Data-driven modelling and probabilistic analysis of
interactive software usage

Oana Andrei*, Muffy Calder
School of Computing Science, University of Glasgow, G12 8RZ, UK

Abstract

This paper answers the research question: how can we model and understand the ways in
which users actually interact with software, given that usage styles vary from user to user,
and even from use to use for an individual user. Our first contribution is to introduce
two new probabilistic, admixture models, inferred from sets of logged user traces, which
include observed and latent states. The models encapsulate the temporal and stochastic
aspects of usage, the heterogeneous and dynamic nature of users, and the temporal
aspects of the time interval over which the data was collected (e.g. one day, one month,
etc.). A key concept is activity patterns, which encapsulate common observed temporal
behaviours shared across a set of logged user traces. Each activity pattern is a discrete-
time Markov chain in which observed variables label the states; latent states specify the
activity patterns. The second contribution is how we use parametrised, probabilistic,
temporal logic properties to reason about hypothesised behaviours within an activity
pattern, and between activity patterns. Different combinations of inferred model and
hypothesised property afford a rich set of techniques for understanding software usage.
The third contribution is a demonstration of the models and temporal logic properties
by application to user traces from a software application that has been used by tens of
thousands of users worldwide.

Keywords: Interactive Software, Log Analysis, Usage Behaviour, Admixture Models,
Latent Variables, Probabilistic Model Checking
62F15, 60J10, 68Q85, 683Q60

1. Introduction

Software developers cannot always anticipate how users will use their software: actual
usage styles may be quite different from what the system designers envisaged, and/or
they may change over time. Moreover users are heterogeneous: they may adopt different
usage styles for the same software, furthermore, each individual user may move between
different styles, from one interaction session to another, or even during a session. This

*Corresponding author
Email addresses: Oana.Andrei@glasgow.ac.uk (Oana Andrei), Muffy.Calder@glasgow.ac.uk
(Muffy Calder)

Preprint submitted to Journal of Logical and Algebraic Methods in Programming June 13, 2018

may be for a variety of contextual reasons, for example, time of day, time since last
session, length of session, purpose of engagement, environment (e.g. on a train or at a
desk) or device (PC, tablet, wearable). The research question we address is how can we
model and understand the ways in which users actually interact with a software system,
over time?

When the software system is instrumented and we have time series data about se-
quences of user-initiated events from logged user traces (i.e., observed variables), the
question can be refined to: how can we abstract data-driven models and then analyse
them with the purpose of discovering, evaluating, and communicating meaningful pat-
terns of usage (i.e., hidden or latent variables)? The aim of this paper is to show that
new types of probabilistic models, inferred from logged user traces, and analysis using
probabilistic temporal logic properties, provides a novel and effective solution.

First, we consider models and we define two new probabilistic models that encapsulate
temporal and dynamic aspects of software usage. Existing models such as first-order
hidden Markov models are not suitable because in addition to the relationships between
latent and observed variables we also have relationships between observed states from
each user trace. A key new concept is activity patterns, which encapsulate observed
temporal behaviours. Each activity pattern is a discrete-time Markov chain in which
observed variables label the states. We define two new parametrised, admixture discrete-
time Markov models that are based on a finite number K of activity patterns (the mixture
components). The new models include both observed and latent states: the former are
within the activity patterns and the latter specify the activity patterns. The models
are data-driven and we segment logged data into time series data encapsulating different
usage time intervals, e.g. interactions over first month, second month, third month. We
use maximum-likelihood parameter estimation techniques for inferring model parameters
from different time series data.

Second, we consider model analysis using probabilistic temporal logics. We define
classes of temporal properties (over observed and latent states) in the probabilistic tem-
poral logics PCTL and PCTL* [1]. These properties encapsulate hypotheses about in-
dicative temporal behaviours within an activity pattern, and between activity patterns.
We encode the models and properties in the PRISM model checker [2] for automated
reasoning. Combinations of different model and property, over different time intervals,
afford a rich set of techniques for discovering, evaluating, and communicating patterns of
usage. Additionally, we analyse by inspection of the distributions over activity patterns.

Figure 1 summarises our approach. It is important to note we are not inferring
the underlying software structure, which is determined by the designed functionality of
the software. We are investigating the differing generating processes of software usage
over a dynamic, heterogeneous population of a users. The logged data are user-initiated
events. We identify basic common traits of usage emerging within a population of users
and classify users as admiztures of basic traits. In statistical modelling, in a mixture
model each user trace is mapped to one single behavioural trait, whereas in admixture
models each user trace has a distribution over all behavioural traits. To the best of our
knowledge, inferring admixture temporal structures has not been described in prior work
outside our group.

In summary, the contributions of the paper are:

e two new admixture latent state Markov models: population admixture model
2

infer
time series parameters probabilistic
—

log data models

model
interactive checking
system analysis &

evaluation
develop

encode probabilistic
hypotheses ————> temporal

properties

Figure 1: Overall approach for data-driven modelling and analysis of software usage.

(PAM) and generalised population admixture model (GPAM),

e flattened form of the GPAM model as discrete-time Markov chain and encoding in
the probabilistic model checker PRISM,

e probabilistic temporal logic properties that can be applied to either or both an
activity pattern or/and a generalised population admixture model,

e guidance on interpretation and comparison of analysis results for combinations of
PAM and GPAM models and the temporal logic properties,

e a demonstration of the approach through application to data sets from a user-
intensive mobile software application that has been used by tens of thousands of
users worldwide.

In the next section we describe how logged data is segmented into time series data.
In Sect. 3 we discuss the requirements for models of software usage and in Sect. 4 we
define the PAM and GPAM models and parameter inference. In Sect. 5 we define two
classes of temporal logic properties: single activity pattern and multiple activity pattern
properties, and in Sect. 6 we discuss how to interpret and compare results across different
models, noting that the inference process can generate the activity patterns in different
orders, for each model. In Sect. 7 we introduce our example interactive software, the
mobile application AppTracker [3], which has been downloaded more than 35,000 times.
Section 8 gives an overview of our analysis results, using PAM and GPAM models, single
and multiple activity pattern properties, and distributions over activity patterns in PAM
models. We reflect on our results, our contribution and related work in Sect. 9, and
conclude in Sect. 10.

2. From raw logged data to user traces

We assume that the users’ interactions with software are logged via features embed-
ded in the software. For instance we used the SGLog framework [4] to collect records in
a MySQL database about the user, the device, the event that took place and the times-
tamp. We are interested only in the events leading to a switch between views within
the software, hence these events are determined by the software functionality and they

3

give an appropriate level of abstraction. We processed the logs to obtain discrete time
series data of timestamped user-initiated events for each device unique identifier. We
call such discrete time series user traces with the caveat that each user trace corresponds
to a unique device identifier since a user may be running the same software on several
devices. In the remainder of this paper, we conflate devices with users.

Assume we have a population of M user traces {a!, ..., @™}, and n pairwise dis-
tinct event labels {l1,...,l,} occurring in these traces. While it is not fundamental to
our approach, we assume here that logged interactions include two distinguished events
UseStart and UseStop that denote the beginning and end of each user interaction ses-
sion respectively. A session begins with the application being launched or being brought
to the foreground, and ends when the application is closed or sent to the background.
Assuming there are no logging errors (or at least such errors are fixed during a data
cleaning process), each user trace is a concatenation of sessions. We expect to discard
trivial user traces such as traces containing only session start and end UseStart and
UseStop event labels, or containing only fewer than five sessions.

In summary, each user trace is a temporal ordering of events that contains a variable
number of sessions, and each session is a variable-length sequence of timestamped events.

Because we have timestamps for session start and end, we can segment a set of traces
according to intervals of the form [d;, d3], which includes consecutive sessions from the
di"-th up to the d¥* day of usage. For example, logged data for the first month of usage is
the set of user traces in the interval [0,30]. Timestamps are discarded after segmentation.

Segmented data sets of user traces form the basis of our data-driven modelling and
analysis approach; we now consider models of usage behaviour that we infer from the
data sets.

3. On data-driven models of software usage

Our experience indicates that the most useful usage models depend not (only) on
static attributes such as the location, gender, age of users, but on the dynamic behavioural
patterns we observe through logged interactions. This means we are interested in more
than a “bag of words” approach [5] to the representation of user behaviours: we require
models that expose the temporal relationships between events and behavioural patterns,
for sets of users.

Motivated by [6, 7], we start from the assumption of the existence of a common set
of behavioural patterns that can be estimated from all observed user traces, and that by
allowing them to interleave, we can account for more complex individual and population
behaviour. This means we require statistical models that allow us to focus on activity
patterns of software usage, and their occurrence within heterogeneous populations of
users, rather than simply within individuals. We expect activity patterns to be dynamic
in the sense that the observed pattern changes over time, both for an individual user
and for a population. For example, each individual user may move between different
patterns, from one interactive session to another, or even during a session.

The key questions when defining and selecting usage models are: how do we model
each activity pattern and how do we model the multiple generating processes, i.e. the
interleavings, within a population? In the following we discuss these questions informally;
in Section 4 we give formal definitions of discrete-time Markov models, hidden Markov
models, and the new admixture Markov models we use in our analysis.

4

3.1. Activity patterns

The simplest and most common statistical models for time dependent sequences of
words (such as our user traces) are first order Markov chains, and we will use these to
model activity patterns. Since we consider events generated sequentially in discrete time
as opposed to continuous time, activity patterns are formally modelled as discrete-time
Markov chains defined as follows.

Let A be a finite set of atomic propositions. A first-order discrete-time Markov
chain (DTMC), is a tuple (5,3, P, L) where: S is the set of states; § € S is the initial
state, P : S xS — [0, 1] is the transition probability function (or matrix) such that for all
states s € S we have Y, s P(s,s') = 1; £ : S — 2% is a labelling function associating to
each state s in S a set of valid atomic propositions from the set A. A path (or execution)
of a DTMC is a non-empty sequence sg$182 ... where s; € S and P(s;, s;41) > 0 for all
i > 0. For DTMC D the set of paths starting from state s is Path”(s). A transition is
also called a time-step.

