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Our problem

® Input: a bipartite graph G = (AU B, E).
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Our problem

® Input: a bipartite graph G = (AU B, F).
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a1
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2 by
1
1
a2
2 —9 bs
1

m A: a set of students: B: a set of advisers.
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The input

m Each u € AU B ranks its neighbors in a strict order of
preference.
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The input

m Each v € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute an “optimal” matching M in G.

m there are no vertices a € A and b € B who are
better-off by being matched to each other

M 1s a stable matching.
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Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.
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Price of stability

®m From a global point of view, M,,,... IS the optimal
matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

m |stable matching| could be as low as |M,,..|/2.
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Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?
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Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity: (Gardenfors 1975)

®m matching M; is more popular than matching M if

# of vertices that prefer M; > # of vertices that prefer M.
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An example
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An example

® ¢, and b5 prefer the red matching

® by, by, and a, prefer the blue matching
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An example

B
161
2[)2
1
1
a
2 5 1b3

® ¢, and b5 prefer the red matching
® by, by, and a, prefer the blue matching

m blue matching Is more popular than red matching.
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Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than Ms.
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Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than M.

m )/ is popular if there is no M’ such that M’ =~ M.
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Popular matchings

m \We use M, = M, to denote the relation that M, Is
more popular than Ms.

m )/ is popular if there is no M’ such that M’ - M.

M is popular = for every matching M’ we have:
# of vertices that prefer M’ < # of vertices that prefer M.
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Popular matchings

® The “more popular than” relation is not transitive: we
can have M; = M, = M5 = M;.
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can have M; = M, = M5 = M;.

® Do popular matchings always exist in G?

m yes; In fact, every stable matching is popular.
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Popular matchings

®m The “more popular than” relation is not transitive: we
can have M; = M, = M5 = M;.

®m Do popular matchings always exist in G?

m yes; In fact, every stable matching is popular.

thus {stable matchings} C {popular matchings}.
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stable = popular

m Comparing a stable matching S with any matching /M :
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.—p.9I70



stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

.—p.9I70



stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

.—p.9/70



stable = popular

m Comparing a stable matching S with any matching /M :

u prefers M to S = M (u) has to prefer S to M.

m Label red edges by (+,+)/ (—, =)/ (+,—).

m there is no edge that is labeled (+, +):
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stable = popular

m Comparing a stable matching .S with any matching M

u prefers M to S = M (u) has to prefer S to M.

m Label red edges by (+,+)/ (—, =)/ (+,—).

m there is no edge that is labeled (+, +):

S0 # of votes for M < # of votes for S.
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Stable matchings

m A stable matching is a minimum size popular matching.
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m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.
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Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.
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Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.

mClaim: M & p = M.
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Stable matchings

m A stable matching is a minimum size popular matching.

m Let S be a stable matching and let M be a smaller
matching.

m|M| <]|S

, SO M 6 S has an augmenting path p wrt M.

mClaim: M & p = M.

® thus M is unpopular

. —p.10/70



The alternating path p

Nl
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The alternating path p

Nl

m red: edges of M; Dblue: edges of S.
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The alternating path p

Nl

m red: edges of M; Dblue: edges of S.

® both x and y prefer S to M.
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The alternating path p

Nl

m red: edges of M; Dblue: edges of S.
® both x and y prefer S to M.

m for every M-edge (u,v) in p:
u prefers M to S = v prefers S to M.
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The alternating path p

Nl

m red: edges of M; Dblue: edges of S.
® both x and y prefer S to M.

m for every M-edge (u,v) in p:
u prefers M to S = v prefers S to M.

®m Thus restricted to p, we have S - M.
SoM Dp > M.
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Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.
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Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.
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Some guestions

® |s |max size popular matching| > |M,,...|/2 always?
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m Structural characterization of popular matchings?

m Structural characterization of maximum size popular
matchings?
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Some guestions

® |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings?

m Structural characterization of maximum size popular
matchings?

m Can a maximum size popular matching be efficiently
computed?
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An interesting example

m Popular matchings of size 2 and size 4; none of size 3.

