Popular Matchings

Kavitha Telikepalli

(Tata Institute of Fundamental Research, Mumbai)

COST Action IC1205 on Computational Social Choice
and MATCH-UP 2015, University of Glasgow.

.—p.1/70

Our problem

® Input: a bipartite graph G = (AU B, E).

.~ p.2/70

Our problem

® Input: a bipartite graph G = (AU B, E).

b1
2
a1
1
2 by
1
1
a2
2 —o bs

.~ p.2/70

Our problem

® Input: a bipartite graph G = (AU B, F).

b1
2
a1
1
2 by
1
1
a2
2 —9 bs
1

m A: a set of students: B: a set of advisers.

.—p.2/70

The input

m Each u € AU B ranks its neighbors in a strict order of
preference.

.—p.3/70

The input

m Each u € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute an “optimal” matching M in G.

.—p.3/70

The input

m Each v € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute an “optimal” matching M in G.

m there are no vertices a € A and b € B who are
better-off by being matched to each other

.—p.3/70

The input

m Each v € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute an “optimal” matching M in G.

m there are no vertices a € A and b € B who are
better-off by being matched to each other

M 1s a stable matching.

.—p.3/70

Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.

.—p.4/70

Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.

m Size of a stable matching:

.—p.4/70

Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

.—p.4I70

Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

m |stable matching| could be as low as |M,,..|/2.

.—p.4I70

Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

.—p.5/70

Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity: (Gardenfors 1975)

.—p.5/70

Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity: (Gardenfors 1975)

®m matching M; is more popular than matching M if

of vertices that prefer M; > # of vertices that prefer M.

.—p.5/70

An example

.~ p.6I70

An example

® ¢, and b5 prefer the red matching

.~ p.6I70

An example

® ¢, and b5 prefer the red matching

® by, by, and a, prefer the blue matching

.~ p.6I70

An example

B
161
2[)2
1
1
a
2 5 1b3

® ¢, and b5 prefer the red matching
® by, by, and a, prefer the blue matching

m blue matching Is more popular than red matching.

.6/70

Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than Ms.

.—p.7/70

Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than M.

m)/ is popular if there is no M’ such that M’ =~ M.

.—p.7/70

Popular matchings

m \We use M, = M, to denote the relation that M, Is
more popular than Ms.

m)/ is popular if there is no M’ such that M’ - M.

M is popular = for every matching M’ we have:
of vertices that prefer M’ < # of vertices that prefer M.

.—p.7I70

Popular matchings

® The “more popular than” relation is not transitive: we
can have M; = M, = M5 = M;.

.~ p.8I70

Popular matchings

® The “more popular than” relation is not transitive: we
can have M, = M, = M5 = M;.

® Do popular matchings always exist in G?

.~ p.8I70

Popular matchings

® The “more popular than” relation is not transitive: we
can have M; = M, = M5 = M;.

® Do popular matchings always exist in G?

m yes; In fact, every stable matching is popular.

.—p.8I70

Popular matchings

®m The “more popular than” relation is not transitive: we
can have M; = M, = M5 = M;.

®m Do popular matchings always exist in G?

m yes; In fact, every stable matching is popular.

thus {stable matchings} C {popular matchings}.

.—p.8I70

stable = popular

m Comparing a stable matching S with any matching /M :

.—p.9I70

stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M(u) has to prefer S to M.

.—p.9I70

stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

.—p.9I70

stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

.—p.9/70

stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

m Label red edges by (+,+)/ (—, =)/ (+,—).

m there is no edge that is labeled (+, +):

.—p.9/70

stable = popular

m Comparing a stable matching .S with any matching M

u prefers M to S = M (u) has to prefer S to M.

m Label red edges by (+,+)/ (—, =)/ (+,—).

m there is no edge that is labeled (+, +):

S0 # of votes for M < # of votes for S.

.—p.9/70

Stable matchings

m A stable matching is a minimum size popular matching.

.—p.10/70

Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

. —p.10/70

Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.

. —p.10/70

Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.

mClaim: M & p = M.

. —p.10/70

Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.

mClaim: M & p = M.

® thus M is unpopular

. —p.10/70

The alternating path p

Nl

.—p.11/70

The alternating path p

Nl

m red: edges of M; Dblue: edges of S.

.—p.11/70

The alternating path p

Nl

m red: edges of M; Dblue: edges of S.

® both x and y prefer S to M.