The Markovian property means we consider only (memoryless) relationships between
states, and first-order means modelling relationships between pairs of adjacent symbols
(events) in the user traces. Markovian models are computationally tractable. We note
that first-order Markov models have been used for modelling in many related problems
such as: human navigation on the Web [8, 9, 10, 11, 12] where states correspond to
visited webpages, usability analysis [13] where states correspond to button presses in
general, mobile applications [14, 15] where states correspond to device screen events,
human interactions with a search engine [16], human-human interactions in social group
meetings [17].

While higher-order Markov models could deliver higher modelling accuracy, they
could also increase complexity because they encode tuples of states; note that any higher-
order model can be encoded as a first-order Markov models. We employ first-order
models for activity patterns because the words (event labels) in the user traces correspond
directly to states in the Markov chain, we do not know a priori which tuples of states
are likely to be most significant or which higher order would give most benefit, and the
temporal logic properties will allow us to reason over paths within (and between) activity
patterns.

3.2. Multiple Generating Processes

We have more than a clustering problem: each user trace is not modelled by one
activity pattern, but at different points in time it may be modelled by a different activity
pattern. We therefore take an admizture approach. The admixture concept derives
from genetics and the analysis of populations where individuals have mixed ancestry: in
mixture models each individual has a probability of inheriting a trait, while in admixture
models each individual inherits a fraction of his/her traits from ancestors. Here we use
the more general terminology of component, rather than trait.

We define two new admixture models, each of a fixed number, K, of components. The
components are activity patterns and each of them is generated by a different process.
We can also say that for each admixture model we have a K-way categorical variable
(whose values range from 1 to K) with each value k, 1 < k < K, denoting an activity
pattern. Each activity pattern has the same set of underlying states, but the transition
probabilities between states are different in each activity pattern.

5

3.8. Latent Variable Models

The standard latent variable model is the hidden Markov model [18], a Markov model
distinguish between observed states and unobserved (or latent) states; the observed states
are generated by the latent states.

A first-order hidden Markov model (HMM) is a tuple (X,Y,w, A, B) where:
X is the set of hidden (or latent) states X = {1,..., K}; Y is the set of observed states
generated by hidden states; 7 : X — [0, 1] is an initial distribution, where » __, 7(z) = 1;
A: X x X — [0,1] is the transition probability matrix, such that for all € X we have
Yowex Alz,2') =1; B: X x Y — [0,1] is the observation probability matrix, such that
for all z € X we have }_ .y, B(z,y) = 1.

One can regard HMMs as a generalisation of mixture models in which the hidden
variables define the mixture components. However, in our context, this would mean
observed states (i.e., the user-generated events) would be in the components, i.e. the
activity patterns, and HMMs express relationships only between latent states, and not
between observed states. Thus HMMs are not suitable for our purposes. But the distinc-
tion between latent and observed is useful: we just require a more nuanced approach to
components and their combination, building on the distinction between observed states
for activity patterns and unobserved variables for mixing. We will define two new models
that meet this requirement.

In summary, to encapsulate the behaviours of dynamic and heterogeneous users, we
define two new models that are:

e probabilistic — statistical models of the different generating processes of heteroge-
neous, dynamic users,

e Markovian — behaviour is determined by current state, not process history,

e admizture — usage styles are complex and drawn from a probability distribution,
representing individuals that move between different patterns during an observed
trace.

The two models are called Population admixture model (PAM), which is an admizture
of discrete-time Markov chains, and Generalised population admixture model (GPAM),
which is an auto-regressive hidden Markov model.

4. Population Admixture Models (PAMs) and Generalised PAMs

A pictorial representation of the PAM and GPAM models is given in Fig. 2. Both
models involve K latent states, and the same set of observed states in the component
activity patterns. The main difference between the two models is the way in which
activity patterns are combined: in PAM models, there is a set of distributions © =
{0m }m=1,, with 6, the distribution over the activity patterns for the m-th user trace,
whereas in GPAM models there is a matrix A that indicates the likelihood of transition
between the latent states (and thus between activity patterns).

The number of mixture components/activity patterns, K, is an exploratory tool: we
do not try to find the “correct” or optimal value for K, instead we explore the variety of
usage styles that are meaningful to software evaluation (e.g. we might develop distinct
software versions for three or four different usage styles). We now define the models
formally.

6

OO0l
Population
admixture .‘ . ! ‘

model (PAM) e

X2
Generalised e A(1,2) 0 e
population .’v N .’
admixture ‘
i | G |1 |
A(2,1)

Figure 2: Pictorial representation of PAM and GPAM for K = 2, two latent states x1 and x2,
and four observed states yo — y3. The two activity patterns for each of the models (either PAM
or GPAM) are the DTMCs in boxes. Transition probabilities in each DTMC are indicated by
the thickness of transitions. There are M user traces with 6,, the probabilistic distribution of
the m-th user trace over the K activity patters, for 1 < m < M.

4.1. Definitions

Hidden Markov models do not include transitions between observed states, but only
between hidden states. However the less common auto-regressive hidden Markov model
(AR-HMM) [18] includes both transitions between observed states and transitions be-
tween latent states. Formally, a first-order auto-regressive hidden Markov model
is a tuple (X, Y, 7, A, B) where: X, Y, 7, A are as defined for HMMs; B: X x Y x Y —
[0, 1] is the observation probability matrix, such that for all z € X and y €) we have
Yyey By y) =1

Let P be a population of user traces as defined in Section 2 and A the set of the
labels of all events occurring in P.

Definition 1 (PAM). For a given positive integer K, a population admixture model
for the user trace population P is a tuple (X,), B, L,0) where:

o X is the set of latent states, X = {1,..., K},
e Y is the set of observed states, Y = {0,...,n—1},

e B is the observation probability matriz with B : X x Y x Y — [0,1] such that for
allz € X and y € Y we have 3 oy, B(z,y,y") = 1,

o L:Y — A is the labelling function,

EN|

e O = {01,...,00} is the set of distributions over all latent states for each user
trace in the population, such that for all m, 1 < m < M, 0,, : X — [0,1] with
Y wex Om(z) =1

Definition 2 (GPAM). For a given positive integer K, a generalised population
admixture model (GPAM) for the user trace population P is a tuple (X,Y, 7, A, B, L)
where (X, Y, 7, A, B) is an AR-HMM and L : Y — A is the labelling function.

Definition 3 (AP). For any PAM (X,Y,B,L,0) or GPAM (X,Y,n, A, B,L), and la-
tent state x € X, the tuple (¥, L™ (UseStart), B(x), L) is a discrete-time Markov chain
we call activity pattern.

Figure 3 illustrates structural differences between four Markov models, using graphical
representation known as dynamic Bayesian networks (DBNs) [18, 19]. Shaded nodes are
observed states; clear nodes are latent states. A; and), denote the latent state and
the observed state at time step ¢ respectively, where X; € X,), € Y, and t > 1.
Vertical edges indicate dependencies between latent and observed states at one time
instant (i.e. the latent state generates the observed state); horizontal edges indicate the
time dependencies within each set of states. These simple examples do not exhibit the
branching between observed states that is a strong feature of our models, but they serve
to illustrate the following key differences. Traditional HMMSs express relationships only
between latent states, but not between observed states, so they are not suitable for our
approach to modelling behavioural patterns. PAM models are admixtures of first-order
Markov chains (DTMCs) that express relationships between observed states, with ©
defining distributions over the latent states. In PAM models we can study the values for
© across all users or subpopulations thereof. However, it is not possible to relate changes
to latent states to changes in the observed states. GPAM models are AR-HMMs, which
express explicit relationships between both observed and latent states.

For clarity we note that our approach has two temporal aspects: data logging inter-
vals and probabilistic transitions between observed states in the generated models, they
should not be confused as they are at different scales.

4.2. Parameter inference

The number of activity patterns K, the sets X and), and the function £ are pre-
determined for both PAM and GPAM. The parameters we need to learn are: the ob-
servation matrix B and set of distributions © for PAM, and the transition matrix A,
observation matrix B, and initial distribution 7 for GPAM. We infer values for these
parameters from the data set consisting of the population of user traces using statistical
methods for maximum likelihoods, as follows.

Given a set P of user traces, we compute n X n transition-occurrence matrices for
each trace a such that matrix position (7, j) is the number of times the subsequence «;a;
(i.e. two adjacent event labels) occurs in . This is simple to compute and is done once
for each data set. This is the input data for parameter inference algorithm.

For PAM we employ the local non-linear optimisation Expectation—Maximisation
(EM) algorithm [20] for finding maximum likelihood parameters of observing each trace,
restarting the algorithm whenever the log-likelihood has multiple-local maxima. EM
converges provably to a local optimum of the criterion, in this case the likelihood function.

8

Time slices t=1 t=2 t=3 t=T
First-Order
Markov Chain @—b@—b@—b . —>@
Model
cee — P
First-Order
Hidden Markov
Model (HMM) @ @ @ @
Admixture of
First-Order
Markov Chains
T @ —0— - —®
ces —P
OO~ —E
First-Order
Auto-Regressive
Hidden Markov
Model (ARHMM)
W—@—w— - —®

Figure 3: Dynamical Bayesian Network representation of some Markov models showing the
dependencies between the observed states (clear nodes) and the hidden states (shaded nodes).
X: (V) is the hidden (resp. observed) state at time step t.

For GPAM (AR-HMM) we employ the Baum—Welch algorithm [21], which uses also the
EM algorithm. We use EM, as opposed to say Markov chains Monte Carlo methods,
because it is fast and computationally efficient for our kind of data.

4.3. From admizture models to PRISM models

PRISM is a probabilistic model checker [2] used for formal modelling and analysis of
systems that exhibit random or probabilistic behaviour. Its high-level state-based mod-
elling language supports a variety of probabilistic models, including DTMCs. PRISM
also allows models to be augmented with rewards, which are positive real values assigned
to states and transitions for the purpose of reasoning over expected values of these re-
wards.

