Kavitha Telikepalli

(Tata Institute of Fundamental Research, Mumbai)

COST Action IC1205 on Computational Social Choice and MATCH-UP 2015, University of Glasgow.

Our problem

■ Input: a bipartite graph $G = (A \cup B, E)$.

Our problem

■ Input: a bipartite graph $G = (A \cup B, E)$.

Our problem

■ Input: a bipartite graph $G = (A \cup B, E)$.

 \blacksquare \mathcal{A} : a set of students; \mathcal{B} : a set of advisers.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

lacktriangleq Problem: compute an "optimal" matching M in G.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Problem: compute an "optimal" matching *M* in G.

■ there are no vertices $a \in A$ and $b \in B$ who are better-off by being matched to each other

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Problem: compute an "optimal" matching *M* in G.

■ there are no vertices $a \in A$ and $b \in B$ who are better-off by being matched to each other

M is a stable matching.

From a global point of view, M_{max} is the optimal matching.

From a global point of view, M_{max} is the optimal matching.

Size of a stable matching:

From a global point of view, M_{max} is the optimal matching.

Size of a stable matching:

 \blacksquare all stable matchings in G have the same size.

From a global point of view, M_{max} is the optimal matching.

Size of a stable matching:

 \blacksquare all stable matchings in G have the same size.

■ |stable matching| could be as low as $|M_{max}|/2$.

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

A notion based on *popularity*: (Gärdenfors 1975)

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

A notion based on *popularity*: (Gärdenfors 1975)

matching M_1 is more popular than matching M_2 if # of vertices that prefer $M_1 > \#$ of vertices that prefer M_2 .

 $\blacksquare a_1$ and b_3 prefer the red matching

- $\blacksquare a_1$ and b_3 prefer the red matching
- $\blacksquare b_1, b_2$, and a_2 prefer the blue matching

- $\blacksquare a_1$ and b_3 prefer the red matching
- $\blacksquare b_1, b_2$, and a_2 prefer the blue matching
- blue matching is more popular than red matching.__p.6/70

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

 $\blacksquare M$ is popular if there is *no* M' such that $M' \succ M$.

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

■ M is popular if there is no M' such that $M' \succ M$.

M is popular \Rightarrow for every matching M' we have: # of vertices that prefer $M' \leq \#$ of vertices that prefer M.

■ The "more popular than" relation is not transitive: we can have $M_1 \succ M_2 \succ M_3 \succ M_1$.

■ The "more popular than" relation is not transitive: we can have $M_1 \succ M_2 \succ M_3 \succ M_1$.

■ Do popular matchings always exist in *G*?

■ The "more popular than" relation is not transitive: we can have $M_1 \succ M_2 \succ M_3 \succ M_1$.

■ Do popular matchings always exist in *G*?

yes; in fact, every stable matching is popular.

■ The "more popular than" relation is not transitive: we can have $M_1 \succ M_2 \succ M_3 \succ M_1$.

■ Do popular matchings always exist in *G*?

yes; in fact, every stable matching is popular.

thus {stable matchings} ⊆ {popular matchings}.

stable \Longrightarrow **popular**

 \blacksquare Comparing a stable matching S with any matching M:

stable \Longrightarrow **popular**

 \blacksquare Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

stable \implies popular

 \blacksquare Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

stable \Longrightarrow popular

 \blacksquare Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

Label red edges by (+,+) / (-,-) / (+,-).

stable ⇒ popular

 \blacksquare Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

- **Label red** edges by (+,+) / (-,-) / (+,-).
 - \blacksquare there is no edge that is labeled (+,+):

stable \implies popular

 \blacksquare Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

- **Label red edges by** (+,+) / (-,-) / (+,-).
 - \blacksquare there is no edge that is labeled (+,+):
 - \blacksquare so # of votes for $M \leq \#$ of votes for S.

A stable matching is a *minimum* size popular matching.

A stable matching is a *minimum* size popular matching.

■ Let S be a stable matching and let M be a smaller matching.