.—p.11/70

The alternating path p

Nl

m red: edges of M; Dblue: edges of S.
® both x and y prefer S to M.

m for every M-edge (u,v) in p:
u prefers M to S = v prefers S to M.

.—p.11/70

The alternating path p

Nl

m red: edges of M; Dblue: edges of S.
® both x and y prefer S to M.

m for every M-edge (u,v) in p:
u prefers M to S = v prefers S to M.

®m Thus restricted to p, we have S - M.
SoM Dp > M.

.—p.11/70

Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

.—p.12/70

Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.

.—p.12/70

Some guestions

® |s |max size popular matching| > |M,,...|/2 always?

.—p.13/70

Some guestions

® |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings?

.—p.13/70

Some guestions

® |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings?

m Structural characterization of maximum size popular
matchings?

.—p.13/70

Some guestions

® |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings?

m Structural characterization of maximum size popular
matchings?

m Can a maximum size popular matching be efficiently
computed?

.—p.13/70

An interesting example

m Popular matchings of size 2 and size 4; none of size 3.

X1 Y2
3N 2 1 /3
1| @ b2 | 2
2 by a9 1
3
A 9

Y1)

.—p.14/70

Some guestions

W |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings? ./

m Structural characterization of maximum size popular
matchings?

B Can a maximum size popular matching be efficiently
computed?

.—p.15/70

The subgraph G,

m Let M be any matching in G.

.—p.16/70

The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+, —)

.—p.16/70

The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u, v) negative wrt M if it is labeled

(_7 _)

.—p.16/70

The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u,v) negative wrt M if it is labeled

(_7 _)

u prefers M(u) to v and v prefers M (v) to w.

.~ p.16/70

The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u,v) negative wrt M if it is labeled

(_7 _)

u prefers M(u) to v and v prefers M (v) to w.

m Delete from G all negative edges wrt M — call this
graph G,,.

.—p.16/70

Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:

.—p.17/70

Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:

(1) no alternating cycle C with a (+,+) edge, i.e., a
blocking edge.

.—p.17/70

Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:

(1) no alternating cycle C with a (+,+) edge, i.e., a
blocking edge.

otherwise M & C = M.

.—p.17/70

Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

.—p.18/70

Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p = M.

.—p.18/70

Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p >~ M.

(3) no alternating path p with an unmatched endpoint and
a blocking edge.

(+,+)
—eo ----9 ~----o—0----0

.—p.18/70

Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p >~ M.

(3) no alternating path p with an unmatched endpoint and
a blocking edge.

(+,+)
—eo ----9 ~----o—0----0

m otherwise M & p = M.

.—p.18/70

Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

.—p.19/70

Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

m Suppose M also satisfies this 4th property:

.—p.19/70

Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

m Suppose M also satisfies this 4th property:

(4) there is no augmenting path wrt M in G ;.

.—p.19/70

Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

B Suppose M also satisfies this 4th property:

(4) there is no augmenting path wrt M in G ;.

.—p.19/70

Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

B Suppose M also satisfies this 4th property:

(4) there is no augmenting path wrt M in G ;.

®o----0o——@ ---- —o0--X-o——@---o—@----9
Uu U
/ 7
< p = < p =

= any larger matching M’ has to be unpopular.

.—p.19/70

Max size popular matchings

m Property (4) is not necessary for max size popular

matchings.
L ¢ o Y
3 3
1 1
[9
2 2
1 1
@ ®

.= p.20/70

Max size popular matchings

m Property (4) is not necessary for max size popular

matchings.
37. ® y
3 3
1 1
@ 9
2 2
1 1
@ o
2 2

®m (7, has an augmenting path wrt the red matching M.

.= p.20/70

Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.

.= p.21/70

Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

.—p.21/70

Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

Gale-Shapley algorithm on (L, R) yields such a
matching.

.—p.21/70

Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

Gale-Shapley algorithm on (L, R) yields such a
matching.

® An algorithm with running time O(mn) to compute a
max size popular matching in G. (Huang and K 2013)

.—p.21/70

Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.

.= p.22/70

Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

.= p.23/70

Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

.= p.23/70

Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

H q; proposes to his top neighbor b;; so does as.

.= p.24170

Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

.~ p.25/70

Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

®m The algorithm terminates when every man is either
rejected by all his nbrs or gets matched to some nbr.

.= Pp.26/70

Modifying Gale-Shapley ...