In both admixture models PAM and GPAM, each activity pattern is a DTMC, there-
fore straightforwardly specifiable as a PRISM model or given as an input to PRISM in
command line in a specific matrix format.

We can also encode a GPAM as a DTMC by flattening it as follows. We pair each
observed state with a hidden state. The transition probability between two any such
pairs of states (x,y) and (2’,y’) is the probability of moving from hidden state z to
hidden state 2’ times the probability of moving between the observed states y to 3’ while

9

in the current hidden state 2/, i.e., P((z,y), (¢/,vy')) = A(z,2') - B(2',y,y’). The initial
state (£L7!(UseStart),0) is a dummy that encodes the global initial distribution. This
flattening operation shares similarities with the composition between an HMM and a

deterministic finite state machine (see [22]), however we are composing an HMM with a
DTMC.

Definition 4. Given a GPAM (X,Y,n, A, B, L), we flatten it into the discrete-time
Markov chain (S, (7,0),P, L) where:

e S=({0}UX)xY, where X ={1,...,K},
= L1 (UseStart) is the initial observed state with the label UseStart,

°y
* P((l’,y), (m/’y/)) = A(x,x’) : B(.’[',y,y/), fOT T > 0}

A (e gy = { 7@ iy =g anda’ >0
e P((0,9), («",y)) = { 0 otherwise,

o L(z,y) = {z} x L(y).

For clarification, DTMCs are used at two levels of abstraction: to represent individual
activity patterns and to represent the flattened GPAMs in which the activity patterns
are embedded.

Assuming that the observed state with the label UseStart is 0, 1 < ¢ < K and
0 <j<(n-1), then the PRISM model specifying a GPAM has the following template:

module GPAM
z:[0.. K] init 0;
y:[0..n — 1] init 0;

(=& (y=j) — A@G,1)xB(1,5,0): (' = 1) & =0)+ ...+
A(i, 1) * B(1,4,n) : (' = 1) & (v =n)+
A(1,2) * B(2,7,0): (' =2)& (v =0) + ...+
A(i,K) * B(K,j,n) : (z' = K) & (y = n);

endmodule

5. Probabilistic temporal properties for analysis

5.1. Probabilistic logics and model checking: brief overview

We assume familiarity with the probabilistic logics PCTL and PCTL*, rewards, and
model checking [2, 1]; basic definitions are below.

Probabilistic Computation Tree Logic (PCTL) and its extension PCTL* allow one
to express a probability measure of the satisfaction of a temporal property by a DTMC.
Their syntax is the following:

State formulae D i=true|a| P | PAD|Pup[¥] | Seap[?]
PCTL Path formulae Uo=Xo|dUSN @
PCTL* Path formulae U= |[UAY|-U | XT|PUSN U
10

where a ranges over a set of atomic propositions, e {<,<,>,>}, p € [0,1], and
N € NU {o0}.

This is a minimal set of operators; the propositional operators false, disjunction and
implication can be derived. Two common derived path operators are: the eventually
operator F where F<" ® = true US™ ® and the always operator G where G W = —(F -~).
If n = oo then superscripts are omitted.

PCTL and PCTL* formulae are interpreted over states of a DTMC: state formulae
® are evaluated over states and path formulae ¥ over paths. We say that a DTMC
satisfies a state formulae ® if the initial state of the DTMC satisfies ®. We denote by
s = @ that state s satisfies ® (or @ is evaluated to true in state s). Then s |= true is
always true; s = a iff a € L(s); s = P iff s = @ is false; s = &1 A $y iff s = &7 and
s = ®g; s |= Pugp[¥] iff the probability that ¥ is satisfied by the paths starting from
state s meets the bound < p; s = Sy, [®] iff the steady-state (long-run) probability of
being a state that satisfies ¥ meets the bound <1 p. Informally, the path formulae X ®
is true on a path starting in s iff @ is satisfied in the next state following s in the path,
whereas ®; USY &, is true in on a path w iff ®5 is satisfied within N time-steps and &,
is true up until that point.

In PRISM we can replace the bounds < p with =7 and obtain a numerical value that
makes the property true. PRISM supports a reward-based extension of PCTL called
rPCTL that assigns non-negative real values to states and/or transitions. Ryyq—2 [CSN]
computes the expected value of the reward named rwd accumulated along all paths
within N time-steps, Rypd—7 [F @] computes the expected value of the reward named
rwd accumulated along all paths until ® is satisfied. Filters check for properties that
hold when starting from sets of states satisfying given propositions. In this paper we use
state as the filter operator: e.g., filter(state, ®, condition) where ® is a state formula
and condition a Boolean proposition uniquely identifying a state in the DTMC. In the
following, for convenience, we refer to properties as rPCTL/PCTL/PCTL* properties,
though strictly they also include PRISM operators.

5.2. Classes of temporal properties

We categorise probabilistic temporal logic properties as either single activity pattern
properties (SAP properties), which means they refer to behaviour within an activity
pattern, or multiple activity pattern properties (MAP properties), which means they refer
to behaviour that may involve several activity patterns in a flattened GPAM. The former
reveal characteristics of each activity pattern, while the latter may reveal how or when
users change activity patterns. It is important to note that we cannot check properties
from the latter set on PAM models because PAMs include a distribution over activity
patterns and not transition probabilities between activity patterns, as in GPAMs.

In order to distinguish between SAP and MAP properties, we define the following
state formulae and rewards:

Observed state formulae o = true|l|ly=j|-@|pAp
Hidden state formulae v ou= true|lz=i|-y|yAy
Non-probabilistic state formulae ¢ = @lyl9|loAP

where ¢ ranges over the set of observed state labels A, j over the set of observed states
identifiers {0,...,n — 1} and ¢ over the set of hidden state identifiers {0, 1,..., K} (with
0 denoting a dummy hidden state in the DTMC flattening of a GPAM).

11

We define the following templates of reward structures for all values of j € {0,...,n—
1} andie {1,...,K}:

e rLabelj and rLabeljAPi for computing the expected number of visits to an ob-
served state j and to a state (4, j) respectively, where Labelj has to be instantiated
with the actual label of the observed state j, and

e rSteps and rStepsAPi for computing the number of all time steps in the model
and the number of all time steps in activity pattern 4 within a GPAM respectively.

rewards "rLabelj" rewards "rLabeljAPi" rewards "rSteps" rewards "rStepsAPi"
(y=3j): 1; (y=3) & (x=1i) : 1; [1 true : 1; 0 (x=i) : 1;
endrewards endrewards endrewards endrewards

SAP properties involve only observed state formulae ¢; MAP properties can also
involve hidden state formulae v and so involve the more general formulae ¢. This means
that SAP properties can involve the observed variable y whereas MAP properties can also
involve the hidden variable x. In the following, recall, for a GPAM state (i, j), ¢ refers to
the activity pattern and j to the state within that pattern. There is a similar distinction
for rewards: rLabeljAPi and rStepsAPi are multiple activity pattern rewards as their
definitions also include the hidden variable ¢, whereas rLabelj and rSteps are single
activity pattern rewards.

Table 1 lists three basic classes of probabilistic temporal properties defined over state
formulae: VisitProb, VisitCount, and StepCount, where the reward name stateRwd can
be either rLabelj or rLabeljAPi, while stepRwd can be either rSteps or rStepsAPi.
VisitProb computes the probability of visiting a state satisfying ¢o within N steps when
starting from the unique state satisfying ¢ while ¢; holds in all states visited. VisitCount
computes the average number of visits to the state specified in the reward structure
stateRwd when starting from the unique state satisfying ¢g, taking at most N steps.
StepCount computes the average number of steps taken from the unique state satisfying
¢o until reaching a state satisfying ¢, (if such a state is not reachable, then the cumulated
reward is infinity).

5.8. Examples of SAP and MAP properties

Table 2 illustrates some instances of the property classes in Table 1. VPinitap and
VPinitgpam are simple reachability properties for a particular state in either an activity
pattern (AP) or a GPAM respectively. VCinitap computes the expected number of visits
to a state j in an AP, while VCinitgpam computes only the number of visits to state j
while in the pattern ¢ in a GPAM. SCinitap and SCinitgpam compute the expected number
of steps needed to reach a particular state in either an AP or a GPAM.

Two additional SAP properties instances of VisitProb and StepCount for reasoning
over an activity pattern are:

e VPsessionap: filter(state, P_+[(= UseStop) USN(y = j1)], (y = jo)) for computing
the probability of reaching observed state j; from jo within the same session;

o SCstate2stateap: filter(state,Rysteps—2[F (¥ = j1)], (¥ = Jjo)) for computing the
average number of steps from state jo to state j;.

The following PCTL/PCTL* MAP properties apply to a flattened GPAM:
12

Table 1: Classes of rPCTL properties.

Name Description rPCTL property

VisitProb Probability that starting from filter(state,P_2[¢p1USN @], ¢p)

state satisfying ¢g, ¢1 holds until
reaching a state in which ¢o holds,
within N time-steps.

VisitCount Starting from state satisfying ¢o, filter(state, Rgareruwi=2[C="], ¢o)

expected reward cumulated over NV
time-steps.

StepCount Starting from state satisfying ¢o, filter(state, Rsepruwa=2[F ¢1], o)

expected number of steps cumu-
lated before reaching a state sat-

isfying ¢ .

Table 2: SAP and MAP instances of VisitProb, VisitCount, and StepCount parametrised by
observed state j, activity pattern ¢, and N time-steps.

ID Activity Pattern (AP) GPAM

VPinit P_¢[true USN (y = j)] P_r[true USN(z =iAy =j)]
VCinit RrStatej:?[CSN] RrStatejAPi:?[CSN]

SCinit RrSteps:?[F (y =])] RrSteps:?[F(x =1 A Yy =])]

e State2endgpam:

P>i[F(z=iAy=j)]AP21[G((z =iy =j) = Pxp[(x =1i)UUseStop])]
identifies observed states and patterns that lead to the end of the session with a
high probability p. This is useful for studying user engagement analysis across
different time intervals.

