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Abstract. Bigraphs are a universal graph based model, designed for
analysing reactive systems that include spatial and non-spatial (e.g. com-
munication) relationships. Bigraphs evolve over time using a rewriting
framework that finds instances of a (sub)-bigraph, and substitutes a
new bigraph. In standard bigraphs, the applicability of a rewrite rule is
determined completely by a local match and does not allow any non-local
reasoning, i.e. contextual conditions. We introduce conditional bigraphs
that add conditions to rules and show how these fit into the matching
framework for standard bigraphs. An implementation is provided, along
with a set of examples. Finally, we discuss of the limits of application
conditions within the existing matching framework and present ways to
extend the range of conditions that may be expressed.
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1 Introduction

Bigraphs are a universal mathematical model, introduced by Milner [14], for
representing spatial and non-spatial relationships of physical or virtual entities.
They have been applied to a wide range of systems including: mixed-reality
systems [3], networking [5], security of cyber-physical systems [1], and biology [12].

Bigraphical reactive systems (BRS) augment bigraphs with a rewriting theory
that allows models to evolve over time. The rewrite theory consists of a set of
reaction rules L IR that finds an occurrence of L in a larger bigraph B and
replaces it with R. This form of rewriting only allows local reasoning through
matching a pattern bigraph L exactly, but does not allow non-local reasoning
that takes into account the context a rule. We introduce conditional rules that
use application conditions to specify contextual requirements within the rewrite
system. Such conditional rules have proved invaluable in graph transformation
systems [10] (GTS), a closely related formalism to bigraphs. However, it is
important to note that although BRS and GTS are based on graph structures,
the formalisms require completely different semantics for conditional rewriting.
For example, in GTS there is a single context for the rules, whereas BRS feature
a distinct context and a parameter, and so application conditions can be specified
over either.
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A common requirement for conditional rules in BRS is to avoid the duplication
of links between entities. As an example, consider the createLink rule shown in
Fig. 1a (full details of this notation is in Section 2). Bigraphs consist of entities,
A, B and L, shown as shapes that are related either by a nesting relationship –
L inside A – or via the green hyperlinks. Sites (grey rectangles) represent parts
of the system that have been abstracted away, i.e. other bigraphs may appear
inside. Without an application condition, this rule allows any number of L-L
links to be created between an A and a B; this is because the sites may contain
any number of other entities, including existing L entities. If we wish to restrict
to single L-L links between A-B pairs, we have to employ some sort of tagging
scheme [5], often coupled with rule priorities [2], that can determine when a link
does or does not exist. In practice, this requires an extra entity (for tagging) and
additional (four) reaction rules. This inflates the model with non-domain specific
rules, generates additional control only steps in the resulting transition system,
and, more importantly, obfuscates the purpose of the rule, which is to create
non-duplicate links.

With conditional rules, we can achieve this goal in a single rewrite step. In
the example, we create a conditional rule though the addition of a negative
application condition, which is shown in Fig. 1b. This states that within the
parameter of the rule, i.e. in the sites, we must not find an existing L-L link. If
such a link is found then the rule does not apply. Consider application of the rule
to the example bigraph in Fig. 1c. For the linked A, the existing L entities appear
inside the two sites of the parameter (of the left-hand side of the rule). As the
parameter negative condition forbids such a shape to appear in the left-hand
side, no new link can be created. On the other hand, for the unlinked A, no L-L
link is present in the parameter and so the negative condition is not satisfied,
and a new link can be created.

A
B

L L

A
B

I

(a) createLink rule
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Fig. 1: Negative application condition to avoid duplicate L-L links. (b) Negative
application condition for the parameter. Given the bigraph in (c), the rule does
not apply for the already linked A and B but does for the unlinked A and B.

In Sections 3-5 we show that conditional rules are possible within Milner’s
original BRS formalism, and we give our implementation in BigraphER[17]. In
Section 6 we reflect on the fact that, due to how bigraph matching is defined,
conditional rules are limited in the conditions that can be expressed. We discuss
these limitations, with examples, and indicate possible extensions that include
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matching on names and patterns, spatial logics to encode spatial context, and
matching with sorting schemes, site numbering, and nested application conditions.

We make the following contributions:

– We extend the original formalism of bigraphs to support non-local application
conditions for bigraphical reactive systems.

– To show application conditions are both implementable and useful, we imple-
ment application conditions in BigraphER [17] and provide example models
that highlight common uses of application conditions in practice.