.= p.27170

Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

.= p.27/70

Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

® when a; proposes for the second time to b;, then b,
should prefer a; to as,.

.= p.27/70

Implementing this idea

m Have two copies «” and a' of every man a:

.—p.28/70

Implementing this idea

m Have two copies o’ and «' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

.—p.28/70

Implementing this idea

m Have two copies ¢’ and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

.—p.28/70

Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

x among level 1 nbrs: her original order.

.—p.28/70

Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

x among level 1 nbrs: her original order.

« among level O nbrs: her original order.

.—p.28/70

In the new graph

m o} is rejected by his only neighbor b;.

.= p.29/70

In the new graph

m So a; becomes active and proposes to b;.

.~ p.30/70

In the new graph

m), accepts a7 and rejects ay.

.~ p.31/70

In the new graph

® So o) proposes to his next preferred neighbor b,.

.—p.32/70

In the new graph

m The matching {(at,b;), (a3, bs)} is computed.

.~ p.33/70

Back in the original graph

®m Thus OPT = {(ay, b1), (as, b2) }, the red matching, is
found.

.~ p.34/70

A linear time algorithm (K 2014)

m Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

.~ p.35/70

A linear time algorithm (K 2014)

m Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m Initially only the menin {a" : a € A} are active.

.~ p.35/70

A linear time algorithm (K 2014)

m Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m Initially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.

.—p.35/70

A linear time algorithm (K 2014)

E Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m [nitially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.

m when any a! is rejected by all his neighbors:

.—p.35/70

A linear time algorithm (K 2014)

E Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m [nitially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.
m when any a! is rejected by all his neighbors:

introduce «; into the set of active vertices.

.—p.35/70

A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

.~ p.36/70

A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

. —p.36/70

A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

® Running time is O(m + n), which is O(m).

. —p.36/70

A linear time algorithm

m Termination condition: every ¢’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

® Running time is O(m + n), which is O(m).

m Let M, be the matching computed by our algorithm.

. —p.36/70

Properties of M,

second-time
proposers

first-time —
proposers

By = B\ B

.~ p.37/70

Properties of M,

m All unmatched vertices are in A; U B,.

.~ p.38/70

Properties of M,
m All unmatched vertices are in A; U B,.

m)/, restricted to A; U B; (+ = 0, 1) Is stable.

Al Bl

.~ p.38/70

Properties of M,
m All unmatched vertices are in A; U B,.

m)/, restricted to A; U B; (+ = 0, 1) Is stable.

Al Bl

AO BO

®m Any blocking edge to M; has to be in Ay x B;.

.~ p.38/70

Partition of 4 and B

m Every edge (a,b) € A; x By is negative wrt M;.

.~ p.39/70

Partition of 4 and B

m Every edge (a,b) € A; x By is negative wrt M;.

.~ p.39/70

Partition of 4 and B

m Thus G,;, has no edge in A, x B,.

.~ p.39/70

Popularity of M,

m Consider the subgraph G/, .

. —p.40/70

Popularity of M,

m Consider the subgraph G/, .

®m M, has the following properties in G, :

.~ p.40/70

Popularity of M,

m Consider the subgraph G/, .

®m M, has the following properties in G, :

no alternating cycle has a blocking edge.

.~ p.40/70

Popularity of M,

m Consider the subgraph G/, .

®m M, has the following properties in G, :

no alternating cycle has a blocking edge.

no alternating path has 2 blocking edges.

. — p.40/70

Popularity of M,

m Consider the subgraph G, .

®m M, has the following properties in G, :

no alternating cycle has a blocking edge.
no alternating path has 2 blocking edges.

no alternating path with an unmatched endpoint
has a blocking edge.

. — p.40/70

Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.

.—p.41/70

Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.

.—p.41/70

Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.

®m There Is no augmenting path wrt M; In Gy, .

.= p.41/70

Size of the matching M,

®m Thus M, satisfies properties (1)-(4).

.~ p.42/70

Size of the matching M,

®m Thus M, satisfies properties (1)-(4).

®), Is a maximum size popular matching.

.~ p.42/70

Size of the matching M,

®m Thus M, satisfies properties (1)-(4).

®), Is a maximum size popular matching.

m What about |M| in terms of |M,,..|?