Responsecpam:

P>1[F ¢1] AP>1[F o] AP>1[F (=1 A =d2) UP>1[(1 A =¢2) UP>p[X 62]])]

checks for correlations between two properties that involve observable states and
activity patterns: if eventually one property holds (for a period of time), then
immediately afterwards, the second property holds.

LongRunPatterngpapy: S—7[2 = i] computes the long-run probability of being in
each of the activity patterns. This can give us more insight into the popularity of
the patterns.

The parametrised properties presented in this section are not exhaustive, they are
indicative of the kinds of hypotheses we can pose and are more than sufficient for our
application. In particular, variants of the Responsecpap property would vary the number
of steps until ¢ holds with probability greater or equal to p, e.g., after one, or two, or five

13

steps; we found the use of the next operator sufficiently discriminatory for the example
software application considered in this paper (note that PRISM does not allow bounded
until operators at that depth, e.g., PZP[FSN@]). In the next section we describe how
to interpret and compare temporal property results across the K activity patterns, and
also longitudinal comparisons of results for models over different time intervals.

6. Interpreting and comparing property results

For a given data set, a value for K, and inferred model (either PAM of GPAM), we
model check properties for each of the activity patterns. To aid interpretation of the
quantitative results, we order them from “best” to “worst”, which is greatest to least
value for VisitProb and VisitCount and the least to greatest value for StepCount. This
ordering reflects the judgements: a greater probability to visit a state (VisitProb), a
greater number of state visits (VisitCount), and fewer steps to reach a state (StepCount)
are all indicators of greater (user) interest in a state.

We encode the ordering using colours for maximum three activity patterns thus: blue,
purple, , ranging from “best” results to “worse” results respectively.

We illustrate interpretation through a simple example based on the results we will
present in Sect. 8. For the PAM model with K = 3, inferred from the the data set
corresponding to the second month of usage, assume we obtain these results for property
VCinitap and visit counts to an observed state labelled by OverallUsage within N = 50
time-steps: 13.03 for the first activity pattern, which we call AP1, 5.68 for the second
activity pattern, which we call AP2, and 5.06 for the third activity pattern, which we
call AP3. Tt is important to observe that AP1, AP2, and AP3 are simply labels that are
local to that model. Using our colour coding, we have 13.03 for AP1, 5.68 for AP2, and

for AP3. These results are given in the first row, left hand side of Table 3.

Table 3: Example results for property VCinitap instantiated for the observed state labelled by
OverallUsage in PAM models (K = 3) inferred from the data sets corresponding to the first
and second month of usage.

Usage Original ordering Reordered

month AP1 AP2 AP3 Labell Label2 Label3
274 month 13.03 5.68 13.03 5.68
3*4 month 12.37 8.46 12.37 8.46

Now consider longitudinal analysis — comparing property results for models inferred
from data sets over different time intervals. We cannot simply compare the results for the
it" activity pattern in one model with the results for the i** activity pattern in another
model, because the order in which the activity patterns are inferred is non-deterministic
(recall, for each data set we infer the observation probability matrix B). Specifically,
the types of activity patterns may be generated in different orders, i.e. AP1, AP2, and
AP3 are local, not global labels. Moreover, even when comparing property results for
corresponding activity patterns, we should not expect results to be identical, but rather
they should have similar relationships to the results for the other activity patterns (for
that model).

14

Now consider the model PAM with K = 3 inferred from the third month of usage and
the same property VCinitap as above. The results are given in second row, left hand side
of Table 3: 0.83 for the first activity pattern AP1, 12.37 for the second activity pattern
AP2, and 8.46 for the third activity pattern AP3. (Note, these are actual results.) Using
our colour coding, we have for AP1, 12.37 for AP2, and 8.46 for AP3. Again, the
labels AP1, AP2, and AP3 are local.

It is easy to see from the colour coding that AP1 in the model from the first month
is similar to AP2 in the model from the third month. On the right hand side of Table 3
we reorder the results using a global mapping to names Labell, Label2, Label3. It is
usually helpful, after reviewing results for several properties, to introduce meaningful
names for global labels such as GLANCING or INDEPTH, for activity patterns. In this
example it was straightforward to swap over results manually, however, this may not be
straightforward for bulk, automated analysis, and when considering multiple properties.
In the remainder of this paper we will report results in the order they were generated,
unless it is simple and pertinent to reorder.

We now turn our attention to the example software application.

7. Example: AppTracker mobile app

AppTracker [3] is a personal productivity iOS mobile application that runs in the
background, monitoring the opening and closing of (other) apps. It displays a series of
charts and statistics, offering insight to users into the time spent on their device, the
most used apps, how these stats fluctuate over time, etc.. The main menu screen offers
four main options (Fig. 4(a)). The first menu item, Overall Usage, contains summaries of
all the data recorded since AppTracker was installed and opens the views OverallUsage
and Stats (Fig. 4(b)). The second menu item, Last 7 Days, opens the view StackedBars
and displays a chart indicating activity recorded over the last 7 days. The third menu
item, Select by Period, opens the view PeriodSelector and shows statistics for a selected
period of time. For example, this could be which apps were used most since last Saturday,
or how time spent on Facebook varied each day last month, or hourly device usage for
a particular day (Fig. 4(c)). The final menu option, Settings, allows a user to start and
stop the tracker, or to reset their recorded data. We are interested in the 16 user-initiated
events that switch between views and start and stop a session, as illustrated by the state
diagram in Fig. 5. These events determine the atomic propositions used in our models
as described the following definition of the state labelling function: £(0) = UseStart,
L(1) = T&C is the terms and conditions page, £(2) = Main is the main menu screen,
L(3) = OverallUsage shows the summary of all recorded data, £(4) = StackedBars
shows the last seven days of top five apps used, £(5) = PeriodSelector shows app
usage stats for a selected time period, £(6) = AppsInPeriod shows apps used for a
selected period, £(7) = Settings shows the settings options, £(8) = UseStop stands
for closing/sending to background the AppTracker, £(9) = Stats shows statistics of app
usage, £(10) = UBCOverallUsage shows app usage when picked from OverallUsage,
L(11) = Feedback shows a screen for giving feedback, £(12) = UBCStats shows app
usage when picked from Stats, £(13) = Info shows information about the app, £(14) =
UBCApps shows app usage when picked from AppsInPeriod, £(15) = Task shows a
feedback question chosen from the Feedback view. UseStart and UseStop distinguish
the beginning and end (resp.) of a session.

15

02-UK 7 16:20 19:22

Back Overall Stats

All usage

Usage stats

Recording data since 24 Jun 2013

Monday 4 Nov

Total usage time 14.3 hours

Number of apps used 31

Most used app Tweetbot >
@
3
3

Total app launches 510 E
g

Average day 2
s

Average daily use 40.9 minutes

Average daily apps used 9.8

Average app launches 24.3

Most active day

28 Jun 2013 3.4 hours >

(a) Main menu (b) Overall stats (c) Daily device usage

Figure 4: Screenshots from AppTracker.

The log data are stored in a MySQL database by the SGLog framework. Raw data
is extracted from the database and processed using JavaScript to obtain user traces in
the following JSON format: information about the user’s device, start and end data of
AppTracker usage, and list of sessions. For example, the start of a user trace may look
like the following:

[{"deviceid":"x","firstSeen":"2013-08-20 09:10:59","lastSeen":"2014-03-24
09:57:32","sessions": [[{"timestamp":"2013-08-20 09:11:01","data":
"UseStart"},{"timestamp":"2013-08-2009:11:02","data":"T&C"},{"timestamp":
"2013-08-20 09:11:23", "data":"Main"},{"timestamp":"2013-08-2009:11:46",
"data":"OverallUsage"},...1}]

. HE ! :
Feedback : UseStart : | UseStop : Settings

o

| Stats |<—>| OverallUsage |<—>| Main |<—>| PeriodSelector |<—>| AppsInPeriod |
A 3 A

A A Y
[uscstats | | uscoverallusage | TsC | stackedsars | | uscapps |

Figure 5: AppTracker state diagram. UseStart labels the initial state; all (15) outgoing and
incoming arrows are omitted for UseStart and UseStop.

AppTracker was first released in August 2013 and downloaded over 35,000 times;
our data sets are taken from a sample of 322 users traces during 2013 and 2014. The
maximum session count over all the traces is 129, the minimum was limited to 5.

16

For learning parameters of the PAM and GPAM models for different time intervals
(first month, second month, third month) and values for K (2, 3, 4, and 5), the EM
algorithm was restarted 200 times with 100 maximum number of iterations for each
restart. As example performance, we implemented the algorithm for GPAM parameters
in Java and ran it on a 2.8GHz Intel Xeon (single thread, one core); for the data set
consisting of the first month of usage (332 user traces), the algorithm takes 3.2 min for
K =2, 4.1 min for K = 3, and 5.3 min for K = 4. Figure 6 illustrates state-transition
diagrams of all K = 3 activity patterns in a GPAM, where the thickness of the transitions
corresponding to ranges of probability: the thicker the line, the higher the probability of
that transition. Note that this illustration does not include the probabilistic transitions
between the hidden states.

Figure 6: Graphical representation of the DTMCs underlying the three activity patterns of the
GPAM for the first month of usage: the nodes are the observed states from 0 to 15 and the
thickness of the transition arrow is proportional.

8. Example analysis

Analysis is hypothesis driven, drawing on the properties defined in Sect. 5. We have
found a useful approach is: consider the single activity pattern properties initially in
PAM and GPAM models, then multiple activity pattern properties in GPAM models,
followed by the distribution of activity patterns in PAM models. For illustration, we
consider data sets for three different time intervals (1% month, 274 month, 3¢ month
of usage), and compare the results for PAM and GPAM models. For simplicity, assume
N = 50 for all time-bounded properties. Previous PAM analyses for AppTracker [23]
include values for N ranging from 10 to 150 with step-size 10; from those results we
concluded that, for the AppTracker data, N = 50 is sufficiently discriminatory. If the
result of model checking a reward-based property does not produce a number (due to
state unreachability, or filter satisfying no states, or the iterative method not converging
within 100,000 iterations) this is denoted by “—.