– We show the limits of such an approach, based strictly on the existing match-
ing/decomposition of bigraphs, and highlight areas for future exploration.

2 Bigraphs

A bigraph consists of two orthogonal structures: a place graph that describes
the nesting of entities, e.g. a Phone inside a Room, and link graph that provides
non-local hyperlinks between entities, e.g. allowing Phone entities to communicate
regardless of location. In standard bigraphs place graphs are forests, however
here we use bigraphs with sharing [16], that has place graphs as directed acyclic
graphs, allowing entities to have multiple parents. Bigraphs feature an equivalent
algebraic and an intuitive diagrammatic form, and we use this diagrammatic
form where possible.

An example bigraph is in Fig. 1c. We draw entities as different (coloured)
shapes, often omitting the label when possible. Containment illustrates the spatial
nesting relationship, e.g. L is contained by A, while green hyperedges represent
non-spatial connections. Entities have a fixed arity (number of links), e.g. L has
arity 1, but links may be disconnected/closed.

Each place graph has m regions, shown as the dashed rectangles, and n sites,
shown as filled dashed rectangles. Regions represent parallel parts of the system,
and sites represent abstraction, i.e. an unspecified bigraph (including the empty
bigraph) exists there. Similarly, link graphs have a (finite) set of inner names,
e.g. {z} and outer names, e.g. {x, y}. For example, in Fig. 2b, C has an inner
name x, d has outername x, and idI has both an inner and outer name x (where
both x’s are distinct).

Bigraphs are compositional structures, that is, we can build larger bigraphs
from smaller bigraphs. Composition of bigraphs consists of placing regions in
sites, and connecting inner and outer-faces on like-names.

Algebraically we describe bigraphs using their interfaces, e.g. B : 〈n,X〉 →
〈m,Y 〉, or more succinctly B : I → J , where n is the number of sites, m number
of regions, X a set of inner names, and Y a set of outer names. Composition
of bigraphs is defined when the interfaces match, i.e. B1 ◦ B0 is defined for
B0 : I → J and B1 : J → K. We use ε to refer to the empty interface 〈0, ∅〉, and
call bigraphs of the form ε→ I ground, i.e. bigraphs with no sites and no inner
names. Figure 1a is non-ground as it contains two sites, while Fig. 1c is ground
as it contains no sites or inner names.
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We let idI : idI : 〈m,X〉 → 〈m,X〉 be the identity bigraph over an interface
I : 〈m,X〉. idI maps names in X to themselves and places m sites in m regions.
This bigraph is particularly important for matching as it allows names and entities
to move between the context and parameter of a match. With these definitions,
bigraphs form a pre-category1 with objects as interfaces and arrows as bigraphs.

While composition combines bigraphs vertically, we can also combine bigraphs
horizontally through the tensor product ⊗. This tensor product extends both the
sites/regions and name sets for the interfaces. For example, given A : 〈0, {x}〉 →
〈1, {y}〉 and B : 〈1, ∅〉 → 〈2, {z}〉, we can construct a new bigraph A ⊗ B :
〈1, {x}〉 → 〈3, {y, z}〉 Note that ⊗ is only defined when the sets of interface
names are disjoint.

Notation. When referring to a ground bigraph we use lower-case letters, while
general bigraphs, that may or may not be ground, are denoted in upper-case.
Where the identity of an interface is not required we use · as a placeholder for
I, J, . . .

2.1 Bigraphical Reactive Systems

Bigraphical reactive systems (BRS) equip bigraphs with a rewriting theory that
allows models to evolve over time. Intuitively, applying a reaction rule L IR
to bigraph B finds an occurrence of L in B (if one exists) and replaces it with R
to create B′. Most often we rewrite over ground bigraphs as these represent fully
formed models, e.g. without holes/sites. Here we give the most general definitions
possible, i.e. for arbitrary (including ground) bigraphs B, and specialise to ground
bigraphs when necessary.

We work with a restricted version of reaction rules that are “well-behaved”
where L is solid2. Solid bigraphs were introduced by Krivine et al. [12] to count
unique occurrences for stochastic BRS.

Definition 1 (solid). A bigraph is solid if:

– All roots contain at least one node, and all outer names are connected to at
least one edge.

– No two sites or inner names are siblings
– No site has a root as a parent
– No outer name is linked to an inner name.