- A stable matching is a *minimum* size popular matching.
- Let S be a stable matching and let M be a smaller matching.
- $\blacksquare |M| < |S|$, so $M \oplus S$ has an augmenting path p wrt M.

- A stable matching is a *minimum* size popular matching.
- Let S be a stable matching and let M be a smaller matching.
- $\blacksquare |M| < |S|$, so $M \oplus S$ has an augmenting path p wrt M.
- Claim: $M \oplus p \succ M$.

Stable matchings

- A stable matching is a *minimum* size popular matching.
- Let S be a stable matching and let M be a smaller matching.
- lacksquare |M| < |S|, so $M \oplus S$ has an augmenting path p wrt M.
- Claim: $M \oplus p \succ M$.
 - \blacksquare thus M is unpopular

 \blacksquare red: edges of M; blue: edges of S.

- \blacksquare red: edges of M; blue: edges of S.
- lacksquare both x and y prefer S to M.

- \blacksquare red: edges of M; blue: edges of S.
- lacksquare both x and y prefer S to M.
- for every M-edge (u, v) in p: u prefers M to $S \Rightarrow v$ prefers S to M.

- \blacksquare red: edges of M; blue: edges of S.
- lacksquare both x and y prefer S to M.
- for every M-edge (u, v) in p: u prefers M to $S \Rightarrow v$ prefers S to M.
- Thus restricted to p, we have $S \succ M$. So $M \oplus p \succ M$.

Min vs max size popular matchings

■ The blue matching is a minimum size popular matching.

Min vs max size popular matchings

The blue matching is a minimum size popular matching.

■ The red matching is a maximum size popular matching.

■ Is $|\max \text{ size popular matching}| > |M_{max}|/2 \text{ always?}|$

■ Is $|\max \text{ size popular matching}| > |M_{max}|/2 \text{ always?}|$

Structural characterization of popular matchings?

■ Is $|\max \text{ size popular matching}| > |M_{max}|/2 \text{ always?}|$

Structural characterization of popular matchings?

Structural characterization of maximum size popular matchings?

■ Is $|\max \text{ size popular matching}| > |M_{max}|/2 \text{ always?}|$

Structural characterization of popular matchings?

Structural characterization of maximum size popular matchings?

Can a maximum size popular matching be efficiently computed?

An interesting example

■ Popular matchings of size 2 and size 4; none of size 3.

■ Is $|\max \text{ size popular matching}| > |M_{max}|/2 \text{ always?}$

Structural characterization of popular matchings?

Structural characterization of maximum size popular matchings?

Can a maximum size popular matching be efficiently computed?

Let M be any matching in G.

Let M be any matching in G.

■ label edges outside M by (+,+) / (-,-) / (+,-)

- Let M be any matching in G.
 - label edges outside M by (+,+)/(-,-)/(+,-)
 - call an edge (u,v) *negative* wrt M if it is labeled (-,-)

- Let M be any matching in G.
 - label edges outside M by (+,+) / (-,-) / (+,-)
 - call an edge (u, v) negative wrt M if it is labeled (-, -)
 - $\blacksquare u$ prefers M(u) to v <u>and</u> v prefers M(v) to u.

- Let M be any matching in G.
 - label edges outside M by (+,+) / (-,-) / (+,-)
 - call an edge (u, v) negative wrt M if it is labeled (-, -)
 - $\blacksquare u$ prefers M(u) to v <u>and</u> v prefers M(v) to u.

■ Delete from G all negative edges wrt M — call this graph G_M .

■ If M is popular then M has to satisfy these 3 properties in G_M :

- If M is popular then M has to satisfy these 3 properties in G_M :
 - (1) no alternating cycle C with a (+,+) edge, i.e., a blocking edge.

- If M is popular then M has to satisfy these 3 properties in G_M :
 - (1) no alternating cycle C with a (+,+) edge, i.e., a blocking edge.

 \blacksquare otherwise $M \oplus C \succ M$.

(2) no alternating path ρ with 2 blocking edges.

(2) no alternating path ρ with 2 blocking edges.