The goal of this section is to give a flavour of the types of analysis possible and
an indication of how to iterate through combinations of model and property, rather
than a comprehensive analysis of the AppTracker app usage. For this reason, some
interpretations are given here without full detail, and some results are consigned to the
Appendix and on the website at http://www.dcs.gla.ac.uk/research/S4/tasum.

17

8.1. Single activity pattern properties for PAM and GPAM

Table 4 gives results for VPinitap, VCinitap, and SCinitap where observed state j is
instantiated with the state labels OverallUsage, StackedBars, PeriodSelector, Stats,
on PAM with K = 2. The results for the properties VCinitap and SCinitap instantiated
with UseStop in Table 5 are indicative of the average session count and the average
session length respectively.

Table 4: Results for VPinitap, VCinitap, and SCinitap on PAM with K = 2.

Prop. Usage OverallUsage StackedBars PeriodSelector Stats

month AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

VPinitap 15t 0.98 0.99 0.97 0.32 0.90 0.09 0.65 0.98
ond 0.99 0.96 0.54 0.97 0.74 0.76 0.19 0.84
grd 0.99 0.91 0.00 0.98 0.15 0.93 0.86 0.65
VCinitap 18t 5.35 12.02 3.58 0.38 3.50 0.10 1.49 4.13

ond 10.44 5.69 0.81 4.18 4.52 1.55 0.20 3.15
3rd 12.95 4.76 0.00 4.55 0.45 3.38 1.86 2.06

SCinitap 15t 12.34 291 13.33 131.99 21.55 519.32 48.15 12.02
ond 3.53 12.72 65.08 11.44 36.78 35.29 240.77 27.52
grd 2.30 19.73 10.28 300.63 17.67 25.80 48.13

Table 5: Results for VCinitap and SCinitap instantiated with UseStop on PAM with K = 2:
VCinitap computes the average number of sessions within 50 time steps, SCinitap computes the
average session length.

Usage VCinitap SCinitap

month AP1 AP2 AP1 AP2

15t 5.65 899 7.64 4.39
gnd 8.82 537 458 842
grd 10.29 559 3.75 7.94

8.1.1. Global labels for activity patterns in PAM with K = 2
Based on the results listed in Tables 4 and 5 we identify two distinct activity pattern
labels as follows:

BROWSING corresponds to more likely, more often, and more quickly reaching the states
OverallUsage and Stats, thus more high-level stats visualisations with shorter and
more frequent sessions (than the INDEPTH pattern).

INDEPTH corresponds to more likely, more often, and more quickly reaching StackedBars
and PeriodSelector, thus more in-depth stats visualisation with longer and less
frequent sessions (than the BROWSING pattern).

Under this interpretation, for the first month of usage data AP1 is an INDEPTH
pattern and AP2 a BROWSING pattern, while for the second month and the third month
of usage AP1 is a BROWSING pattern and AP2 an INDEPTH pattern.

18

8.1.2. Further investigations for PAM with K = 2

Observe that state Stats does not fall clearly into one pattern or the other. We
discussed this with the designers of the AppTracker app and found out that Stats does
not show much information until after the first month, i.e. there are no statistics to inspect
during the first month. We investigated further the behaviour involving Stats and the
states specific to each of patterns by analysing the properties VPsessionap (Table 6) and
SCstate2stateap (Table 7) for PAM models with K = 2 and second month of usage. The
results of the VPsessionap properties involving Stats score better in INDEPTH (AP2)
than in BROWSING (AP1). The average step counts as computed by SCstate2stateap
shows that Stats is reached in fewer steps in the INDEPTH pattern and also the session
is longer when Stats is visited (10.87 steps until the end of the session in INDEPTH than
1.55 steps in OverallUsage). We conclude that in the second month of usage, the state
Stats is more characteristic of the INDEPTH activity pattern, while in the first and the
third month of usage Stats is characteristic of the BROWSING pattern.

Table 6: Results for VPsessionap on PAM with K = 2 and second month of usage: probability
to reach one state from another within the same session.

Target state OverallUsage StackedBars PeriodSelector Stats

AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

OverallUsage 1.00 1.00 0.71 0.23 0.25 0.28 0.33 0.52
StackedBars 0.01 0.48 1.00 1.00 0.02 0.38 0.00 0.49
PeriodSelector 0.01 0.19 0.11 0.12 1.00 1.00 0.00 0.20
Stats 0.02 0.59 0.01 0.13 0.00 0.17 1.00 1.00

Table 7: Results for SCstate2stateap on PAM with K = 2 and second month of usage: average
step counts from one state to another.

Target state OverallUsage StackedBars PeriodSelector Stats

AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

OverallUsage 0.00 0.00 4.18 13.60 12.34 18.48 4.03 11.44
StackedBars 67.03 14.81 0.00 0.00 73.79 17.35 67.40 14.42
PeriodSelector 38.73 37.90 36.67 35.80 0.00 0.00 39.09 37.50
Stats 237.24 16.23 241.43 2873 249.58 33.69 0.00 0.00
UseStop 1.69 11.12 4.10 5.63 9.39 11.98 1.55 10.87

8.1.8. Global labels for activity patterns in PAM with K = 3

We now consider PAM models for K = 3 and first, second and third month of usage;
results are in the Appendix in Table A.13. From these results we identify a new type of
pattern that we label as GLANCING. This pattern is centred around a particular state
which scores very good results while the other states score poorly; usually the GLANCING
pattern in PAM is also characterised by the shortest and most frequent sessions.

When we examine the results over different time intervals, we find some interesting
results. In the first month of usage the three activity patterns are mapped (respectively)

19

to INDEPTH, BROWSING, GLANCING (around OverallUsage); in the second month of us-
age they are mapped to GLANCING (around OverallUsage), INDEPTH, and BROWSING;
and in the third month of usage they are mapped to GLANCING (around StackedBars),
GLANCING (around OverallUsage), and INDEPTH.

It is is beyond the scope of this paper, but we note briefly that these results prompted
further investigations into the different relationships between states in each GLANC-
ING like pattern, using properties VPsessionap and SCstate2stateap, as well as extending
the analysis to other states (that are one level down in the hierarchical menu) such as
UBCOverallUsage, UBCStats, AppsInPeriod, and UBCApps.

8.1.4. Activity pattern analysis in GPAM

We analyse the individual patterns of GPAM in a similar way to PAM. We con-
sider results for VPinitap, VCinitap, SCinitap for states OverallUsage, StackedBars,
PeriodSelector, Stats, UseStop, on GPAM with K = 2. Tables 8 and 9 give results.
For the first month of usage, AP1 is labelled as a BROWSING pattern and AP2 an IN-
DEPTH pattern. For the second and the third months of usage, AP1 is an INDEPTH
pattern and AP2 a BROWSING pattern.

Table 8: Results for VPinitap, VCinitap, and SCinitap on GPAM with K = 2.

Prop. Usage OverallUsage StackedBars PeriodSelector Stats

month AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

VPinitap 18t 0.99 0.59 0.92 0.91 0.56 0.90 0.98 0.46
ond 0.87 0.99 0.98 0.31 0.93 0.00 0.45 0.96

grd 0.91 0.99 0.97 0.02 0.96 0.10 0.56 0.91

VCinitap 18t 15.55 0.89 2.52 2.39 1.19 2.62 4.75 0.65
ond 2.28 14.27 5.06 0.40 4.29 0.01 0.80 4.04

3rd 3.00 14.73 4.48 0.02 4.61 0.10 1.28 3.63

SCinitap 15t 3.44 56.55 19.28 20.07 59.94 21.53 13.68 81.13

ond 23.41 2.15 9.02 137.09 18.90 5483.99 85.45 15.97
grd 19.55 2.23 1046 2269.78 15.49 483.09 61.19 21.01

Table 9: Results for VCinitap (average number of sessions within 50 time steps) and SCinitap
(average session length) instantiated with UseStop on GPAM with K = 2.

Usage VCinitap SCinitap

month AP1 AP2 AP1 AP2

18t 0.47 10.82 102.07 3.51
ond 6.17 7.55 7.09 5.36
3rd 5.43 7.35 8.28 5.56

When we analyse the activity patterns in GPAM with K = 3, see Table A.14 in the
appendix, we uncover a new type of pattern, which we call Loop, for AP2 in the first
month of usage. The fact that VCinitap and SCinitap score poorly for this pattern (as

20

opposed to a BROWSING pattern) led us to investigate more observed states and prop-
erties. We found that UBCOverallUsage has similar results to OverallUsage, leading
us to conclude that AP2 in the first month of usage corresponds to repeatedly switch-
ing between OverallUsage and UBCOverallUsage; this pattern is less glancing-like and
more in-depth stats visualisation. The global labels of the patterns for GPAM K = 3
are mapped (respectively) as follows: for the first month of usage, they are mapped to
INDEPTH, LOOP, and BROWSING; for the second month of usage, they are mapped to
GLANCING (around OverallUsage), INDEPTH, BROWSING; for the third month, they
are mapped to BROWSING, GLANCING (around StackedBars), and INDEPTH.

The two glancing patterns we identified (centred around the states OverallUsage
and StackedBars) might suggest that we are merely uncovering the top level menu
structure where Overall Usage (mapped to the observed state OverallUsage) is the top-
level button and Last 7 Days (mapped to StackedBars) is the second button from the
top. However, when analysing admixture models for K = 3 and higher, we did not
find a pattern solely centred around the state PeriodSelector (abstracting the events
generated by pressing the third button from the top, Select by Period) without including
StackedBars. And so we conclude that activity patterns do not correspond directly to
the top-level menu structure.

We now turn our attention to the additional properties we can investigate in GPAM.

8.2. Multiple activity pattern properties for GPAM

Recall that MAP properties can also refer to hidden state variables. In Section 5
we defined the property classes VisitProb, VisitCount, and StepCount which can be in-
stantiated into MAP properties VPinitgpam, VCinitgpam, and SCinitgpam (see Table 2),
as well as the MAP properties State2endgpam, Responsecpan, and LongRunPatterngpap-
We already showed how properties of the former class can be analysed and interpreted,
now we focus on the latter set of MAP properties.