Definition 2 (occurrence). We say a bigraph P occurs in B, written B � P ,
if there exists a decomposition B = C ◦ (P ⊗ idI) ◦D for some context C and
parameter D. That is, there is a match for P in B.

Likewise, we say P does not occur in B, written B 2 P if @C ′@D′, B =
C ′ ◦ (P ⊗ idI) ◦D′. That is, there is no match for P in B.

1 Bigraphs are not a full category as composition is not defined for non-disjoint supports.
We do not discuss support here.

2 The definition of solid for bigraphs with sharing differs slightly, see [15, Defn 3.6.1]
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Fig. 2: Decomposition of ground bigraph b = C ◦ (L⊗ idI) ◦ d.

For a solid L, we gain the property that an occurrence B |= L uniquely
identifies a context C and parameter D.

We show graphically how occurrences are found in Fig. 2. Given the ground
bigraph b shown in Fig. 2a, we show in Fig. 2b one (of the two possible) de-
compositions when matching against the rule given in Fig. 1a. The match L,
by definition, has the same form as the left-hand-side of the reaction rule. The
context C captures entities in the bigraph that do not lie within the match, while
the parameter d, which must be ground as b is ground, provides the entities
required to fill any sites/inner names in the match. To allow names (and entities
in the case of sharing, i.e. for those sharing a parent in the match and context)
to move between the parameter and the context, we allow an interface idI next to
the match. The use of idI means the distinction between context and parameter
is not always clear as both names and unmatched entities can move between the
context and parameter as required, e.g. an entity from the context can appear in
the parameter by extending idI with an additional, trivial, region/site. Note that
we only take L to be solid allowing these region/sites to be added as required.

Allowing entities to move between the context and parameter complicates
the specification of application conditions that must determine if the condition is
within the context of the parameter. We deal with this by forcing the parameter
to be minimal such that it contains only entities that are within sites of the
match, and all other entities move to the context. We note this is a choice and
the theory also applies to systems that take the minimal context.

Definition 3 (reaction rule). A reaction rule R is a pair of bigraphs, R =
(L,R), defined over the same interface, and often written as L IR, with L
solid. Applying a reaction rule consists of replacing an occurrence B |= L, in a
given bigraph B, with R.

Rewriting (over ground bigraphs) is shown graphically in the commuting
diagram of Fig. 3. Given a ground bigraph a, we first find a decomposition
a = C ◦ (L⊗ idI) ◦ d and, should such a decomposition exist, rewrite it to obtain
a′ = C ◦ (R⊗ idI) ◦ d. Both the context C and parameter d are the same for both
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the left and right hand sides of the rewrite3. In Section 3 we show how checking
application conditions corresponds to a further decomposition of C and d.

ε · · · ε

·
l

d L⊗ idI dR⊗ idI

C

a a′

Fig. 3: Bigraph Rewriting [14]. a rewrites to (a support equivalent) a′ if there is
a decomposition a = C ◦ (L⊗ idI) ◦ d and rule L IR.

While the rules are specified for abstract bigraphs, i.e. they match any entity
of the correct type, rewriting itself works on concrete bigraphs where entities
have distinct identifiers. In general, we may rewrite into any support equivalent
a′, notated l where support equivalence allows renaming of entity identifiers
and link-names while keeping the structure intact. For the rest of the paper we
assume support equivalence without explicitly stating it.

Given a set of reaction rules we construct a BRS as follows.

Definition 4 (bigraphical reactive system (BRS)). A bigraphical reactive
system consists of a set of ground bigraphs B and set of reaction rules R, defined
over B, of the form L IR. The reaction relation B over ground bigraphs is
the smallest such that b B b′ when b = C ◦ (L⊗ idI)◦d and b′ = C ◦ (R⊗ idI)◦d
for b, b′ ∈ B, reaction (L IR) ∈ R, context C, and parameter d.

That is, our system consists all possible (ground) bigraphs closed under B.

3 Application Conditions for Bigraphs

We show how application conditions for bigraphs are instances of the bigraph
matching problem. We begin by defining application conditions, which can be
viewed as stand-alone instances of the left-hand-side of a rule.

Application conditions include information such as if they are positive or
negative and if they apply to the context or parameter of a match.

Definition 5 (application condition). An application condition is a tuple
〈t, P, l〉 where t ∈ {+,−} is the type of application condition, either positive
or negative, P is a (non-ground, not necessarily solid) constraint bigraph, and
l ∈ {↑, ↓} determines if the condition is over the context (↑) or parameter (↓).