 \blacksquare otherwise $M \oplus \rho \succ M$.

(2) no alternating path ρ with 2 blocking edges.

- \blacksquare otherwise $M \oplus \rho \succ M$.
- (3) no alternating path p with an unmatched endpoint and a blocking edge.

(2) no alternating path ρ with 2 blocking edges.

- \blacksquare otherwise $M \oplus \rho \succ M$.
- (3) no alternating path p with an unmatched endpoint and a blocking edge.

 \blacksquare otherwise $M \oplus p \succ M$.

■ Properties (1)-(3) are also sufficient for popularity.

Properties (1)-(3) are also sufficient for popularity.

■ Suppose *M* also satisfies this 4th property:

- Properties (1)-(3) are also sufficient for popularity.
- Suppose *M* also satisfies this 4th property:
 - (4) there is no augmenting path wrt M in G_M .

- Properties (1)-(3) are also sufficient for popularity.
- Suppose M also satisfies this 4th property:
 - (4) there is no augmenting path wrt M in G_M .

- Properties (1)-(3) are also sufficient for popularity.
- Suppose M also satisfies this 4th property:
 - (4) there is no augmenting path wrt M in G_M .

 \Rightarrow any larger matching M' has to be *unpopular*.

Property (4) is not necessary for max size popular matchings.

Property (4) is not necessary for max size popular matchings.

 $\blacksquare G_M$ has an augmenting path wrt the red matching M.

Our first attempt

Goal: To compute a matching that satisfies these 4 properties.

Our first attempt

Goal: To compute a matching that satisfies these 4 properties.

■ *Idea*: come up with a suitable partition (L, R) of $A \cup B$ such that

Our first attempt

Goal: To compute a matching that satisfies these 4 properties.

■ *Idea*: come up with a suitable partition (L, R) of $A \cup B$ such that

■ Gale-Shapley algorithm on (L, R) yields such a matching.

Our first attempt

- Goal: To compute a matching that satisfies these 4 properties.
 - *Idea*: come up with a suitable partition (L, R) of $A \cup B$ such that
 - Gale-Shapley algorithm on (L,R) yields such a matching.
- An algorithm with running time O(mn) to compute a max size popular matching in G. (Huang and K 2013)

Min vs max size popular matchings

The blue matching is a minimum size popular matching.

■ The red matching is a maximum size popular matching.

■ Men (vertices of A) propose and Women (those in B) dispose.

■ Men (vertices of A) propose and Women (those in B) dispose.

■ Men (vertices of A) propose and Women (those in B) dispose.

 $\blacksquare a_1$ proposes to his top neighbor b_1 ; so does a_2 .

lacksquare b_1 rejects a_1 and accepts a_2 .

lacksquare b_1 rejects a_1 and accepts a_2 .

The algorithm terminates when every man is either rejected by all his nbrs or gets matched to some nbr.

Modifying Gale-Shapley ...

Modifying Gale-Shapley ...

■ Modify the Gale-Shapley algorithm so that a_1 gets a "second chance" to propose to b_1 .

Modifying Gale-Shapley ...

- Modify the Gale-Shapley algorithm so that a_1 gets a "second chance" to propose to b_1 .
 - when a_1 proposes for the *second* time to b_1 , then b_1 should prefer a_1 to a_2 .

■ Have *two* copies a^0 and a^1 of every man a:

■ Have *two* copies a^0 and a^1 of every man a:

■ there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

■ Have *two* copies a^0 and a^1 of every man a:

there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

every woman prefers a level 1 nbr to a level 0 nbr.

■ Have *two* copies a^0 and a^1 of every man a:

■ there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

every woman prefers a level 1 nbr to a level 0 nbr.

* among level 1 nbrs: her original order.

■ Have *two* copies a^0 and a^1 of every man a:

- there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.
 - every woman prefers a level 1 nbr to a level 0 nbr.
 - * among level 1 nbrs: her original order.
 - * among level 0 nbrs: her original order.