8.2.1. Likelihood of observed state to lead to end of session

The State2endgpam property computes the probability p that always from a screen
view j in a pattern i, eventually, without changing the pattern, the session ends, there-
fore helps us to identify most likely screen views (observed states) and patterns that
diminish user engagement (i.e. lead to end of the session). Table 10 lists the results for
State2endgpam on GPAM with K = 2 for the first and second months of usage, where —
denotes that the property is evaluated to false.

For the first month of usage (and this also holds for all time intervals starting from first
day of usage), the states Stats, UBCOverallUsage and UBCApps are the most likely to
disengage users in BROWSING patterns where the probabilities p to do so are the highest
over all states (see in bold), while in the INDEPTH pattern the property either does not
hold, or it holds for close to zero values of p. While for the screen views corresponding to
the states UBCOverallUsage and UBCApps this effect was expected because of their lowest
level in the hierarchical menu, we were intrigued by the results for Stats. We discussed
these results with the designers and again concluded they were a consequence of few
statistics being available during the first month. The designers subsequently suggested
changing the monthly Stats view to show something engaging (e.g. default illustrations
of monthly stats and/or quick tutorial) up until the first 30 days of usage, so that users

21

do not disengage and end the session. During the second month of usage, for K = 2 the
probabilities p are similar for both patterns, except for the states UBCOverallUsage and
UBCApps for which the property does not hold because UBCOverallUsage does not occur
in the INDEPTH pattern nor does UBCApps in the BROWSING pattern.

Table 10: Results for State2endgpam on GPAM with K = 2 and the first two months of usage.

State INDEPTH BROWSING

15t month 2"¢ month 15! month 2"¢ month

OverallUsage — 0.72 0.41 0.67
StackedBars 0.08 0.80 0.41 0.65
PeriodSelector — 0.67 0.26 0.62
Stats — 0.70 0.70 0.66
AppsInPeriod 0.08 0.62 0.14 0.35
UBCOverallUsage — — 0.84 0.59
UBCStats — 0.66 0.13 0.60
UBCApps — 0.64 0.83 —

8.2.2. Response property

The property Responsegpay checks for correlations between two state formulae that
involve observable states and/or activity patterns: if eventually one property holds (for a
period of time), then immediately afterwards, the second property holds. An example of
such state formulae are ¢; = StackedBars A (z = i) and ¢o = PeriodSelector A (z = i);
in this case Responsegppy computes the probability p that once StackedBars is reached
in pattern ¢ then PeriodSelector is also reached in pattern ¢ in the next state. We
also consider the reverse property where ¢; = PeriodSelector A (x = i) and ¢o =
StackedBars A (z =14). Table 11 lists the results of analysing Responsegpay on GPAMs
for K = 2 and K = 3 both ways: PeriodSelector as response for StackedBars and
StackedBars as response for PeriodSelector.

Table 11: Results for Responsecpay on GPAMs: probabilities that PeriodSelector is a response
to StackedBars (StackedBars = PeriodSelector) and probabilities that StackedBars is a
response to PeriodSelector (PeriodSelector = StackedBars).

Usage StackedBars => PeriodSelector PeriodSelector = StackedBars

month K=2 K=3 K=2 K=3

AP1 AP2 AP1 AP2 AP3 AP1 AP2 AP1 AP2 AP3

15t 0.62 0.25 0.91 0.22 0.13 0.14 0.21 0.06
ond 0.46 0.06 0.10 0.74 0.29 0.06 0.55 0.18
3rd 0.38 0.02 0.86 0.31 0.27 0.13 0.39 0.14

We investigated whether StackedBars and PeriodSelector are always associated
with INDEPTH, or if they are characteristic of different patterns (in which case our anal-
ysis would simply uncover the high level menu structure of the app). Based on the global

22

labels we assigned to the patterns, we observe that for K = 2 in the second and the
third month of usage StackedBars is more likely to be followed by PeriodSelector in
INDEPTH pattern (AP2) than it is in the BROWSING pattern (AP3); the same holds for
StackedBars as a response to PeriodSelector which is more likely in the INDEPTH pat-
tern than in the BROWSING pattern. For K = 3 we see a high probability of StackedBars
to be a response to PeriodSelector in the INDEPTH patterns AP1/1% month and
AP2/2"d month and the GLANCING (around StackedBars) pattern AP2/3'¢ month;
however the probability that PeriodSelector is a response to StackedBars is lower in
INDEPTH patterns compared to OVERALL patterns. These results support a conclusion
we formulated earlier: that while we found patterns centred around StackedBars, we
did not found patterns centred around PeriodSelector without involving StackedBars.
Therefore our admixture model for K = 3 did not uncover the high-level menu structure
of the app, i.e., a pattern for each of the buttons Overall Usage (state OverallUsage),
Last 7 Days (state StackedBars), and Select by Period (state PeriodSelector).

8.2.3. Steady state property

The last MAP property we consider is LongRunPatterngpay, which computes the
steady-state probability for each of the patterns. The results are listed in Table 12. For
GPAM with K = 2 we see a higher prevalence for an exploratory behaviour (AP1 is
BROWSING) in the first usage month, than during the subsequent usage months (AP2
is a BROWSING pattern in both second and third month). For GPAM with 3 compo-
nents, it is only in the third month (when the usage behaviour settles down) that the
INDEPTH pattern prevails (see AP3); for the first month of usage, the LOOP pattern
around OverallUsage (AP2) and the BROWSING pattern (AP3) score slightly better as
these patterns correspond to an expected initial exploratory behaviour; for the second
month of usage, the GLANCING pattern around OverallUsage (AP1) prevails (this could
be explained by the richer information offered by the Stats screen view after the first
month).

Table 12: Results for LongRunPatterngpay, on GPAM with K =2 and K = 3.

Usage K=2 K=3

month AP1 AP2 AP1 AP2 AP3

18t 0.55 0.44 0.36 0.35
ond 0.65 034 043 0.38
3rd 0.53 0.46 025 0.25 0.49

Finally, we return to the PAM model and consider the distribution of activity pat-
terns.

8.8. Pattern distribution analysis for PAM

PAM models include a distribution over all activity patterns, for each user trace.
We compare the overall distributions across the first, second, and third usage month,
for K = 2 in Figure 7. For each time interval I and i*" activity pattern, we order non-
decreasingly the vector of values [0, (7)]m=1,r(1y where M (I) is the number of user traces
in the data set determined by the time interval I and obtain the vector [am/]m/:LM(I);

23

then on the x-axis we project the user ordinal in the [a,y]pm/—1 (1) Vector (i.e., m’

ranging from 1 to M(I)) and on the y-axis the ordered values of the [ay/]y—1,0(1)
vector. For example, assume we have M (I) = 5 user traces in the time interval I, K = 2,
and [0,] m=1,0(1) = [(0.25,0.75), (0.88,0.22), (0.45,0.55), (0,1), (0.63,0.27)]. Considering
the first pattern, i.e., i = 1, then [0,,(1)];m=1,a7(1y = [0.25,0.88,0.45,0,0.63] and after
ordering it we obtain the vector [0,0.25,0.45,0.63,0.88]. The x-axis is labelled by the
user trace ranking, ordinals 1 to 5, and the y-axis is labelled by probabilities from 0 to 1.
We then plot the non-decreasingly ordered probabilities 0, 0.25, 0.45, 0.63, 0.88 against
the five (ranked) user traces.

We note in Fig. 7 that the 6 distributions for the activity pattern AP1 in the first
month of usage as well as for the activity pattern AP2 in the second and third month
of usage have a concave appearance. Previous analyses showed that they correspond
to INDEPTH activity patterns, while their counterparts (with a convex appearance) cor-
respond to BROWSING activity patterns. In addition this tells us that the INDEPTH
activity pattern is more likely than the BROWSING activity pattern, especially in the
second month of usage because there are more user traces with the 6 value very close or
equal to 1 than user traces with the 8 value very close or equal to 0. This corroborates the
result from the LongRunPatterngpay analysis above in the second and the third month of
usage. We can also compare longitudinally the number of user traces exhibiting mostly
only one activity pattern (probability very close or equal to 1). For instance, in the
second month of usage almost 23% user traces are exclusively of type INDEPTH while in
the first month the proportion is 11% and the third month 13%. The higher percentage
of almost exclusive INDEPTH activity pattern in the second month of usage could be
explained by high user interest in particular content available only after one month of
usage (e.g. in the information provided in the Stats view).

8.4. Summary of analysis

It is easy to get lost in the plethora of detailed results. We summarise them as follows.

When K = 2, the two types of activity patterns are INDEPTH and BROWSING. In
the first month of usage, likelihoods of the two patterns are very close, for both PAM
and GPAM models, however in second and third months the INDEPTH pattern was more
prevalent for PAM. Within BROWSING, the states most likely to lead to disengagement
during the first month of usage are Stats, UBCOverallUsage, and UBCApps.

We had not anticipated the effect of the new content available in Stats after the
first month — indeed, we were unaware there was any new content until we studied the
analysis results! The new content (or absence) appears to have a profound effect on
engagement (when in BROWSING) and the focus of attention (when in INDEPTH in the
second month).

When K = 3, we identified other types of activity patterns in addition to the IN-
DEPTH and BROWSING patterns. One type of new pattern is GLANCING for short-burst
and high frequency behaviour centred usually around one or two particular states (such
as AP1 in the second month of usage centred around OverallUsage and Stats and AP2
in the third month of usage centred around StackedBars all in GPAM). Another new
pattern is the LOOP pattern (AP2 in GPAM first month of usage) which is in fact an (un-
expected) in-depth visualisation type of pattern centred around the states OverallUsage
and UBCOverallUsage.