3 Bigraphs allow the use of an instatiation map η [14, Defn 8.3] that specifies a mapping
of sites in the left-hand side to those in the right-hand site. We do not consider
instantiation maps here.
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Checking the conditions is a matching problem and no rewriting is performed
on the context/parameter, i.e. we do not reduce constraints. Finally, we define
conditional reaction rules.

Definition 6 (conditional reaction rule). A conditional reaction rule R
consists of a reaction rule R : L IR, and a set of application conditions A.
Unconditional rules are those where A = ∅.

A rule L IR applies to a if there is a decomposition a = C ◦ (L⊗ idI) ◦ d,
and

∀〈+, P, ↑〉 ∈ A, C � P
∀〈−, P, ↑〉 ∈ A, C 2 P
∀〈+, P, ↓〉 ∈ A, d � P
∀〈−, P, ↓〉 ∈ A, d 2 P

In a slight overload of notation, we use C, d � a when an application condition
a ∈ A is satisfied (positively or negatively) in context C and parameter d.

We show graphically how application conditions of the form 〈+, P, ↑〉 and
〈+, P ′, ↓〉 are checked in Fig. 4. This diagram shows the left-hand side of Fig. 3,
i.e. the decomposition of ground bigraph a, but with the context C and parameter
d further decomposed. As C can be decomposed into three arrows and as P
exists in the decomposition we know the application condition is met. The use of
the additional parameter E allows for application conditions to have a different
interface from the original match (shown here as an arbitrary ·). Without E
all application conditions would be forced to have the same number of sites as
regions of L, and matching outer/inner names, making it difficult to specify
reusable conditions. Likewise we can check P ′ via the decomposition of d. For
negative application conditions we instead show that no such decomposition
exists for a given P , i.e. we cannot form the diagram in Fig. 4.

ε · · · · · · ·
d′ (P ′ ⊗ idJ) C′′ (L⊗ idK) E (P ⊗ idI) C′

a

Cd

Fig. 4: Context and parameter decomposition over left-hand side of Fig. 3 to
check positive application conditions

When multiple application conditions are specified, we check that matches
exist (or do not exist) separately for each condition. That is, we take the conjunc-
tion of the conditions. Importantly, we do not force the decompositions to cover
a unique set of entities, and allow the same entity to be matched for multiple
application conditions, i.e. conditions can overlap. We discuss non-overlapping
rules as an extension to this approach in Section 6.4.
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Definition 7 (conditional bigraphical reactive system). A conditional
BRS consists of a set of ground bigraphs B and set of conditional reaction rules
Rc of the form (L IR,A).

The reaction relation B is the smallest such that b B b′ when b = C ◦
(L⊗ idI) ◦ d and b′ = C ◦ (R⊗ idI) ◦ d, for b, b′ ∈ B, reaction (L IR,A) ∈ R,
context C, and parameter d. Additionally, ∀a ∈ A, C, d � a.

When A = ∅, a conditional BRS is a standard BRS as in Definition 4.

4 Implementation

We have implemented application conditions in BigraphER [17] an open-source
framework for bigraphs4. BigraphER supports bigraphs with sharing [16], includ-
ing an efficient matching algorithm based on SAT that we use to decompose the
bigraph to check application condition predicates.

We show the example rule for Fig. 1 in the BigraphER language in Listing 1.1.
The rules are written as before, with the addition of an if clause that allows
application conditions to be specified as arbitrary bigraphs. The structure of
the conds production has the following BNF specification and appears as an
optional statement of any reaction rule; the production 〈bigraph exp〉 parses an
arbitrary bigraph expression. As is common in programming languages, we use
! to represent negation, while param and ctx become reserved keywords that
specify where we should search for the constraint specified by 〈bigraph exp〉 – in
the parameter (sites) or context respectively.

〈place〉 ::= param | ctx
〈bang〉 ::= ! | ε

〈app cond〉 ::= 〈bang〉 〈bigraph exp〉 in 〈place〉
〈app conds〉 ::= 〈app cond〉 | 〈app cond〉, 〈app conds〉
〈conds〉 ::= if 〈app conds〉

5 Examples

We apply conditional rewriting to three typical examples: ensuring entities are
unique, implementing a @ operator and performing counting in multi-sets, and
replacing priorities/control with conditionals.