 $\blacksquare a_1^0$ is rejected by his only neighbor b_1 .

■ So a_1^1 becomes active and proposes to b_1 .

lacksquare b_1 accepts a_1^1 and rejects a_2^0 .

■ So a_2^0 proposes to his next preferred neighbor b_2 .

■ The matching $\{(a_1^1,b_1), (a_2^0,b_2)\}$ is computed.

Back in the original graph

■ Thus OPT = $\{(a_1, b_1), (a_2, b_2)\}$, the red matching, is found.

Let G_2 be the graph on $A_2 \cup \mathcal{B}$ where A_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.

Let G_2 be the graph on $A_2 \cup \mathcal{B}$ where A_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.

■ Initially only the men in $\{a^0 : a \in A\}$ are active.

- Let G_2 be the graph on $A_2 \cup \mathcal{B}$ where A_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are active.
 - \blacksquare active men propose and women dispose in G_2 .

- Let G_2 be the graph on $A_2 \cup \mathcal{B}$ where A_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are active.
 - \blacksquare active men propose and women dispose in G_2 .
 - when any a_i^0 is rejected by all his neighbors:

- Let G_2 be the graph on $A_2 \cup \mathcal{B}$ where A_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are active.
 - \blacksquare active men propose and women dispose in G_2 .
 - when any a_i^0 is rejected by all his neighbors:
 - \blacksquare introduce a_i^1 into the set of active vertices.

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

lacksquare Our algorithm is essentially Gale-Shapley algorithm on G_2 .

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

■ Our algorithm is essentially Gale-Shapley algorithm on G_2 .

■ Running time is O(m+n), which is O(m).

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

■ Our algorithm is essentially Gale-Shapley algorithm on G_2 .

■ Running time is O(m+n), which is O(m).

Let M_1 be the matching computed by our algorithm.

 $\blacksquare M_1 \subseteq (A_0 \times B_0) \cup (A_1 \times B_1).$

■ All unmatched vertices are in $A_1 \cup B_0$.

- All unmatched vertices are in $A_1 \cup B_0$.
- M_1 restricted to $A_i \cup B_i$ (i = 0, 1) is stable.

$$egin{array}{c|c} A_1 & B_1 \ \hline A_0 & B_0 \ \hline \end{array}$$

- All unmatched vertices are in $A_1 \cup B_0$.
- M_1 restricted to $A_i \cup B_i$ (i = 0, 1) is stable.

$$egin{array}{c|c} A_1 & B_1 \ \hline A_0 & B_0 \ \hline \end{array}$$

■ Any blocking edge to M_1 has to be in $A_0 \times B_1$.

Partition of A and B

■ Every edge $(a,b) \in A_1 \times B_0$ is negative wrt M_1 .

Partition of A and B

■ Every edge $(a,b) \in A_1 \times B_0$ is negative wrt M_1 .

Partition of A and B

■ Every edge $(a,b) \in A_1 \times B_0$ is negative wrt M_1 .

■ Thus G_{M_1} has no edge in $A_1 \times B_0$.

lacksquare Consider the subgraph G_{M_1} .

- \blacksquare Consider the subgraph G_{M_1} .
 - \blacksquare M_1 has the following properties in G_{M_1} :

- \blacksquare Consider the subgraph G_{M_1} .
 - $\blacksquare M_1$ has the following properties in G_{M_1} :
 - no alternating cycle has a blocking edge.

- \blacksquare Consider the subgraph G_{M_1} .
 - $\blacksquare M_1$ has the following properties in G_{M_1} :
 - no alternating cycle has a blocking edge.
 - no alternating path has 2 blocking edges.

- \blacksquare Consider the subgraph G_{M_1} .
 - $\blacksquare M_1$ has the following properties in G_{M_1} :
 - no alternating cycle has a blocking edge.
 - no alternating path has 2 blocking edges.
 - no alternating path with an unmatched endpoint has a blocking edge.

■ All unmatched men are in A_1 and all unmatched women are in B_0 .

■ All unmatched men are in A_1 and all unmatched women are in B_0 .