X1 Y2
3N 2 1 /3
1| @ b2 | 2
2 by a9 1
3
A 9

Y1 )
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Some guestions

W |s |max size popular matching| > |M,,..|/2 always?

m Structural characterization of popular matchings? ./

m Structural characterization of maximum size popular
matchings?

B Can a maximum size popular matching be efficiently
computed?
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The subgraph G,

m Let M be any matching in G.
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The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u, v) negative wrt M if it is labeled

(_7 _)
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The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u,v) negative wrt M if it is labeled

(_7 _)

u prefers M(u) to v and v prefers M (v) to w.
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The subgraph G,

m Let M be any matching in G.

m label edges outside M by (+,+)/ (—, =)/ (+,—)

m call an edge (u,v) negative wrt M if it is labeled

(_7 _)

u prefers M(u) to v and v prefers M (v) to w.

m Delete from G all negative edges wrt M — call this
graph G,,.
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Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:
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Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:

(1) no alternating cycle C with a (+,+) edge, i.e., a
blocking edge.
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Necessary conditions for popularity

m If M is popular then M has to satisfy these 3
properties in G ;:

(1) no alternating cycle C with a (+,+) edge, i.e., a
blocking edge.

otherwise M & C = M.
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Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)
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Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p = M.
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Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p >~ M.

(3) no alternating path p with an unmatched endpoint and
a blocking edge.

(+,+)
—eo ----9 ~----o—0----0
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Necessary conditions for popularity

(2) no alternating path p with 2 blocking edges.

(4, +) (4, +)

m otherwise M & p >~ M.

(3) no alternating path p with an unmatched endpoint and
a blocking edge.

(+,+)
—eo ----9 ~----o—0----0

m otherwise M & p = M.
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Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.
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Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

B Suppose M also satisfies this 4th property:

(4) there is no augmenting path wrt M in G ;.
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Max size popular matchings

m Properties (1)-(3) are also sufficient for popularity.

B Suppose M also satisfies this 4th property:

(4) there is no augmenting path wrt M in G ;.

®o----0o——@ ---- —o0--X-o——@---o—@----9
Uu U
/ 7
< p = < p =

= any larger matching M’ has to be unpopular.
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Max size popular matchings

m Property (4) is not necessary for max size popular

matchings.
L ¢ o Y
3 3
1 1
[ 9
2 2
1 1
@ ®
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Max size popular matchings

m Property (4) is not necessary for max size popular

matchings.
37. ® y
3 3
1 1
@ 9
2 2
1 1
@ o
2 2

®m (7, has an augmenting path wrt the red matching M.
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Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.
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Our first attempt

m Goal: To compute a matching that satisfies these 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

Gale-Shapley algorithm on (L, R) yields such a
matching.

® An algorithm with running time O(mn) to compute a
max size popular matching in G. (Huang and K 2013)
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Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

H q; proposes to his top neighbor b;; so does as.
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Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.
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Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

®m The algorithm terminates when every man is either
rejected by all his nbrs or gets matched to some nbr.
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Modifying Gale-Shapley ...
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Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.
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Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

® when a; proposes for the second time to b;, then b,
should prefer a; to as,.
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Implementing this idea

m Have two copies «” and a' of every man a:
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m Have two copies o’ and «' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.
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x among level 1 nbrs: her original order.
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Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

x among level 1 nbrs: her original order.

« among level O nbrs: her original order.
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In the new graph

m o} is rejected by his only neighbor b;.
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In the new graph

m So a; becomes active and proposes to b;.
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In the new graph

m ), accepts a7 and rejects ay.
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In the new graph

® So o) proposes to his next preferred neighbor b,.