4 Available, along with the example models of Section 5, at www.dcs.gla.ac.uk/
∼michele/bigrapher.html

www.dcs.gla.ac.uk/~michele/bigrapher.html
www.dcs.gla.ac.uk/~michele/bigrapher.html
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Listing 1.1: Specifying application conditions in BigraphER.

1 # Example from Fig. 1
2

3 # control <name > = <arity >
4 ctrl A = 0; # Circle
5 ctrl B = 0; # Ellipse
6 ctrl L = 1; # Square
7

8 react createLink =
9 A.id || B.id --> /x (A.(L{x} | id) || B.(L{x} | id))

10 if
11 !(/y (L{y} || L{y})) in param;

5.1 Uniqueness of Entities

Many applications have constraints on the uniqueness of particular entities. For
example, in a networking application e.g. in [18], we want to disallow two devices
having the same MAC address.

In bigraphs there is no general method to declare an entity as unique. However,
with application conditions we can check, before an entity is created, that no
identical entity exists in either the context or the parameter. Since there is no
way to create a duplicate, if we use conditional reaction rules with appropriate
conditions to generate a model, this will ensure entities are unique.

As an example, consider the rule createUnique shown in Fig. 5. This rule
allows an entity Unique to be created in a given Place so long as no other entity
Unique already exists in the model – either in the same place, i.e. the parameter,
or anywhere in the context.

Unique

Place

Unique

Place

I if 〈−,
Unique

, ↑〉 , 〈−,
Unique

, ↓〉

Fig. 5: createUnique – application conditions force uniqueness of entity Unique.

5.2 Non-Existence and Counting in Multisets

Non-atomic entities in bigraphs can be considered multisets, i.e. they hold an
arbitrary number of children including duplicates. An example bigraph used as a
(multi-)set is in Fig. 6a.

Checking an entity is in the set is simple: we match on the entity of interest
and use a site to allow other children (including the empty child) to be present, i.e.
the rule Fig. 6b would apply to Fig. 6a. However, matching on the non-existence
of a child is difficult. To ensure the entity of interest cannot not appear in a site,
we must specify rules for every possible combination of other entities in the set,
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e.g. Fig. 6c. In this case the rule does not apply to Fig. 6a as the circle entity is
present. It is often not practical to specify rules for all permutations of additional
entities in the set as the number of rules increases factorially.

(a) Example Bigraph

RI

(b) ∃circle - Other entities allowed

RI

(c) @circle - No site allowed

RI if 〈−, , ↓〉

(d) @circle - Other entities allowed

Fig. 6: Using negative application conditions for non-existence in multisets.

As shown in Fig. 6d, negative application conditions for the parameters allows
sites to be used in non-existence checks by allowing anything in the parameter
except the entity of interest – a concise and natural way of specifying the rule.

A similar issue of sites hiding too much information occurs when counting.
For example, if we wish to match at most one T then without negative conditions
we must enumerate all possible sets with a single T. With negative conditions, we
can specify that a site exists but that the site does not contain more than one T.

5.3 Encoding Control Flow

Models often need to encode some control flow, for example, to implement turn-
based control. Often this is achieved through the use of tagging, counters, and
prioritised rules that determine when the algorithms should change state.

Application conditions can make it easier to encode elements of control without
requiring counting, tagging, or priorities. Consider the system in Fig. 7 that uses
turn-based control where entities, shown as circles, representing autonomous
agents, cycle between a Move phase and a Act phase, with the current phase
determined by a Controller. Each agent keeps track of its local state, i.e. what
the last action it performed was.

The move and act rules (Figs. 7b and 7e) show example actions the agents
can take. While the act shown only changes internal state (represented by the
fill colour) to say an action has been performed, in practice this would perform
some meaningful step. Applications conditions on the rules ensure that agents
only perform valid actions for the given controller state. It is possible to write a
similar rule without application conditions by matching on Move in a separate
region, however this does not allow the agents to be nested under a controller
and obscures the meaning of the rule.
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Rules switch1 and switch2 (Figs. 7c and 7d) toggle the controller state
only once all agent has taken the appropriate action, i.e. it encodes fix-point
behaviour. As the rules simply check for the non-existence of agents waiting to
take an action, they work for any number of agents without needing to explicitly
encode counting. Likewise, there is no need to introduce priorities to the rules as
the conditions guard them from firing at the wrong time.