.~ p.42/70

Size of the matching M,

® Any augmenting path wrt M, in G has size > 5:

.~ p.43/70

Size of the matching M,

® Any augmenting path wrt M, in G has size > 5 =

. —p.44/70

Size of the matching M,

® Any augmenting path wrt M, in G has size > 5 =

O ‘Ml‘ Z §|Mmaa:‘-

. —p.44/70

A tight example for the 2/3 bound

m)M, = 2 while | M,,..| = 3.

.—p.45/70

Larger size matchings

m Trade-off between popularity and size?

.~ p.46/70

Larger size matchings

m Trade-off between popularity and size?

®m Unpopularity factor u(-) (McCutchen 2008)

.~ p.46/70

Larger size matchings

m Trade-off between popularity and size?

®m Unpopularity factor u(-) (McCutchen 2008)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

. — p.46/70

Larger size matchings

m Trade-off between popularity and size?

®m Unpopularity factor u(-) (McCutchen 2008)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

. — p.46/70

Larger size matchings

m Trade-off between popularity and size?

®m Unpopularity factor u(-) (McCutchen 2008)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

u(M) = [= for every matching M’ we have:
|{vertices that prefer M’} < 5 - |{vertices that prefer M }| .

. — p.46/70

Popularity vs Size

m)M is popular < u(M) < 1.

.—p.47/70

Popularity vs Size

m)M is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘M1| Z §|Mmax‘-

.—p.47/70

Popularity vs Size

m) is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘Ml‘ 2 §|Mmax‘-

m for any integer k£ > 2, Is there a matching M;._; with

uw(Mp—1) <k —1and [M,_i| > 5| Mpao|?

.—p.47/70

Popularity vs Size

m)\ is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘Ml‘ 2 §|Mmaa:‘-

m for any integer k£ > 2, is there a matching M;._; with

w(Mp—1) < k—1land [My_1| > 75| Mpaa|?

m Is there an M* = a maximum cardinality matching s.t.

for each maximum cardinality matching M: M* > M?

.= p.47/70

Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

.~ p.48/70

Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

® so the graph becomes G, on A, U B.

.~ p.48/70

Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

® so the graph becomes G, on A, U B.

A has k copies a°,a',...,a" ! of each a € A.
(a' is a level i vertex)

.~ p.48/70

Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to £ levels.

® so the graph becomes G, on A, U B.

A has k copies a°,a',...,a" ! of each a € A.
(a' is a level 7 vertex)

for each a € A: at mostone of a°. at, a" 1is
active at any point.

.= p.48/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

.~ p.49/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

.~ p.49/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In G}, the preference list of any b € B:

.~ p.49/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In G, the preference list of any b € B:

m level (kK — 1) neighbors

. —p.49/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In G, the preference list of any b € B:

m level (kK — 1) neighbors

m then level (k — 2) neighbors, ... and so on ...,

. —p.49/70

The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In Gy, the preference list of any b € B:

m level (kK — 1) neighbors
m then level (k — 2) neighbors, ... and so on ...,

® and at the bottom are level O neighbors.

. —p.49/70

The k-level algorithm

| Initially only level O men are active.

.~ p.50/70

The k-level algorithm

| Initially only level O men are active.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

.~ p.50/70

The k-level algorithm

m Initially only level O men are active.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

m; < k—1:if a* is rejected by all his neighbors, then
a‘t! becomes active.

. —p.50/70

The k-level algorithm

m Initially only level O men are active.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

m; < k—1:if a* is rejected by all his neighbors, then
a‘t! becomes active.

m Let M,_; be the matching returned by this algorithm.

. —p.50/70

The partition of A and B

mA; = {a € Asuchthataisinlevel ; at the end}.

(for1 <:<k-—1)

.—p.51/70

The 3-level algorithm

m Say we run the 3-level algorithm on our tight example
for the 2-level algorithm ...

1 2 b,

.—p.52/70

In the 3-level algorithm

/‘. B

by 2

" B

Fh, | b

: AO of"" ® B
a2 b3 0

.~ p.53/70

In the 3-level algorithm

/‘. B
‘/‘/ - b]. 2

ra B
by

Ag - ® B
a2 bg 0

m The matChing M2 = {(CL(), bl), (Cll, bg), (CLQ, bg)} 1S
computed by the 3-level algorithm.

.~ p.53/70

Properties of the matching M;_;

.—p.54/70

Properties of the matching M;_;

m Every unmatched vertex is in A,_; U B,.

.~ p.55/70

Properties of the matching M;_;

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
BZ'_1U"'UB().

