14120 6420 71640 10990
50-2-0-2 | 31950 9800 13300 6100 74980 10270
50-2-0-3 | 30160 9420 14100 6710 84770 10660
50-2-3-1 | 104020 16950 55640 13410 140940 | 16620
50-2-3-2 | 99450 16230 48810 12710 126290 | 16210
50-2-3-3 | 93960 17190 56280 14010 137980 | 17000

Table 6.17: Effect of repair algorithm - Amount of iteration in 10 minutes.

152

6. Experiments and Discussions. 153

Direct4-s | Direct4-s | Dupli-1 | Dupli-1 | Dupli-2 | Dupli-2
200 200 repair repair
repair
30-0-0-1 | 62 94 96 78 99 93
30-0-0-2 | 54 87 91 82 99 97
30-0-0-3 | 76 94 97 88 99 95
30-0-3-1 | 61 84 64 97 99 99
30-0-3-2 | 40 56 67 93 99 99
30-0-3-3 | 41 57 62 95 99 99
30-2-0-1 | 89 92 93 92 97 89
30-2-0-2 | 80 95 94 92 98 96
30-2-0-3 | 82 94 92 95 98 77
30-2-3-1 | 52 65 73 91 83 99
30-2-3-2 | 64 61 62 93 99 99
30-2-3-3 | 63 69 90 86 99 99
40-0-0-1 | 42 87 94 91 99 99
40-0-0-2 | 64 86 97 93 99 96
40-0-0-3 | 59 71 90 90 99 99
40-0-3-1 | 45 60 73 92 99 99
40-0-3-2 | 34 72 56 91 99 99
40-0-3-3 | 34 73 67 91 99 99
40-2-0-1 | 73 94 96 96 99 96
40-2-0-2 | 41 77 88 95 99 99
40-2-0-3 | 48 70 96 97 99 99
40-2-3-1 | 27 67 76 83 99 99
40-2-3-2 | 24 59 52 90 99 99
40-2-3-3 | 18 43 64 90 99 99
50-0-0-1 | 58 75 81 93 99 99
50-0-0-2 | 53 84 94 91 99 99
50-0-0-3 | 40 76 93 95 99 99
50-0-3-1 | 47 74 75 86 99 99
50-0-3-2 | 56 56 68 94 99 99
50-0-3-3 | 35 71 74 85 99 99
50-2-0-1 | 48 80 87 91 99 99
50-2-0-2 | 44 65 94 93 99 99
50-2-0-3 | 39 85 84 88 99 99
50-2-3-1 | 46 75 55 80 99 99
50-2-3-2 | 47 65 59 89 99 99
50-2-3-3 | 47 73 65 86 99 99

Table 6.18: Effect of repair algorithm - When the best solution was found (in % of
10 minutes).

6. Experiments and Discussions. 154

6.2 The 10 minute Beauty Contest.

This section examines and compares the performances of five algorithms; namely,
genetic algorithms (GAs), hill-climbing (HC), random search (RS), simulated an-
nealing (SA) and tabu search (TS) over the entire range of problems. In all trials
the computational resource was limited to 10 SPARCstation IPC minutes per algo-
rithm per problem. Hence, the term 710 minute beauty contest”. The experiments

reported in this section required over 150 hours of computational effort.

The five algorithms were implemented with the following parameters:

o RS used, again, as the reference algorithm. The results for this algorithm are

the same as the results presented in the previous sections.

e Dupli-1 was chosen as the “GA candidate”. Among all the GAs, Dupli-2 with
repair had the best score overall; however, it found relatively poor solutions for
the 30-*-*-* problems. Hence, Dupli-1 was chosen primarily because it finds
slightly better solutions than the other GAs on under-resourced and critical
problems. For information, this GA used the knowledge-based Crossover
#4, the steady-state model and the exponential selection function; it had no
mutation operator and operated with a population of 400 chromosomes. It
accepted duplicates but only during the initial building of the population.
Thereafter, duplicates were rejected. Finally, Dupli-1 was not coupled with
the repair algorithm because of the length of the runs and to allow enough

exploration.

o TS starts its search with an initial random solution created with the schedule-
builder (this is also true for HC and SA). Then, the algorithm iterates. The
move operator, described in the next paragraph, used by TS is common to
the three neighbourhood search techniques. TS explores an entire neighbour-

hood at each iteration. Here, the size of a neighbourhood is n + 1 solutions

6. Experiments and Discussions. 155

where there are n engineers and one conflict-list. In order to create the nth
neighbour, TS takes the current solution and randomly selects a job J; from
the nth engineer’s tour. Then, TS repeatedly selects engineers randomly until
J;i fits in the selected engineer’s tour. Once the n + 1 neighbours have been
generated, the best solution in the neighbourhood (Spes:) becomes the current
solution. However, before being accepted, Spess must satisfy the restriction
criteria which is to forbid moving jobs which have already been moved within
the tabu tenure; here, 125 moves. This obligation is waived when Spe,; meets
the aspiration criteria, i.e. the cost of Spe,; has to be less than the cost of the
best solution found so far. Further information concerning the tuning of TS

is available in [PROS94] and [BRIN94].

e In a similar manner to TS, HC generates n + 1 neighbours at each iteration
around the current solution S§. Once this has been completed, the best solu-
tion Spest 1n the neighbourhood is compared with S. The difference in cost
between S and Spes: is calculated. If Spes; has a lower cost, the move is ac-
cepted and Spess becomes S, otherwise S remains unchanged. This cycle is

then repeated until the time limit is reached.

e SA attempts a given number of moves at a temperature Temp, then reduces
the temperature by a given amount. That i1s, Temp = Temp x R, where R is
the cooling rate. In the experiments performed, the initial temperature was
set to Temp = 10.0, the cooling rate R = 0.992 and the number of successful
moves at a given temperature was 500. These values provided a very smooth
cooling schedule. The search process is terminated after 10 minutes. SA uses

the following rules to accept or reject a neighbourhood solution S':

— if cost(S') < cost(S) then S is accepted as the new current solution.

— if cost(S') > cost(S) then the case is treated in a probabilistic manner.

6. Experiments and Discussions. 156

In this case, the probability of acceptance is given by:
P(Acost) = e~ Temp/A < random(1.0)

where Temp is the control parameter temperature, Acost = cost(Sl) —
cost(S), and random (1.0) generates a random number in the range 0.0
to 1.0, drawn from the uniform distribution. If P(Acost) is greater than
the random number then S’ is accepted as the new current solution,
otherwise it is rejected and the original solution S remains the current

solution.

The move used by TS, HC, and SA works as follows. A Job J; is randomly selected.
This job is then removed from the tour of the relevant engineer £, and an attempt
is made to insert the job into the tour of some other randomly selected engineer
E,, where E, is technically able to do J;. Note that E, may be the conflict-list, i.e.

E, may be the virtual engineer, so long as J; is not compulsory. The move may:

1. increase the number of jobs being done if E, is the conflict-list.

2. modify, i.e. increase or decrease, the total travel by reducing the tour length

of E; and increasing the tour length of E,.

3. decrease the amount of work done if E, is the conflict list (the virtual engi-

neer).

Moreover, if E, is the conflict list, i.e. if the algorithm is moving a job J; from E,
into the conflict-list, the algorithm immediately attempts to move a job J; from
the conflict-list back to engineer E,. Moving J; into the conflict-list will always
generate a large increase in cost, and moving J; back in the schedule will always
generate a large reduction in cost. If job J; has a longer duration than job J;, the
moves will most likely be rejected. Otherwise, the moves will (again, most likely)

be accepted.

6. Experiments and Discussions. 157

Table 6.19 presents the performances of the 5 algorithms over the entire range of
problems and Table 6.20 presents the ranking of the algorithms. Figure 6.7 provides
the average score, the minimum and the maximum for the five algorithms. In this

case, each algorithm can score a maximum of 4 points and a minimum of 0 points.

Algorithm | average | min | max
GA 1.58 1 4
HC 1.91 0 3
RS 0.03 0 1
SA 3.88 2 4
TS 2.58 2 4

Figure 6.7: Ranking of the search techniques for 10 minute runs.

Figure 6.7 shows that SA, with an impressive average score of 3.88, dominates its
opponents; SA is in fact only beaten on two occasions: on the 30-0-3-1 problem
by GA and on the 30-2-3-3 problem by TS. GA performs relatively well on under-
resourced problems; however, it achieves some rather poor results when applied to
over-resourced problems. Typically, GA is only able to beat RS on these problems.
This last remark explains the low score (1.58) of GA. In other words, GA is quite
capable of packing jobs into an under-resourced schedule; however, it cannot reduce
travel as well as the three neighbourhood search techniques. This means that when
the reduction of travel becomes the only scope for improvement, i.e. on over-

resourced problem, GA cannot compete with SA, TS, and HC.

The poor performance of GA on over-resourced problems has a number of causes.
First, the GA adopted for this comparative study, Dupli-1, uses Crossover #4. This
knowledge-based crossover is not recommended for the solution of over-resourced
problems as it might misguide the search (see Subsection 6.1.1). Clearly, a GA
using a random-based crossover (such as Crossover #3) would have achieved better
results for these particular problems. Secondly, in an over-resourced problem, a

significant proportion of the engineers are idle, and have empty tours. In a direct

6. Experiments and Discussions. 158

representation when performing crossover, the GA may inherit many empty tours
and this is of no real value, i.e. each time this happens, the GA is losing one
opportunity of mixing good tours. Finally, once the inheritance phase is completed,
the GA tries to bind each unallocated job to any possible engineer. It might be
a better idea to allocate jobs first to existing tours and then if any job remains

unallocated, consider idle engineers.

While HC is dominated by SA, GA and TS on under-resourced problems, it per-
formed relatively well on over-resourced problems. However, the algorithm finds
it difficult to maintain its level of performance when the level of constraints (both
temporal and technological) increases, and on the 40-0-3-*, 40-2-0-*, 40-2-3-*, 50-2-
3-*, typically HC only manages to beat RS and GA. TS has the second highest score
(2.58) behind SA. Like the other neighbourhood search techniques, TS performs
well on over-resourced problems and also performs fairly well on under-resourced

problems, especially when the level of constraint is significant.

Table 6.21 shows the amount of exploration performed by the five algorithms. The
GA column shows the number of crossovers and the RS column shows the number
of schedules created in 10 minutes. The HC and TS column give the number of
neighbourhoods examined; where a neighbourhood is the number of engineers in
the problem plus one (for the conflict list). Therefore, the 50-* problems have a
larger neighbourhood than the 30-* problems. The SA column gives the number
of temperature reductions. There must be 500 successful moves before the temper-
ature is reduced. Comparisons should be made downwards through the table not

aCross rows.

The five algorithms fall into 3 categories: blind, neighbourhood and knowledge
intensive techniques. RS is a blind technique, which does not use the history of the

search in any way © and creates and evaluates a new solution from scratch at each

6The exception being that RS compares the current solution with the best solution found so
far.

6. Experiments and Discussions. 159

iteration. These two operations are extremely expensive in terms of computational
effort and hence, RS can only visit a limited number of points in the search space.
HC, SA, and TS are neighbourhood techniques. When generating new solutions
these techniques only need to generate a simple move, i.e. the deletion of a job
from an engineer’s tour and the addition of that same job to the tour of another
engineer, and evaluate the effect of that simple move. These two operations are
relatively inexpensive and HC, SA, and TS can explore a large number of points in

the search space (these points might be quite similar to each other).

Compared to the four other techniques, GA is a knowledge intensive technique
which attempts to exploit the information, i.e. the genetic material, present in
a pool of candidate-solutions. The algorithm combines two solutions into a child
and evaluates that child. These two operations are a few orders of magnitude
more expensive than the operations performed by HC, SA, and TS. Therefore, GA
performs far fewer iterations, i.e. less exploration but more exploitation, than the

three neighbourhood techniques.

When creating the child, GA does not have to re-schedule the entire solution, parts
of both parents are inherited without any alteration. Therefore, GA performs more
iterations than RS. Moreover, more exploration takes places over problems with
high specialisation. This phenomenon is observed with the five algorithms. Also,
when moving from under-resourced to over-resourced, the five algorithms performed

significantly more iterations.

Table 6.22 shows when the different algorithms find their best solution (in %) over
the entire set of problems. When moving from under-resourced to over-resourced
problems, the different algorithms find their best solution earlier in the 10 minutes;
they also find their best solution earlier when applied to problems with high spe-
cialisation. Clearly, on these two classes of problems, the algorithms are performing

more iterations and reach their best solutions more rapidly. In general, GA finds

6. Experiments and Discussions. 160

its best solution at a later stage than the other algorithms 7. This again suggests

that GA could benefit from longer runs.

In conclusion, given 10 minutes, SA is the best technique overall. In an environment
where the algorithm is given only a limited amount of time, SA is a robust technique
which performs well both on over-resourced and under-resourced problems. GA
works fairly well on under-resourced problems; however, it is outperformed by the
neighbourhood search techniques (SA, HC, and TS) on over-resourced problems.
This is due mainly to the fact that GA does not reduce travel as well as SA, HC,
and TS.

"This might be partly due to the fact that GA has to create an initial population before starting
its search

6. Experiments and Discussions.

GA HC RS SA TS

30-0-0-1 | 535779 580803 975696 440246 559202
30-0-0-2 | 308984 399073 775956 258495 348610
30-0-0-3 | 193840 244296 617570 107333 206448
30-0-3-1 | 301907 449678 763409 337981 337968
30-0-3-2 | 379346 498310 815645 350548 379354
30-0-3-3 | 690690 778948 1092715 | 638426 676248
30-2-0-1 | 645932 604391 909188 505374 550357
30-2-0-2 | 577598 561250 772461 465438 492380
30-2-0-3 | 1387475 | 1399526 | 1499448 | 1354369 | 1368904
30-2-3-1 | 1088868 | 1225485 | 1364732 | 1052343 | 1077584
30-2-3-2 | 802645 924950 1154086 | 770189 793561
30-2-3-3 | 691023 760957 909303 697780 672561
40-0-0-1 | 1240 920 2246 768 1157
40-0-0-2 | 1199 897 2231 785 1176
40-0-0-3 | 1212 934 2186 761 1079
40-0-3-1 | 1416 1310 2315 963 1172
40-0-3-2 | 1329 1166 2200 889 1078
40-0-3-3 | 1458 1305 2382 998 1199
40-2-0-1 | 345682 335799 445075 254771 258469
40-2-0-2 | 1824 11894 54407 898 1040
40-2-0-3 | 1739 1109 56334 925 1072
40-2-3-1 | 1845 55402 22329 1155 1218
40-2-3-2 | 1691 1320 2279 1021 1056
40-2-3-3 | 27135 157962 191368 13802 46245
50-0-0-1 | 1289 990 2313 818 1248
50-0-0-2 | 1252 900 2235 817 1170
50-0-0-3 | 1182 825 2234 770 1097
50-0-3-1 | 1447 1176 2276 941 1216
50-0-3-2 | 1420 1218 2365 974 1199
50-0-3-3 | 1443 1166 2325 972 1172
50-2-0-1 | 1589 1067 2184 897 1080
50-2-0-2 | 1479 875 2107 718 971
50-2-0-3 | 1454 967 2119 826 1010
50-2-3-1 | 1700 1244 2184 1000 1079
50-2-3-2 | 1836 1374 2354 1136 1189
50-2-3-3 | 1789 1304 2385 1109 1154

Table 6.19: 10 minute runs - Average final cost.

161

6. Experiments and Discussions. 162

30-0-0-1 | 3 1 0 4 2
30-0-0-2 | 3 1 0 4 2
30-0-0-3 | 3 1 0 4 2

30-0-3-1 | 4 1
30-0-3-2
30-0-3-3 | 2 1 0 4 3

N

w
—_
ol o
=~
(%]

30-2-0-1 | 1 2 0 4 3
30-2-0-2 | 1 2 0 4 3
30-2-0-3 | 2 1 0 4 3

30-2-3-1 | 2 1 0 4 3
30-2-3-2 | 2 1 0 4 3
30-2-3-3 | 3 1 0 2 4

40-0-0-1 | 1 3 0 4 2
40-0-0-2 | 1 3 0 4 2
40-0-0-3 | 1 3 0 4 2

40-0-3-1 | 1 2 0 4 3
40-0-3-2 | 1
40-0-3-3 | 1 2 0 4 3

N
o
=~
w

40-2-0-1 | 1 2 0 4 3
40-2-0-2
40-2-0-3 | 1 2 0 4 3

,_.
o
=~
w

40-2-3-1 | 2 0 1 4 3
40-2-3-2
40-2-3-3 | 3 1 0 4 2

,_.
=~
w

50-0-0-1 | 1 3 0 4 2
50-0-0-2 | 1 3 0 4 2
50-0-0-3 | 1 3 0 4 2

50-0-3-1 | 1 3 0 4 2
50-0-3-2 | 1 2 0 4 3
50-0-3-3 | 1 3 0 4 2

50-2-0-1 | 1 3 0 4 2
50-2-0-2 | 1 3 0 4 2
50-2-0-3 | 1 3 0 4 2

50-2-3-1 | 1 2 0 4 3
50-2-3-2 | 1
50-2-3-3 | 1 2 0 4 3

N
o
=~
w

Table 6.20: 10 minute runs - Ranking of the search techniques.

6. Experiments and Discussions.

GA

HC

RS

SA

TS

30-0-0-1

4720

3240

1400

190

3140

30-0-0-2

5540

3280

1400

190

3100

30-0-0-3

5870

3200

1400

190

3100

30-0-3-1

32540

10840

4400

660

10400

30-0-3-2

34510

10520

4400

652

10120

30-0-3-3

24410

11040

4600

648

10360

30-2-0-1

3720

3560

1400

190

3200

30-2-0-2

3880

4040

1420

230

5120

30-2-0-3

3000

7440

1500

458

6760

30-2-3-1

17540

12600

4680

758

12360

30-2-3-2

19680

11240

4800

626

10240

30-2-3-3

21990

14960

5200

930

14600

40-0-0-1

9270

17840

1400

1228

20180

40-0-0-2

7650

19120

1400

1272

21260

40-0-0-3

8550

17320

1400

1200

19600

40-0-3-1

45250

22560

4500

1548

22040

40-0-3-2

42860

22080

4500

1506

21120

40-0-3-3

49660

23240

4700

1544

21540

40-2-0-1

6290

11560

1500

1162

10720

40-2-0-2

10760

11640

1500

1240

12940

40-2-0-3

8830

12600

1500

1186

13060

40-2-3-1

62880

18600

4600

1592

18340

40-2-3-2

55920

19000

4600

1556

17920

40-2-3-3

72390

16320

4200

1386

15220

50-0-0-1

10140

23200

1400

1586

22540

50-0-0-2

8040

24400

1400

1588

22920

50-0-0-3

9900

25640

1400

1610

23700

50-0-3-1

44190

28040

4200

1842

23940

50-0-3-2

45200

27120

4300

1858

23300

50-0-3-3

44030

26240

4400

1914

23100

50-2-0-1

14120

18720

1500

1758

16000

50-2-0-2

13300

24560

1400

1802

19960

50-2-0-3

14100

20720

1500

1748

17320

50-2-3-1

55640

22520

4500

2038

19640

50-2-3-2

48810

21040

4000

2006

18700

50-2-3-3

56280

22600

4800

2050

20240

Table 6.21: 10 minute runs - Amount of exploration in 10 minutes.

163

6. Experiments and Discussions.

GA | HC | RS | SA | TS
30-0-0-1 | 96 86 | - 95 86
30-0-0-2 | 91 72 | - 93 83
30-0-0-3 | 97 72 | - 91 70
30-0-3-1 | 64 21 | - 46 58
30-0-3-2 | 67 7 - 50 65
30-0-3-3 | 62 21 | - 52 81
30-2-0-1 | 93 51 | - 72 74
30-2-0-2 | 94 20 | - 100 | 81
30-2-0-3 | 92 53 | - 85 69
30-2-3-1 | 73 13 |- 46 81
30-2-3-2 | 62 6 - 45 60
30-2-3-3 | 90 7 - 38 64
40-0-0-1 | 94 41 | - 61 15
40-0-0-2 | 97 65 | - 50 24
40-0-0-3 | 90 73 | - 47 39
40-0-3-1 | 73 23 | - 35 38
40-0-3-2 | 56 50 | - 31 46
40-0-3-3 | 67 70 | - 28 54
40-2-0-1 | 96 94 | - 47 | 48
40-2-0-2 | 88 15 | - 41 47
40-2-0-3 | 96 27 | - 51 54
40-2-3-1 | 76 23 | - 26 70
40-2-3-2 | 52 36 | - 28 66
40-2-3-3 | 64 16 | - 31 86
50-0-0-1 | 81 59 | - 37 15
50-0-0-2 | 94 63 | - 43 22
50-0-0-3 | 93 63 | - 70 20
50-0-3-1 | 75 49 | - 29 24
50-0-3-2 | 68 7 - 26 33
50-0-3-3 | 74 74 |- 27 36
50-2-0-1 | 87 19 | - 30 24
50-2-0-2 | 94 24 | - 43 17
50-2-0-3 | 84 16 | - 38 16
50-2-3-1 | 55 27 | - 22 46
50-2-3-2 | 59 31 | - 26 51
50-2-3-3 | 65 45 | - 21 41

Table 6.22: 10 minute runs - When the best

164

solution is found (in % of 10 minutes).