.—p.32/70



In the new graph

m The matching {(at,b;), (a3, bs)} is computed.
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Back in the original graph

®m Thus OPT = {(ay, b1), (as, b2) }, the red matching, is
found.
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A linear time algorithm (K 2014)

m Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.
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A linear time algorithm (K 2014)

m Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m Initially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.
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A linear time algorithm (K 2014)

E Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m [nitially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.

m when any a! is rejected by all his neighbors:
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A linear time algorithm (K 2014)

E Let G, be the graph on A, U B where A, consists of
two copies " and a! of each a € A.

m [nitially only the men in {a" : a € A} are active.

® active men propose and women dispose in Gs.
m when any a! is rejected by all his neighbors:

introduce «; into the set of active vertices.

.—p.35/70



A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.
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A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

® Running time is O(m + n), which is O(m).
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A linear time algorithm

m Termination condition: every ¢’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

® Running time is O(m + n), which is O(m).

m Let M, be the matching computed by our algorithm.

. —p.36/70



Properties of M,

second-time
proposers

first-time —
proposers

By = B\ B
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Properties of M,

m All unmatched vertices are in A; U B,.
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Properties of M,
m All unmatched vertices are in A; U B,.

m )/, restricted to A; U B; (+ = 0, 1) Is stable.

Al Bl
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Properties of M,
m All unmatched vertices are in A; U B,.

m )/, restricted to A; U B; (+ = 0, 1) Is stable.

Al Bl

AO BO

®m Any blocking edge to M; has to be in Ay x B;.
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Partition of 4 and B

m Every edge (a,b) € A; x By is negative wrt M;.
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Partition of 4 and B

m Every edge (a,b) € A; x By is negative wrt M;.
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Partition of 4 and B

m Thus G,;, has no edge in A, x B,.
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Popularity of M,

m Consider the subgraph G/, .
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m Consider the subgraph G/, .

®m M, has the following properties in G, :
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Popularity of M,

m Consider the subgraph G/, .

®m M, has the following properties in G, :

no alternating cycle has a blocking edge.

no alternating path has 2 blocking edges.
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Popularity of M,

m Consider the subgraph G, .

®m M, has the following properties in G, :

no alternating cycle has a blocking edge.
no alternating path has 2 blocking edges.

no alternating path with an unmatched endpoint
has a blocking edge.

. — p.40/70



Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.
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Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.
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Size of the matching M,

m All unmatched men are in A; and all unmatched
women are in By.

®m There Is no augmenting path wrt M; In Gy, .
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Size of the matching M,

®m Thus M, satisfies properties (1)-(4).
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Size of the matching M,

®m Thus M, satisfies properties (1)-(4).

® ), Is a maximum size popular matching.
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Size of the matching M,

®m Thus M, satisfies properties (1)-(4).

® ), Is a maximum size popular matching.

m What about |M| in terms of |M,,..|?
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Size of the matching M,

® Any augmenting path wrt M, in G has size > 5:
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Size of the matching M,

® Any augmenting path wrt M, in G has size > 5 =
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Size of the matching M,

® Any augmenting path wrt M, in G has size > 5 =

O ‘Ml‘ Z §|Mmaa:‘-
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A tight example for the 2/3 bound

m )M, = 2 while | M,,..| = 3.
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Larger size matchings

m Trade-off between popularity and size?
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m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|
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Larger size matchings

m Trade-off between popularity and size?

®m Unpopularity factor u(-) (McCutchen 2008)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

u(M) = [ = for every matching M’ we have:
|{vertices that prefer M’} < 5 - |{vertices that prefer M }| .