24

Theta values for AP1 in PAM (K=2, first month of usage) Theta values for AP2 in PAM (K=2, first month of usage)

e
rd
0.8 0.8 /’
E E
£ 06 £ o6
3 3
3 2
2 2
S 04 / 2 04
& &
02 V' 02
7
L
o T 0T
0 100 200 300 0 100 200 300
User trace rank after sorting the theta values for AP1 in ascending order User trace rank after sorting the theta values for AP2 in ascending order
Theta values for AP1 in PAM (K=2, second month of usage) Theta values for AP2 in PAM (K=2, second month of usage)
1 — 1 —
- ’_,-'—'
08 ; 08 A
rs 7
2 # S
£ 06 g £ 06 /
3 P | -
3 2 o~
S 04 / S 04 y
& & s
~ S
02 T 02 3
- -
0— o—t
0 50 100 150 200 0 50 100 150 200
User trace rank after sorting the theta values for AP1 in ascending order User trace rank after sorting the theta values for AP2 in ascending order
Theta values for AP1 in PAM (K=2, third month of usage) Theta values for AP2 in PAM (K=2, third month of usage)
1 S— 1 e
08 < 08 T
> d > e
2 06 .-J/ £ 06 -’
= - o -~
3] 5 :
€ 04 - g o4 -
a '_,/'/’ 2 o ’/_,..‘
02 e 02
T = o=
0 50 100 150 0 50 100 150
User trace rank after sorting the theta values for AP1 in ascending order User trace rank after sorting the theta values for AP2 in ascending order

Figure 7: Activity pattern distribution © per activity pattern and usage month for PAM with
K = 2: the plotted values are ordered non-decreasingly, thus the x-axis corresponds to the user
ordinal in the ©(4) vector after ordering, while the y-axis corresponds to the values in the ©(7)
vector after ordering, where i is either 1 for AP1 or 2 for AP2. For instance, in the top-left plot,
the 100™ user trace in the O(1) vector after ordering is mapped to the value a100 = 0.39.

An interesting finding for this software application is that the activity patterns we
uncovered did not follow the top level menu structure. This has prompted discussions
and further research within the app design team about the role and impact of hierar-
chical menus on user interactions (e.g. should the top-level menu structure support the
activity patterns?). We also uncovered a loop between the states OverallUsage and
UBCOverallUsage (see AP2 in GPAM with K = 3 first month of usage), which is char-
acteristic of an in-depth visualisation behaviour and not so much to glancing; therefore

25

this type of visualisation could be moved from the OverallUsage-submenu to one of the
in-depth type submenu items in order to make a clearer separations of app usage in the
menu. Another finding concerns the way we segment the data set: the first month of
usage does not provide insight as clear as the second and the third usage month; this is
due to many users still exploring the app in the first month, while the users using the app
for longer periods of time are more engaged and usually have a more settled/consistent
behaviour. Therefore either breaking down the first month into smaller data set, e.g. by
first day and by each of the four weeks, and/or selecting only those user traces continuing
up to the third month of usage, could be more meaningful,

Finally we note that by identifying typical glancing patterns and the specific screens
that users look at when they are undertaking short sessions of glancing-type behaviour,
our approach may offer a principled way of selecting content appropriate for widget
extensions.

All property analysis results discussed or mentioned in this paper, including the
parameters for the models, the PRISM models and the PRISM properties, are listed on
the website http://www.dcs.gla.ac.uk/research/S4/tasum.

9. Discussion

Which models, which properties. We have found it useful to begin analysis with SAP
properties, followed by MAP properties and then pattern distributions. In our experi-
ence, starting with SAP properties gives us insight into the semantics of the patterns,
which then motivates the selection of further SAP and the MAP properties. As with all
hypothesis driven discovery, the results of one property (i.e. experiment) often motivates
the design of the next property to be studied (i.e. another experiment). For example, the
results in Table 4 for PAM models with K = 2 concerning to the state Stats were not
clear as to which type of pattern it is more characteristic in the second month of usage.
This led us to investigate two more properties: likelihood of going from Stats to any of
the states highly characteristic of each pattern within the same session (see VPsessionap
in Table 6) and the average number of steps from Stats to other states and vice versa
(see SCstate2stateap in Table 7).

We note that while GPAM models are a generalisation of PAM models, the distinc-
tive contribution of PAM is the user trace distribution, which gives us more detailed
information than (GPAM) steady-state properties. For example it can reveal which user
traces are “interesting” and should be investigated further. This is beyond the the scope
of this paper, but such investigations involve checking properties of selected individual
user traces, for example those that have engaged for a long/short time period, and/or
defining sub-populations according to ranges of # and checking properties on models
inferred from that sub-population.

Choice of number of activity patterns.. The patterns are inferred by standard statistical
methods based on non-linear optimisation. We do not model for predictability, for two
reasons. First, because there is no true model of the generating process, but one that is
posited based on known characteristics such as the sequential nature of user-initiated ap-
plication events. This requires us to study the time-series behaviour that has been logged
from a probabilistic perspective. Second, our goal is not to predict future behaviour, but
indeed to influence future behaviour through (possible) redesign of application that, for
26

example, either makes desirable/common behaviour easier to attain, or undesirable/rare
behaviour harder. The number K of admixture components is an important exploratory
tool. We do not try to define an optimal (statistical) value for K, but rather use it
to reflect the variety of usage styles that are meaningful in the context of the software
application we study. Typically, we have considered models with up to K = 5 activity
patterns.

Longitudinal and other types of analysis. Our example indicates results may be sensitive
to the chosen time interval for logged data. Common sense indicates this is to be ex-
pected, for example differences between the first day of use and use after several weeks.
However, there may be software-specific temporal sensitivities, for example, our appli-
cation analysis revealed an unanticipated sensitivity in the first month and the second
months of usage.

We note there are other (static) categorisations such as device type, timezone, length
of user trace in number of sessions, frequency of sessions, and average length of sessions,
to name a few. These of course can be combined with our approach.

Complerity. We remark that the complexity of models does not depend on the data
but on the underlying functionality of the software. Our example software involved 16
observed states and this was easily tractable.

Related work. Our work was initially motivated by an empirical study of simplicial mix-
tures modelling webpage browsing and telephone usage modelling [6] for capturing com-
mon behavioural patterns in event streams. Based on this work, a hidden Markov model
for automatic classification of software behaviour was suggested in [7] as possible future
work. To our knowledge, no one else investigated admixture models for modelling soft-
ware usage behaviour. The closest related work is [12] where DTMC models of user
behaviour are based on static user attributes rather than on inferred behaviours, assum-
ing within-class use to be homogeneous, whereas we demonstrate within-class variation.
Recently [15] studied a simple Markov state transition model for smartphone usage with
four states (on, off, locked, unlocked), which was constructed based on computing the
frequencies of each bigram in the event stream. Another strand of recent work is focused
in inferring probabilistic behavioural models (as DTMCs) for software systems using
k-means clustering [24] and MapReduce [25].

Zang et al. [26] extended probabilistic model checking to HMMs, this is not applicable
as we are interested in properties involving both latent and observed states; moreover,
we do not analyse properties directly on AR-HMMSs, but on their flattened version as
DTMCs. The two hidden Markov models we use, PAM and GPAM, are examples of
dynamic Bayesian networks (DBNs) [18, 19]. DBNs can be analysed using Bayesian
statistical model checking [27], however our models are easily encoded and analysed
using probabilistic model checking. Extensive works on inferring parameters for first-
order HMM models (as DBNs) from user traces for runtime verification purposes can be
found in [28, 22], however we are looking at a different class of HMM, namely admixture
models, for identifying and analysing usage models within a population of user traces.

Recent works on modelling human mobility [29, 30] use Markov models to generate
spatio-temporal patterns including information on periodicity, duration, and number of
visits as well as distribution of distances. Their data sets are somewhat similar to our

27

user traces of software interaction, with spatial location mapping to software interaction
events. Our Markovian models are simpler as they are time-homogeneous, allowing us
to use probabilistic temporal logic for analysing and characterising them.

The work presented in this paper builds on three previous studies: initial results
for AppTracker analysis using PAM models [23], analysis of individual user models with
application to a mobile game application [14], and formal definitions for PAM and GPAM,
with some initial analysis results [31].

10. Conclusions

We have defined two new data-driven models and probabilistic temporal logic prop-
erties to answer the research question: how can we model and understand the ways in
which users interact with software? Our models are Markovian admixtures that include
both observed and latent states and are based on inferring a finite number of activity
patterns from sequences of user interactions (called user traces). In the PAM models, the
activity patterns are encoded directly as DTMCs and a distribution is defined over them
for each user trace. In the GPAM models, the activity patterns are the observation prob-
ability matrices in an auto-regressive hidden Markov model. Given sets of user traces
over different time intervals (e.g. first month of usage, second month of usage), model
parameters are learnt using the Expectation-Maximisation and Baum-Welch algorithms.
Single activity pattern properties encapsulate hypotheses about behaviours within an
activity, for example the number of steps from one state to another. Multiple activity
pattern properties encapsulate more complex hypotheses that may involve several ac-
tivity patterns, for example the likelihood of changing activity pattern after visiting a
particular state.

Through a real-life example software application and logged user traces from 322 users
of AppTracker, we have demonstrated how different combinations of data set, model, and
temporal property reveal insights into how users actually use software. The results have
proved useful for the particular application and sometimes the results were unexpected,
for example the interpretations of the different activity patterns and how their distribu-
tion varies over different months of usage, and when activity patterns do or do not relate
to the functionality of top level user menus. We simply did not have the tools to perform
this type of analysis previously.

We conclude that by modelling and analysing the different generating process of soft-
ware usage over a dynamic, heterogeneous population of users, we have developed new
and effective tools for understanding how software is actually used. Future work will in-
clude investigating the limits of tractability, predictability of behaviours, and application
to other types of interactive system.

Acknowledgment. This research was supported by EPSRC Programme Grants A
Population Approach to Ubicomp System Design (EP/J007617/1) and Science of Sensor
Systems Software (EP /N007565).

References

[1] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

28

2]

(3]

(4]

[5]
[6]

[7]

(8]

(9]

(10]

(11]

(12]
(13]

(14]

(15]

[16]

(17]

[18]
(19]
20]
(21]

(22]

(23]

(24]

M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of Probabilistic Real-Time
Systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proceedings of CAV’11, Vol. 6806 of Lecture
Notes in Computer Science, Springer, 2011, pp. 585-591.