6. Experiments and Discussions. 165

6.3 CPU Intensive Experiments

This section analyses the performance of GA, HC, RS, SA, and TS when these
algorithms are given significantly more time to explore the search space. The main
motivation here is to check if the algorithms can benefit from these longer runs.
Furthermore, these intensive runs provide the opportunity to verify the quality
of the solutions provided by the short runs, i.e. is the difference between the
solutions provided by the short runs and the intensive runs significant? Is the extra

computational effort worthwhile?

RS and TS remain unchanged for these runs; their parameters keep the same values
as in Section 6.2. The GA candidate is still Dupli-1 but it has a larger population
of 2000 chromosomes rather than 400. For SA, the number of successful moves at

a given temperature is set to 12000 moves instead of 500.

These intensive runs were performed on a DEC Alpha 3000/300 and each algorithm
was given one hour on each problem. As previously, the algorithm was applied 5
times to each problem. Hence, to apply a single algorithm to all 36 problems took
approximately 180 hours. These intensive runs were performed with 5 algorithms
and took approximately 900 hours which is equivalent to 3600 hours on a SPARC-
station IPC.

Algorithm | average | min | max | average - 10 min
GA 2.27 1 4 1.58
HC 1.55 0 3 1.91
RS 0.30 0 1 0.03
SA 3.6 2 4 3.88
TS 2.25 1 4 2.58

Figure 6.8: Ranking of the search techniques for 4 hour runs.

Table 6.23 presents the performances of the 5 algorithms over the entire range of

6. Experiments and Discussions. 166

problems and Table 6.24 presents the ranking of the algorithms. Figure 6.8 provides
the average, the minimum and the maximum scores for the five algorithms. In this

case, each algorithm can score a maximum of 4 points and a minimum of 0 points.

Table 6.23 shows that GA, RS, SA, and TS use the extra time to improve their re-
sults significantly. For the short runs, the ranking between the different algorithms
was SA > TS > HC > GA > RS. With the intensive runs, this ranking is modified
and becomes SA > GA > TS > HC > RS.

SA remains the best algorithm overall. However, GA now dominates the other
competitors on under-resourced problems and reduces the gap with (SA, HC, and
TS) on over-resourced problems considerably. In fact, GA and RS are the only two
techniques which improve their average score. GA goes from 1.58 up to 2.27 and
RS goes from 0.03 up to 0.3. HC goes from 1.91 down to 1.55, SA goes from 3.88
down to 3.6 and TS goes from 2.58 down to 2.25.

Table 6.25 shows the amount of exploration performed by the different algorithms.
A comparison between Table 6.25 and Table 6.21 (which reports the same data for
the short runs) underlines the considerable effort behind each intensive run. For
instance, on the 30-0-0-1 problem, RS visited 33030 solutions whereas in the short
run, it only had time to generate 1400 solutions. GA performed 109256 crossovers
(only 4720 for the short run), HC performed 79200 cycles (only 3240 for the short
run) and TS did 60600 cycles (only 3140 for the short run). This information is

summarised in Figure 6.9.

Runs GA HC RS TS
short 4720 3240 | 1400 | 3140
intensive | 109256 | 79200 | 33030 | 60600

Figure 6.9: Computational effort - Comparison between short and intensive runs.

The situation is more delicate for SA. The algorithm is performing fewer iterations

6. Experiments and Discussions. 167

during these intensive runs. For instance, on the 30-0-0-1 problem, SA performs
142 iterations whereas in the short run, it managed 190 iterations. This is due to
the fact that the number of successful moves at a given temperature went from 500

for the short runs up to 12000 for the intensive runs.

In other words, the main difference for SA between short and intensive runs is that
the algorithm is given much more time to reach equilibrium at each temperature;
the function used to reduce the temperature is identical in both sets of runs. Some
theoretical results (see Subsection 3.3.3) suggest that this annealing schedule might
not be the best option, i.e. there is no requirement to attain equilibrium at a
succession of reducing temperatures, rather the main condition for a good annealing

schedule is for the cooling to be carried out sufficiently slowly.

A number of alternatives for the annealing schedule can be envisaged. For in-
stance, SA could perform only one iteration at each temperature and reduce the
temperature very slowly or, at the other end of the spectrum, SA could keep the
temperature constant during the search. In this case, SA would be a random search
which accepts uphill moves with the probability ezp(—CA) and C is kept constant

during the search.

In conclusion, there is no overall champion among the five algorithms which all ben-
efit from the longer runs. Typically, GA takes advantage of the extra computational
effort to provide the best solutions on under-resourced problems. Again, SA is a
robust technique which performs well both on under-resourced and over-resourced

problems.

6. Experiments and Discussions.

GA HC RS SA TS
30-0-0-1 | 418611 744850 950471 389783 | 433014
30-0-0-2 | 191802 521610 747099 193632 240439
30-0-0-3 | 91073 372232 585131 107356 114528
30-0-3-1 | 255015 597360 720178 314549 273084
30-0-3-2 | 283818 618848 770597 | 337931 312673
30-0-3-3 | 611376 924910 1060289 | 609596 605968
30-2-0-1 | 483638 757418 862319 | 489156 | 499902
30-2-0-2 | 485557 | 649270 740012 | 449042 | 459864
30-2-0-3 | 1327704 | 1520217 | 1483255 | 1339915 | 1345469
30-2-3-1 | 1016668 | 1382046 | 1314405 | 1041505 | 1054138
30-2-3-2 | 725090 1185889 | 1112688 | 750395 739479
30-2-3-3 | 608013 915757 | 846271 641898 645515
40-0-0-1 | 914 857 2203 696 1095
40-0-0-2 | 872 811 2186 687 1146
40-0-0-3 | 843 738 2136 671 1053
40-0-3-1 | 1122 1006 2245 868 1114
40-0-3-2 | 1090 1063 2148 821 1022
40-0-3-3 | 1156 1042 2341 913 1150
40-2-0-1 | 271441 557247 | 416225 238547 | 233278
40-2-0-2 | 1350 74777 27472 807 924
40-2-0-3 | 1312 91005 20370 853 1004
40-2-3-1 | 1556 55287 2494 1063 1085
40-2-3-2 | 1484 13784 2196 953 981
40-2-3-3 | 1733 278488 148155 1084 1164
50-0-0-1 | 945 849 2248 727 1175
50-0-0-2 | 895 750 2163 714 1163
50-0-0-3 | 862 719 2171 673 1122
50-0-3-1 | 1161 1030 2234 876 1176
50-0-3-2 | 1139 1033 2284 905 1158
50-0-3-3 | 1150 965 2260 889 1116
50-2-0-1 | 1260 919 2151 883 1063
50-2-0-2 | 1073 784 2032 699 962
50-2-0-3 | 1169 904 2074 818 999
50-2-3-1 | 1377 1092 2141 939 971
50-2-3-2 | 1561 10286 2333 1055 1099
50-2-3-3 | 1498 1271 2337 1028 1061

Table 6.23: 4 hour runs - Average final cost.

168

6. Experiments and Discussions. 169

30-0-0-1 | 3 1 0 4 2
30-0-0-2 | 4 1 0 3 2
30-0-0-3 | 4 1 0 3 2
30-0-3-1 | 4 1 0

30-0-3-2 | 4 1 0 2 3

30-0-3-3 | 2 1 0 3 4

30-2-0-1 | 4 1 0 3 2
30-2-0-2 | 2 1 0 4 3
30-2-0-3 | 4 0 1 3 2

30-2-3-1 | 4 0 1 3 2
30-2-3-2 | 4 0 1 2 3
30-2-3-3 | 4 0 1 3 2

40-0-0-1 | 2 3 0 4 1
40-0-0-2 | 2 3 0 4 1
40-0-0-3 | 2 3 0 4 1

40-0-3-1 | 1 3 0 4 2
40-0-3-2 | 1 2 0 4 3
40-0-3-3 | 1 3 0 4 2

40-2-0-1 | 2 0 1 3 4
40-2-0-2 | 2 0 1 4 3
40-2-0-3 | 2 0 1 4 3

40-2-3-1 | 2 0 1 4 3
40-2-3-2 | 2 0 1 4 3
40-2-3-3 | 2 0 1 4 3

50-0-0-1 | 2 3 0 4 1
50-0-0-2 | 2 3 0 4 1
50-0-0-3 | 2 3 0 4 1

50-0-3-1 | 2 3 0 4 1
50-0-3-2 | 2 3 0 4 1
50-0-3-3 | 1 3 0 4

50-2-0-1 | 1 3 0 4 2
50-2-0-2 | 1 3 0 4 2
50-2-0-3 | 1 3 0 4 2

50-2-3-1 | 1 2 0 4 3
50-2-3-2
50-2-3-3 | 1 2 0 4 3

o
—_
=~
w

Table 6.24: 4 hour runs - Ranking of the search techniques.

6. Experiments and Discussions.

GA

HC

RS

SA

TS

30-0-0-1

109256

79200

33030

142

60600

30-0-0-2

157880

79120

33170

138

66200

30-0-0-3

229604

75920

33020

138

65200

30-0-3-1

262948

278480

108310

458

230400

30-0-3-2

291840

281040

107060

516

214800

30-0-3-3

244428

282000

111510

412

231200

30-2-0-1

97960

90560

33650

134

69600

30-2-0-2

103164

127600

34430

224

126800

30-2-0-3

54596

210080

36640

370

149000

30-2-3-1

193360

415840

114750

654

256000

30-2-3-2

228748

371840

117620

530

232600

30-2-3-3

224460

432960

128630

762

318600

40-0-0-1

365912

395680

32500

908

535800

40-0-0-2

362880

418560

33060

1036

565200

40-0-0-3

356580

374000

32750

932

527000

40-0-3-1

439100

512480

109030

1196

589200

40-0-3-2

447996

468080

109530

1180

563800

40-0-3-3

432684

533840

115310

1210

574600

40-2-0-1

174048

260160

35370

930

285000

40-2-0-2

409540

265760

35040

1000

347400

40-2-0-3

441248

240000

35090

952

332600

40-2-3-1

559396

444240

112230

1176

491200

40-2-3-2

515452

408720

112340

1132

471800

40-2-3-3

537916

409600

102640

1052

414800

50-0-0-1

361508

502400

32170

1216

583000

50-0-0-2

351576

531840

32140

1242

589200

50-0-0-3

326192

550880

32500

1278

612800

50-0-3-1

435360

622560

102480

1374

609000

50-0-3-2

442340

599040

104440

1382

622800

50-0-3-3

446072

603680

107210

1334

628400

50-2-0-1

477620

414800

34920

1324

426400

50-2-0-2

483448

540000

33800

1362

496600

50-2-0-3

479948

398560

34690

1306

425400

50-2-3-1

543000

513520

107820

1466

522200

50-2-3-2

546856

453040

96760

1456

489200

50-2-3-3

523348

521280

116650

1426

537800

Table 6.25: 4 hour runs - Amount of exploration.

170

Chapter 7

Conclusion.

This chapter summarises the work that has been presented, discusses areas of future

work, and finally concludes this thesis.

7.1 Summary.

The growing complexity of telecommunications networks means that their manage-
ment is also becoming more and more complicated. Due to several factors, e.g.
amount of data, inconsistent and incoherent data, and time constraints, Artificial
Intelligence techniques will be essential in order to carry out some of the manage-

ment functions.

This thesis focuses on one particular aspect of network management: resource

management. The key-motivation behind this work is two-fold:

o It is essential for the telecommunications operators to solve their resource

allocations problems in an efficient manner.
e Many classical techniques are inadequate because, due to the sheer size of the

171

7. Conclusion. 172

problems encountered, they cannot provide an answer in reasonable time.

Genetic algorithms have been proposed as a possible alternative. However, tradi-
tional indirect GAs are not suitable in many cases because they are too slow or too
disruptive. To answer these limitations, this thesis proposes a new class of GAs
which works directly on the chromosomes. In other words, the solutions are the

chromosomes, the GA is no longer working with an indirect representation.

This thesis offers three large empirical studies which observe the performance of
these direct GAs, and compare their performance against those of other search
techniques in the context of workforce management. A set of thirty six problems
is used for these observations and comparisons; each problem is radically different
from the rest. More precisely, the effects of three parameters have been studied:
work load, time windows, and specialisation constraints. A problem can be under-
resourced, critically-resourced, or over-resourced, time windows can either be loose
or tight, and specialisation constraints can also be either loose or tight. These three
parameters and their possible values mean that there are twelve different configu-
rations, and for each configuration, there are three randomly generated problems.
Hence, the thirty six problems. Empirical evidence shows that work load is a key-
parameter, which decides how the algorithms perform, i.e. determines whether all

the work will be done or some will remain undone.

The two chromosomal representations, direct and indirect, are compared, and it
is shown that the direct GAs totally dominate the indirect GA, both in terms of
quality of solution and amount of exploration. The average costs achieved by the
indirect GA are in fact remarkably similar to those achieved by RS and clearly, the
association of order-based GA and schedule-builder is not suitable for this type of
problem; the indirect GA is not guiding its search properly. In general, the steady

state model performs better than the generational model.

When the problem under study is over-resourced, a more adaptable random-based

7. Conclusion. 173

crossover operator should be chosen; however, for an under- or critically-resourced
problem, the knowledge-based crossover which tries to maximise the amount of work
done should be preferred. This study also shows that increasing population size and
diversity helps the search process, but maintaining diversity within the population
is no easy task. As the population size increases, the probability of producing
duplicates increases, and the efforts to produce novel chromosomal material can
be expensive. This also suggests that producing the initial population via a smart
schedule-builder may lead to a loss of diversity and a poor GA performance. A
possible alternative may be to seed the initial population, the algorithm will then
have access to a limited set of above-average solutions and at the same time, the

level of diversity will not be too severely affected.

Then, the GA is equipped with a repair algorithm. For each child created, the
repair algorithm uses a TSP heuristic to improve the different tours and then tries
to insert un-allocated jobs in the schedule, where the heuristic has created some
empty slots. In general, this association of GA and repair algorithm is fruitful,
particularly on over-resourced problems. Due to the increased computational effort,

some exploration is lost. This suggests that GAs may benefit from extended runs.

In the 10 minute beauty contest, SA dominates the other competitors, performing
well on all problems. GA works fairly well on under-resourced problems; however,
it is outperformed by HC, SA, and TS on over-resourced problems; mainly because
GA cannot "reduce travel” as well as its three opponents. Again, the results suggest

that GA would benefit from extended runs.

The CPU intensive experiments (4 hour CPU instead of 10 minutes) show that
indeed GA benefits from more CPU time, and on under-resourced problems, GA
generally outperforms all of the other techniques. Again, SA is a robust technique
which performs well both with under-resourced and over-resourced problems. The
fact that SA is more adaptable than GA should not be unexpected. The internal

algorithm of GA has been designed to maximise the amount of work done, this

7. Conclusion. 174

complex internal algorithm is not as adaptable as the simpler SA.

On a more general note, when comparing search techniques, the amount of time
spent implementing them should be taken into consideration. In this study, the
implementation and the tuning of SA took less time - several weeks less - than
for GA. Hence, with respect to that particular criterion, SA is again dominant.
Moreover, HC, RS, SA and TS all require much less memory than GA. While these
four algorithms can work with a minimum of two solutions, i.e. the current solution
and the best solution, GA requires an entire population. This situation can only

become worse when the size of the problem increases.

Therefore, from this study, it appears that in many cases, SA should be preferred.
For instance, this study advocates SA when the algorithm is only given a limited

amount of time, i.e. in this case, 10 minutes, or when the VRP is over-resourced.

On the other hand, GA with a knowledge-based crossover should be adopted - when
CPU time is available - for the solution of under-resourced VRPs. Out of the five
search techniques studied in this thesis, direct GA is the most knowledge-based.
On hard problems, and when given enough time, GA uses this extra information
to provide the best solutions. This suggests that direct GA, using the correct
parameters (e.g. cost, profit) to preserve the best parts of the solutions, could be
used to solve highly constrained problems. SA, and also TS, would be preferable
for lightly constrained problems.

7.2 Future work.

This work can now proceed in a number of ways:

e Apply stochastic techniques to other more telecommunications-oriented problem-

domains

7. Conclusion. 175

Consider several objective functions rather than only one

e Consider dynamic problems rather than static problems

Consider a distributed and cooperative approach

Integrate the search algorithms with a graphical user interface

7.2.1 Stochastic techniques and other problem-domains.

First, it may be preferable to mention where these stochastic techniques will not be
of any use. At the lowest levels in the management hierarchy, Al techniques will be
used on-line in order to accelerate the control process and reduce human interven-
tion. This will not be achieved with GA, HC, RS, SA or TS. These techniques are
iterative and thus, they cannot be considered for such fast control tasks. Rather,
neural networks may be the answer with their parallel architecture and hardware

implementations.

Stochastic techniques will be in demand at the highest levels in the management
hierarchy, where they will be used to solve different classes of resource allocation
problems: not only work force management problems but also frequency allocation
problems, design and dimensioning problems, or virtual path management problems

in ATM networks.

For instance, a heuristic algorithm has been proposed to solve the virtual path
management problem [LOGO92]. This suggests that stochastic techniques such as
GA or SA could also be applied to this particular problem.

The next paragraphs define the virtual path management problem and show how

stochastic techniques could be used to tackle this particular problem.

ATM is the multiplexing and switching technology adopted by ITU-TSS for the fu-
ture Broadband Integrated Services Digital Network (BISDN). ATM is a connection-

7. Conclusion. 176

oriented technology, i.e. no information may be transferred between the users until
a connection is established. Such a connection in ATM is referred to as a virtual
channel (VC). In turn, these VCs are grouped into virtual paths (VPs). To be
precise, a VP is a bundle of VCs that have the same end-points. Virtual paths

provides a flexible logical network on top of the physical network.

Virtual path management is responsible for creating, maintaining, releasing, and
modifying the network of virtual paths. It becomes necessary to modify the ex-
isting virtual paths when some of them experience unacceptably high levels of call

rejection. Typically, two strategies can be used:

o If only a small modification is required, then only the bandwidths of the VPs
are modified. This method is called bandwidth re-allocation. The virtual
path manager re-allocates dynamically the bandwidth among the different

paths.

o If a larger modification is necessary, the routes of the VPs also have to be

modified. It then becomes a routing problem.

These two functions - bandwidth re-allocation and routing - can be performed at the
network level by a central operations system. This operations system collects traffic
load and VP (bandwidths and routes) information for the entire network, applies a
heuristic to this information and generates the appropriate control actions. Then,
the new routing tables and/or the new bandwidth allocations are down-loaded to
the different nodes of the network. Stochastic techniques working as meta-heuristics
could be associated with this heuristic in order to guide its search and improve its

performance.

7. Conclusion. 177

7.2.2 The objective function is a parameter.

As already mentioned in Section 3.1, The objective function plays an essential
part in the search by judging the quality of the candidate solutions and hence, by
guiding the search process in its exploration. Management problems can have many
- possibly conflicting - objectives: minimise the worst blocking probability, maintain
fairness, balance load, maximise throughput, maintain robustness, minimise delays.
Therefore, a future study should consider the objective function as a parameter and

study its effects on the different algorithms.

7.2.3 Dynamic problems.

The techniques presented in this thesis were designed to tackle static problems;
they do not respond to changes in the environment. Different events may occur
within a dynamic environment, such as the modification or deletion of a job, the

addition of a resource. A scheduling system must address these different situations.

Solving a dynamic problem can be regarded as solving a static problem of the same
class, many times in succession. Hence, a dynamic algorithm would have to solve
a succession of complex resource allocation problems. Rather than starting from
scratch all the time, the ideal technique would be to repair the current solution
and make it consistent with the new problem. Moreover, the solutions should be
made robust so that, when a modification in the environment occurs, the solution

requires little repair [DRUM92].

7.2.4 A distributed and cooperative approach.

Here, the problem is no longer solved by a single agent, rather the problem is

given to a number of agents; each agent is able to solve the problem entirely on

7. Conclusion. 178

its own. Agents can communicate during the search. Once an agent has found a
good solution, the solution is transferred to the other agents which can use this
information to guide and direct their search in the most promising areas of the
search space !. The decision to adopt such a distributed and cooperative approach

could bring many benefits:

1. Clearwater et al. [CLEA91] report that a set of cooperative agents solving
a common cryptarithmetic problem ? can achieve a combinatorial implosion,
i.e. a super-linear speed-up with respect to the number of agents. This speed-
up is due to the cooperation between the agents and the specific nature of
cryptarithmetic problems. In the context of VRPs, a distributed system might
not achieve such a formidable speed-up. An important objective for future
experiments will be to determine if (as expected) cooperation among, say, n
agents enables a faster search than n individual agents working separately.
Future experiments should also examine the effects of different communica-
tions strategies. For instance, a distributed system could have a star topology
with a central server controlling the flow of messages between all the agents.
On the other hand, the different agents could be fully connected - or they
could use a ring topology - and be able to communicate without the assis-

tance of a central controller.

2. A problem can be solved from different perspectives. Agents may employ

different algorithms, focus on different objectives ® and hence, come up with

1For example, when a GA receives a solution sent by another agent, this solution is evaluated
and inserted in the local population. If the solution manages an above-average score, it is likely
that this solution will participate to a number of crossover operations. In a sense, this technique
performs the same function as the search intensification module of TS.

2A cryptarithmetic problem can be viewed as a constraint satisfaction problem. A typical
example of such problems is given by the sum DONALD + GERALD = ROBERT. The task is
to find unique digit assignments to each of the letters so that the numbers add up correctly. For
this example, the only solution is A = 4,B=3,D=5E=9,G=1,L =8N =6,0=2,R =
7, T =0.