. — p.46/70



Popularity vs Size

m )M is popular < u(M) < 1.
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m )M is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘M1| Z §|Mmax‘-
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Popularity vs Size

m ) is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘Ml‘ 2 §|Mmax‘-

m for any integer k£ > 2, Is there a matching M;._; with

uw(Mp—1) <k —1and [M,_i| > 5| Mpao|?
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Popularity vs Size

m )\ is popular < u(M) < 1.

m there is a matching M; with u(M;) < 1 and
‘Ml‘ 2 §|Mmaa:‘-

m for any integer k£ > 2, is there a matching M;._; with

w(Mp—1) < k—1land [My_1| > 75| Mpaa|?

m Is there an M* = a maximum cardinality matching s.t.

for each maximum cardinality matching M: M* > M?
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Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.
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Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

® so the graph becomes G, on A, U B.

A has k copies a°,a',...,a" ! of each a € A.
(a' is a level i vertex)
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Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to £ levels.

® so the graph becomes G, on A, U B.

A has k copies a°,a',...,a" ! of each a € A.
(a' is a level 7 vertex)

for each a € A: at mostone of a°. at, ... . a" 1is
active at any point.
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The k-level algorithm

m Corresponding to each edge (a,b) in G-
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m we have k edges (a',b) fori =0,...,k —1in G.
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m we have k edges (a',b) fori =0,...,k —1in G.

m In G}, the preference list of any b € B:
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The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In G, the preference list of any b € B:

m level (kK — 1) neighbors

m then level (k — 2) neighbors, ... and so on ...,
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The k-level algorithm

m Corresponding to each edge (a,b) in G-

m we have k edges (a',b) fori =0,...,k —1in G.

m In Gy, the preference list of any b € B:

m level (kK — 1) neighbors
m then level (k — 2) neighbors, ... and so on ...,

® and at the bottom are level O neighbors.
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The k-level algorithm

| Initially only level O men are active.
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The k-level algorithm

m Initially only level O men are active.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

m; < k—1:if a* is rejected by all his neighbors, then
a‘t! becomes active.

m Let M,_; be the matching returned by this algorithm.
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The partition of A and B

mA; = {a € Asuchthataisinlevel ; at the end}.

(for1 <:<k-—1)

.—p.51/70



The 3-level algorithm

m Say we run the 3-level algorithm on our tight example
for the 2-level algorithm ...

1 2 b,
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In the 3-level algorithm

/‘. B

by 2

" B

Fh, | b

: AO of"" ® B
a2 b3 0
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In the 3-level algorithm

/‘. B
‘/‘/ - b]. 2

ra B
by

Ag - ® B
a2 bg 0

m The matChing M2 = {(CL(), bl), (Cll, bg), (CLQ, bg)} 1S
computed by the 3-level algorithm.
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Properties of the matching M;_;
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Properties of the matching M;_;

m Every unmatched vertex is in A,_; U B,.
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Properties of the matching M,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt M,_; has length > 2k + 1.

hence |M_1| > M oz |-

L‘
k+1

.= Pp.55/70



Unpopularity of M,

m Consider the subgraph G, _,.
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Unpopularity of M,

m Consider the subgraph Gy, _,.

m M,_1 has the following properties in this graph:

no alternating cycle has a blocking edge.
no alternating path has & blocking edges.

no alternating path with an unmatched endpoint
has a blocking edge.

.= Pp.56/70



Trade-off between size and unpopularity

m This means u(My_,) <k — 1.
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Trade-off between size and unpopularity

m This means u(My_,) <k — 1.

®m Thus for any k£ > 2, there exists a matching M;._; S.t.

w(Mp_y) <k —1 and [My_1| > 5[ Myl

m Also for any matching M:

w M| > My | = My = M.

in particular, |M| > |My_1| = My, = M.
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The boundary cases

m ), can be computed in O(mk) time.
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The boundary cases

m )M, _, can be computed in O(mk) time.
mLiL=2. M;isamaximum size popular matching
ik =ng let M* denote My, 1.

