Efficient Algorithms for Matching Problems

Dr David Manlove

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ e-mail: davidm@dcs.gla.ac.uk

COTtISH EXECUTIVE

Abstrac

In many practical contexts we seek to allocate applicants to posts using a centralised matching scheme

Typically we have:

- a set of applicants a_{1}, a_{2}, \ldots, a
 a set of posts p_{1}, p_{2}, \ldots, p

applicants have preferences over posts
posts may have preferences over applicants

This gives rise to a matching problem
The aim of this research is to explore the existence of efficient algorithms (computer programs) for solving matching problems

More information

D.J. Abraham, K. Cechlárová, D.F. Manlove and K. Mehlhorn Pareto optimality in house allocation problems To appear in Proceedings of ISAAC 2004: the 15 th Annual International Symposium on Algorithms and Computation Lecture Notes in Computer Science, Springer-Verlag Hong Kong, China, December 20-22, 2004

Acknowledgements

Aspects of the research described in both posters have been undertaken in collaboration with Rob Irving, Tamás Fleiner Gregg O'Malley, Patrick Prosser and Sandy Scott

Example

$$
s_{1}: h_{1} \text { size } s_{1}: s_{1}: h_{1}
$$

Our main result

- Efficient algorithm for finding a Pareto optimal matching that has largest possible size

Future work

- Extend to the case where preference lists may include ties
- Extend to the case where houses may have capacity >1

Example - allocating students to campus housing
5 students $s_{1}, s_{2}, \ldots, s_{5}$ and 5 houses $h_{1}, h_{2}, \ldots, h_{5}$ Each house has capacity 1 and preferences are as follows:

```
s
\(s_{2}: h_{1} h_{2} h_{3} h_{4}\)
\(s_{3}: h_{1} h_{2} h_{3} h_{4} h_{5}\)
\(s_{4}: h_{1} h_{3} h_{5} h_{4}\)
n \(s_{5}: h_{2} h_{5} h_{4}\)
student \(s_{1}\) prefers house \(h_{1}\) to house \(h_{2}\), etc. - student \(s_{2}\) does not find house \(h_{5}\) acceptable
``` houses do not have preferences over students

\section*{2: Pareto optimality}

\section*{Pareto optimal matchings}

A matching \(M_{1}\) is Pareto optimal if there is no matching \(M_{2}\) such that
(i) Some student is better off in \(M_{2}\) than in \(M_{1}\)
(ii) No student is worse off in \(M_{2}\) than in \(M_{1}\)

Example
\(\begin{array}{ll}\text { - } s_{1}: h_{2} \\ \text { - } s_{2}: h_{1} & \begin{array}{l}\text { This matching is not Pareto optimal since } s_{1} \text { and } s_{2} \\ -s_{3}\end{array} \text { (h3 }\end{array}\)
- \(s_{3}:\left(h_{3}\right)\)
particularly from the economics community
- Greedy, generous \& min cost maximum matchings are all Pareto optimal

\section*{What is a matching?}
1. Each student is allocated to at most one house
2. No house is allocated more students than its capacity
3. No student is allocated to an unacceptable house

What is a greedy maximum matching?
1. Match as many students to houses as possible
2. Subject to 1 , match as many students to their \(1^{\text {stt-choice }}\) house 3. Subject to 2 , match as many students to their \(2^{\text {nd }}\)-choice house etc.

Example of a greedy maximum matching

i.e. every student is allocated to an acceptable house; 2 students have \(1^{\text {st-choice, }} 1\) student has \(2^{\text {nd }}\)-choice, 1 student has \(4^{\text {th }}\)-choice, 1 student has \(5^{\text {th }}\)-choice

Other possibilities: (A) generous maximum matching
1. Match as many students to houses as possible
2. Subject to 1 , match as few students to their \(r^{\text {th }}\)-choice house
3. Subject to 2 , match as few students to their \((r-1)^{\text {th }}\)-choice house
etc.
where \(r\) is the maximum length of a student's preference list
(B) minimum cost maximum matching
1. Match as many students to houses as possible
2. Subject to 1, minimise the sum of the ranks of the matched houses in the students preference lists```