■ All unmatched men are in A_1 and all unmatched women are in B_0 .

■ There is *no* augmenting path wrt M_1 in G_{M_1} .

■ Thus M_1 satisfies properties (1)-(4).

■ Thus M_1 satisfies properties (1)-(4).

 $\blacksquare M_1$ is a maximum size popular matching.

■ Thus M_1 satisfies properties (1)-(4).

 $\blacksquare M_1$ is a maximum size popular matching.

■ What about $|M_1|$ in terms of $|M_{max}|$?

■ Any augmenting path wrt M_1 in G has size ≥ 5 :

■ Any augmenting path wrt M_1 in G has size $\geq 5 \Rightarrow$

■ Any augmenting path wrt M_1 in G has size $\geq 5 \Rightarrow$

$$|M_1| \ge \frac{2}{3} |M_{max}|.$$

A tight example for the 2/3 bound

 $|M_1| = 2$ while $|M_{max}| = 3$.

■ Trade-off between popularity and size?

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$ (McCutchen 2008)

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$ (McCutchen 2008)
 - lacktriangle define $\delta(M, M')$ as the following ratio:

 $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$ (McCutchen 2008)
 - define $\delta(M, M')$ as the following ratio: $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$
 - $\mathbf{u}(M) = \max_{M'} \delta(M, M').$

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$ (McCutchen 2008)
 - define $\delta(M, M')$ as the following ratio: $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$
 - $\mathbf{u}(M) = \max_{M'} \delta(M, M').$

 $u(M) = \beta \Rightarrow$ for every matching M' we have: $|\{\text{vertices that prefer } M'\}| \leq \beta \cdot |\{\text{vertices that prefer } M\}|$.

■ M is popular $\Leftrightarrow u(M) \leq 1$.

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - there is a matching M_1 with $u(M_1) \leq 1$ and $|M_1| \geq \frac{2}{3} |M_{max}|$.

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - there is a matching M_1 with $u(M_1) \leq 1$ and $|M_1| \geq \frac{2}{3} |M_{max}|$.
 - for any integer k > 2, is there a matching M_{k-1} with $u(M_{k-1}) \le k-1$ and $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$?

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - there is a matching M_1 with $u(M_1) \leq 1$ and $|M_1| \geq \frac{2}{3} |M_{max}|$.
 - for any integer k>2, is there a matching M_{k-1} with $u(M_{k-1}) \leq k-1$ and $|M_{k-1}| \geq \frac{k}{k+1} |M_{max}|$?
- Is there an $M^* \equiv$ a maximum cardinality matching s.t. for each maximum cardinality matching $M: M^* \succeq M$?

■ For any integer k > 2, we can extend the 2-level algorithm to k levels.

- For any integer k > 2, we can extend the 2-level algorithm to k levels.
 - \blacksquare so the graph becomes G_k on $\mathcal{A}_k \cup \mathcal{B}$.

- For any integer k > 2, we can extend the 2-level algorithm to k levels.
 - \blacksquare so the graph becomes G_k on $\mathcal{A}_k \cup \mathcal{B}$.
 - A_k has k copies a^0, a^1, \dots, a^{k-1} of each $a \in A$.

 (a^i is a level i vertex)

- For any integer k > 2, we can extend the 2-level algorithm to k levels.
 - \blacksquare so the graph becomes G_k on $\mathcal{A}_k \cup \mathcal{B}$.
 - A_k has k copies a^0, a^1, \dots, a^{k-1} of each $a \in A$. (a^i is a level i vertex)
 - for each $a \in \mathcal{A}$: at most one of a^0, a^1, \dots, a^{k-1} is active at any point.

Corresponding to each edge (a, b) in G:

- \blacksquare Corresponding to each edge (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in G_k .

- **C**orresponding to each edge (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in G_k .

■ In G_k , the preference list of any $b \in \mathcal{B}$:

- **Corresponding to each edge** (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in G_k .

- In G_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors

- \blacksquare Corresponding to each edge (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in G_k .