30bserve that communications between two agents using totally different perspectives may be
meaning]less.

7. Conclusion. 179

radically different answers at the end. Either the system can attempt to
manipulate and integrate these answers or leave the user decide which solution
best suits the problem. Such a system would be more adaptable. In a single-
agent system, if the agent finds a problem hard to solve, there is no alternative
whereas if an agent fails to solve the problem properly in a multi-agent system,

the other agents may be able to provide a better answer.

3. It can also provide an any-time system, i.e. a system which can deliver a
solution at any-time. The agents can solve the problem at different levels of
granularity. Some agents, i.e. the shallow agents, may attempt to provide
fast non-optimal solutions whereas other agents, i.e. the deep agents, may
require more processing but deliver solutions of better quality. With these
multiple levels of reasoning, the overall system can provide an answer at any
time. The quality of this answer increases with time as deep agents terminate
their search. For instance, for the solution of under-resourced problems, such
a system could incorporate GA-based and SA-based agents, the SA-based
agents would provide good quality solutions at the early stages of the search,

and later on, the GA-based agents could provide better solutions.

7.2.5 Integration with a graphical user interface.

Finally, the last step in the development of a complete management system may be

the integration of these different search techniques with a graphical user interface

(GUI).

The management process would be broken into two modules (see Figure 7.1) [CRUT93|:

1. The process module would monitor the state of the network and generate the

appropriate actions.

2. The presentation module would play an essential part by filtering the infor-

7. Conclusion. 180

mation presented to the operator and by allowing the operator to interact

directly with the network.

Observe and react
to network Presentation
information

Apply algorithms
to network Management
information process

Retrieve and effect
network
information

Represent network \ /
information with
state and events

Functional breakdown Information flow

From: "Management and control for giant gigabit networks",
by L.Crutcher and A.A.Lazar, IEEE Network, November 1993.

Figure 7.1: Management system: observation, control, and presentation.

The GUI could follow the Seeheim model* [GREES85], already used in a previous
project [MULL92]. This model divides the interface into three layers: the presen-
tation layer defines the presentation components, the dialogue layer monitors the
dialogue between the user and the application and checks for consistency, and the
application layer receives messages from the dialogue layer and activates the corre-

sponding function of the internal application using a message-passing mechanism.

The operator will be able to view the management problem at different levels of
abstraction, e.g. call, path, physical link and network levels. The use of object-
oriented techniques will give the opportunity to implement a number of sophisti-

cated mechanisms such as direct manipulation and direct observation.

#This model has been employed by the ESPRIT project ”VITAMIN” (VIsualisation sTAn-
dard tools in Manufacturing INdustry) for the development of industrial application-interfaces in
Computer Integrated Manufacturing (CIM).

7. Conclusion. 181

Direct manipulation means that the user is able to manipulate any network ele-
ment directly from his/her terminal by manipulating the graphical object which
represents this network element. The manipulations are translated automatically
into internal function calls by the interface itself and direct observation means that
the information on the screen is automatically updated whenever the internal data
is altered, thus allowing a continuous representation of the data of interest and also
allowing the user to observe immediately the consequences of his/her actions on

the screen.

This GUI equipped with its sophisticated mechanisms will give the opportunity to
the operator to interact in an efficient manner with the internal application and

the physical network.

7.3 Concluding remark.

This thesis has reported and discussed the results of three large empirical studies.
The main objective here was to study how a new class of GAs perform. The
breadth of this study was essential if any useful knowledge was to be gained about
the applicability of stochastic techniques - in, particular, direct GAs - to vehicle

routing problems. A study on a smaller scale would only have distorted the results.

More generally, many Al techniques are still in their infancy and large empirical
studies such as the one provided in this thesis are essential in order to gain a better
understanding of these techniques and how they can be applied to telecommunica-

tions problems.

It cannot be expected that one Al technique will dominate all the other techniques
on all the problems. More likely, each technique will have its own territory. There-
fore, such large empirical studies are essential to define which technique is best for

which class of problem and to be able - for a given problem - to anticipate the

7. Conclusion. 182

behaviour of the different techniques and the quality of their answers.

Bibliography

[ADEN92]

[BAGC91]

[BELLY3]

[BLAN93]

[BODES0]

[BRINO4]

[BRUN93]

B. Adenso-Diaz. Restricted neighbourhood in the tabu search for
the flowshop problem. FEuropean Journal of Operational Research,

62, pages 27-37, 1992.

S. Bagchi, S. Uckum, Y. Miyabe, and K. Kawamura. Exploring
problem-specific recombination operators for job shop scheduling. In

[ICGA91].

E. Bell. Telecommunications: telephony merges with video. IEEFE
Spectrum, January 1993.

J. L. Blanton and R.L. Wainwright. Multiple vehicle routing with

time and capacity constraints using genetic algorithms. In [ICGA93].

A. Boden. The social impact of thinking machines, pages 95-103.
Blackwell, 1990.

C. Brind, C. Muller, and P. Prosser. A study of stochastic search
techniques applied to vehicle routing problems - Part 2. BT report,
University of Strathclyde, June 1994.

R. Bruns. Direct chromosome representation and advanced genetic

operators for production scheduling. In [ICGA93].

183

Bibliography.

[BURKOY1]

[CCITSS]

[CEBUS9)

[CERN85]

[CHAI92]

[CLEAO1]

[CLEVS89]

[CLITS9]

184

P. Burke and P. Prosser. A distributed asynchronous system for
predictive and reactive scheduling. The International Journal for

Artificial Intelligence in Engineering, 6(3), July 1991.

CCITT. Recommendation M.30, principles for a telecommunications
management network. In Blue book, general maintenance principles.

Maintenance of international transmissions systems and telephone

circuits, Volume IV.1, pages 22-61, 1988.

K. Cebulka, M. Muller, and C. Riley. Applications of artificial in-
telligence for meeting network management challenges in the 1990’s.

IEEE Globecom’89.

V. Cerny. Thermodynamical approach to the traveling salesman

problem: an efficient simulation algorithm. Journal of Optimisation

Theory and Applications, 45:41-51, 1985.

B. Chaib-Draa, J. Moulin, R. Mandiau, and G. Millot. Trends in
distributed artificial intelligence. Artificial Intelligence Review, 6(1),
1992.

S.C. Clearwater, B.A. Huberman, and T. Hogg. Cooperative solu-
tion of constraint satisfaction problems. Science, 254:1181-1183, 22
November 1991.

A. Cleveland and S.F. Smith. Using genetic algorithms to schedule
flow shop releases. In [ICGA8Y].

P. Clitherow and G. Fisher. Knowledge based assistance of genetic
search in large design spaces. In IEA/AIE-89: Proceedings of the
Second International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Ezpert Systems, volume 2,
pages 729-734, ACM.

Bibliography.

[COMMO92a]

[COMM92b)

[CONNSS]

[COX91]

[CRUT93]

[DAVI91a]

[DAVI85a]

[DAVI85b]

[DAVI8T]

[DAVI91b]

[DEWESY]

[DIZA8Y]

185

ISS generate info network consortium agreement. Communications

International, December 1992.

AT&T back in the local loop. Communications International, De-

cember 1992.

D.T. Connolly. An improved annealing scheme for the QAP. Euro-
pean Journal of Operational Research, 46:93-100, 1988.

L.A. Cox, L. Davis, and Y. Qiu. Dynamic anticipatory routing in

circuit-switched telecommunications networks. In [DAVI91b].

L. Crutcher and A. Lazar. Management and control for giant gigabit
networks. IEEE Network, pages 62-71, November 1993.

Y. Davidor. Genetic algorithms and robotics: a heuristic strategy
for optimazation. World Scientific Series in Robotics and Automated

Systems (Volume 1). Singapore: World Scientific, 1991.

L. Davis. Applying adaptive algorithms to epistatic domains. In

Proc International Joint Conference on Artificial Intelligence, 1985.
L. Davis. Job shop scheduling with genetic algorithms. In [ICGA85].

L. Davis, editor. Genetic algorithms and simulated annealing. Mor-

gan Kaufmann, 1987.

L. Davis, editor. Handbook of genetic algorithms. Van Nostrand
Reinhold, 1991.

D. de Werra and A. Hertz. Tabu search techniques: a tutorial and
an application to neural networks. OR Spektrum, 11:131-141, 1989.

W.P. Dizard. The coming information age: an overview of technol-

ogy, economics and politics. Longman, third edition, 1989.

Bibliography.

[DRUM92]

[DUBRY3]

[ECON92a]

[ECON92b)

[ECON92¢]

[ECON93a]

[ECON93b)

[ECON93c]

[ECON94]

[EGLE90]

[EMBR0]

186

M. Drummond. Practical approaches to scheduling and planning.
AAAT 1992 Spring Symposium Series Reports, page 26, Al magazine,
Volume 13, No 3, Fall 1992.

S. Dubreuil. Les 100 qui font les telecoms dans le monde. Telecoms

Magazine, November 1993 (in French).

Developing cross-border European telecommunications. The
Economast, (14th, 20th), November 1992 (advertisement feature for

Northern Telecom).

The turning of telecoms. The Economist, (14th, 20th), November
1992.

The big break. The Economaist, (14th, 20th), November 1992.

British Telecom and EDS. The Economist, (6th-12th), February
1993.

Baby Bells and cable TV. The Economaist, (6th, 12th), February
1993.

VISA international, digital credit. The Economist, (25th, 2nd),
September 1993.

SPRINT and EDS, party line. The Economist, (21st, 27th), May
1994.

R.W. Eglese. Simulated annealing: a tool for operational research.

European Journal of Operational Research, 46:271-281, 1990.

C. Embry,A. Manson, and F. Milham. An open management archi-
tecture: OSI/NM forum architecture and concepts. IEEE Network
Magazine, July 1990.

Bibliography.

[ERCA91]

[FAGA93]

[FAIG92]

[FAIRO1]

[FITCO1]

[FOX84]

[GARET9]

[GARI9Z|

[GASS89]

[GLOVST]

[GLOVS6]

187

J. Ercau and J. Ferber.
Recherche, 22(233), June 1991 (in French).

L’intelligence artificielle distribuée. La

M. Fagan.
Independent, Wednesday 10th November 1993.

Electricity firms make a threatening connection. The

U. Faigle and W. Kern. Some convergence results for probalistic tabu

search. ORSA Journal on Computing, 4:1,32-37, 1992.

M. Fairley. Network management (a tutorial). Third IEE Conference
on Telecommunications, Edinburgh, March 1991, IEE.

A. Fitchett and H. Reeve. Future challenges for network manage-
ment. British Telecommunications Engineering Journal, 10, October

1991.

M. S. Fox and S. .F. Smith. ISIS, a knowledge-based system for
facturing scheduling. FEzpert systems , Vol 1, Part 1, pages 25-49,
1984.

M. Garey and D. Johnson. Computers and intractability: a guide to
the theory of NP-completeness. W.H. Freeman, 1979.

J. Garijo and D.A. Hoffman. A multi-agent architecture for op-
eration and maintenance of telecommunication networks. In 12th
International Conference on Ezpert Systems and their Applications,

Avignon’92, 1992.
L. Gasser. Distributed artificial intelligence. AI Ezpert, July 1989.

D.E. Glover.
through generalized adaptive search. In [DAVI87].

Solving a complex keyboard configuration problem

F. Glover. Future paths for Integer Programming and links to Arti-
ficial Intelligence. Comp Oper Res, 13:533-549, 1986.

Bibliography.

[GLOVSS]

[GLOV89a]

[GLOV89b]

[GOLDS5]

[GOLDS6]

[GREES5]

[GREFS7]

[GRIF91]

[GUID90]

[HAJESS]

188

F. Glover. Tabu Search. CAAI Report 88-3, University of Colorado,
Boulder, 1988.

F. Glover. Tabu Search, Part I. ORSA Journal on Computing, 1:3,
190-206, 1989.

F. Glover and H. J. Greenberg. New approaches for heuristic search:
a new bilateral linkage with artificial intelligence. Furopean Journal

of Operational Research, 39:119-130, 19809.

D. E. Goldberg and R. Lingle. Alleles, loci, and the traveling sales-
man problem. In [ICGA85].

B.L. Golden and C.C. Skiscim. Using simulated annealing to solve
routing and location problems. Naval Research Logistics Quaterly,

33:261-279, 1986.

M.Green. Report on dialogue specification tools. InUser-interface
Management System, G.E.Pfaff (editor), Springer-Verlag, pages 9-
20, 1985.

J. J. Grefenstette. Incorporating problem specific knowledge into

genetic algorithms. In [DAVI87].

D. Griffiths and C. Whitney. The role of intelligent sofware agents
in integrated communications management. British Telecom Tech-

nology Journal, 9(3), July 1991.

Project Guideline. An implementation architecture for the telecom-
munications management network for the CEC RACE programme.

Technical report, RACE project R1003, March 1990.

B. Hajek. Cooling schedules for optimal annealing. Mathematics of
Operations Research, 13:311-329, 1988.

Bibliography.

[HARMO94]

[HASK90]

[HELLO1]

[HOLL75]

[HOLL92]

[HOWASS]

[ICGAB8S5]

[ICGAS8T7]

[ICGAB8Y]

[ICGA9I]

189

P. Harmon. The size of the commercial market in the US. Intelligent

Software Strategies, X(1), January 1994.

L. Haskins. Artificial intelligence and corporate knowledge. British

Tecommunications Engineering Journal, 9, April 1990.

R.J. Helleur, and N.R Milway. Network management systems: intro-
ductory overview. British Telecommunications Engineering Journal,

10, October 1991.

J.J. Holland. Adaptation in natural and artificial systems. University

of Michigan Press, 1975.
J.J. Holland. Genetic algorithms. Scientific American, 267(1), 1992.

E. Howard, D. Jackel, and P. Graf, H. Electronic neural networks.
ATET Technical Journal, 67(1), January 1988.

J. Grefenstette (editor). Proceedings of the First International Con-
ference on Genetic Algorithms and their Applications. Morgan Kauf-
mann, 1985.

J. Grefenstette (editor). Proceedings of the Second International
Conference on Genetic Algorithms and their Applications. Morgan

Kaufmann, 1987.

J. Shaeffer (editor). Proceedings of the Third International Confer-
ence on Genetic Algorithms and their Applications. Morgan Kauf-
mann, 1989.

R. Belew, and L. Booker (editors). Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms and their Applications.

Morgan Kaufmann, 1991.

Bibliography.

[ICGAY3]

[INDE93]
[JOHNB89a)

[JOHN89b)]

[JOHNO1]

[JOHN92]

[KIRK83]

[KLERSS]

[KUMA92]

[LAGU9I]

190

S. Forrest (editor). Proceedings of the Fifth International Conference
on Genetic Algorithms and their Applications. Morgan Kaufmann,

1993.
The brain machines. The Independent on Sunday, 1993.

K. Johns. Managing large sofware systems. Telesis, 1989.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Opti-
mization by simulated annealing: an experimental evaluation; Part
1, graph partitioning. Operations Research, 37(6):865-892, Novem-
ber 1989.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Opti-
mization by simulated annealing: an experimental evaluation; Part

2, graph coloring and number partitioning. Operations Research,

39(3):378-406, May 1991.

D. Johnson and M. Adorf. Scheduling with neural networks: the case
of Hubble space telescope. International Journal on Computers and

Operations Research, special issue on neural networks, 1992.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by sim-
ulated annealing. Science, 220(4598):671-680, May 1983.

H. Klerer. The OSI management architecture: an overview. IEEE

Spectrum, 2(2), February 1988.

V. Kumar. Algorithms for constraint satisfaction problems: a survey.

AI Magazine, Spring, 1992.

M. Laguna, J.W. Barnes and F. Glover. Tabu search methods for a
single machine scheduling problem. Journal of Intelligent Manufac-

turing, 2, pages 63-74, 1991.

Bibliography.

[LAWT92]

[LEBOYI]

[LIEBSS]

[LIEP91]

[LINT73]

[LIPP91]

[LIRO91a]

[LIRO91b]

[LOES90]

191

G. Lawton. Genetic algorithms for schedule optimization. Al Ezpert,
May 1992.

P Lebouc and E. Stern. Distributed problem solving in broadband
telecommunications network management. In 11th International
Conference on Ezpert Systems and their Applications, Avignon’91l,
1991.

J Liebowitz (editor). Ezpert systems applications in telecommunica-

tions. Wiley Series in Telecommunications. 1988.

G.E. Liepins and W.D. Potter. A genetic algorithm approach to
multi-fault diagnosis. In [DAVI91b].

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the

travelling salesman problem. Operations Research, 21:498-516, 1973.

B. Lippolt, H. Velthuijsen, and E. Kwast. Evaluation of applying
model-based diagnosis to telecommunications networks. In 11th In-
ternational Conference on FEzpert Systems and their Applications.

Avignon’91, 1991.

Y. Lirov and B. Melaned. Expert design systems for telecommuni-

cations. Ezpert Systems with Applications, 2:219-228, 1991.

Y. Lirov and O. Yue. Expert maintenance systems in telecommuni-
cation networks. Journal of Intelligent and Robotic Systems, (4):303—
319, 1991.

R. Loesener, C.A. Azmoodeh, J. Bigham, and B. Stahl. The use of
advanced information processing techniques in maintenance systems
for integrated broadband networks. In Fourth Race TMN Conference,
Dublin, November 1990.

Bibliography.

[LOGO92]

[LUNDS]

[LUSH90]

[MALCY0]

[MALES9]

[MAMDO1]

[MANNQO]

[MASS90]

[MAYO90]

192

M. Logothetis, and M. Shioda. ” Centralised virtual path bandwidth
allocation scheme for ATM networks. IEICE Trans Commun, Vol
E75-B, No 10, pages 1071-1080, October 1992.

M. Lundy and A. Mees. Convergence of an annealing algorithm.

Mathematical Programming, 34:111-124, 1986.

E.P. Lusher. Al and communications network design. AI Ezpert,

August 1990.

J. Malcom and T. Wooding. IKBs in network management. Com-

puter Communications, November 1990.

M. Malek, M. Guruswamy, M. Pandya, and H.Owens. Serial and par-
allel simulated annealing and tabu search algorithms for the traveling

salesman problem. Annals of Operations Research, 21,59-84, 1989.

H. Mamdani and R. Smith. Advanced information processing for net-

work management. British Telecommunications Technology Journal,

9(3), July 1991.

K. Manning and D. Spencer. Model-based network management. In

Fourth RACE TMN Conference, Dublin, November 1990.

E. Masson and Y. Wang. Introduction to computation and learn-

ing in artificial neural networks. Furopean Journal of Operational

Research, 47:1-28, 1990.

J. Mayo. The telecommunications explosion: evolution of the I.N.
In The Information Technology Revolution, third edition, T. Forester
(editor), Blackwell, 1990.

Bibliography.

[MCCUS8|

[METR53]

[MORRO1]

[MULL92]

[MYER90]

[NAKAO1]

[NICH93]

[OLIV8T]

193

N. McCulloch, W. Ainsworth, and A. Linggard. Multi-layers per-
ceptrons applied to speech technology. British Telecom Technology
Journal, 6(2), April 1988.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E Teller. Equation of state calculations by fast computing machines.

Journal of Chemical Physics, 21:1087-1092, 1953.

J. T. Morris and B. Samadi. Neural networks in communications:
admission control and switch control. In International Conference in

Communications (ICC’91), Denver, 1991.

C.Muller, E.H.Magill, and D.G.Smith. Multi-thread interface for
telecommunications applications. Eighth International Conference
on Software Engineering for Telecommunications Systems and Ser-

vices, IEE (conference publication no 352).

J. Myers. The British Telecom Connectionist Project. In The market
place, neural computing, Third International Seminar, IBL Technical

Services, 1990.

R. Nakano. Conventional genetic algorithm for job shop problems.

In [ICGA91].

D. Nicholas and J. Yeomans. 1992 - The impact of the EC on telecom-
munications (a tutorial). In The 4th IEE Conference on Telecommu-

nications, Manchester., April 1993.

I. M. Oliver, D. J. Smith, and J.R.C. Holland. A study of permu-
tation crossover operators on the traveling salesman problem. In

[ICGA87]

Bibliography.

[PARUSY]

[PENR89]

[PERR90]

[PROSO1]

[PROS94]

[PSAL90]

[RACEQ(]

[RUDG93]

[SCHA92]

[SIMOS58]

[SING94]

194

H. Van Dyke. Parunak. Why scheduling is hard (and how to do
it anyway)? In Proceedings of the 1987 Material Handling Focus.

Georgia Institute of Technology, September 1987.

R. Penrose. The Emperor’s new mind. Oxford University Press,

1989.

E.L. Perry. Solution of time constrained scheduling problems with
parallel tabu search. Proc 1990 DARPA workshop, Innovative ap-

proaches to planning, scheduling, and control, 231-239, 1990.

P. Prosser and C. Muller. A design for an intelligent problem solving
agent. Technical Report, University of Strathclyde, November 1991.

P. Prosser, C. Muller, and C. Brind. A preliminary study of stochas-
tic search techniques applied to vehicle routing problems. BT report,

University of Strathclyde, February 1994.

D. Psaltis, D. Brady, G. Xiang-Guang, and S. Lin. Holography in

artificial neural networks. Nature, 343, January 1990.

RACFE II, workplan, background material, rationale and overview,

definition of scope, and task description, RA3027-2. 1990.
W. Rudge. I'll be seeing you. IEFE Review, November 1993.