Move

Controller

Place

Place

(a) Example Configuration

I if 〈+, Act , ↑〉

(b) act

Move

Controller

MoveAct

ControllerController

I if 〈−, , ↑〉

(c) switch1

MoveAct

ControllerController

Move

Controller

I if 〈−, , ↑〉

(d) switch2
Place Place Place Place

I if 〈+, Move , ↑〉

(e) move

Fig. 7: Encoding turn-based control.

6 Discussion and Limitations

The key advantage of the presented approach is that application conditions are
defined solely in terms of the existing rewriting theory for bigraphs – allowing
theory/tool reuse.

However, this approach does not capture all the application conditions we
might wish to specify in practice. In this section we highlight the limitations of
the current approach and discuss how, by moving away from standard bigraph
theory, i.e. changing the semantics of matching, or utilising spatial logics, we can
express a wider range of application conditions.

6.1 Matching on Names

Commonly, application conditions in GTS make use of graph edges to access
the context for a particular node, i.e. the existence of a link identifies an entity
of interest in the context. In bigraphs such an approach is not possible as link
names cannot be used as identifiers.
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For example, consider the reaction rule and application condition in Fig. 8.
The intention of the rule is to state that an (empty) circle can be transformed
into a red circle when it is connected to a square on the x link. However, this
is not the interpretation because an an open name in a reaction rule is not an
identifier, but, much like sites, it signifies that there may be additional entities on
the same link. As such, the x on the left-hand side and the x in the application
condition are not considered to be the same link (i.e. the second x is not bound
to the first x); we would get the same rewrite if we replaced, for example, the x
in the application condition with y.

x x

I if 〈+,

x

, ↑〉

Fig. 8: Names are not identifiers in bigraphs.

This issue has been observed elsewhere, for example Benford et al. [3] extend
the matching semantics for bigraphs to “bigraph patterns” that allow matching
on specific identifiers.

Utilising this type of matching for application conditions would allow the
intended interpretation of Fig. 8, where x is scoped over both the left-hand side
and the application condition. No implementation of this matching currently
exists, and it remains unclear how this might affect other aspects of the bigraph
theory.

6.2 Matches Can Be Too Large

Although we have shown application conditions as defined are useful for practical
applications, care must be taken in their use. Currently an application condition
allows its constraint to appear anywhere in the context/parameter. This is
sometimes too strong. Consider our first example of avoiding duplicate links
(Fig. 1). If the target bigraph contains an L-L link within A, as shown in Fig. 9,
then the rule does not apply, even though there is no duplicate link between A
and B.

Practically such cases are often not an issue as, for example, the createLink

rule only ever creates links between an A and B – disallowing internal A–A links
from ever being created. If internal links are needed, then a different entity type
could be used to distinguish between external and internal links. Finally, a sorting
scheme [14, Chapter 6] could be used to disallow invalid contexts/parameters
from existing, however there is currently no automated tool support for checking
a sorting scheme is satisfied.
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A

B

A B

C

A B

L

A B

C′

p

Fig. 9: Matches occur anywhere in the parameter, not only in specific regions.
Decomposition shows further decomposition d = C ′ ◦ p for application condition
constraint p (Fig. 1b) for rule createLink.

0 1

A
B A

B

I if 〈−,

0 1

, ↓〉

Fig. 10: Explicit parameter placement

6.3 Matching Specific Places

Another possible solution to the internal link issue above is to extend matching
to allow application conditions to specify where in the context/parameter a
particular entity should be found. For example, in Fig. 10, we add explicit indices
to the sites allowing us to specify how the application condition should compose
with the match – in this case, that the two L ends are in distinct sites. Matching
routines that can check for the explicit placement of entities are not currently
available, and as with name linking it remains unclear what affect this might
have on the rest of the bigraph theory. As it would only be used for application
condition matching it could potentially be defined as a special case matching
routine. It is particularly unclear how to perform such matches if sharing is
allowed e.g. as shares can merge regions in the parameter.

Explicit placement is also possible for conditions in the context, this time
allowing us to specify that a particular region in the match occurs as a descendent
of a site in the context. Figure 11 is an example of this where entity C must be a
– not-necessarily direct – descendant of D in the condition.

C

0

RI if 〈+, 0

D

, ↑〉

Fig. 11: Explicit context placement
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6.4 Handling Overlaps

A conditional rule only applies if the conjunction of all application conditions
is true, e.g. all matches are present. As each application condition is checked
independently, the same entity can be used in multiple matches i.e. we allow
overlaps between application conditions. For example, consider the rule in Fig. 12.
The intended behaviour is to check there are two distinct square entities in the
context – regardless of how many other entities e.g. the diamond, are in the
nesting – however as we allow overlaps this matches even in the case a single
square entity is in the context.

