

Efficient Algorithms for Matching Problems

Dr David Manlove

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ *e-mail:* davidm@dcs.gla.ac.uk

Funded by a Royal Society of Edinburgh / Scottish Executive Personal Research Fellowship

Abstract

In many practical contexts we seek to allocate applicants to posts using a centralised matching scheme

Typically we have:

- a set of applicants a_1, a_2, \dots, a_n
- a set of posts p_1, p_2, \dots, p_m
- applicants have preferences over posts
- posts may have preferences over applicants
- each post has a capacity (max no. of applicants it can take on)

This gives rise to a matching problem

The aim of this research is to explore the existence of efficient algorithms (computer programs) for solving matching problems

More information

D.J. Abraham, K. Cechlárová, D.F. Manlove and K. Mehlhorn **Pareto optimality in house allocation problems** To appear in *Proceedings of ISAAC 2004: the 15th Annual International Symposium on Algorithms and Computation* Lecture Notes in Computer Science, Springer-Verlag Hong Kong, China, December 20-22, 2004

Acknowledgements

Aspects of the research described in both posters have been undertaken in collaboration with Rob Irving, Tamás Fleiner, Gregg O'Malley, Patrick Prosser and Sandy Scott

Pareto optimal matchings can have different sizes

 $s_1: h_1$ $s_2: (h_1) h_2$ size 1

Our main result

• Efficient algorithm for finding a Pareto optimal matching that has largest possible size

Future work

Extend to the case where preference lists may include ties
Extend to the case where houses may have capacity >1

2: Pareto optimality

Pareto optimal matchings

A matching M_1 is *Pareto optimal* if there is no matching M_2 such that:

(i) Some student is better off in M_2 than in M_1

(ii) No student is worse off in M_2 than in M_1

Example

This matching is not Pareto optimal since s_1 and s_2 could swap houses – then each would be better off

- Pareto optimal matchings have been the focus of much interest, particularly from the economics community
- Greedy, generous & min cost maximum matchings are all Pareto optimal /

What is a matching?

- 1. Each student is allocated to at most one house
- $\ensuremath{\text{2.}}$ No house is allocated more students than its capacity
- 3. No student is allocated to an unacceptable house

What is a greedy maximum matching?

- 1. Match as many students to houses as possible
- 2. Subject to 1, match as many students to their 1st-choice house
- Subject to 2, match as many students to their 2nd-choice house atc

Other possibilities: (A) generous maximum matching

- 1. Match as many students to houses as possible
- 2. Subject to 1, match as few students to their *r*th-choice house
- 3. Subject to 2, match as few students to their (*r*-1)th-choice house etc.

where r is the maximum length of a student's preference list

(B) minimum cost maximum matching

- 1. Match as many students to houses as possible
- 2. Subject to 1, minimise the sum of the ranks of the matched houses in the students' preference lists