J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary

viable strategy. In [I[CGA91].

A. Simon and A. Newel. Heuristic problem solving: the next advance

in operations research. Operations Research, page 8, January 1958.

A. Singleton. Genetic programming with C++. Byte, pages 171-176,
February 1994.

Bibliography.

[SINNO1]

[SMIT91]

[SMIT90]

[SOLOS83]

[STAR91]

[SYSW91]

[THANOI]

[THANO3]

[TSAN93]

195

N. Sinnadurai and G. Morrow. Service management systems. British

Telecommunications Engineering Journal, 10, October 1991.

R. Smith and I. Williamson. Network management for RACE. British

Telecommunications Engineering Journal, 10, October 1991.

S. F. Smith, P. S. Ow, and J. Y. Potvin. OPIS: an opportunistic
factory scheduling system. IEA/AIE 90: industrial and engineering
applications of artificial intelligence and expert systems, Proceedings

of the third international conference, Charleston, South Carolina,

July 15-18, 1990, vol 1.

M. Solomon. Vehicle routing with time window constraints: mod-
els and algorithms.”. PhD thesis, Department of Decision Sciences,

University of Pennsylvania, 1983.

T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and S. Whit-

ley. A comparison of genetic sequencing operators. In [ICGA91].

G. Syswerda. Schedule optimization using genetic algorithms. In

[DAVI91b]

S. R. Thangiah, K. E. Nygard, and P. L. Juell. Gideon: a genetic
algorithm system for vehicle routing with time windows. In IEEE
Computer Society Press, CAIA-91: Proceedings of the Seventh Con-

ference on Artificial Intelligence Applications, 1991.

S. R. Thangiah, R. Vinayagamoorthy, and A. V. Gubbi. Vehicle
routing with time deadlines using genetic and local algorithms. In

[ICGA93].

E. Tsang. Foundations of constraint satisfaction. Academic Press,

1993.

Bibliography. 196

[WEIZ90] J. Weizenbaum. The myths of artificial intelligence. In The In-
formation Technology Revolution, third edition, T. Forester (editor),
Blackwell, 1990.

[WHIT89] D. Whitley, T. Starweather, and D. Fuquay. Scheduling problems
and traveling salesman: the genetic edge recombination operator. In

[ICGASY].

[WILL91] K. Willetts. Co-operative management, the key to managing cus-
tomers networks. British Telecom Engineering Journal, 10, October

1991.

[WRIGH0] R. Wright and T. Vesonder. Expert systems in telecommunications.
Ezpert Systems with Applications, 1:127-136, 1990.

Annexe A: The problem

generator.

Annexe A describes the software which generated the 36 problems used for the ex-
periments. This problem generator is mainly the result of some lengthy discussions
between Dr Prosser, Mr Brind and myself. Dr Prosser implemented this problem
generator. The following description is taken from a previous technical report: ”A
preliminary study of stochastic search techniques applied to vehicle routing prob-
lems”, by P.Prosser, C.Muller, and C.Brind, University of Strathclyde, February
1994.

The VRP Generator

In this section we describe the vehicle routing problem (vrp) generator. We describe
the parameters to the generator, the output from the generator, and the character-
istics of the problems created. Finally, the database of vrp’s for this preliminary

study is described.

A-1

Annexe A: The problem generator. A-2

Parameters

The vrp generator takes the following parameters

Output file: The output file name typically follows the convention C-E-J-D-T-S-
N where C is the name of the coordinates file, E is the number of engineers,
J is the number of jobs, D is the bag of durations (typically dl or d2, and
see below), T is the bag of time windows (typically ¢0, t1, or ¢2, again see
below), S is the amount of specialisation in the workforce (typically s0, s1,
s2, or s3, and again see below), and N is a sequence number (the number of

the problem generated with these characteristics).

Coordinates file (C) A file of postal codes with their corresponding z — y co-
ordinates, where both z and y are measured in decametres. At present we
have 7 data sets, namely Glasgow, G5k (a subset of the Glasgow postal codes
within a 5 kilometres of a central location), G7k (as G5k but a 7k radius),
Birmingham, B5k (extracted from Birmingham), B7k, and Uxbridge. When
generating a problem, the z — y locations of the jobs are randomly drawn
from the specified coordinates file without removal. That is, it is possible to
produce two jobs with the same postal codes and (consequently) the same

z — y location.

It should be noted that a problem generated from *5k (where * may be G or B)
will tend to involve less travel (tend to be more urban) than a similar problem
generated from *7k (tends to be more rural)®. Problems generated with the
Uxbridge data set tend to be predominantly rural, involving considerable

travel.

Speed This is the average speed of an engineer, in miles per hour. Typically we

assume 12mph for our urban problems. This is then converted to metres per

5... and might even be considered to be sub-urban

Annexe A: The problem generator. A-3

minute.

Number of engineers (E) The number of engineers for the problem (typically
30, 40, or 50).

Number of jobs (J) The number of jobs in the problem (typically 200).

Bag of durations (D) A list of possible durations for jobs, measured in minutes.
When a job is created a duration for that job is drawn randomly from this bag.
® A random number is then generated (drawn from the uniform distribution)
in the range 1 to n, where n is the number of elements in the bag. The nth
element of the bag is then selected. For example, if we wish to generate a
set of jobs such that the probability that a job has a duration of 60 minutes
is 0.1 (ie. p(60) = 0.1), p(45) = 0.3, and p(30) = 0.6 we would use the bag
{60, 45,45, 45, 30, 30, 30, 30, 30, 30}.

Bag of time windows (T) A bag of temporal intervals, where a temporal inter-
val has a start time s and an end time e. When a job is created a time
window is then selected from this bag (using the same technique described
above), such that the duration of the job is less than or equal to e — s of
the selected temporal interval. Typically a temporal interval would be (540
1020) (9 o’clock to 5 o’clock, measured in minutes from midnight, also called
all day), (540 720) the morning, and (720 1020) the afternoon. Therefore,
we may have a bag {(540 720),(540 720),(540 1020),(720 1020),(720 1020)}
which will result in the probability of a job being done in the morning equal

to 0.4 (p(morning) = 0.4), p(all day) = 0.2, and p(afternoon) = 0.4. 7.

Bag of specialisations (S) A bag of specialisations, where a specialisation is a

percentage of the population of engineers that can do a job. When a job is

6A bag can be thought of as a kind of set, except elements can occur many times. The bag is
then used as an ezplicit representation of a distribution.

"Note that with a bag {(540 1020)} all jobs may be done any time within the working day,
and corresponds to no temporal constraints

Annexe A: The problem generator. A-4

created a value S is drawn from this bag (using the same technique as above).
E x S engineers are then randomly chosen from the set of engineers, and
marked as being capable of doing that job. For example, the bag so = {1.0}
implies any job can be done by any engineer (consequently no technological
constraints), s; = {0.8,0.8,0.8,0.8,0.2} implies 80% of the jobs can be done by
80% of the engineers and 20% of the jobs can be done by 20% of the engineers
(a weak technological constraint), and s3 = {0.2,0.2,0.2,0.2,0.8} implies 80%
of the jobs can be done by 20% of the engineers and 20% of the jobs can be

done by 80% of the engineers (a tight technological constraint).

Probability of compulsory jobs The probability that a job must be done. Typ-
ically p(compulsory) is 0.1

Normalised distances If set to true then all z — y coordinates are normalised.
That is, the minimum z location (Zm:n) is found from the job set, and the
minimum y location is also found (Ym:n). The z — y locations of all jobs are

then reduced by Zm;:n and Ymin.

All jobs do-able If true then any job that is created must be feasible. A job is
feasible if it is possible to travel to that job, start and complete the job within
its time window, and return to the base before end of day (and all problems

have been created with this flag set to true).

Generator Output

Given the outut file name outf (for example) the generator outputs 4 files in the

following directories.

vrp/outf The actual machine readable vehicle routing problem.

Annexe A: The problem generator. A-5

gnu/outf.jobs The z—y coordinates of the jobs. These can then be plotted (using
gnuplot) to show graphically the distribution of the jobs.

gnu/outf.base The z — y location of the base

parms/outf A summary on the problem generated. This file records the actual
parameters used when generating the problem, and gives a summary analysis

of the problem. This is described in more detail below.

Annexe A: The problem generator. A-6

Analysis of Problems

As noted above, the parms file for a problem (parms/outf) records the actual pa-
rameters used in generating the problem, along with an analysis of the resultant
problem. A sample parms file is given below along with its corresponding graphic

(the scatter of jobs and the base on the zy plane) in Figure 1.

Coordinates file /usr/keg/bt/vrp-prelim/data/g5k

Output files /usr/keg/bt/vrp-prelim/*/gbk-30-200-d1-twl-s2-1.*
mph=12 n=30 m=200 p-compulsory=0.1

durations (15 30 45 60 75 90 105 120)

time windows ((540 720) (540 720) (540 1020) (720 1020) (720 1020))
specialisations (0.8 0.2)

Of 200 jobs 200 can be reached

There are 19 compulsory jobs

jobs per engineer 95.2 6.5 83.0 110.0 30 95.0

job durations 68.47 34.13 15.0 120.0 200 60.0
time-windows 277.8 111.5 180.0 480.0 200 300.0
duration over time window 0.28 0.17 0.03 0.67 200 0.25
engineers per job 14.28 8.97 6.0 24.0 200 6.0

distance from base in minutes 9.01 4.25 1.0 16.0 200 9.0
distance between jobs in minutes 13.0 6.54 0.0 31.0 19900 13.0
Average Engineer Load 1.2

coefficients 0.46 0.39 0.01 2.93 20100 0.32

Profit Coefficient = 3

Base Location = (4823 4482)

9000
o
°
8000 |- o o < b
°
o
7000 |- o < g
0% o © @ © °
<o
6000 - > :0 @ o 4
O o0 < o2
<> o < < &8 o < <
S000 - < o ° CECRS %o ° . o B
< ° < o < <
° o0 © R o <o ° s
4000 ° e ° o i
< < °
< co
< e e
3000 © id o ¢ 4
-
- °
JRPES xS ° -
2000 o o © -
o o0
|- i 4
1000 o © o
A <>
o
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure A.1: gbk-30-200-d1-twl-s2-1

Annexe A: The problem generator. A-T7

The problem has 30 engineers and 200 jobs. The probability that a job is com-
pulsory is 0.1, and engineers travel at 12 mph. Durations of jobs are in the range
15 minutes to 120 minutes, in 15 minute increments, each duration equally likely
(and this bag of durations is named d1). The time window for a job can be in the
morning, all day, or in the afternoon. The probability of a job having an all day
time window is 0.2, and the probability of a morning time window is 0.4, the same
as the probability of an afternoon time window (NOTE: this bag of time windows
is named twl). The bag of specialisations (the technological constraints) dictates
that 50% of the jobs can be done by 80% of the engineers, and the remaining 50%
of the jobs can be done by 20% of the engineers (and this bag of specialisations is

named s2).

The next block of text refers to the analysis of the problem created. The figures to
the right generally fall into six columns: the mean, standard deviation, minimum,
maximum, sample size, median. In this case 200 jobs were created and all were

feasible, and 19 of those jobs were compulsory.

Jobs per engineer shows the number of jobs that each engineer is capable of

doing. This can be taken as a measure of the technological constraints.

Jjob durations shows statistics on the durations of the jobs produced. As ex-
pected, the durations of the jobs are on average about mid-way between 60

and 75 minutes.

time-windows shows statistics on the durations of time windows for jobs. In this

case the average duration of time windows is 277 minutes.

duration over time window gives an indication of the tightness of the temporal
constraints. For each job, the duration of that job is divided by the duration
of its time window, and this value is collected. If the duration of jobs are

high with respect to the duration of the time windows we get a large value,

Annexe A: The problem generator. A-8

and this indicates that temporal constraints are tight (ie. the engineers must
get to the job close to the start of the time window). Low values correspond
to relaxed temporal constraints (ie. engineers can arrive at a job some time
after the start of a time window). Note that the tightness of the temporal
constraints are controlled by the interplay between the parameters D (bag of

durations) and T (bag of time windows).

engineers per job is symmetrical to the row jobs per engineer, allowing us a job-
based perspective of the problem. As the technological constraints become
tighter we will see this value fall. In this example we see that on average each
job can be done by 14 engineers (out of 30, and is considered a moderately

tight technological constraint).

distance from base in minutes For each job, we compute the distance from the
base to that job, in minutes, given the location of the base and the job and
the speed that engineers travel. For rural problems we expect this value to
be larger than its urban counterpart. The distance between locations is taken

as the Manhattan distance®.

distance between jobs in minutes For all pairs of jobs ® compute the travel
time between jobs. For rural problems we expect this value to be larger than

its urban counterpart. Again, Manhattan distance is assumed.

Average Engineer Load This is an estimate of the loading on engineers, and is
computed as follows. Given J jobs, each of (on average) D duration, and
E engineers we compute the average number of jobs an engineer is expected
to do (J/E). Consequently the engineer will be expected to work D.J/E

minutes in the day. The engineer must travel from the base to the first job,

8Manhattan distance assumes a grid layout, such that one travels up and down, and left and
right, but not diagonally. This is a typical restriction in an urban environment, and especially so
in Manhattan!

°If we have n jobs we compute the n(n — 1)/2 distances between jobs.

Annexe A: The problem generator. A-9

travel between the jobs, and travel from the last job to the base. Using the
calculations on travel time (from base and inter-job) and job durations we
then divide the number of minutes an engineer is expected to work and travel

by the number of minutes in the working day (480).

If this value is large (ie greater than 0.9) we anticipate that the problem is
under-resourced, and it is unlikely that all jobs will be done. A good solution
will then (typically) attempt to minimise jobs not done. When this value
is low (ie. less than 0.85) we expect that the problem is over-resourced,
and all jobs will be done. Consequently a good solution will be one that
minimises travel (since all jobs will probably be done, this is the only scope

for differentiating solutions).

coefficients A ratio based on the travel associated with a job, and the duration
of that job. For each job we measure the distance that could be traveled in
order to perform that job. That is, for job j0b; an engineer may have to travel
from job job; to job job; and take travel time t, ;, perform job; with duration
d;, and then return to the base taking travel time ¢;o. The coeflicient C; ;
for this triangle of travel and work (from job; to job; to the base, jobg) is

calculated as C; ; = twdﬂ
7
This value is computed for all possible pairs of jobs job; and job;, where # 3,

and 0 <z < J©0

Problems with high values for C; ; tend to have considerable amount of travel,
or jobs with relatively low durations. Symmetrically, problems with low values
of C;; tend to have low travel to jobs of relatively high duration. Therefore,
a rural problem tends to have high C; ; with respect to its urban counterpart,
and problems with short duration jobs have high C;; compared to similar

problems with jobs of large durations.

10That is we also consider the tour from the base (jobo) to job;, then returning to the base.

Annexe A: The problem generator. A-10

Profit Coefficient The profit coefficient is used by the cost function employed by
the search process. The profit coefficient C' is taken to be the maximum value

of C;; (rounded up to the nearest integer).

In evaluating a solution we take into consideration the sum of the durations
of the jobs that have not been done (D), and the sum of the travel time for
all engineers (T'). The cost of a solution is then CD + T. The coefficient
C guarantees that the term CD is always greater than the travel associated
with doing the jobs that have not been done. An alternative way of looking
at this is, we guarantee that the search process cannot produce a lower cost
solution by reducing travel by not doing jobs, consequently there is always a

motive to do more work.

Base Location This is the z — y location of the base and is generated such that
it corresponds approximately to the centre of gravity of the location of the

jobs.

Therefore, it should be apparent that we can produce vrp’s that are under-resourced
and over-resourced. We can produce an under-resourced vrp by decreasing the
number of engineers, or by increasing the number of jobs or the durations of the
jobs, or by increasing the travel between jobs. Furthermore, we have a (coarse)
measure of this, namely load. Generally, we vary load by altering the number of

engineers and the durations of jobs.

Similarly, we can vary the tightness of the temporal and technological constraints.
We can increase the tightness of the temporal constraints by making the time
windows smaller, or by increasing the durations of jobs (but this has the side-
effect of increasing load). We can also increase the tightness of the technological

constraints (by limiting who can do a job).

Bringing this together, there appears to be (at least) 4 extreme scenarios. First,

we may have vrp’s that are under-resourced but with no temporal or technological

Annexe A: The problem generator. A-11

constraints. Then, we can have under-resourced vrp’s with tight temporal and
technological constraints. There are then over-resourced problems with no temporal
or technological constraints, and over-resourced problems with tight temporal and
technological constraints. Therefore, we hope that we can investigate the role of
load independently of constraint tightness (and vice versa). Further, we have the

ability to generate a range of problems within those extremes.

VRP Database

As part of the preliminary study, 216 vrp’s have been produced, with the following

characteristics.

location All vrp’s have been generating using the ghk coordinates file. That is the
Glasgow postcodes in a 5k radius of G1. This produces urban problems, and
all problems tend to have the same distances between jobs, and between jobs

and the base.
Number of Engineers The number of engineers is 30, 40, or 50.
Number of Jobs The number of jobs is held constant at 200.

Durations Durations of jobs are drawn randomly from the bags d1 or d2, where
d1 is {15,30,45,60,75,90,105,120}.
d2 is {15, 15,15, 30,30, 30, 45,45, 60,60, 120, 180, 240, 300}.

Time Windows The temporal constraints, either t0, t1, or t2

t0 all jobs have a time window running from 9 to 5 (all day)

t1 probability of morning = probability of afternoon = 0.4 and probability
of all day = 0.2

Annexe A: The problem generator. A-12

t2 probability of morning = probability of afternoon = 0.45 and probability
of all day is approximately 0.1

Specialisations Specialisation (the technological constraints), either s0, s1, s2, or

s3

s0 all jobs can be done by any engineer

s1 80% of jobs can be done by 80% of the engineers, and 20% of the jobs can

be done by 20% of the engineers

s2 50% of the jobs can be done 80% of the engineers, and 50% of the jobs
can be done by 20% of the engineers

s3 80% of the jobs can be done by 20% of the engineers, and 20% of the jobs

can be done by 80% of the engineers

n A sequence number. Typically 3 problems are generated at each parameter

setting

Problems have the following broad characteristics. As the number of engineers
increases the load per engineer falls, and the problem moves from being under-
resourced to over-resourced. Problems with durations d1 will tend to be less heavily
loaded than problems with durations d2. Problems with time windows t0 have no
temporal constraints, and problems with t3 have the tightest temporal constraints.
Problems with specialisation sO0 have no technological constraints and problems

with s3 have the tightest technological constraints

At present the following set of problems has been generated. For gbk (urban),
number of engineers 30, 40, or 50, all possible combinations of durations (d1 or
d2), time windows (tw0, twl, tw2), and specialisations (s0, sl, s2, s3), 3 problems
at each setting (in total 3 X 2 X 3 x 4 x 3 = 216 problems).

e Problems ghk-50-* will be over-resourced compared to gbk-40-*, and gbk-30-*

i1s under-resourced.

Annexe A: The problem generator. A-13

e Problems *-d2-* will tend to have a greater spread of job durations than

problems *-d1-* and *-d2-* will tend to put a higher loading on engineers

e Problems *-tw0-* have no temporal constraints, and problems *-tw2-* is the

most temporal constrained.

e Problems *-s0-* have no technological constraints, and problems *-s3-* have

the most technological constraints.

Annexe B: Raw results.

The following tables give the raw experimental results. Each line corresponds to
the five applications of an algorithm to a specific problem. A table entry is a triple:

cost, travel and work not done.