- ‘M*| > ngi1|Mma:I:" SO ’M*‘ — ’Mmaaﬁl

(since | M, 4| < nyp).
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The boundary cases

m ), can be computed in O(mk) time.
mLiL=2. M;isamaximum size popular matching
ik =ng let M* denote My, 1.

oMY > 29 My

, SO |M*| = |M,,42]

(since | M, 0z| < ng).

m for any max cardinality matching M: M* = M.

. —Pp.58/70



With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

.~ p.59/70



With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

.~ p.59/70



With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

determining if one exists is NP-hard.
(Birg, Irving, and Manlove 2010)

.~ p.59/70



With ties In preference lists

mInput G = (AU B, E): ties allowed in preference lists.

® popular matchings need not exist in G.

determining if one exists is NP-hard.
(Birg, Irving, and Manlove 2010)

®m The problem is NP-hard even with one-sided ties.
(Cseh, Huang, and K 2015)
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One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:
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One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

m each a € A has a strict preference list

m each b € B either has a strict preference list or puts
all neighbors into a single tie.
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One-sided ties

m In fact, the popular matching problem is NP-hard in
G = (AU B, E) where:

m each a € A has a strict preference list

m each b € B either has a strict preference list or puts
all neighbors into a single tie.

the case where each b € B puts all neighbors into
a single tie has an O(n?) algorithm.
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One-sided preference lists

® The model of one-sided preference lists:
G=(AUB,FE)
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® The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.
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One-sided preference lists

B The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.

only applicants vote while comparing 2 matchings
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One-sided preference lists

B The model of one-sided preference lists:
G=(AUB,FE)

m A: a set of applicants; B: a set of training posts.

m each applicant has a preference list; posts have no
preferences.

only applicants vote while comparing 2 matchings

m Determine if G admits a popular matching.

.—p.61/70



One-sided preference lists

B (7 admits a popular matching < G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)
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One-sided preference lists

B (7 admits a popular matching <— G’ has an A-perfect
matching. (Abraham, Irving, K, and Mehlhorn 2007)

F = {set of top posts}

B\ F

mevery a € A has degree 2 in ¢

m A linear time to solve the popular matching problem:
extends to the case with ties in preference lists.

.—p.62/70



Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie
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Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

®m here we partition B into three sets:

X C F = {set of top posts}

Y C FUS, where S = {posts outside F' that get
matched in every maximum size matching in G’}

.~ p.63/70



Two-sided preference lists

mG = (AUB, FE): here each b € B cares to be matched,;
b’s neighbors are in a single tie

®m here we partition B into three sets:

X C F = {set of top posts}

Y C FUS, where S = {posts outside F' that get
matched in every maximum size matching in G’}

Z =B\ (XUY).
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Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.
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Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.

X CF
A\ nbr(Z7)
Y C(FUS)
nbr(Z2)
A
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Two-sided preference lists

m The sets X, Y, and Z are constructed over n iterations.

X CF
A\ nbr(Z2)
Y C(FUS)
nbr(Z2)
Z

B (G admits a popular matching <— H has an A-perfect
matching.
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In general graphs

m Input G = (V, E)): a general graph with strict 2-sided
preference lists
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m Input G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist here.
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In general graphs

m In fact, this instance has no popular matching either.
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In general graphs

m In fact, this instance has no popular matching either.

m We have M, < M, < M5 < M, here,
where M, = {(a,b)}, My = {(b,c)}, and M35 = {(a,c)}.
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In general graphs

® An instance with no stable matching but with popular
matchings:

m ( Is the least preferred neighbor for a, b, c.
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In general graphs

® An instance with no stable matching but with popular
matchings:

m {(a,d),(b,c)} is popular.

. —p.68/70



In general graphs

m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)
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m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)

m Computing a least unpopularity factor matching in G is
NP-hard.
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In general graphs

m There is always a matching M in G such that u(M) is
O(logn). (Huang and K 2013)

m Computing a least unpopularity factor matching in G is
NP-hard.

m Open problem: the complexity of the popular matching
problem in G.

. —p.69/70



Thank you!
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