.~ p.55/70

Properties of the matching M,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt M,_; has length > 2k + 1.

.= Pp.55/70

Properties of the matching M,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt M,_; has length > 2k + 1.

hence |M_1| > M oz |-

L‘
k+1

.= Pp.55/70

Unpopularity of M,

m Consider the subgraph G, _,.

.~ p.56/70

Unpopularity of M,

m Consider the subgraph G, _,.

m M,_1 has the following properties in this graph:

.~ p.56/70

Unpopularity of M,

m Consider the subgraph G, _,.

m M,_1 has the following properties in this graph:

no alternating cycle has a blocking edge.

.= Pp.56/70

Unpopularity of M,

m Consider the subgraph Gy, _,.

m M,_1 has the following properties in this graph:

no alternating cycle has a blocking edge.

no alternating path has & blocking edges.

.= Pp.56/70

Unpopularity of M,

m Consider the subgraph Gy, _,.

m M,_1 has the following properties in this graph:

no alternating cycle has a blocking edge.
no alternating path has & blocking edges.

no alternating path with an unmatched endpoint
has a blocking edge.

.= Pp.56/70

Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

.—p.57/70

Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

®m Thus for any k£ > 2, there exists a matching M;._; S.t.

w(Mp_y) <k —1 and [My_1| > 5[Myl

.—p.57/70

Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

®m Thus for any k£ > 2, there exists a matching M;._; S.t.

w(Mp_y) <k —1 and [My_1| > 5[Myl

m Also for any matching M::

.—p.57/70

Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

®m Thus for any k£ > 2, there exists a matching M;._; S.t.

w(Mp_y) <k —1 and [My_1| > 5[Myl

m Also for any matching M::

w M| > My | = My = M.

.—p.57/70

Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

®m Thus for any k£ > 2, there exists a matching M;._; S.t.

w(Mp_y) <k —1 and [My_1| > 5[Myl

m Also for any matching M:

w M| > My | = My = M.

in particular, |M| > |My_1| = My, = M.

.—p.57/70

The boundary cases

m), can be computed in O(mk) time.

.~ p.58/70

The boundary cases

m)M, _, can be computed in O(mk) time.

mLiL=2. M;isamaximum size popular matching

.~ p.58/70

The boundary cases

m)M, _, can be computed in O(mk) time.
mLiL=2. M;isamaximum size popular matching

ik =ng let M* denote My, 1.

.~ p.58/70

The boundary cases

m)M, _, can be computed in O(mk) time.
mLiL=2. M;isamaximum size popular matching
ik =ng let M* denote My, 1.

- ‘M*| > ngi1|Mma:I:" SO ’M*‘ — ’Mmaaﬁl

(since | M, 4| < nyp).

.~ p.58/70

The boundary cases

m), can be computed in O(mk) time.
mLiL=2. M;isamaximum size popular matching
ik =ng let M* denote My, 1.

oMY > 29 My

, SO |M*| = |M,,42]

(since | M, 0z| < ng).

m for any max cardinality matching M: M* = M.

. —Pp.58/70

With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

.~ p.59/70

With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

.~ p.59/70

With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

determining if one exists is NP-hard.
(Birg, Irving, and Manlove 2010)

.~ p.59/70

With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

determining if one exists is NP-hard.
(Birg, Irving, and Manlove 2010)

®m The problem is NP-hard even with one-sided ties.
(Cseh, Huang, and K 2015)

.~ p.59/70

One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

.~ p.60I70

One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

m each a € A has a strict preference list

.~ p.60I70

One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

m each a € A has a strict preference list

m each b € B either has a strict preference list or puts
all neighbors into a single tie.

. —p.60/70

One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

m each a € A has a strict preference list

m each b € B either has a strict preference list or puts
all neighbors into a single tie.

the case where each b € B puts all neighbors into
a single tie has an O(n?) algorithm.

. —p.60/70

One-sided preference lists

® The model of one-sided preference lists:
G=(AUB,FE)

.~ p.61/70

One-sided preference lists

® The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

.~ p.61/70

One-sided preference lists

® The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.

.—p.61/70

One-sided preference lists

B The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.

only applicants vote while comparing 2 matchings

.—p.61/70

One-sided preference lists

B The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.

only applicants vote while comparing 2 matchings

m Determine if G admits a popular matching.