- In G_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors
 - then level (k-2) neighbors, ... and so on ...,

- \blacksquare Corresponding to each edge (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in G_k .

- In G_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors
 - then level (k-2) neighbors, ... and so on ...,
 - and at the bottom are level 0 neighbors.

■ Initially only level 0 men are active.

The *k*-level algorithm

Initially only level 0 men are active.

Essentially Gale-Shapley with the active men proposing and women disposing:

The *k*-level algorithm

- Initially only level 0 men are active.
- Essentially Gale-Shapley with the active men proposing and women disposing:
 - i < k 1: if a^i is rejected by all his neighbors, then a^{i+1} becomes active.

The *k*-level algorithm

- Initially only level 0 men are active.
- Essentially Gale-Shapley with the active men proposing and women disposing:
 - i < k 1: if a^i is rejected by all his neighbors, then a^{i+1} becomes active.
- Let M_{k-1} be the matching returned by this algorithm.

The partition of A and B

 $\blacksquare A_i = \{a \in \mathcal{A} \text{ such that } a \text{ is in level } i \text{ at the end} \}.$

 $B_i = M_{k-1}(A_i) A_0$ $(for 1 \le i \le k-1)$

The 3-level algorithm

Say we run the 3-level algorithm on our tight example for the 2-level algorithm ...

In the 3-level algorithm

In the 3-level algorithm

■ The matching $M_2 = \{(a_0, b_1), (a_1, b_2), (a_2, b_3)\}$ is computed by the 3-level algorithm.

 $\blacksquare M_{k-1} \subseteq (A_{k-1} \times B_{k-1}) \cup (A_{k-2} \times B_{k-2}) \cup \cdots \cup (A_0 \times B_0).$

 A_0

 B_0

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

 \blacksquare any augmenting path wrt M_{k-1} has length $\geq 2k+1$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

 \blacksquare any augmenting path wrt M_{k-1} has length $\geq 2k+1$.

■ hence $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

lacksquare Consider the subgraph $G_{M_{k-1}}$.

 \blacksquare Consider the subgraph $G_{M_{k-1}}$.

 \blacksquare M_{k-1} has the following properties in this graph:

- \blacksquare Consider the subgraph $G_{M_{k-1}}$.
 - \blacksquare M_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.

- \blacksquare Consider the subgraph $G_{M_{k-1}}$.
 - \blacksquare M_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.
 - \blacksquare no alternating path has k blocking edges.

- \blacksquare Consider the subgraph $G_{M_{k-1}}$.
 - \blacksquare M_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.
 - \blacksquare no alternating path has k blocking edges.
 - no alternating path with an unmatched endpoint has a blocking edge.

■ This means $u(M_{k-1}) \leq k-1$.

■ This means $u(M_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching M_{k-1} s.t.

$$u(M_{k-1}) \le k-1$$
 and $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

■ This means $u(M_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching M_{k-1} s.t.

$$u(M_{k-1}) \le k-1$$
 and $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

 \blacksquare Also for any matching M:

■ This means $u(M_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching M_{k-1} s.t.

$$u(M_{k-1}) \le k-1$$
 and $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

- \blacksquare Also for any matching M:
 - $|M| \ge |M_{k-1}| \implies M_{k-1} \ge M$.

■ This means $u(M_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching M_{k-1} s.t.

$$u(M_{k-1}) \le k-1$$
 and $|M_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

- \blacksquare Also for any matching M:
 - $|M| \ge |M_{k-1}| \implies M_{k-1} \ge M$.
 - in particular, $|M| > |M_{k-1}| \implies M_{k-1} \succ M$.

 $\blacksquare M_{k-1}$ can be computed in O(mk) time.

 $\blacksquare M_{k-1}$ can be computed in O(mk) time.

k=2: M_1 is a maximum size popular matching

 $\blacksquare M_{k-1}$ can be computed in O(mk) time.

■ k = 2: M_1 is a maximum size popular matching

 $\blacksquare k = n_0$: let M^* denote $M_{(n_0-1)}$.