B-1

Annexe B: Raw results. B-2

Problems 1 2 3 4 5

30-0-0-1 973932 1932 1620 082916 1916 1635 1000927 1927 1665 991944 1944 1650 964899 1899 1605
30-0-0-2 793969 1969 1320 757947 1947 1260 757970 1970 1260 766953 1953 1275 766946 1946 1275
30-0-0-3 622980 1980 1035 604966 1966 1005 622956 1956 1035 631997 1997 1050 631978 1978 1050
30-0-3-1 758017 2017 1260 767052 20562 1275 767057 2057 1275 767043 2043 1275 767020 2020 1275
30-0-3-2 820993 1993 1365 794034 2034 1320 776019 2019 1290 812078 2078 1350 811989 1989 1350
30-0-3-3 1108906 1906 1845 1018777 1777 1695 1099945 1945 1830 1063889 1889 1770 1099981 1981 1830
30-2-0-1 910940 1940 1515 883968 1968 1470 919981 1981 1530 874934 1934 1455 902031 2031 1500
30-2-0-2 766918 1918 1275 758028 2028 1260 776103 2103 1290 776092 2092 1290 758071 2071 1260
30-2-0-3 1504884 1884 2505 1487037 2037 2475 1504834 1834 2505 1495901 1901 2490 1504811 1811 2505
30-2-3-1 1325044 2044 2205 1316123 2123 2190 1370188 2188 2280 1334063 2063 2220 1352060 2060 2250
30-2-3-2 1135987 1987 1890 1153943 1943 1920 1145087 2087 1905 1163168 2168 1935 1145031 2031 19056
30-2-3-3 884097 2097 1470 902048 2048 1500 866125 2125 1440 884132 2132 1470 893102 2102 1485
40-0-0-1 2290 2290 0 2235 2235 0 2269 2269 0 2229 2229 0 2278 2278 0

40-0-0-2 2226 2226 0 2247 2247 0 2185 2185 0 2235 2235 0 2287 2287 0

40-0-0-3 2180 2180 0 2211 2211 0 2190 2190 0 2111 2111 0 2173 2173 0

40-0-3-1 2302 2302 0 22356 2235 0 23356 23356 0 2324 2324 0 2296 2296 0

40-0-3-2 2154 2154 0 2211 2211 0 2229 2229 0 2160 2160 0 2209 2209 0

40-0-3-3 2385 2385 0 2385 2385 0 2441 2441 0 2434 2434 0 2380 2380 0

40-2-0-1 461275 2275 765 461334 2334 765 434268 2268 720 461119 2119 765 452280 2280 750
40-2-0-2 65293 2293 105 56199 2199 90 74199 2199 120 65213 2213 105 56313 2313 90

40-2-0-3 47360 2360 75 47465 2465 75 29442 2442 45 56421 2421 90 56398 2398 90

40-2-3-1 47643 2643 75 11547 2547 15 2510 2510 0 2594 2594 0 2715 2715 0

40-2-3-2 2351 2351 0 2309 2309 0 2423 2423 0 2267 2267 0 2275 2275 0

40-2-3-3 191412 2412 3156 182435 2435 300 200383 2383 330 164358 2358 270 182395 2395 300
50-0-0-1 2260 2260 0 2312 2312 0 2332 2332 0 2310 2310 0 2273 2273 0

50-0-0-2 2242 2242 0 2249 2249 0 2231 2231 0 2194 2194 0 2249 2249 0

50-0-0-3 2223 2223 0 2242 2242 0 2181 2181 0 2217 2217 0 2224 2224 0

50-0-3-1 2293 2293 0 2274 2274 0 2234 2234 0 2322 2322 0 2262 2262 0

50-0-3-2 2340 2340 0 2288 2288 0 2299 2299 0 2307 2307 0 2333 2333 0

50-0-3-3 2292 2292 0 2305 2305 0 2359 2359 0 2326 2326 0 2307 2307 0

50-2-0-1 2228 2228 0 2231 2231 0 2208 2208 0 2232 2232 0 2228 2228 0

50-2-0-2 2083 2083 0 2108 2108 0 2106 2106 0 2104 2104 0 2104 2104 0

50-2-0-3 2114 2114 0 2129 2129 0 2070 2070 0 2104 2104 0 2120 2120 0

50-2-3-1 2208 2208 0 2200 2200 0 2173 2173 0 2179 2179 0 2185 2185 0

50-2-3-2 2364 2364 0 2389 2389 0 2393 2393 0 2375 2375 0 2429 2429 0

50-2-3-3 2409 2409 0 2417 2417 0 2440 2440 0 2414 2414 0 2401 2401 0

Table B.1: PMX, raw results.

Annexe B: Raw results.

B-3

Problems 1 2 3 4]

30-0-0-1 721464 1464 1200 703428 1428 1170 712454 1454 1185 667413 1413 1110 649364 1364 1080
30-0-0-2 469433 1433 780 469409 1409 780 424387 1387 705 523536 1536 870 451444 1444 750
30-0-0-3 253363 1363 420 208448 1448 495 361551 1551 600 271422 1422 450 280387 1387 465
30-0-3-1 514624 1624 855 505629 1629 840 514639 1639 855 541647 1647 900 568708 1708 945
30-0-3-2 586715 1715 975 640774 1774 1065 568615 1615 945 541613 1613 900 586684 1684 975
30-0-3-3 838470 1470 13956 901611 1611 1500 829493 1493 1380 838542 1542 13956 838531 1531 13956
30-2-0-1 766816 1816 1275 748745 1745 1245 775742 1742 1290 820869 1869 1365 820862 1862 1365
30-2-0-2 757938 1938 1260 694747 1747 1155 685854 1854 1140 649783 1783 1080 712883 1883 1185
30-2-0-3 1432638 1638 2385 13965956 1595 2325 1423677 1677 2370 1423701 1701 2370 1432692 1692 2385
30-2-3-1 1162929 1929 1935 1180857 1857 1965 1334049 2049 2220 1226018 2018 2040 1162869 1869 1935
30-2-3-2 1054925 1925 17656 1018919 1919 1695 1046002 2002 1740 1072997 1997 1785 1082039 2039 1800
30-2-3-3 784923 1923 1305 730820 1820 1215 829981 1981 1380 784948 1948 1305 775798 1798 1290
40-0-0-1 1399 1399 0 1346 1346 0 1348 1348 0 1403 1403 0 1343 1343 0
40-0-0-2 1232 1232 0 1342 1342 0 1414 1414 0 1298 1298 0 1340 1340 0
40-0-0-3 1360 1360 0 1207 1207 0 1329 1329 0 1333 1333 0 1268 1268 0
40-0-3-1 1528 1528 0 1465 1465 0 1529 1529 0 1409 1409 0 1476 1476 0
40-0-3-2 1446 1446 0 1509 1509 0 1526 1526 0 1426 1426 0 1477 1477 0
40-0-3-3 1501 1501 0 15056 15056 0 1563 1563 0 1630 1630 0 1448 1448 0
40-2-0-1 442986 1986 735 407033 2033 675 415981 1981 690 389029 2029 645 433993 1993 720
40-2-0-2 29035 2035 45 65210 2210 105 47023 2023 75 74176 2176 120 56165 2165 90
40-2-0-3 56302 2302 90 2166 2166 0 2046 2046 0 2171 2171 0 2134 2134 0
40-2-3-1 2319 2319 0 2427 2427 0 2464 2464 0 2425 2425 0 2630 2630 0
40-2-3-2 2064 2064 0 1943 1943 0 1982 1982 0 1962 1962 0 2466 2466 0
40-2-3-3 164285 2285 270 182349 2349 300 164222 2222 270 20032 2032 30 182305 2305 300
50-0-0-1 1418 1418 0 1393 1393 0 1329 1329 0 1452 1452 0 1485 1485 0
50-0-0-2 1246 1246 0 1363 1363 0 1401 1401 0 1349 1349 0 1268 1268 0
50-0-0-3 1251 1251 0 1288 1288 0 1286 1286 0 1473 1473 0 1287 1287 0
50-0-3-1 1511 1511 0 1459 1459 0 1564 1564 0 1584 1584 0 1493 1493 0
50-0-3-2 1433 1433 0 1570 1570 0 1444 1444 0 1642 1642 0 1517 1517 0
50-0-3-3 1497 1497 0 1527 1527 0 1505 1505 0 1547 1547 0 1576 1576 0
50-2-0-1 1641 1641 0 1659 1659 0 1657 1657 0 1686 1686 0 1778 1778 0
50-2-0-2 1449 1449 0 1523 1523 0 1488 1488 0 1424 1424 0 1585 1585 0
50-2-0-3 15564 15564 0 1579 1579 0 1508 1508 0 1530 1530 0 1578 1578 0
50-2-3-1 1739 1739 0 1933 1933 0 1767 1767 0 1972 1972 0 1818 1818 0
50-2-3-2 2146 2146 0 2128 2128 0 2158 2158 0 2085 2085 0 2043 2043 0
50-2-3-3 2030 2030 0 1933 1933 0 1944 1944 0 1983 1983 0 1860 1860 0

Table B.2: Direct3,

raw results.

Annexe B: Raw results. B-4

Problems 1 2 3 4 b

30-0-0-1 667377 1377 1110 658409 1409 10956 694423 1423 11556 685402 1402 1140 595342 1342 990
30-0-0-2 442412 1412 7356 397279 1279 660 478487 1487 7956 379294 1294 630 433394 1394 720
30-0-0-3 289403 1403 480 280417 1417 465 280415 14156 465 334530 1530 bbb 280404 1404 465
30-0-3-1 BT7730 1730 960 505628 1628 840 523659 1659 870 478584 1584 7956 496561 1561 825
30-0-3-2 BOBBTT 1577 840 514451 1451 855 496522 1522 825 541624 1624 900 595656 1656 990
30-0-3-3 802444 1444 13356 811540 1540 1350 847469 1469 1410 820502 1502 136b 838497 1497 1396
30-2-0-1 6315565 155656 10560 703620 1620 1170 739712 1712 1230 766725 1726 1275 676614 1614 1126
30-2-0-2 685875 1875b 1140 622692 1692 10356 685808 1808 1140 586746 1746 o7h 676731 1731 1126
30-2-0-3 1432b46 1546 2385 1406659 16569 2340 1432548 1548 2385 140b43b 1435 2340 14415676 1576 2400
30-2-3-1 1171947 1947 1950 1189952 1952 1980 1207981 1981 2010 1253031 2031 2085 1306986 1986 21756
30-2-3-2 10189956 19956 1695 1018924 1924 16956 1009879 1879 1680 046844 1844 1575 073836 1836 1620
30-2-3-3 712875h 1875 1185 820799 1799 136b 820922 1922 1365 766816 1816 1275 803040 2040 13356
40-0-0-1 1354 1354 0 1330 1330 0 1388 1388 0 1271 1271 0 1326 1326 0
40-0-0-2 13564 1354 0 1381 1381 0 1278 1278 0 1271 1271 0 1392 1392 0
40-0-0-3 1284 1284 0 1309 1309 0 1372 1372 0 1276 1276 0 1295 1295 0
40-0-3-1 1630 1630 0 1582 1582 0 1629 1629 0 1478 1478 0 1456 1456 0
40-0-3-2 1442 1442 0 1394 1394 0 1448 1448 0 15056 1505 0 1513 1513 0
40-0-3-3 1556 1556 0 1490 1490 0 1646 1646 0 1589 1589 0 1533 1533 0
40-2-0-1 406976 1976 67b 370999 1999 615 379890 1890 630 397991 1991 660 379920 1920 630
40-2-0-2 38097 2097 60 73853 1853 120 2083 2083 0 1874 1874 0 2010 2010 0
40-2-0-3 1980 1980 0 56002 2002 90 20567 20567 0 2103 2103 0 2165 2165 0
40-2-3-1 2171 2171 0 2163 2163 0 2465 2465 0 2180 2180 0 2387 2387 0
40-2-3-2 1961 1961 0 2014 2014 0 2022 2022 0 1984 1984 0 1964 1964 0
40-2-3-3 182145 2145 300 110178 2178 180 83158 2158 1356 101165 2165 1656 128225 2225 210
50-0-0-1 13356 13356 0 1420 1420 0 1277 1277 0 1387 1387 0 1379 1379 0
50-0-0-2 1398 1398 0 14356 1435 0 1472 1472 0 1274 1274 0 1434 1434 0
50-0-0-3 1367 1367 0 13056 1305 0 1308 1308 0 1409 1409 0 1215 12156 0
50-0-3-1 1566 1566 0 1684 1684 0 1500 1500 0 1561 1561 0 1564 1564 0
50-0-3-2 1547 1547 0 1579 1679 0 1576 1576 0 1490 1490 0 1534 1534 0
50-0-3-3 1632 1632 0 1582 1582 0 16656 15656 0 1659 1659 0 1614 1614 0
50-2-0-1 1636 1636 0 15561 1551 0 1776 1776 0 1744 1744 0 1741 1741 0
50-2-0-2 1648 1648 0 1634 1634 0 1491 1491 0 1560 1560 0 1470 1470 0
50-2-0-3 1540 1540 0 1569 15669 0 1513 1513 0 1586 1586 0 1665 15656 0
50-2-3-1 1893 1893 0 1988 1988 0 1768 1768 0 18156 1815 0 1875 1875 0
50-2-3-2 2171 2171 0 2100 2100 0 2212 2212 0 2080 2080 0 1968 1968 0
50-2-3-3 2018 2018 0 2008 2008 0 1907 1907 0 1937 1937 0 2070 2070 0

Table B.3: Direct3-s, raw results.

Annexe B: Raw results.

B-5

Problems 1 2 3 4]

30-0-0-1 631329 1329 1050 568245 1245 945 595346 1346 990 559239 1239 930 586273 1273 975
30-0-0-2 370299 1299 615 433353 1353 720 433373 1373 720 352207 1207 585 334210 1210 555
30-0-0-3 217317 1317 360 262314 1314 435 208312 1312 345 289387 1387 480 280389 1389 465
30-0-3-1 433407 1407 720 406502 1502 675 442513 1513 735 487554 1554 810 406434 1434 675
30-0-3-2 487494 1494 810 469494 1494 780 532540 1540 885 478514 1514 795 469503 1503 780
30-0-3-3 775406 1406 1290 847559 1559 1410 775368 1368 1290 802476 1476 1335 766379 1379 1275
30-2-0-1 640517 1517 1065 676657 1657 1125 631549 1549 1050 694592 1592 1155 604487 1487 10056
30-2-0-2 658573 1573 1095 595772 1772 990 586601 1601 975 586639 1639 975 613546 1546 1020
30-2-0-3 1432574 1574 2385 1378385 1385 2295 1387526 1526 2310 1432473 1473 2385 1414487 1487 2355
30-2-3-1 1198919 1919 1995 1207905 1905 2010 1162694 1694 1935 1189778 1778 1980 1144785 1785 19056
30-2-3-2 892736 1736 1485 955827 1827 1590 919724 1724 1530 928867 1867 1545 901760 1760 1500
30-2-3-3 757795 1795 1260 784815 1815 1305 766840 1840 1275 739782 1782 1230 775952 1952 1290
40-0-0-1 1354 1354 0 1349 1349 0 1354 1354 0 1314 1314 0 1304 1304 0
40-0-0-2 1339 1339 0 1413 1413 0 1338 1338 0 12563 1253 0 1348 1348 0
40-0-0-3 1299 1299 0 1280 1280 0 1304 1304 0 1300 1300 0 1427 1427 0
40-0-3-1 1652 1652 0 1492 1492 0 1681 1681 0 1518 1518 0 1571 1571 0
40-0-3-2 1494 1494 0 1498 1498 0 1624 1624 0 1517 1517 0 1502 1502 0
40-0-3-3 1623 1623 0 1631 1631 0 1664 1664 0 1597 1597 0 1688 1688 0
40-2-0-1 415982 1982 690 424843 1843 705 352858 1858 585 406869 1869 675 361881 1881 600
40-2-0-2 1798 1798 0 1719 1719 0 1841 1841 0 19978 1978 30 1846 1846 0
40-2-0-3 2054 2054 0 2025 20256 0 1996 1996 0 1895 1895 0 1954 1954 0
40-2-3-1 2187 2187 0 2124 2124 0 2215 2215 0 2115 2115 0 2241 2241 0
40-2-3-2 1967 1967 0 1996 1996 0 1863 1863 0 1965 1965 0 1981 1981 0
40-2-3-3 101160 2160 165 128290 2290 210 83199 2199 135 164209 2209 270 65187 2187 105
50-0-0-1 1381 1381 0 1384 1384 0 1358 1358 0 1320 1320 0 1428 1428 0
50-0-0-2 1353 1353 0 1467 1467 0 1448 1448 0 1412 1412 0 1433 1433 0
50-0-0-3 1270 1270 0 1349 1349 0 1289 1289 0 1288 1288 0 12056 12056 0
50-0-3-1 1679 1679 0 1601 1601 0 1640 1640 0 1599 1599 0 1607 1607 0
50-0-3-2 1770 1770 0 1521 1521 0 1726 1726 0 1612 1612 0 1645 1645 0
50-0-3-3 1576 1576 0 1550 1550 0 1645 1645 0 1718 1718 0 1676 1676 0
50-2-0-1 1774 1774 0 1732 1732 0 1798 1798 0 1821 1821 0 1756 1756 0
50-2-0-2 1547 1547 0 1606 1606 0 15569 1559 0 1528 1528 0 1562 1562 0
50-2-0-3 1608 1608 0 1489 1489 0 15563 1553 0 1568 1568 0 1690 1690 0
50-2-3-1 1872 1872 0 2023 2023 0 1932 1932 0 1797 1797 0 1835 1835 0
50-2-3-2 2119 2119 0 2054 2054 0 2022 2022 0 2168 2168 0 1884 1884 0
50-2-3-3 2119 2119 0 2015 2015 0 2052 2052 0 2123 2123 0 1983 1983 0

Table B.4: Direct4-s, raw results.

Annexe B: Raw results.

B-6

Problems 1 2 3 4]

30-0-0-1 487160 1160 810 586237 1237 975 514177 1177 855 514154 1154 855 532198 1198 885
30-0-0-2 298185 1185 495 307197 1197 510 361280 1280 600 271144 1144 450 361284 1284 600
30-0-0-3 181246 1246 300 154176 1176 255 181229 1229 300 190272 1272 315 172233 1233 285
30-0-3-1 388419 1419 645 388473 1473 645 370407 1407 615 352395 1395 585 370415 1415 615
30-0-3-2 478476 1476 795 469443 1443 780 424441 1441 705 451424 1424 750 433467 1467 720
30-0-3-3 757378 1378 1260 703291 1291 1170 694325 1325 1155 685299 1299 1140 721377 1377 1200
30-2-0-1 541409 1409 900 622564 1564 1035 586471 1471 975 586454 1454 975 577468 1468 960
30-2-0-2 523588 1588 870 559661 1661 930 532493 1493 885 604590 1590 1005 550489 1489 9156
30-2-0-3 1369318 1318 2280 1378382 1382 2295 1360431 1431 2265 1387338 1338 2310 1405532 1532 2340
30-2-3-1 1162664 1664 1935 1108762 1762 1845 1135647 1647 1890 1108723 1723 1845 1099775 1775 1830
30-2-3-2 883660 1660 1470 847737 1737 1410 793634 1634 1320 883695 1695 1470 847703 1703 1410
30-2-3-3 57747 1747 1260 739684 1684 1230 784954 1954 1305 757684 1684 1260 712641 1641 1185
40-0-0-1 1221 1221 0 1257 1257 0 1235 1235 0 1337 1337 0 1196 1196 0
40-0-0-2 1217 1217 0 1298 1298 0 1262 1262 0 1284 1284 0 1221 1221 0
40-0-0-3 1254 1254 0 1220 1220 0 1248 1248 0 1147 1147 0 1209 1209 0
40-0-3-1 1503 1503 0 1463 1463 0 1396 1396 0 1429 1429 0 1463 1463 0
40-0-3-2 1368 1368 0 1436 1436 0 1379 1379 0 1398 1398 0 1393 1393 0
40-0-3-3 1559 1559 0 1482 1482 0 1484 1484 0 1473 1473 0 1562 1562 0
40-2-0-1 398060 2060 660 361888 1888 600 379838 1838 630 370754 1754 615 343783 1783 570
40-2-0-2 1713 1713 0 1675 1675 0 1850 1850 0 1827 1827 0 1686 1686 0
40-2-0-3 1702 1702 0 1785 1785 0 1718 1718 0 1631 1631 0 1749 1749 0
40-2-3-1 1950 1950 0 1950 1950 0 1828 1828 0 2116 2116 0 1960 1960 0
40-2-3-2 1821 1821 0 1780 1780 0 1936 1936 0 1852 1852 0 1805 1805 0
40-2-3-3 64907 1907 1056 380563 20563 60 19988 1988 30 56020 2020 90 55943 1943 90
50-0-0-1 1287 1287 0 1209 1209 0 1308 1308 0 1307 1307 0 1273 1273 0
50-0-0-2 1206 1206 0 1232 1232 0 1235 1235 0 1380 1380 0 1211 1211 0
50-0-0-3 11056 11056 0 1131 1131 0 1361 1361 0 1216 1216 0 1239 1239 0
50-0-3-1 1453 1453 0 1466 1466 0 1521 1521 0 1593 1593 0 1533 1533 0
50-0-3-2 1482 1482 0 1501 1501 0 1533 1533 0 1468 1468 0 1612 1612 0
50-0-3-3 1480 1480 0 1490 1490 0 1475 1475 0 1472 1472 0 1469 1469 0
50-2-0-1 1599 1599 0 1756 1756 0 1582 1582 0 1618 1618 0 1588 1588 0
50-2-0-2 1494 1494 0 15562 15562 0 1500 1500 0 1406 1406 0 1487 1487 0
50-2-0-3 1434 1434 0 1542 1542 0 1496 1496 0 1492 1492 0 1529 1529 0
50-2-3-1 1787 1787 0 1675 1675 0 1790 1790 0 1823 1823 0 1783 1783 0
50-2-3-2 1924 1924 0 1989 1989 0 1908 1908 0 2080 2080 0 1927 1927 0
50-2-3-3 1844 1844 0 1875 1875 0 1899 1899 0 1873 1873 0 1920 1920 0

Table B.5: Direct4-s:200, raw results.

Annexe B: Raw results.