(a) Example Bigraph

RI if 〈−, , ↑〉, 〈−, , ↑〉

(b) Reaction rule with overlapping condition

Fig. 12: Rule applies to both circle entities as overlaps are allowed

A solution for this in GTS is to use nested conditions [11] that allow further
checks to be made on the context of the constraint within in the application
condition.

We can define a form of nested application conditions for bigraphs by allowing
further decomposition within the application condition match. That is, we first
find a suitable context (parameter) and then decompose the context (parame-
ter) into a new context/parameter and check nested conditions on these new
context/parameter.

As it only requires additional decompositions, such an approach is possible
within the existing bigraph matching framework. However, it requires matches
to apply in a specific order e.g. closest match first, to ensure we know if the
nested condition should be in the parameter or context. For example, in Fig. 12
if we first match on the outermost square then the next condition appears in
the parameter. But, if we first match on the innermost square then the next
condition is in the context.

6.5 Related Work

Sorting Schemes. It is possible to give a sorting scheme to bigraphs [14,
Chapter 6] that determines when a bigraph is well formed, e.g. that a Room
cannot be within a Person – much like a type graph for GTS. Sorting schemes
compliment application conditions. The sorting scheme defines what can be in
the context/parameter, while application conditions determine what is in the
current context/parameter. While there is an existing theory for sorts, there is
currently no tool support available.
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Conditional Transformation Systems. Conditional rewriting is often found
in rewriting logic [13] where rules take the form r → l if u1 ∧ u2 ∧ . . . . Unlike
application conditions, rewriting logic allows the terms in u1 to be reduced over
a set of equations.

Application conditions are also a common feature in GTS [9, Chapter 7] and
are present in most graph rewriting frameworks. Intuitively, a GTS application
condition is defined as the existence/non-existence of a match (graph morphism)
between a non-local pattern and the current graph.

More general treatments of (nested) application conditions considers them
at the level of adhesive categories [11,4]. Such categories are are closely linked
with the DPO rewriting approach. The relationship between bigraphs and cospan
categories/DPO rewriting has previously been explored [8], and such an input-
linear variant of bigraphs5, such as that of Sobociński [19], could fit such a
framework.

Spatial Logics. Another approach to application conditions for bigraphs was
explored by Tsigkanos et al. [20]. Here application conditions are specified using
a spatial logic for closure spaces [6], of which graphs are an instance. The logic
requires flattening the bigraph to a graph – losing the distinction between spatial
and non-spatial links – but provides features such as matching links by name
and specifying reachability constraints, e.g. a PC connects to a Printer through
some path.

A more general spatial logic for bigraphs is BiLog [7], which could also
implement application conditions while maintaining the orthogonality between
space and linking. However, there is a lack of tool support and the decidability
of the logic remains an open question.

Importantly, both logics require the user to specify constraints in a language
separate to that of bigraphs, while our approach maintains the diagrammatic
approach by having conditions as bigraphs.

7 Conclusion

Reactive modelling formalisms, such as bigraphical reactive systems, should make
it as easy as possible to express how a system evolves over time. Whether or not
a reaction rule is applicable often depends not only on a local match, but also
on the surrounding context. Application conditions allow non-local reasoning to
be added to reaction rules allowing the context to be interrogated to check the
existence/non-existence of constraints.

We have extended the theory of bigraphical reactive systems with conditional
reaction rules that allow application conditions to be specified. Unlike graph
transformation systems that feature a single context, bigraphs have both a
context (above the match) and a parameter (below the match). We show how
these contexts can be further decomposed as additional instances of the bigraph

5 Standard bigraphs are output-linear.
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matching problem, enabling the existing matching framework to be used to check
application conditions. To show this is useful in practice we implement conditional
rules in BigraphER [17].

Unfortunately, such rules do not let us express all conditions of interest. For
example we cannot track a name from the match into the context, or specify the
exact location of entities e.g. do not apply a rule if entity A is a grandparent.
Specifying these types of property require extensions to how bigraphs are matched,
and potentially the use of spatial logics to provide exact specification of spatial
constraints.

This paper paves the way for future work on application conditions for
bigraphs, and, more generally, improvements to the matching algorithm that
allow more expressive constraints to be described.
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