M. Bell, M. Chalmers, L. Fontaine, M. Higgs, A. Morrison, J. Rooksby, M. Rost, S. Sherwood,
Experiences in Logging Everyday App Use, ACM Proceedings of Digital Economy’13.

M. Hall, M. Bell, A. Morrison, S. Reeves, S. Sherwood, M. Chalmers, Adapting ubicomp software
and its evaluation, in: T. C. N. Graham, G. Calvary, P. D. Gray (Eds.), Proceedings of EICS’09,
ACM, 2009, pp. 143-148.

S. Rogers, M. Girolami, A First Course in Machine Learning, Chapman and Hall/CRC, 2015.

M. Girolami, A. Kabédn, Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic
User Profiles, in: S. Thrun, L. K. Saul, B. Scholkopf (Eds.), Advances in Neural Information
Processing Systems 16 (NIPS’03), MIT Press, 2004, pp. 9-16.

J. F. Bowring, J. M. Rehg, M. J. Harrold, Active learning for automatic classification of software
behavior, in: G. S. Avrunin, G. Rothermel (Eds.), Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA’04), ACM, 2004, pp. 195-205.

J. Borges, M. Levene, Data Mining of User Navigation Patterns, in: B. Masand, M. Spiliopoulou
(Eds.), Web Usage Analysis and User Profiling: International WEBKDD’99 Workshop, Springer,
2000, pp. 92-112.

F. Chierichetti, R. Kumar, P. Raghavan, T. Sarlés, Are web users really Markovian?, in: A. Mille,
F. L. Gandon, J. Misselis, M. Rabinovich, S. Staab (Eds.), Proceedings of the 21st World Wide
Web Conference 2012 (WWW’12), ACM, 2012, pp. 609-618.

P. Singer, D. Helic, B. Taraghi, M. Strohmaier, Detecting Memory and Structure in Human Navi-
gation Patterns Using Markov Chain Models of Varying Order, PLOS ONE 9 (7) (2014) 1-21.

P. Singer, D. Helic, A. Hotho, M. Strohmaier, HypTrails: A Bayesian Approach for Comparing
Hypotheses About Human Trails on the Web, in: A. Gangemi, S. Leonardi, A. Panconesi (Eds.),
Proceedings of the 24th International Conference on World Wide Web, WWW 2015, ACM, 2015,
pp. 1003-1013.

C. Ghezzi, M. Pezze, M. Sama, G. Tamburrelli, Mining Behavior Models from User-Intensive Web
Applications, in: Proceedings of ICSE’14, Hyderabad, India, ACM, 2014, pp. 277-287.

H. W. Thimbleby, P. A. Cairns, M. Jones, Usability analysis with Markov models, ACM Trans.
Comput.-Hum. Interact. 8 (2) (2001) 99-132.

O. Andrei, M. Calder, M. Higgs, M. Girolami, Probabilistic Model Checking of DTMC Models of
User Activity Patterns, in: Proceedings of QEST 2014, Vol. 8657 of Lecture Notes in Computer
Science, Springer, 2014, pp. 138-153.

V. Kostakos, D. Ferreira, J. Gongalves, S. Hosio, Modelling smartphone usage: a Markov state tran-
sition model, in: P. Lukowicz, A. Kriiger, A. Bulling, Y. Lim, S. N. Patel (Eds.), Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16),
2016, pp. 486—497.

V. Tran, D. Maxwell, N. Fuhr, L. Azzopardi, Personalised Search Time Prediction using Markov
Chains, in: J. Kamps, E. Kanoulas, M. de Rijke, H. Fang, E. Yilmaz (Eds.), Proceedings of the
ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR’17), ACM, 2017,
pp. 237-240.

G. Murray, Markov reward models for analyzing group interaction, in: E. Lank, A. Vinciarelli,
E. E. Hoggan, S. Subramanian, S. A. Brewster (Eds.), Proceedings of the 19th ACM International
Conference on Multimodal Interaction (ICMI'17), ACM, 2017, pp. 336-340.

K. P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

L. Sucar, Probabilistic Graphical Models: Principles and Applications, Advances in Computer
Vision and Pattern Recognition, Springer London, 2015.

A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM
Algorithm, Journal of the Royal Statistical Society. Series B (Methodological) 39 (1) (1977) 1-38.
L. Welch, Hidden Markov Models and the Baum-Welch Algorithm, IEEE Information Theory So-
ciety Newsletter, Dec. 2003.

E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok, J. Seyster, Adaptive
Runtime Verification, in: S. Qadeer, S. Tasiran (Eds.), Proceedings of RV’12, Vol. 7687 of Lecture
Notes in Computer Science, Springer, 2012, pp. 168—182.

O. Andrei, M. Calder, M. Chalmers, A. Morrison, M. Rost, Probabilistic Formal Analysis of App
Usage to Inform Redesign, in: Proceedings of iFM 2016, Vol. 9681 of Lecture Notes in Computer
Science, Springer, 2016, pp. 115-129.

K. S. Luckow, C. S. Pasareanu, Log2model: inferring behavioral models from log data, in: Proceed-

29

25]

[26]

27]

28]

29]

(30]

(31]

ings of the 18th IEEE International High-Level Design Validation and Test Workshop (HLDVT’16),
IEEE, 2016, pp. 25-29.

C. Luo, F. He, C. Ghezzi, Inferring software behavioral models with MapReduce, Sci. Comput.
Program. 145 (2017) 13-36.

L. Zhang, H. Hermanns, D. N. Jansen, Logic and Model Checking for Hidden Markov Models, in:
Farn Wang (Ed.), Proceedings of FORTE 2005, Vol. 3731 of Lecture Notes in Computer Science,
Springer, 2005, pp. 98—-112.

C. J. Langmead, Generalized Queries and Bayesian Statistical Model Checking in Dynamic Bayesian
Networks: Application to Personalized Medicine, in: Proceedings of CSB’09, 2009, pp. 201-212.
S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, E. Zadok, Runtime Ver-
ification with State Estimation, in: Proceedings of RV’11, Vol. 7186 of Lecture Notes in Computer
Science, Springer, 2011, pp. 193-207.

L. Pappalardo, F. Simini, Data-driven generation of spatio-temporal routines in human mobility,
Data Mining and Knowledge Discovery 32 (3) (2018) 787-829.

S. Jiang, Y. Yang, S. Gupta, D. Veneziano, S. Athavale, M. C. Gonzélez, The TimeGeo modeling
framework for urban mobility without travel surveys, Proceedings of the National Academy of
Sciences 113 (37) (2016) E5370-E5378.

O. Andrei, M. Calder, Temporal Analytics for Software Usage Models, in: A. Cerone, M. Roveri
(Eds.), Software Engineering and Formal Methods, Vol. 10729 of Lecture Notes in Computer Sci-
ence, Springer International Publishing, 2017, pp. 9-24.

Appendix A. Analysis of SAP properties on a PAM and on a GPAM for

AppTracker

30

LY°€ET 9'F L 8L°€9 1291 6€'8 G0'90T ¥ 67°9¢€ v49'1¢e L3¢ pif
89V 99°LG VLCLT €6°1C SY'V1 TL €t 99°C1 8788 G0V pul
qT'e 9T"LT 60°TTT 29°6C G9°LY I TV eT £€9°9¢9 T0°¢ 69°8 asT dviuins
L9°€ 94°8 GT'1 0T’y 69°¢ A7) 19°0 8G°T 78°CT pa€
848 [Ggeo v 6V°¢ qe'1 €20 9L.°¢ GL'91 pul
VL TT va'e av'0 ¢6'T 08T 010 8¥°¢ 68°0 99°¢¢C Le°G sl dVHUIDA
(G6°0 66°0 L€°0 .0 06°0 66°0 pa€
66°0 Gqz0 760 L6°0 TL°0 61°0 86°0 ¥¥°0 66°0 pul
66°0 9¢€°0 080 G9°0 070 86°0 09°0 66°0 66°0 asT dvjuIdA
€dVv cdVv edVv dv €dVv cdVv dv €dVv cdVv dv edVv cdVv dVv Jruowx
doagesn s3e38 10308TOgPOTIOG sxegpeyoeas a8esnTTRISAQ o8esn ‘doag

0S¢ = N ‘€ = ¥ ‘NVJD 10} YHUIDS ‘dVHUIDA “dVHUIA seriiedold HT1°V 9[qRL,

vLe vg'e 66°¢¢ ¥€0¢€ 9ILVI cv'ree Lvers 61°GE (% 6C°€T 1€°¢C ; pa€
o'l 80°¢ LG0c 997601 ¢t T80T 06" 1% 1’8 649°CT 60°9¢C 66T pul
ve9 V"L 08'0T T0'8¢ |8°LLC L6'VE 9V'TL vv'e 08'8 8L'TT sl dvauins
6€°0T €L°0T qCv 69T 99°¢€ LT0 69T 676 97’8 LE°CT €80 pi€
809 L8'TT 867 90°0 8T'T €9 8¢" 19°¢ 90°¢ 89°¢ €0'€T pul
€L°9 2] LEV 91'¢ 00°0 000 VL LT°0 7T LTCT T1°9 6L gsT dVHUIDA
66°0 66°0 8L°0 I8°0 €6°0 €10 GL0 96°0 66°0 7y 0 pi&
66°0 00°T c6°0 7070 aL'o 06°0 9L°0 86°0 G6°0 780 00T publ
66°0 66°0 66°0 780 00°0 000 910 9L°0 66°0 66°0 88°0 gsl dYHUIA

cdVvV dv edv cdVv €dVv cdVvV dv edv cdVvV dv €dVv cdVvV dv Jjuouwr

doagesn s3e38 10300To8POTISd sxegpeyoeas a8esnTTRIBAQ a8es) ‘doag

05 = N ‘€= 3 ‘NVd 10§ dVHuIDG “dvyuIDA ‘dviuidA sermedord €1V o[qel,

31