B-7

Problems 1 2 3 4]

30-0-0-1 559220 1220 930 586290 1290 975 568272 1272 945 559205 1205 930 496128 1128 825
30-0-0-2 316162 1162 525 361232 1232 600 361250 1250 600 298187 1187 495 289118 1118 480
30-0-0-3 217296 1296 360 190290 1290 315 199241 1241 330 172257 1257 285 154200 1200 255
30-0-3-1 316292 1292 525 352397 1397 585 316313 1313 525 334316 1316 555 307305 1305 510
30-0-3-2 334330 1330 bbb 343321 1321 570 379382 1382 630 361338 1338 600 352323 1323 585
30-0-3-3 658284 1284 10956 658246 1246 1095 658242 1242 10956 676281 1281 1125 604183 1183 1005
30-2-0-1 658608 1608 1095 640470 1470 1065 586404 1404 975 631508 1508 1050 694567 1567 11556
30-2-0-2 622635 1635 1035 568601 1601 945 541595 1595 900 604600 1600 1005 586721 1721 975
30-2-0-3 1396614 1614 2325 1405672 1672 2340 1378629 1629 2295 1396414 1414 2325 1405547 1547 2340
30-2-3-1 1072625 1625 1785 1072594 1594 1785 1099527 1527 1830 1090633 1633 1815 1081680 1680 1800
30-2-3-2 811610 1610 1350 811644 1644 1350 838625 1625 13956 802576 1576 1335 757582 1582 1260
30-2-3-3 658604 1604 1095 685621 1621 1140 631550 1550 1050 631605 1605 1050 667582 1582 1110
40-0-0-1 2214 2214 0 2107 2107 0 2220 2220 0 2229 2229 0 2238 2238 0
40-0-0-2 2182 2182 0 2226 2226 0 2225 2225 0 2243 2243 0 2209 2209 0
40-0-0-3 2155 2155 0 2158 2158 0 2177 2177 0 2143 2143 0 2153 2153 0
40-0-3-1 1445 1445 0 1410 1410 0 1361 1361 0 1388 1388 0 1430 1430 0
40-0-3-2 1310 1310 0 1423 1423 0 1318 1318 0 1298 1298 0 1343 1343 0
40-0-3-3 1476 1476 0 1520 1520 0 1479 1479 0 1494 1494 0 1506 1506 0
40-2-0-1 343767 1767 570 352762 1762 585 389203 2203 645 343699 1699 570 334765 1765 bbb
40-2-0-2 1835 1835 0 1899 1899 0 1782 1782 0 1850 1850 0 1843 1843 0
40-2-0-3 1730 1730 0 1693 1693 0 1784 1784 0 1803 1803 0 1588 1588 0
40-2-3-1 1797 1797 0 1895 1895 0 1870 1870 0 1866 1866 0 1872 1872 0
40-2-3-2 1686 1686 0 1745 1745 0 1663 1663 0 1714 1714 0 1732 1732 0
40-2-3-3 1893 1893 0 1905 19056 0 11020 2020 15 1823 1823 0 28973 1973 45
50-0-0-1 2301 2301 0 2275 2275 0 2293 2293 0 2224 2224 0 2291 2291 0
50-0-0-2 2169 2169 0 2190 2190 0 2216 2216 0 21565 21565 0 2219 2219 0
50-0-0-3 2153 2153 0 2197 2197 0 2222 2222 0 2148 2148 0 2197 2197 0
50-0-3-1 1411 1411 0 1462 1462 0 1500 1500 0 1497 1497 0 1458 1458 0
50-0-3-2 1381 1381 0 1459 1459 0 1412 1412 0 1533 1533 0 1563 1563 0
50-0-3-3 1349 1349 0 1431 1431 0 1419 1419 0 1579 1579 0 1483 1483 0
50-2-0-1 21156 2115 0 2155 21565 0 2190 2190 0 2193 2193 0 2172 2172 0
50-2-0-2 2040 2040 0 2038 2038 0 2068 2068 0 2033 2033 0 2068 2068 0
50-2-0-3 2069 2069 0 2053 2053 0 2098 2098 0 2068 2068 0 2087 2087 0
50-2-3-1 1557 1557 0 15569 1559 0 1672 1672 0 1625 1625 0 1799 1799 0
50-2-3-2 1910 1910 0 1808 1808 0 1933 1933 0 1817 1817 0 1916 1916 0
50-2-3-3 1863 1863 0 1801 1801 0 1863 1863 0 1806 1806 0 1846 1846 0

Table B.6: Direct4-s:400, raw results.

Annexe B: Raw results.

B-8

Problems 1 2 3 4]

30-0-0-1 541201 1201 900 532151 1151 885 496160 1160 825 550184 1184 915 559203 1203 930
30-0-0-2 325252 1252 540 271149 1149 450 289106 1106 480 289183 1183 480 370230 1230 615
30-0-0-3 154211 1211 2565 154157 1157 255 217276 1276 360 199267 1267 330 244293 1293 405
30-0-3-1 271292 1292 450 307310 1310 510 298287 1287 495 298275 1275 495 334372 1372 555
30-0-3-2 343322 1322 570 397358 1358 660 424392 1392 705 379313 1313 630 352349 1349 585
30-0-3-3 694348 1348 1155 685287 1287 1140 676249 1249 1125 712286 1286 1185 685280 1280 1140
30-2-0-1 631471 1471 1050 640552 1552 1065 649528 1528 1080 667526 1526 1110 640583 1583 1065
30-2-0-2 604770 1770 1005 622682 1682 1035 559552 1552 930 604584 1584 1005 496404 1404 825
30-2-0-3 1405457 1457 2340 1378471 1471 2295 1387461 1461 2310 1378531 1531 2295 1387458 1458 2310
30-2-3-1 1045733 1733 1740 1126663 1663 1875 1090660 1660 1815 1108641 1641 1845 1072643 1643 1785
30-2-3-2 802680 1680 1335 802598 1598 1335 784617 1617 1305 802653 1653 1335 820679 1679 1365
30-2-3-3 640587 1587 1065 703575 1575 1170 676641 1641 1125 712679 1679 1185 721635 1635 1200
40-0-0-1 1233 1233 0 1247 1247 0 1204 1204 0 1315 1315 0 1202 1202 0
40-0-0-2 1238 1238 0 1238 1238 0 1242 1242 0 1151 1151 0 1128 1128 0
40-0-0-3 1226 1226 0 1148 1148 0 1225 1225 0 1220 1220 0 1242 1242 0
40-0-3-1 1477 1477 0 1420 1420 0 1485 1485 0 1362 1362 0 1337 1337 0
40-0-3-2 1309 1309 0 1391 1391 0 1323 1323 0 1324 1324 0 1302 1302 0
40-0-3-3 1425 1425 0 1479 1479 0 1490 1490 0 1439 1439 0 1458 1458 0
40-2-0-1 343846 1846 570 335009 2009 555 307720 1720 510 379989 1989 630 361846 1846 600
40-2-0-2 1824 1824 0 1836 1836 0 1793 1793 0 1745 1745 0 1926 1926 0
40-2-0-3 1736 1736 0 1689 1689 0 1633 1633 0 1764 1764 0 1875 1875 0
40-2-3-1 1897 1897 0 1824 1824 0 1788 1788 0 1899 1899 0 1821 1821 0
40-2-3-2 1695 1695 0 1698 1698 0 1623 1623 0 1765 1765 0 1677 1677 0
40-2-3-3 10960 1960 15 1884 1884 0 19974 1974 30 55999 1999 90 46860 1860 75
50-0-0-1 1321 1321 0 1226 1226 0 1332 1332 0 1234 1234 0 1336 1336 0
50-0-0-2 13256 1325 0 1183 1183 0 1269 1269 0 1242 1242 0 1242 1242 0
50-0-0-3 1187 1187 0 1234 1234 0 1172 1172 0 1138 1138 0 1181 1181 0
50-0-3-1 1435 1435 0 1405 1405 0 1373 1373 0 1533 1533 0 1489 1489 0
50-0-3-2 1461 1461 0 1369 1369 0 1348 1348 0 1462 1462 0 1461 1461 0
50-0-3-3 1479 1479 0 1410 1410 0 1391 1391 0 1510 1510 0 1426 1426 0
50-2-0-1 1688 1688 0 1593 1593 0 1575 1575 0 1510 1510 0 1582 1582 0
50-2-0-2 1503 1503 0 1492 1492 0 1477 1477 0 1478 1478 0 1445 1445 0
50-2-0-3 1444 1444 0 1529 1529 0 1384 1384 0 1477 1477 0 1437 1437 0
50-2-3-1 1666 1666 0 1665 1665 0 1797 1797 0 1591 1591 0 1782 1782 0
50-2-3-2 1790 1790 0 1881 1881 0 1883 1883 0 1874 1874 0 1754 1754 0
50-2-3-3 1744 1744 0 1822 1822 0 1773 1773 0 1867 1867 0 1742 1742 0

Table B.7: Dupli-1,

raw results.

Annexe B: Raw results.

B-9

Problems 1 2 3 4]

30-0-0-1 595313 1313 990 550206 1206 915 505166 1166 840 568181 1181 945 577247 1247 960
30-0-0-2 289167 1167 480 361275 1275 600 370258 1258 615 307171 1171 510 379303 1303 630
30-0-0-3 208286 1286 345 190232 1232 315 190221 1221 315 199287 1287 330 217261 1261 360
30-0-3-1 397428 1428 660 388448 1448 645 415438 1438 690 433504 1504 720 433540 1540 720
30-0-3-2 424419 1419 705 469471 1471 780 433399 1399 720 460499 1499 765 406358 1358 675
30-0-3-3 739352 1352 1230 721318 1318 1200 703321 1321 1170 757372 1372 1260 802373 1373 1335
30-2-0-1 649538 1538 1080 613494 1494 1020 667570 1570 1110 640492 1492 1065 613540 1540 1020
30-2-0-2 532510 1510 885 595706 1706 990 559586 1586 930 505504 1504 840 559598 1598 930
30-2-0-3 1378405 1405 2295 1378389 1389 2295 1387659 1659 2310 1387511 1511 2310 1405566 1566 2340
30-2-3-1 1153739 1739 1920 1180740 1740 1965 1081795 1795 1800 1117870 1870 1860 1099796 1796 1830
30-2-3-2 865661 1661 1440 847592 1592 1410 856766 1766 1425 847659 1659 1410 856662 1662 1425
30-2-3-3 685625 1625 1140 685639 1639 1140 712814 1814 1185 748746 1746 1245 676741 1741 1125
40-0-0-1 1103 1103 0 1272 1272 0 1115 1115 0 1136 1136 0 11256 1125 0
40-0-0-2 1132 1132 0 1081 1081 0 10563 10563 0 1208 1208 0 1145 1145 0
40-0-0-3 1114 1114 0 1105 1105 0 1214 1214 0 1093 1093 0 1149 1149 0
40-0-3-1 1406 1406 0 1401 1401 0 1421 1421 0 1422 1422 0 1360 1360 0
40-0-3-2 1440 1440 0 1364 1364 0 1418 1418 0 1364 1364 0 1399 1399 0
40-0-3-3 1376 1376 0 1445 1445 0 1367 1367 0 1452 1452 0 1480 1480 0
40-2-0-1 316876 1876 525 352922 1922 585 343753 1753 570 352771 1771 585 343828 1828 570
40-2-0-2 1775 1775 0 1906 1906 0 1723 1723 0 1852 1852 0 37911 1911 60
40-2-0-3 1826 1826 0 1755 1755 0 1943 1943 0 1897 1897 0 1741 1741 0
40-2-3-1 2082 2082 0 2078 2078 0 2056 2056 0 2095 2095 0 1902 1902 0
40-2-3-2 1903 1903 0 1825 1825 0 1714 1714 0 1847 1847 0 1906 1906 0
40-2-3-3 46894 1894 75 92167 2167 150 83019 2019 135 47064 2064 75 38058 2058 60
50-0-0-1 1103 1103 0 1211 1211 0 11056 1105 0 1138 1138 0 1139 1139 0
50-0-0-2 1210 1210 0 1164 1164 0 1171 1171 0 1108 1108 0 1219 1219 0
50-0-0-3 1125 1125 0 1054 10564 0 1210 1210 0 1090 1090 0 1098 1098 0
50-0-3-1 1451 1451 0 1422 1422 0 1369 1369 0 1467 1467 0 1409 1409 0
50-0-3-2 1482 1482 0 1374 1374 0 1496 1496 0 1481 1481 0 1384 1384 0
50-0-3-3 1455 1455 0 1455 1455 0 1401 1401 0 1453 1453 0 1449 1449 0
50-2-0-1 1575 1575 0 1562 1562 0 1491 1491 0 1461 1461 0 1549 1549 0
50-2-0-2 1291 1291 0 1359 1359 0 1352 1352 0 1461 1461 0 1300 1300 0
50-2-0-3 1479 1479 0 1427 1427 0 1380 1380 0 1475 1475 0 1421 1421 0
50-2-3-1 1752 1752 0 1744 1744 0 1726 1726 0 1651 1651 0 1752 1762 0
50-2-3-2 1825 1825 0 2052 20562 0 1946 1946 0 1910 1910 0 1828 1828 0
50-2-3-3 1874 1874 0 1819 1819 0 1844 1844 0 1862 1862 0 1857 1857 0

Table B.8: Dupli-2, raw results.

Annexe B: Raw results. B-10

Problems 1 2 3 4 5

30-0-0-1 523158 1158 870 541227 1227 900 577248 1248 960 577247 1247 960 550189 1189 915
30-0-0-2 307145 1145 510 334229 1229 555 316209 1209 525 325192 1192 540 325189 1189 540
30-0-0-3 181106 1106 300 109092 1092 180 190247 1247 315 208225 12256 345 181137 1137 300
30-0-3-1 361402 1402 600 334345 1345 555 379440 1440 630 379394 1394 630 289268 1268 480
30-0-3-2 370350 1350 615 397379 1379 660 343298 1298 570 379322 1322 630 379337 1337 630
30-0-3-3 730296 1296 1215 694293 1293 1155 748334 1334 1245 667240 1240 1110 721327 1327 1200
30-2-0-1 622515 1515 1035 586430 1430 975 577438 1438 960 559421 1421 930 577393 1393 960
30-2-0-2 568531 1531 945 541466 1466 900 523410 1410 870 514433 1433 855 604581 1581 1005
30-2-0-3 1414495 1495 2355 1405462 1462 2340 1378369 1369 2295 1396593 1593 2325 1387458 1458 2310
30-2-3-1 1099570 1570 1830 1090556 1556 1815 1144737 1737 1905 1135582 1582 1890 1153547 1547 1920
30-2-3-2 775523 1523 1290 793558 1558 1320 820581 1581 1365 820634 1634 1365 820580 1580 1365
30-2-3-3 730610 1610 1215 694566 1566 1155 712613 1613 1185 712629 1629 1185 739595 1595 1230
40-0-0-1 1232 1232 0 1175 1175 0 1162 1162 0 1212 1212 0 1104 1104 0
40-0-0-2 1194 1194 0 1202 1202 0 1122 1122 0 1142 1142 0 1201 1201 0
40-0-0-3 1101 1101 0 1236 1236 0 1129 1129 0 1182 1182 0 1186 1186 0
40-0-3-1 1355 1355 0 1400 1400 0 1393 1393 0 1378 1378 0 1377 1377 0
40-0-3-2 1320 1320 0 1340 1340 0 1366 1366 0 1294 1294 0 1342 1342 0
40-0-3-3 1417 1417 0 1342 1342 0 1516 1516 0 1441 1441 0 1467 1467 0
40-2-0-1 361799 1799 600 334685 1685 555 352687 1687 585 361793 1793 600 352686 1686 585
40-2-0-2 1623 1623 0 1755 1755 0 1905 1905 0 1739 1739 0 1675 1675 0
40-2-0-3 1651 1651 0 1769 1769 0 1642 1642 0 1591 1591 0 1744 1744 0
40-2-3-1 2130 2130 0 1944 1944 0 1878 1878 0 2069 2069 0 1996 1996 0
40-2-3-2 1670 1670 0 1782 1782 0 1726 1726 0 1669 1669 0 1682 1682 0
40-2-3-3 1864 1864 0 55910 1910 90 55933 1933 90 91829 1829 150 119042 2042 195
50-0-0-1 1330 1330 0 1193 1193 0 1280 1280 0 1261 1261 0 1168 1168 0
50-0-0-2 1196 1196 0 1210 1210 0 1133 1133 0 1158 11568 0 11569 1159 0
50-0-0-3 1138 1138 0 1177 1177 0 1091 1091 0 1095 10956 0 1260 1260 0
50-0-3-1 1442 1442 0 1376 1376 0 1421 1421 0 1427 1427 0 1482 1482 0
50-0-3-2 1440 1440 0 1503 1503 0 1532 1532 0 1342 1342 0 1453 1453 0
50-0-3-3 1436 1436 0 1429 1429 0 1495 1495 0 1510 1510 0 1477 1477 0
50-2-0-1 1554 15564 0 1513 1513 0 1610 1610 0 1551 1551 0 1603 1603 0
50-2-0-2 1410 1410 0 1445 1445 0 1341 1341 0 1304 1304 0 1431 1431 0
50-2-0-3 1498 1498 0 1529 1529 0 1391 1391 0 1362 1362 0 1509 1509 0
50-2-3-1 1646 1646 0 1672 1672 0 1650 1650 0 1764 1764 0 1647 1647 0
50-2-3-2 1889 1889 0 1898 1898 0 1856 1856 0 1863 1863 0 1926 1926 0
50-2-3-3 1839 1839 0 1872 1872 0 1893 1893 0 1877 1877 0 1906 1906 0

Table B.9: Direct4-s:200+repair, raw results.

Annexe B: Raw results. B-11

Problems 1 2 3 4 5

30-0-0-1 577195 1195 960 604246 1246 1005 613290 1290 1020 640290 1290 1065 640333 1333 1065
30-0-0-2 397262 1262 660 397239 1239 660 406292 1292 675 379235 1235 630 388279 1279 645
30-0-0-3 244268 1268 405 262316 1316 435 271365 1365 450 235275 1275 390 244304 1304 405
30-0-3-1 298260 1260 495 352353 1353 585 298257 1257 495 280246 1246 465 334282 1282 555
30-0-3-2 388386 1386 645 343255 12565 570 307308 1308 510 379376 1376 630 388350 1350 645
30-0-3-3 703251 1251 1170 613135 1135 1020 694282 1282 1155 730342 1342 1215 685268 1268 1140
30-2-0-1 712632 1632 1185 622519 1519 1035 721609 1609 1200 685475 1475 1140 676487 1487 1125
30-2-0-2 613709 1709 1020 577680 1680 960 604656 1656 1005 586666 1666 975 595746 1746 990
30-2-0-3 1387545 1545 2310 1441623 1623 2400 1423566 1566 2370 1432620 1620 2385 1414558 1558 2355
30-2-3-1 1090588 1588 1815 1072631 1631 1785 1126620 1620 1875 1117663 1663 1860 1081669 1669 1800
30-2-3-2 829634 1634 1380 793600 1600 1320 748600 1600 1245 757601 1601 1260 811581 1581 1350
30-2-3-3 694596 1596 1155 649551 1551 1080 649513 1513 1080 676542 1542 1125 676555 1555 1125
40-0-0-1 1144 1144 0 1252 12562 0 1192 1192 0 1255 12565 0 1278 1278 0

40-0-0-2 1174 1174 0 1123 1123 0 1161 1161 0 1252 1252 0 1172 1172 0

40-0-0-3 1212 1212 0 1303 1303 0 1136 1136 0 1204 1204 0 1169 1169 0

40-0-3-1 1449 1449 0 1323 1323 0 1342 1342 0 1459 1459 0 1319 1319 0

40-0-3-2 1412 1412 0 1232 1232 0 1326 1326 0 1295 1295 0 1369 1369 0

40-0-3-3 1456 1456 0 1414 1414 0 1351 1351 0 1444 1444 0 1407 1407 0

40-2-0-1 361970 1970 600 424899 1899 705 379939 1939 630 343790 1790 570 379865 1865 630
40-2-0-2 1895 1895 0 1655 1655 0 1735 1735 0 2002 2002 0 1745 1745 0

40-2-0-3 1824 1824 0 1911 1911 0 1833 1833 0 1611 1611 0 1926 1926 0

40-2-3-1 1898 1898 0 1859 1859 0 1921 1921 0 1823 1823 0 1815 1815 0

40-2-3-2 1739 1739 0 1738 1738 0 1618 1618 0 1632 1632 0 1614 1614 0

40-2-3-3 19844 1844 30 1820 1820 0 28906 1906 45 46898 1898 75 19837 1837 30

50-0-0-1 1315 1315 0 1297 1297 0 1234 1234 0 1297 1297 0 1342 1342 0

50-0-0-2 1262 1262 0 1288 1288 0 1216 1216 0 1239 1239 0 1271 1271 0

50-0-0-3 1222 1222 0 1206 1206 0 1297 1297 0 1193 1193 0 1185 1185 0

50-0-3-1 1374 1374 0 1383 1383 0 1476 1476 0 1471 1471 0 1410 1410 0

50-0-3-2 1439 1439 0 1394 1394 0 1368 1368 0 1405 14056 0 1327 1327 0

50-0-3-3 1494 1494 0 1370 1370 0 1439 1439 0 1419 1419 0 1493 1493 0

50-2-0-1 1627 1627 0 1597 1597 0 1637 1637 0 1527 1527 0 1604 1604 0

50-2-0-2 1459 1459 0 1440 1440 0 1445 1445 0 1414 1414 0 1472 1472 0

50-2-0-3 1415 1415 0 1390 1390 0 1465 1465 0 1425 1425 0 1433 1433 0

50-2-3-1 1701 1701 0 1762 1762 0 1587 1587 0 15562 15562 0 1609 1609 0

50-2-3-2 1785 1785 0 1861 1861 0 1722 1722 0 1812 1812 0 1942 1942 0

50-2-3-3 1815 1815 0 1811 1811 0 1754 1754 0 1845 1845 0 1742 1742 0

Table B.10: Dupli-1+repair, raw results.