- $\blacksquare M_{k-1}$ can be computed in O(mk) time.
- k = 2: M_1 is a maximum size popular matching
- $\blacksquare k = n_0$: let M^* denote $M_{(n_0-1)}$.
 - $|M^*| \geq rac{n_0}{n_0+1} |M_{max}|$, so $|M^*| = |M_{max}|$ (since $|M_{max}| \leq n_0$).

- $\blacksquare M_{k-1}$ can be computed in O(mk) time.
- k = 2: M_1 is a maximum size popular matching
- $\blacksquare k = n_0$: let M^* denote $M_{(n_0-1)}$.
 - $|M^*| \geq rac{n_0}{n_0+1} |M_{max}|$, so $|M^*| = |M_{max}|$ (since $|M_{max}| \leq n_0$).
 - \blacksquare for any max cardinality matching $M: M^* \succeq M$.

■ Input $G = (A \cup B, E)$: ties allowed in preference lists.

■ Input $G = (A \cup B, E)$: ties allowed in preference lists.

 \blacksquare popular matchings need not exist in G.

■ Input $G = (A \cup B, E)$: ties allowed in preference lists.

 \blacksquare popular matchings need not exist in G.

determining if one exists is NP-hard.

(Biró, Irving, and Manlove 2010)

■ Input $G = (A \cup B, E)$: ties allowed in preference lists.

popular matchings need not exist in *G*.

determining if one exists is NP-hard.
 (Biró, Irving, and Manlove 2010)

The problem is NP-hard even with one-sided ties. (Cseh, Huang, and K 2015)

■ In fact, the popular matching problem is NP-hard in $G = (\mathcal{A} \cup \mathcal{B}, E)$ where:

■ In fact, the popular matching problem is NP-hard in $G = (A \cup B, E)$ where:

lacktriangle each $a \in \mathcal{A}$ has a strict preference list

■ In fact, the popular matching problem is NP-hard in $G = (A \cup B, E)$ where:

- lacktriangle each $a \in \mathcal{A}$ has a strict preference list
- each $b \in \mathcal{B}$ either has a strict preference list or puts all neighbors into a single tie.

■ In fact, the popular matching problem is NP-hard in $G = (A \cup B, E)$ where:

- lacktriangle each $a \in \mathcal{A}$ has a strict preference list
- each $b \in \mathcal{B}$ either has a strict preference list or puts all neighbors into a single tie.
 - the case where each $b \in \mathcal{B}$ puts all neighbors into a single tie has an $O(n^2)$ algorithm.

One-sided preference lists

■ The model of *one-sided* preference lists:

$$G = (\mathcal{A} \cup \mathcal{B}, E)$$

■ The model of *one-sided* preference lists:

$$G = (\mathcal{A} \cup \mathcal{B}, E)$$

 \blacksquare \mathcal{A} : a set of applicants; \mathcal{B} : a set of training posts.

■ The model of *one-sided* preference lists:

$$G = (\mathcal{A} \cup \mathcal{B}, E)$$

- \blacksquare \mathcal{A} : a set of applicants; \mathcal{B} : a set of training posts.
- each applicant has a preference list; posts have no preferences.

■ The model of *one-sided* preference lists:

$$G = (\mathcal{A} \cup \mathcal{B}, E)$$

- \blacksquare \mathcal{A} : a set of applicants; \mathcal{B} : a set of training posts.
- each applicant has a preference list; posts have no preferences.
 - only applicants vote while comparing 2 matchings

■ The model of *one-sided* preference lists:

$$G = (\mathcal{A} \cup \mathcal{B}, E)$$

- \blacksquare \mathcal{A} : a set of applicants; \mathcal{B} : a set of training posts.
- each applicant has a preference list; posts have no preferences.
 - only applicants vote while comparing 2 matchings
- Determine if G admits a popular matching.