.—p.61/70

One-sided preference lists

B (7 admits a popular matching < G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)

.~ p.62/70

One-sided preference lists

B (7 admits a popular matching < G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)

F = {set of top posts}

B\ F

.~ p.62/70

One-sided preference lists

B (7 admits a popular matching < G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)

F = {set of top posts}

B\ F

mevery a € A has degree 2 in ¢

.~ p.62/70

One-sided preference lists

B (7 admits a popular matching <— G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)

F = {set of top posts}

B\ F

mevery a € A has degree 2 in ¢

m A linear time to solve the popular matching problem:
extends to the case with ties in preference lists.

.—p.62/70

Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

.~ p.63/70

Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

®m here we partition B into three sets:

.~ p.63/70

Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

® here we partition B into three sets:

X C F = {set of top posts}

.—p.63/70

Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

®m here we partition B into three sets:

X C F = {set of top posts}

Y C FUS, where S = {posts outside F' that get
matched in every maximum size matching in G’}

.~ p.63/70

Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

®m here we partition B into three sets:

X C F = {set of top posts}

Y C FUS, where S = {posts outside F' that get
matched in every maximum size matching in G’}

Z =B\ (XUY).

.~ p.63/70

Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.

.~ p.64/70

Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.

X CF
A\ nbr(Z7)
Y C(FUS)
nbr(Z2)
A

.~ p.64/70

Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.

X CF
A\ nbr(Z2)
Y C(FUS)
nbr(Z2)
Z

B (G admits a popular matching <— H has an A-perfect
matching.

. —p.64/70

In general graphs

m Input G = (V, E)): a general graph with strict 2-sided
preference lists

.~ p.65/70

In general graphs

mInput G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist here.

.~ p.65/70

In general graphs

m Input G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist here.

. —p.65/70

In general graphs

m In fact, this instance has no popular matching either.

.~ p.66I70

In general graphs

m In fact, this instance has no popular matching either.

m We have M, < M, < M5 < M, here,
where M, = {(a,b)}, My = {(b,c)}, and M35 = {(a,c)}.

. —p.66/70

In general graphs

® An instance with no stable matching but with popular
matchings:

m (Is the least preferred neighbor for a, b, c.

.—p.67/70

In general graphs

® An instance with no stable matching but with popular
matchings:

m {(a,d),(b,c)} is popular.

. —p.68/70

In general graphs

m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)

.~ p.69I70

In general graphs

m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)

m Computing a least unpopularity factor matching in G is
NP-hard.

.~ p.69I70

In general graphs

m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)

m Computing a least unpopularity factor matching in G is
NP-hard.

m Open problem: the complexity of the popular matching
problem in G.

. —p.69/70

Thank you!

	
	small Our problem
	small The input
	small Price of stability
	small Popular matchings
	small An example
	small Popular matchings
	small Popular matchings
	small stable $implies $ popular
	small Stable matchings
	small The alternating path p
	small Min vs max size popular matchings
	small Some questions
	small An interesting example
	small Some questions
	small The subgraph G_M
	small Necessary conditions for popularity
	small Necessary conditions for popularity
	small Max size popular matchings
	small Max size popular matchings
	small Our first attempt
	small Min vs max size popular matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Modifying Gale-Shapley ...
	small Implementing this idea
	small In the new graph
	small In the new graph
	small In the new graph
	small In the new graph
	small In the new graph
	small Back in the original graph
	small A linear time algorithm (K 2014)
	small A linear time algorithm
	small Properties of M_1
	small Properties of M_1
	small Partition of $A $ and $p $
	small Popularity of M_1
	small Size of the matching M_1
	small Size of the matching M_1
	small Size of the matching M_1
	small Size of the matching M_1
	small A tight example for the $2/3$ bound
	small Larger size matchings
	small Popularity vs Size
	small Extending the 2-level algorithm
	small The k-level algorithm
	small The k-level algorithm
	small The partition of $A $ and $p $
	small The 3-level algorithm
	small In the 3-level algorithm
	small Properties of the matching M_{k-1}
	small Properties of the matching M_{k-1}
	small Unpopularity of M_{k-1}
	small Trade-off between size and unpopularity
	small The boundary cases
	small With ties in preference lists
	small One-sided ties
	small One-sided preference lists
	small One-sided preference lists
	small Two-sided preference lists
	small Two-sided preference lists
	small In general graphs
	small In general graphs
	small In general graphs
	small In general graphs
	small In general graphs
	