Annexe B: Raw results. B-12

Problems 1 2 3 4 5

30-0-0-1 622222 1222 1035 631326 1326 1050 631313 1313 1050 541202 1202 900 622240 1240 1035
30-0-0-2 307147 1147 510 379260 1260 630 370282 1282 615 415294 1294 690 352237 1237 585
30-0-0-3 199240 1240 330 271287 1287 450 226256 1256 375 253313 1313 420 208247 1247 345
30-0-3-1 361289 1289 600 370328 1328 615 397421 1421 660 388391 1391 645 370372 1372 615
30-0-3-2 397377 1377 660 379361 1361 630 442327 1327 735 433350 1350 720 469415 1415 780
30-0-3-3 712323 1323 1185 676226 1226 1125 757379 1379 1260 703271 1271 1170 685237 1237 1140
30-2-0-1 685527 1527 1140 703489 1489 1170 694545 1545 1155 676538 1538 1125 721537 1537 1200
30-2-0-2 613584 1584 1020 595639 1639 990 622643 1643 1035 604579 1579 1005 568621 1621 945
30-2-0-3 14325056 1505 2385 1432471 1471 2385 1432507 1507 2385 1432634 1634 2385 1423616 1616 2370
30-2-3-1 1117723 1723 1860 1135678 1678 1890 1081590 1590 1800 1126573 1573 1875 1072575 1575 1785
30-2-3-2 829636 1636 1380 910690 1690 1515 910608 1608 1515 829511 1511 1380 775603 1603 1290
30-2-3-3 676545 1545 1125 721639 1639 1200 748600 1600 1245 721648 1648 1200 712512 1512 1185
40-0-0-1 1085 1085 0 1160 1160 0 1059 1059 0 1128 1128 0 1070 1070 0
40-0-0-2 1061 1061 0 1082 1082 0 1044 1044 0 1060 1060 0 1061 1061 0
40-0-0-3 086 986 0 1104 1104 0 1026 1026 0 078 078 0 1038 1038 0
40-0-3-1 1378 1378 0 1321 1321 0 1335 1335 0 1327 1327 0 1401 1401 0
40-0-3-2 1257 1257 0 1278 1278 0 1343 1343 0 1282 1282 0 1326 1326 0
40-0-3-3 1360 1360 0 1358 1358 0 1471 1471 0 1412 1412 0 1359 1359 0
40-2-0-1 370866 1866 615 352845 1845 585 388882 1882 645 370627 1627 615 370929 1929 615
40-2-0-2 1660 1660 0 1892 1892 0 1714 1714 0 1629 1629 0 1757 1757 0
40-2-0-3 1699 1699 0 1814 1814 0 1679 1679 0 1799 1799 0 1631 1631 0
40-2-3-1 1818 1818 0 1962 1962 0 2096 2096 0 1849 1849 0 2028 2028 0
40-2-3-2 1669 1669 0 1709 1709 0 1868 1868 0 1763 1763 0 1719 1719 0
40-2-3-3 46985 1985 75 55906 1906 90 64824 1824 105 1951 1951 0 64946 1946 105
50-0-0-1 1118 1118 0 1216 1216 0 1143 1143 0 1201 1201 0 1221 1221 0
50-0-0-2 1097 1097 0 1110 1110 0 1039 1039 0 1077 1077 0 1012 1012 0
50-0-0-3 1026 1026 0 1081 1081 0 1040 1040 0 1069 1069 0 1006 1006 0
50-0-3-1 1362 1362 0 1383 1383 0 1424 1424 0 1297 1297 0 1336 1336 0
50-0-3-2 1350 1350 0 1427 1427 0 1372 1372 0 1303 1303 0 1321 1321 0
50-0-3-3 1378 1378 0 1316 1316 0 1369 1369 0 1336 1336 0 1450 1450 0
50-2-0-1 1522 1522 0 1604 1604 0 1599 1599 0 1506 1506 0 1439 1439 0
50-2-0-2 1310 1310 0 1301 1301 0 1230 1230 0 1367 1367 0 1422 1422 0
50-2-0-3 1352 1352 0 1499 1499 0 1348 1348 0 1424 1424 0 1380 1380 0
50-2-3-1 1574 1574 0 1597 1597 0 1620 1620 0 1513 1513 0 1613 1613 0
50-2-3-2 1911 1911 0 1901 1901 0 1790 1790 0 1908 1908 0 1802 1802 0
50-2-3-3 1792 1792 0 1897 1897 0 1724 1724 0 1633 1633 0 1735 1735 0

Table B.11: Dupli-2+repair, raw results.

Annexe B: Raw results. B-13

Problems 1 2 3 4 b

30-0-0-1 973918 1918 1620 982869 1869 16356 964890 1890 16056 073925 1925 1620 082882 1882 163b
30-0-0-2 748926 1926 1245 784974 1974 13056 793962 1962 1320 766951 1951 1275 784968 1968 130b
30-0-0-3 6139565 195656 1020 631968 1968 10560 632010 2010 10560 595929 1929 990 613992 1992 1020
30-0-3-1 757993 1993 1260 758009 2009 1260 T48967 1967 1245 767014 2014 1275 785062 2062 13056
30-0-3-2 821011 2011 1365 821068 2068 136b 812072 2072 1350 8210bb 20565 136b 803023 2023 13356
30-0-3-3 1090903 1903 18156 1090884 1884 18156 1108919 1919 18456 1090926 1926 18156 1081943 1943 1800
30-2-0-1 001974 1974 1500 910967 1967 15156 910998 1998 15156 911029 2029 15156 910974 1974 15156
30-2-0-2 767064 20b4 12756 767066 2066 1275 776063 2063 1290 776067 20567 1290 776066 2066 1290
30-2-0-3 1495836 1836 2490 1495845 1845 2490 1504872 1872 25056 1504810 1810 2505 1495877 1877 2490
30-2-3-1 1361186 2186 2265 1370027 2027 2280 1352164 2164 2250 1370176 2176 2280 1370108 2108 2280
30-2-3-2 1163096 2096 19356 1154147 2147 1920 11540566 2056 1920 1163081 2081 19356 11360564 20b4 1890
30-2-3-3 901984 1984 1500 884083 2083 1470 920183 2183 1530 911141 2141 16156 929124 2124 1b4b
40-0-0-1 2272 2272 0 2272 2272 0 2251 2251 0 2265 2265 0 2174 2174 0

40-0-0-2 2183 2183 0 2235 2235 0 2260 2260 0 2245 2245 0 2232 2232 0

40-0-0-3 2166 2166 0 2205 2205 0 2204 2204 0 2168 2168 0 2190 2190 0

40-0-3-1 2306 2306 0 2333 2333 0 2315 2315 0 2313 2313 0 2309 2309 0

40-0-3-2 2205 2205 0 2216 2216 0 2223 2223 0 21756 21756 0 2181 2181 0

40-0-3-3 2356 2356 0 2426 2426 0 2412 2412 0 2380 2380 0 2339 2339 0

40-2-0-1 461248 2248 765 452312 2312 750 443139 2139 73b 425304 2304 7056 443374 2374 73b
40-2-0-2 6515656 21565 106 56199 2199 90 56219 2219 90 56219 2219 90 38244 2244 60

40-2-0-3 56272 2272 90 56379 2379 90 56330 2330 20 56369 2369 90 56321 2321 20

40-2-3-1 20561 2661 30 2573 2573 0 47581 2581 75 2480 2480 0 38451 2451 60

40-2-3-2 2320 2320 0 22b5 22b5 0 2226 2226 0 2310 2310 0 2285 2285 0

40-2-3-3 173288 2288 285 191347 2347 3156 218421 2421 360 1913561 2351 316 182433 2433 300
50-0-0-1 2317 2317 0 2310 2310 0 2309 2309 0 2300 2300 0 2333 2333 0

50-0-0-2 2236 2236 0 22b5 22b5 0 2230 2230 0 2251 2251 0 2204 2204 0

50-0-0-3 2241 2241 0 2225 2225 0 2237 2237 0 2258 2258 0 2212 2212 0

50-0-3-1 2279 2279 0 2284 2284 0 2260 2260 0 2296 2296 0 2263 2263 0

50-0-3-2 2335 2335 0 2393 2393 0 2365 2365 0 2398 2398 0 2335 2335 0

50-0-3-3 2338 2338 0 2343 2343 0 2321 2321 0 2323 2323 0 2304 2304 0

50-2-0-1 2156 21566 0 2232 2232 0 2215 2215 0 2209 2209 0 2108 2108 0

50-2-0-2 2116 2116 0 2097 2097 0 2105 21056 0 2111 2111 0 2110 2110 0

50-2-0-3 2133 2133 0 2117 2117 0 20756 20756 0 2141 2141 0 2132 2132 0

50-2-3-1 2220 2220 0 21756 21756 0 2171 2171 0 2185 2185 0 2171 2171 0

50-2-3-2 2313 2313 0 2392 2392 0 2358 2358 0 2397 2397 0 2313 2313 0

50-2-3-3 2412 2412 0 2388 2388 0 2352 2352 0 2390 2390 0 2386 2386 0

Table B.12: Random Search, raw results.

Annexe B: Raw results. B-14

Problems 1 2 3 4 5

30-0-0-1 577218 1218 960 595220 1220 990 586219 1219 975 586197 1197 975 559161 1161 930
30-0-0-2 388233 1233 645 388252 1252 645 406300 1300 675 442322 1322 735 370259 1259 615
30-0-0-3 271307 1307 450 298393 1393 495 208242 1242 345 235257 1257 390 208283 1283 345
30-0-3-1 451513 1513 750 433475 1475 720 460461 1461 765 460500 1500 765 442445 1445 735
30-0-3-2 514530 1530 855 505524 1524 840 487454 1454 810 523534 1534 870 460510 1510 765
30-0-3-3 784348 1348 1305 802373 1373 1335 811386 1386 1350 739295 1295 1230 757338 1338 1260
30-2-0-1 595393 1393 990 586392 1392 975 622423 1423 1035 595380 1380 990 622371 1371 1035
30-2-0-2 604535 1535 1005 568501 1501 945 514448 1448 855 586493 1493 975 532277 1277 885
30-2-0-3 1386946 946 2310 1395929 929 2325 1404936 936 2340 1395868 868 2325 1413951 951 2355
30-2-3-1 1207505 1505 2010 1279500 1500 2130 1225485 1485 2040 1252498 1498 2085 1162438 1438 1935
30-2-3-2 973518 1518 1620 892558 1558 1485 946487 1487 1575 865629 1629 1440 946561 1561 1575
30-2-3-3 865370 1370 1440 748474 1474 1245 685229 1229 1140 748346 1346 1245 757368 1368 1260
40-0-0-1 965 965 0 895 895 0 990 990 0 820 820 0 932 932 0
40-0-0-2 907 907 0 958 958 0 943 943 0 906 906 0 72 772 0
40-0-0-3 1044 1044 0 991 991 0 795 795 0 950 950 0 891 891 0
40-0-3-1 1303 1303 0 1288 1288 0 1290 1290 0 1305 13056 0 1366 1366 0
40-0-3-2 1109 1109 0 1169 1169 0 1167 1167 0 1119 1119 0 1269 1269 0
40-0-3-3 1278 1278 0 1281 1281 0 1279 1279 0 1353 1353 0 1334 1334 0
40-2-0-1 316020 1020 525 352012 1012 585 369978 o978 615 333998 998 bbb 306990 990 510
40-2-0-2 55093 1093 90 993 993 0 1165 1165 0 1095 1095 0 1125 1125 0
40-2-0-3 1065 1065 0 1187 1187 0 1120 1120 0 1151 1151 0 1026 1026 0
40-2-3-1 46389 1389 75 73490 1490 120 bb464 1464 90 100377 1377 165 1294 1294 0
40-2-3-2 1362 1362 0 1402 1402 0 1277 1277 0 1308 1308 0 1253 1253 0
40-2-3-3 235368 1368 390 100320 1320 165 154425 1425 255 163369 1369 270 136329 1329 225
50-0-0-1 950 950 0 1010 1010 0 1031 1031 0 1039 1039 0 924 924 0
50-0-0-2 849 849 0 940 940 0 872 872 0 086 086 0 854 854 0
50-0-0-3 781 781 0 796 796 0 872 872 0 802 802 0 875 875 0
50-0-3-1 1167 1167 0 1231 1231 0 1158 1158 0 1197 1197 0 1129 1129 0
50-0-3-2 1200 1200 0 1230 1230 0 1170 1170 0 1310 1310 0 1184 1184 0
50-0-3-3 1126 1126 0 1250 1250 0 1222 1222 0 1083 1083 0 11563 1153 0
50-2-0-1 1032 1032 0 1037 1037 0 1086 1086 0 1081 1081 0 1101 1101 0
50-2-0-2 845 845 0 880 880 0 809 809 0 934 934 0 909 909 0
50-2-0-3 1012 1012 0 956 956 0 899 899 0 1033 1033 0 936 936 0
50-2-3-1 1158 1158 0 1262 1262 0 1237 1237 0 1293 1293 0 1270 1270 0
50-2-3-2 1377 1377 0 1387 1387 0 1327 1327 0 1414 1414 0 1366 1366 0
50-2-3-3 1249 1249 0 1324 1324 0 1286 1286 0 1314 1314 0 1350 1350 0

Table B.13: Hill-climbing, raw results.

Annexe B: Raw results. B-15

Problems 1 2 3 4 b

30-0-0-1 433029 1029 720 451038 1038 750 4420568 1058 7356 451083 1083 750 424025 1026 7056
30-0-0-2 235090 1090 390 262087 1087 435 289123 1123 480 2563077 1077 420 253101 1101 420
30-0-0-3 1181568 1158 1956 118144 1144 1956 100118 1118 1656 100131 1131 1656 100115 11156 1656
30-0-3-1 325379 1379 540 370414 1414 615 343381 1381 570 307343 1343 510 343390 1390 570
30-0-3-2 415468 1468 690 325298 1298 540 316301 1301 525 343336 1336 570 352340 1340 585
30-0-3-3 622218 1218 10356 622198 1198 10356 658265 1265 10956 640226 1226 1065 649223 1223 1080
30-2-0-1 496342 1342 825 505381 1381 840 523398 1398 870 487335 1335 810 514418 1418 8bb
30-2-0-2 468982 082 780 450913 913 750 460206 1206 76b 487047 1047 810 460042 1042 765
30-2-0-3 1359744 T44 2265 1359764 754 2265 1341751 7b1 2235 1359781 781 2265 1350816 816 2250
30-2-3-1 1054143 1143 1765 1018079 1079 16956 1045124 1124 1740 1064227 1227 1765 1090146 1146 18156
30-2-3-2 748576 1576 1245 811626 1626 1350 T6TE6T 1567 1260 811676 1676 1350 721604 1604 1200
30-2-3-3 676221 1221 1125 730167 11567 12156 667180 1180 1110 7121056 110b 1185 703237 1237 1170
40-0-0-1 821 821 0 751 751 0 768 768 0 759 759 0 T41 741 0

40-0-0-2 824 824 0 747 T47 0 780 780 0 772 772 0 802 802 0

40-0-0-3 746 746 0 745 745 0 T44 744 0 782 782 0 788 788 0

40-0-3-1 oT7 o7TT 0 949 249 0 082 282 0 027 927 0 084 084 0

40-0-3-2 884 884 0 8b4 8b4 0 892 892 0 931 931 0 887 887 0

40-0-3-3 963 963 0 993 993 0 10456 10456 0 1000 1000 0 289 289 0

40-2-0-1 279991 991 465 261970 Q70 435 243960 960 405 243968 968 405 243966 966 405
40-2-0-2 921 921 0 869 869 0 864 864 0 884 884 0 9bb 955 0

40-2-0-3 943 943 0 9156 9156 0 9156 9156 0 941 941 0 913 913 0

40-2-3-1 1131 1131 0 1147 1147 0 1192 1192 0 1151 1151 0 1156 1156 0

40-2-3-2 1037 1037 0 940 940 0 1031 1031 0 1090 1090 0 1011 1011 0

40-2-3-3 1273 1273 0 28172 1172 45 1218 1218 0 1158 11568 0 37189 1189 60

50-0-0-1 814 814 0 842 842 0 792 792 0 837 837 0 808 808 0

50-0-0-2 827 827 0 762 762 0 868 868 0 811 811 0 819 819 0

50-0-0-3 791 791 0 762 762 0 750 760 0 774 774 0 774 774 0

50-0-3-1 Q79 979 0 924 924 0 923 923 0 922 922 0 958 958 0

50-0-3-2 084 084 0 958 958 0 969 969 0 980 980 0 983 983 0

50-0-3-3 oT74 074 0 939 939 0 1016 1016 0 960 960 0 Q72 Q72 0

50-2-0-1 899 899 0 882 882 0 901 901 0 206 906 0 900 900 0

50-2-0-2 713 713 0 722 722 0 729 729 0 728 728 0 698 698 0

50-2-0-3 825 825 0 806 806 0 832 832 0 823 823 0 846 846 0

50-2-3-1 1024 1024 0 1014 1014 0 980 980 0 1002 1002 0 082 282 0

50-2-3-2 1116 1116 0 11356 1135 0 1152 1152 0 1138 1138 0 1141 1141 0

50-2-3-3 1120 1120 0 1094 1094 0 1090 1090 0 1139 1139 0 1103 1103 0

Table B.14: Simulated Annealing, raw results.

Annexe B: Raw results. B-16

Problems 1 2 3 4 5

30-0-0-1 541177 1177 900 568217 1217 945 568211 1211 945 577238 1238 960 541168 1168 900
30-0-0-2 361255 12565 600 343175 1175 570 397285 1285 660 361240 1240 600 280098 1098 465
30-0-0-3 172185 1185 285 262342 1342 435 208267 1267 345 226274 1274 375 163174 1174 270
30-0-3-1 379425 1425 630 370415 1415 615 343376 1376 570 316325 1325 525 280302 1302 465
30-0-3-2 352323 1323 585 388362 1362 645 406398 1398 675 343285 1285 570 406406 1406 675
30-0-3-3 685259 1259 1140 667265 1265 1110 658215 1215 10956 712293 1293 1185 658210 1210 10956
30-2-0-1 523338 1338 870 559388 1388 930 550290 1290 915 577401 1401 960 541372 1372 900
30-2-0-2 468932 932 780 496031 1031 825 505026 1026 840 495906 906 825 496008 1008 825
30-2-0-3 1350904 904 2250 1386915 915 2310 1386912 912 2310 1368901 901 2280 1350890 890 2250
30-2-3-1 1081172 1172 1800 1036147 1147 1725 1090247 1247 1815 1090128 1128 1815 1090228 1228 1815
30-2-3-2 829685 1685 1380 802548 1548 1335 793490 1490 1320 775462 1462 1290 766621 1621 1275
30-2-3-3 676128 1128 1125 649167 1167 1080 658150 1150 1095 703166 1166 1170 676198 1198 1125
40-0-0-1 1171 1171 0 1187 1187 0 1132 1132 0 1177 1177 0 1121 1121 0
40-0-0-2 1179 1179 0 1143 1143 0 1120 1120 0 1214 1214 0 1225 1225 0
40-0-0-3 1106 1106 0 1023 1023 0 1094 1094 0 1045 1045 0 1128 1128 0
40-0-3-1 1193 1193 0 1157 1157 0 1228 1228 0 1149 1149 0 1133 1133 0
40-0-3-2 1082 1082 0 1035 1035 0 1098 1098 0 1094 1094 0 1081 1081 0
40-0-3-3 1147 1147 0 1201 1201 0 1210 1210 0 1182 1182 0 12568 1258 0
40-2-0-1 280079 1079 465 235098 1098 390 253041 1041 420 244082 1082 405 280048 1048 465
40-2-0-2 980 980 0 1102 1102 0 1047 1047 0 1057 1057 0 1017 1017 0
40-2-0-3 1083 1083 0 1055 10565 0 1052 1052 0 11056 11056 0 1065 1065 0
40-2-3-1 1214 1214 0 1219 1219 0 1203 1203 0 1206 1206 0 1252 1252 0
40-2-3-2 1065 1065 0 1086 1086 0 1020 1020 0 1014 1014 0 1098 1098 0
40-2-3-3 64216 1216 1056 64235 1235 105 37264 1264 60 1265 1265 0 64247 1247 105
50-0-0-1 1287 1287 0 1249 1249 0 1290 1290 0 1181 1181 0 1236 1236 0
50-0-0-2 1103 1103 0 1174 1174 0 1269 1269 0 1157 1157 0 1149 1149 0
50-0-0-3 1056 1056 0 10569 10569 0 1127 1127 0 1092 1092 0 1154 1154 0
50-0-3-1 1207 1207 0 1272 1272 0 1227 1227 0 1233 1233 0 1142 1142 0
50-0-3-2 1185 1185 0 1245 1245 0 1225 1225 0 1203 1203 0 1138 1138 0
50-0-3-3 1090 1090 0 1170 1170 0 1228 1228 0 1217 1217 0 11569 1159 0
50-2-0-1 1131 1131 0 1048 1048 0 1071 1071 0 1071 1071 0 1080 1080 0
50-2-0-2 959 959 0 912 912 0 1036 1036 0 978 o978 0 970 970 0
50-2-0-3 994 994 0 1043 1043 0 1012 1012 0 1039 1039 0 966 966 0
50-2-3-1 1059 1059 0 1072 1072 0 1080 1080 0 1102 1102 0 1083 1083 0
50-2-3-2 1184 1184 0 1191 1191 0 1209 1209 0 12056 12056 0 1157 1157 0
50-2-3-3 1130 1130 0 1168 1168 0 1166 1166 0 1143 1143 0 1165 1165 0

Table B.15: Tabu Search, raw results.