■ G admits a popular matching \iff G' has an A-perfect matching. (Abraham, Irving, K, and Mehlhorn 2007)

■ G admits a popular matching \iff G' has an A-perfect matching. (Abraham, Irving, K, and Mehlhorn 2007)

$$\mathcal{A}$$
 $\mathcal{B}\setminus F$

■ G admits a popular matching \iff G' has an A-perfect matching. (Abraham, Irving, K, and Mehlhorn 2007)

$$\mathcal{A}$$
 $\mathcal{B}\setminus F$

 \blacksquare every $a \in \mathcal{A}$ has degree 2 in G'

■ G admits a popular matching $\iff G'$ has an A-perfect matching. (Abraham, Irving, K, and Mehlhorn 2007)

$$\mathcal{A}$$
 $\mathcal{B} \setminus F$

- \blacksquare every $a \in \mathcal{A}$ has degree 2 in G'
- A linear time to solve the popular matching problem: extends to the case with ties in preference lists.

■ $G = (A \cup B, E)$: here each $b \in B$ cares to be matched; b's neighbors are in a single tie

■ $G = (A \cup B, E)$: here each $b \in B$ cares to be matched; b's neighbors are in a single tie

■ here we partition \mathcal{B} into *three* sets:

- $G = (A \cup B, E)$: here each $b \in B$ cares to be matched; b's neighbors are in a single tie
 - \blacksquare here we partition \mathcal{B} into *three* sets:
 - $X \subseteq F = \{ \text{set of top posts} \}$

- $G = (A \cup B, E)$: here each $b \in B$ cares to be matched; b's neighbors are in a single tie
 - \blacksquare here we partition \mathcal{B} into *three* sets:
 - $X \subseteq F = \{ \text{set of top posts} \}$
 - $Y \subseteq F \cup S$, where $S = \{$ posts outside F that get matched in every maximum size matching in $G'\}$

- $G = (A \cup B, E)$: here each $b \in B$ cares to be matched; b's neighbors are in a single tie
 - here we partition \mathcal{B} into *three* sets:
 - $X \subseteq F = \{ \text{set of top posts} \}$
 - $Y \subseteq F \cup S$, where $S = \{$ posts outside F that get matched in every maximum size matching in $G'\}$
 - $Z = \mathcal{B} \setminus (X \cup Y).$

■ The sets X, Y, and Z are constructed over n iterations.

■ The sets X, Y, and Z are constructed over n iterations.

$$X\subseteq F$$

$$Y\subseteq (F\cup S)$$

$$\operatorname{nbr}(Z)$$

$$Z$$

■ The sets X, Y, and Z are constructed over n iterations.

$$X\subseteq F$$

$$Y\subseteq (F\cup S)$$

$$\operatorname{nbr}(Z)$$

$$Z$$

■ G admits a popular matching $\iff H$ has an \mathcal{A} -perfect matching.

■ Input G = (V, E): a general graph with strict 2-sided preference lists

■ Input G = (V, E): a general graph with strict 2-sided preference lists

Stable matchings need not always exist here.

■ Input G = (V, E): a general graph with strict 2-sided preference lists

Stable matchings need not always exist here.

■ In fact, this instance has no popular matching either.

In fact, this instance has no popular matching either.

■ We have $M_1 \prec M_2 \prec M_3 \prec M_1$ here, where $M_1 = \{(a,b)\}$, $M_2 = \{(b,c)\}$, and $M_3 = \{(a,c)\}$.

An instance with no stable matching but with popular matchings:

 \blacksquare d is the least preferred neighbor for a, b, c.

An instance with no stable matching but with popular matchings:

 \blacksquare {(a,d),(b,c)} is popular.

■ There is always a matching M in G such that u(M) is $O(\log n)$. (Huang and K 2013)

■ There is always a matching M in G such that u(M) is $O(\log n)$. (Huang and K 2013)

■ Computing a least unpopularity factor matching in *G* is NP-hard.

■ There is always a matching M in G such that u(M) is $O(\log n)$. (Huang and K 2013)

■ Computing a least unpopularity factor matching in *G* is NP-hard.

Open problem: the complexity of the popular matching problem in G.