Annexe B: Raw results.

B-17

Problems 1 2 3 4 5

30-0-0-1 414983 983 690 451092 1092 750 433016 1016 720 424015 1015 705 369951 951 615
30-0-0-2 135888 888 225 190007 1007 315 217045 1045 360 199033 1033 330 217040 1040 360
30-0-0-3 127090 1090 210 145140 1140 240 73049 1049 120 37005 10056 60 73082 1082 120
30-0-3-1 235186 1186 390 271225 1225 450 262271 1271 435 262161 1161 435 244236 1236 405
30-0-3-2 307216 1216 510 298240 1240 495 262217 1217 435 316257 1257 525 235160 1160 390
30-0-3-3 631200 1200 1050 613207 1207 1020 604167 1167 1005 604188 1188 1005 604122 1122 1005
30-2-0-1 523259 1259 870 460174 1174 765 460175 1175 765 460267 1267 765 514318 1318 855
30-2-0-2 469289 1289 780 469411 1411 780 496402 1402 825 487304 1304 810 505381 1381 840
30-2-0-3 1324101 1101 22056 1333121 1121 2220 1324093 1093 22056 1315067 1067 2190 1342138 1138 22356
30-2-3-1 1009417 1417 1680 1045579 1579 1740 1045498 1498 1740 1000493 1493 1665 982357 1357 1635
30-2-3-2 703433 1433 1170 703421 1421 1170 676456 1456 1125 802612 1612 1335 739531 1531 1230
30-2-3-3 613366 1366 1020 604371 1371 10056 613494 1494 1020 613388 1388 1020 595448 1448 990
40-0-0-1 924 924 0 971 971 0 846 846 0 950 950 0 883 883 0
40-0-0-2 876 876 0 848 848 0 878 878 0 886 886 0 875 875 0
40-0-0-3 910 910 0 828 828 0 825 825 0 841 841 0 812 812 0
40-0-3-1 1081 1081 0 1108 1108 0 1155 1155 0 1147 1147 0 1119 1119 0
40-0-3-2 1116 1116 0 1060 1060 0 1173 1173 0 10569 10569 0 1043 1043 0
40-0-3-3 1141 1141 0 1188 1188 0 1088 1088 0 1167 1167 0 1200 1200 0
40-2-0-1 271326 1326 450 280460 1460 465 289509 1509 480 253397 1397 420 262513 1513 435
40-2-0-2 1363 1363 0 1331 1331 0 1362 1362 0 1390 1390 0 1307 1307 0
40-2-0-3 1386 1386 0 1309 1309 0 1368 1368 0 1288 1288 0 1212 1212 0
40-2-3-1 1577 1577 0 1634 1634 0 1490 1490 0 15564 1554 0 1529 1529 0
40-2-3-2 1541 1541 0 1514 1514 0 1385 1385 0 1387 1387 0 1596 1596 0
40-2-3-3 1640 1640 0 1840 1840 0 1744 1744 0 1785 1785 0 1656 1656 0
50-0-0-1 904 904 0 919 919 0 929 929 0 1002 1002 0 973 973 0
50-0-0-2 909 909 0 902 902 0 878 878 0 856 856 0 932 932 0
50-0-0-3 871 871 0 839 839 0 866 866 0 889 889 0 846 846 0
50-0-3-1 1127 1127 0 1202 1202 0 1117 1117 0 1241 1241 0 1121 1121 0
50-0-3-2 1089 1089 0 1122 1122 0 1108 1108 0 1142 1142 0 1237 1237 0
50-0-3-3 1108 1108 0 1180 1180 0 1183 1183 0 1175 1175 0 1108 1108 0
50-2-0-1 1248 1248 0 1195 1195 0 1251 1251 0 1283 1283 0 1323 1323 0
50-2-0-2 089 989 0 10565 10565 0 1011 1011 0 1139 1139 0 1175 1175 0
50-2-0-3 1191 1191 0 1174 1174 0 11056 11056 0 1220 1220 0 11565 1155 0
50-2-3-1 1404 1404 0 1355 1355 0 1402 1402 0 1416 1416 0 1312 1312 0
50-2-3-2 1527 1527 0 1578 1578 0 15568 15568 0 1561 1561 0 1585 1585 0
50-2-3-3 1468 1468 0 1584 1584 0 1438 1438 0 1498 1498 0 1502 1502 0

Table B.16: Genetic Algorithm (CPU intensive runs), raw results.

Annexe B: Raw results. B-18

Problems 1 2 3 4 5

30-0-0-1 8115607 1507 1350 703398 1398 1170 775480 1480 1290 649338 1338 1080 784530 1530 130b
30-0-0-2 5560472 1472 916 523399 1399 870 505396 1396 840 541420 1420 900 487364 1364 810
30-0-0-3 325358 1358 540 451671 1671 750 3253563 13563 540 415431 1431 690 343449 1449 570
30-0-3-1 613618 1618 1020 622589 1589 10356 667725 17256 1110 523446 1446 870 559425 1425 930
30-0-3-2 640361 1361 1065 640392 1392 10656 631591 1591 10560 604435 1435 10056 b77461 1461 960
30-0-3-3 892499 1499 1485 019447 1447 1530 910526 1526 15156 1000628 1628 166b 901454 1454 1500
30-2-0-1 703196 1196 1170 820602 1602 136b 694243 1243 115656 784517 1617 13056 784536 1536 13056
30-2-0-2 631267 1267 10560 640439 1439 1065 676147 1147 1125 685401 1401 1140 613108 1108 1020
30-2-0-3 1495101 1101 2490 1476993 293 2460 1567065 105656 2610 15669156 915 2610 1495022 1022 2490
30-2-3-1 1315346 1346 2190 1414423 1423 23565 1414448 1448 23565 1459534 1534 2430 1306482 1482 21756
30-2-3-2 1198520 1520 19956 1225431 1431 2040 1342378 1378 2235 1144614 1614 19056 1018502 1502 16956
30-2-3-3 982361 1361 16356 910418 1418 15156 856348 1348 1425 082307 1307 16356 847351 1351 1410
40-0-0-1 793 793 0 885 885 0 865 865 0 873 873 0 873 873 0

40-0-0-2 8563 853 0 820 820 0 701 701 0 810 810 0 87h 87h 0

40-0-0-3 779 779 0 707 707 0 716 715 0 7856 7856 0 707 707 0

40-0-3-1 1037 1037 0 990 990 0 1031 1031 0 074 oT74 0 998 298 0

40-0-3-2 1128 1128 0 097 097 0 988 988 0 1000 1000 0 1204 1204 0

40-0-3-3 1011 1011 0 1021 1021 0 1144 1144 0 1016 1016 0 1020 1020 0

40-2-0-1 622062 1062 10356 5140156 1015 8bb B77067 1067 960 514049 1049 8bb 559052 10562 930
40-2-0-2 72961 961 120 117964 964 195 63999 999 1056 63986 986 1056 54977 QT 90

40-2-0-3 136021 1021 225 639956 995 1056 63976 076 1056 127073 1073 210 63962 962 1056
40-2-3-1 109363 1363 180 1207 1207 0 55206 1206 90 1357 13567 0 109304 1304 180
40-2-3-2 1168 1168 0 1127 1127 0 64301 1301 1056 1136 1136 0 1188 1188 0

40-2-3-3 208283 1283 345 343291 1291 570 326277 1277 540 190304 1304 316 325288 1288 540
50-0-0-1 820 820 0 799 799 0 873 873 0 862 862 0 892 892 0

50-0-0-2 768 768 0 7356 7356 0 87 767 0 791 791 0 700 700 0

50-0-0-3 669 669 0 679 679 0 738 738 0 744 744 0 765 765 0

50-0-3-1 1016 1016 0 087 087 0 983 983 0 1199 1199 0 067 067 0

50-0-3-2 1031 1031 0 1097 1097 0 1050 10560 0 Q70 Q70 0 1018 1018 0

50-0-3-3 954 9b4 0 931 931 0 1002 1002 0 959 959 0 281 281 0

50-2-0-1 924 924 0 918 918 0 908 208 0 9563 953 0 895 895 0

50-2-0-2 7856 7856 0 846 846 0 793 793 0 751 751 0 748 748 0

50-2-0-3 893 893 0 916 916 0 898 898 0 949 949 0 864 864 0

50-2-3-1 10560 1050 0 1129 1129 0 1086 1086 0 1084 1084 0 1115 11156 0

50-2-3-2 1322 1322 0 46223 1223 75 1223 1223 0 1319 1319 0 1343 1343 0

50-2-3-3 1338 1338 0 1303 1303 0 1127 1127 0 1212 1212 0 1378 1378 0

Table B.17: Hill-climbing (CPU intensive runs), raw results.

Annexe B: Raw results. B-19

Problems 1 2 3 4 5

30-0-0-1 955853 1853 1590 946891 1891 1575 037881 1881 1560 obb8T74 1874 1590 955859 1859 1590
30-0-0-2 767914 1914 1260 748901 1901 12456 739902 1902 1230 739889 1889 1230 748892 1892 12456
30-0-0-3 bT7896 1896 960 586919 1919 97h 77921 1921 960 586974 1974 o7b 595948 1948 990
30-0-3-1 730988 1988 12156 685959 1959 1140 731003 2003 12156 730973 1973 12156 721970 1970 1200
30-0-3-2 776996 1996 1290 776014 2014 1290 748946 1946 1245 776032 2032 1290 776999 1999 1290
30-0-3-3 1045888 1888 1740 1063873 1873 1770 1054893 1893 1765 1054890 1890 1765 1081901 1901 1800
30-2-0-1 865927 1927 1440 865900 1900 1440 865961 1961 1440 874916 1916 14556 838895 18956 13956
30-2-0-2 740024 2024 1230 740035 2035 1230 739986 1986 1230 740003 2003 1230 740016 2016 1230
30-2-0-3 1486842 1842 2475 1486786 1786 2475 1477819 1819 2460 1477949 1949 2460 1486879 1879 2475
30-2-3-1 1298194 2194 2160 13256277 2277 2205 1325197 2197 2205 1325108 2108 2205 1298250 2250 2160
30-2-3-2 1100099 2099 1830 1100008 2008 1830 1118088 2088 1860 1127064 2064 1875 1118185 2185 1860
30-2-3-3 830063 2063 1380 866069 2069 1440 839097 2097 13956 839038 2038 13956 857088 2088 14256
40-0-0-1 2214 2214 0 2174 2174 0 2193 2193 0 2234 2234 0 2200 2200 0

40-0-0-2 2169 2169 0 2203 2203 0 2196 2196 0 2179 2179 0 2185 2185 0

40-0-0-3 2137 2137 0 2125 2125 0 2121 2121 0 2161 2161 0 2137 2137 0

40-0-3-1 2234 2234 0 2246 2246 0 2260 2260 0 2226 2226 0 2261 2261 0

40-0-3-2 2118 2118 0 2158 21568 0 21567 2157 0 21564 2154 0 2156 2156 0

40-0-3-3 2372 2372 0 2328 2328 0 2376 2376 0 2271 2271 0 2358 2358 0

40-2-0-1 416151 21561 690 407332 2332 67h 434313 2313 720 434077 2077 720 389253 2253 645
40-2-0-2 38286 2286 60 29371 2371 45 29261 2261 45 2233 2233 0 38213 2213 60

40-2-0-3 29379 2379 45 2380 2380 0 38384 2384 60 29306 2306 45 2401 2401 0

40-2-3-1 2583 25683 0 2615 2615 0 2418 2418 0 2451 2451 0 25607 2607 0

40-2-3-2 2119 2119 0 2184 2184 0 2215 2215 0 2225 2225 0 2238 2238 0

40-2-3-3 146364 2364 240 128271 2271 210 164383 2383 270 1553566 2356 2bb 146403 2403 240
50-0-0-1 2238 2238 0 2248 2248 0 2250 2250 0 2252 2252 0 2252 2252 0

50-0-0-2 2198 2198 0 2144 2144 0 2147 2147 0 21561 2151 0 2178 2178 0

50-0-0-3 2186 2186 0 21568 21568 0 2190 2190 0 2149 2149 0 2174 2174 0

50-0-3-1 2205 2205 0 2243 2243 0 2228 2228 0 2237 2237 0 22567 2257 0

50-0-3-2 2294 2294 0 2295 2295 0 2310 2310 0 2258 2258 0 2265 2265 0

50-0-3-3 22756 22756 0 2245 2245 0 2262 2262 0 2270 2270 0 2249 2249 0

50-2-0-1 2134 2134 0 2185 2185 0 2148 2148 0 2134 2134 0 21566 2156 0

50-2-0-2 2027 2027 0 2039 2039 0 2065 2065 0 2021 2021 0 2009 2009 0

50-2-0-3 2079 2079 0 2085 2085 0 2063 2063 0 20756 20756 0 2072 2072 0

50-2-3-1 2107 2107 0 21562 21562 0 2165 2165 0 2118 2118 0 2167 2167 0

50-2-3-2 2348 2348 0 2321 2321 0 2322 2322 0 2343 2343 0 2332 2332 0

50-2-3-3 2378 2378 0 2317 2317 0 2335 2335 0 2316 2316 0 2342 2342 0

Table B.18: Random Search (CPU intensive runs), raw results.

Annexe B: Raw results. B-20

Problems 1 2 3 4 [}

30-0-0-1 415020 1020 690 397005 1005 660 387985 985 645 351918 918 585 396991 991 660
30-0-0-2 217078 1078 360 190030 1030 315 199014 1014 330 172010 1010 285 190029 1029 315
30-0-0-3 100131 1131 165 100143 1143 165 73113 1113 120 118181 1181 195 145213 1213 240
30-0-3-1 316355 1355 525 289288 1288 480 280269 1269 465 361437 1437 600 325397 1397 540
30-0-3-2 316308 1308 525 316279 1279 525 325318 1318 540 370394 1394 615 361360 1360 600
30-0-3-3 550093 1093 915 649231 1231 1080 604207 1207 1005 649252 1252 1080 595197 1197 990
30-2-0-1 487359 1359 810 460306 1306 765 478329 1329 795 496379 1379 825 523411 1411 870
30-2-0-2 441843 843 735 441852 852 735 450843 843 750 468853 853 780 441821 821 735
30-2-0-3 1341767 787 2235 1332698 698 2220 1341717 717 2235 1350715 715 2250 1332691 691 2220
30-2-3-1 1063154 1154 1770 991022 1022 1650 1018091 1091 1695 1081132 1132 1800 1054127 1127 17565
30-2-3-2 739624 1624 1230 685532 1532 1140 811649 1649 1350 721582 1582 1200 793589 1589 1320
30-2-3-3 667112 1112 1110 586084 1084 975 667139 1139 1110 649123 1123 1080 640036 1036 1065
40-0-0-1 706 706 0 693 693 0 678 678 0 695 695 0 708 708 0
40-0-0-2 703 703 0 668 668 0 692 692 0 682 682 0 692 692 0
40-0-0-3 681 681 0 670 670 0 672 672 0 686 686 0 646 646 0
40-0-3-1 851 851 0 881 881 0 876 876 0 866 866 0 866 866 0
40-0-3-2 823 823 0 832 832 0 862 862 0 808 808 0 783 783 0
40-0-3-3 919 919 0 922 922 0 917 917 0 894 894 0 917 917 0
40-2-0-1 234947 947 390 261962 262 435 225949 949 375 243928 928 405 225949 949 375
40-2-0-2 814 814 0 809 809 0 812 812 0 820 820 0 782 782 0
40-2-0-3 860 860 0 852 852 0 847 847 0 857 857 0 853 853 0
40-2-3-1 1072 1072 0 1042 1042 0 1056 1056 0 1067 1067 0 1078 1078 0
40-2-3-2 953 953 0 959 959 0 941 941 0 975 975 0 038 038 0
40-2-3-3 1143 1143 0 1056 1056 0 1079 1079 0 1087 1087 0 1055 1055 0
50-0-0-1 743 743 0 729 729 0 692 692 0 740 740 0 731 731 0
50-0-0-2 725 725 0 713 713 0 718 718 0 707 707 0 710 710 0
50-0-0-3 689 689 0 681 681 0 664 664 0 673 673 0 662 662 0
50-0-3-1 875 875 0 880 880 0 907 907 0 873 873 0 848 848 0
50-0-3-2 899 899 0 911 911 0 900 900 0 919 919 0 900 900 0
50-0-3-3 882 882 0 877 877 0 209 209 0 877 877 0 901 901 0
50-2-0-1 883 883 0 886 886 0 887 887 0 876 876 0 887 887 0
50-2-0-2 701 701 0 700 700 0 715 715 0 692 692 0 688 688 0
50-2-0-3 812 812 0 826 826 0 817 817 0 812 812 0 823 823 0
50-2-3-1 942 942 0 048 048 0 929 929 0 929 929 0 950 950 0
50-2-3-2 1060 1060 0 1054 1054 0 1064 1064 0 1047 1047 0 1051 1051 0
50-2-3-3 1023 1023 0 1016 1016 0 1052 1052 0 1036 1036 0 1014 1014 0

Table B.19: Simulated Annealing (CPU intensive runs), raw results.

Annexe B: Raw results. B-21

Problems 1 2 3 4 [}

30-0-0-1 460062 1062 765 442028 1028 735 415000 1000 690 414974 974 690 433010 1010 720
30-0-0-2 253085 1085 420 198963 963 330 253038 1038 420 271072 1072 450 226039 1039 375
30-0-0-3 109116 1116 180 127127 1127 210 109134 1134 180 82076 1076 135 145187 1187 240
30-0-3-1 226237 1237 375 271292 1292 450 289314 1314 480 289307 1307 480 289271 1271 480
30-0-3-2 334300 1300 555 280210 1210 465 334286 1286 555 307305 1305 510 307264 1264 510
30-0-3-3 586143 1143 975 604146 1146 1005 604186 1186 1005 604163 1163 1005 631204 1204 1050
30-2-0-1 5590414 1414 930 496300 1300 825 451165 1165 750 487299 1299 810 505332 1332 840
30-2-0-2 468877 877 780 450864 864 750 441816 816 735 459887 887 765 477878 878 795
30-2-0-3 1332958 958 2220 1350853 853 2250 1350867 867 2250 1350850 850 2250 1341818 818 2235
30-2-3-1 1054135 1135 1755 1063170 1170 1770 1063148 1148 1770 1063192 1192 1770 1027048 1048 1710
30-2-3-2 703549 1549 1170 757412 1412 1260 712265 1265 1185 730560 1560 1215 793611 1611 1320
30-2-3-3 649141 1141 1080 640132 1132 1065 649118 1118 1080 658108 1108 1095 631079 1079 1050
40-0-0-1 1099 1099 0 1138 1138 0 1236 1236 0 1153 1153 0 1207 1207 0
40-0-0-2 1172 1172 0 1165 1165 0 1167 1167 0 1182 1182 0 1200 1200 0
40-0-0-3 1123 1123 0 1132 1132 0 1168 1168 0 1127 1127 0 1069 1069 0
40-0-3-1 1273 1273 0 1233 1233 0 1250 1250 0 1282 1282 0 1240 1240 0
40-0-3-2 1174 1174 0 1088 1088 0 1131 1131 0 1167 1167 0 1172 1172 0
40-0-3-3 1312 1312 0 1238 1238 0 1262 1262 0 1279 1279 0 1281 1281 0
40-2-0-1 334132 1132 555 352059 1059 585 289126 1126 480 316106 1106 525 352120 1120 585
40-2-0-2 1032 1032 0 089 089 0 1007 1007 0 1015 1015 0 1020 1020 0
40-2-0-3 1120 1120 0 1013 1013 0 1116 1116 0 1149 1149 0 1131 1131 0
40-2-3-1 1148 1148 0 1175 11756 0 1137 1137 0 1165 1165 0 1176 1176 0
40-2-3-2 1054 1054 0 1055 1055 0 1052 1052 0 1042 1042 0 1031 1031 0
40-2-3-3 1066 1066 0 1166 1166 0 1223 1223 0 1148 1148 0 1179 1179 0
50-0-0-1 1231 1231 0 1255 1255 0 1179 1179 0 1237 1237 0 1255 1255 0
50-0-0-2 1108 1108 0 1153 1153 0 1130 1130 0 1128 1128 0 1237 1237 0
50-0-0-3 1180 1180 0 1204 1204 0 1194 1194 0 1086 1086 0 1099 1099 0
50-0-3-1 1205 1205 0 1190 1190 0 1270 1270 0 1225 1225 0 1262 1262 0
50-0-3-2 1291 1291 0 1321 1321 0 1284 1284 0 1213 1213 0 1146 1146 0
50-0-3-3 1298 1298 0 1280 1280 0 1275 1275 0 1271 1271 0 1216 1216 0
50-2-0-1 1139 1139 0 1144 1144 0 1166 1166 0 1089 1089 0 1142 1142 0
50-2-0-2 082 082 0 1017 1017 0 1000 1000 0 086 086 0 1008 1008 0
50-2-0-3 1065 1065 0 1067 1067 0 1038 1038 0 991 991 0 1083 1083 0
50-2-3-1 1059 1059 0 1092 1092 0 1092 1092 0 10567 1067 0 1068 1068 0
50-2-3-2 1203 1203 0 1169 1169 0 1179 1179 0 1194 1194 0 1180 1180 0
50-2-3-3 1136 1136 0 1169 1169 0 1159 1159 0 1171 1171 0 1145 1145 0

Table B.20: Tabu Search (CPU intensive runs), raw results.

