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MATCH-UP 2015:
The 3rd International Workshop on Matching Under Preferences

Preface

This is the third instalment in the series of interdisciplinary MATCH-UP workshops, with
the first taking place in Reykjav́ık in 2008 (as a satellite workshop of ICALP 2008) and
the second being held in Budapest in 2012 (co-located with the SING conference).

Five months after the 2012 workshop, the Nobel Prize in Economic Sciences was an-
nounced, with Al Roth and Lloyd Shapley receiving the award jointly “for the theory of
stable allocations and the practice of market design”. This was a tremendously exciting
development for the research area and has no doubt contributed to an upsurge in interest
in matching under preferences.

Since that time, computer scientists, economists and others have contributed to the
growing body of literature in this domain, and it became clear that we should plan for
another MATCH-UP. Key to the decision as to “when” and “where” was the idea of Ulle
Endriss to co-locate the workshop with a meeting of COST Action IC1205 on Computa-
tional Social Choice, which has a working group on Matching.

The COST IC1205 meeting on Fair Division and Matching directly precedes MATCH-
UP, and indeed the two events overlap on the morning of 16 April. This has allowed many
MATCH-UP delegates to benefit from the travel funding available from the COST IC1205
budget, which in turn has no doubt helped to increase the overall numbers attending
MATCH-UP. We are grateful for the valuable support from COST Action IC1205.

As in 2012, our call for papers invited two types of submission. Format A papers
were required to be original and at most 12-pages long, whilst Format B papers had no
restriction on length or originality. Accepted Format A papers appear in these proceedings
in full, whilst only one-page abstracts of accepted Format B papers are included in what
follows.

We received 56 submissions (13 Format A and 43 Format B), which were reasonably
well-balanced in terms of representing the computing science and economics communi-
ties. Due to time constraints and our desire to avoid parallel sessions, we accepted 38
submissions (8 Format A and 30 Format B). To accommodate this number of papers, the
workshop was extended to three days from the originally-planned duration of two days.

To give more authors an opportunity to present their work, we additionally accepted
posters for presentation at a poster session. One-page abstracts of these posters (received
in time for inclusion) also feature in these proceedings.

We feel that these papers and posters represent an excellent snapshot of the current
state of the art regarding research in the area of matching problems with preferences.

We would like to thank the Programme Committee (and additional reviewers), the
invited speakers and the authors of all submitted papers and posters for their important
contributions to the scientific aspects of this workshop. Moreover we would like to thank
the members of the Organising Committee, and Baharak Rastegari in particular, for all
of their efforts. Additionally we thank several colleagues at the University of Glasgow for
their assistance, namely Tania Galabova, May Gallagher, Lucinda Hay, Steven Kendrick,
Jean Lindsay, Lydia Marshall, Aileen Orr and Sheena Phillips.

Last but not least, we acknowledge with gratitude the sponsorship that we received
from SICSA (The Scottish Informatics and Computer Science Alliance) which enabled us
to fund several assisted places for PhD students in Computer Science at SICSA universities.

Péter Biró
David Manlove
MATCH-UP 2015 PC co-chairs
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Assignment of teachers to schools—a new variation on
an old theme

Kataŕına Cechlárová
Pavol Jozef Šafárik University in Košice, Slovakia

Several countries more or less successfully use centralized matching schemes
for assigning teachers to vacant positions at schools. We explore combinatorial
and computational aspects of a possible similar scheme motivated by the situa-
tion characteristic for Slovak and Czech education system where each teacher
specializes in two subjects. We present a model that takes into consideration
that schools may have different capacities for each subject and show that its
combinatorial structure leads to intractable problems even under several strong
restrictions concerning the total number of subjects, partial capacities of schools
and the number of acceptable schools each teacher is allowed to list. We propose
several approximation algorithms. Finally, we present integer programming
models and their application to real data.
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Fair Stable Matchings

Christine Cheng
University of Wisconsin-Milwaukee, USA

It has long been known that Gale and Shapley’s deferred acceptance algorithm
outputs stable matchings that are highly biased towards one side of the matching.
This has motivated the study of fair stable matchings.

In the first part of the talk, we will discuss the class of globally fair stable
matchings. Their fairness is derived from the fact that they are good representa-
tives of the set of stable matchings. We will also describe how our results extend
to other objects that form a distributive lattice.

In the second part of the talk, we will consider the Random Order Mechanism
(ROM), an iterative version of the deferred acceptance algorithm. When the
ordering of the agents is chosen uniformly at random, one can argue that the
process ROM uses for arriving at a stable matching is procedurally fair. We
shall present various computational results with regards to the stable matchings
that ROM can output.
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One dimensional mechanism design

Hervé Moulin
University of Glasgow, UK

When agents’ allocations are one-dimensional and preferences are convex,
the three perennial goals of mechanism design, efficiency, prior-free incentive
compatibility and fairness (horizontal equity) are compatible. This has been
known for decades in the cases of voting and of division of a non disposable
commodity. We show that it is in fact true when the range of allocation profiles
is an arbitrary convex and compact set.

Examples include: load balancing with arbitrary flow graph constraints;
coordinating joint work inside a team or across teams, when individual contribu-
tions are substitutable or complementary; and any joint venture with a convex
technology where each agent provides a single input or consumes a single output.

The set of efficient, incentive compatible and fair mechanisms is very rich,
and additional requirements such as consistency are needed to identify reasonable
candidates.
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The (Non)-Existence of Stable Mechanisms in Incomplete

Information Environments

Nick Arnosti∗, Nicole Immorlica †, Brendan Lucier†

February 16, 2015

Abstract

We consider two-sided matching markets, and study the incentives of agents to cir-
cumvent a centralized clearing house by signing binding contracts with one another. It is
well-known that if the clearing house implements a stable match and preferences are known,
then no group of agents can profitably deviate in this manner.

We ask whether this property holds even when agents have incomplete information about
their own preferences or the preferences of others. We find that it does not. In particular,
when agents are uncertain about the preferences of others, every mechanism is susceptible
to deviations by groups of agents. When, in addition, agents are uncertain about their own
preferences, every mechanism is susceptible to deviations in which a single pair of agents
agrees in advance to match to each other.

1 Introduction
In entry-level labor markets, a large number of workers, having just completed their training,
simultaneously seek jobs at firms. These markets are especially prone to certain failures, in-
cluding unraveling, in which workers receive job offers well before they finish their training, and
exploding offers, in which job offers have incredibly short expiration dates. In the medical intern
market, for instance, prior to the introduction of the centralized clearing house (the National
Residency Matching Program, or NRMP), medical students received offers for residency pro-
grams at US hospitals two years in advance of their employment date (Roth and Xing, 1994).
In the market for law clerks, law students have reported receiving exploding offers in which they
were asked to accept or reject the position on the spot (Roth and Xing, 1994).

In many cases, including the medical intern market in the United States and United King-
dom and the hiring of law students in Canada, governing agencies try to circumvent these
market failures by introducing a centralized clearing house which solicits the preferences of all
participants and uses these to recommend a matching (Roth, 1991). One main challenge of this
approach is that of incentivizing participation. Should a worker and firm suspect they each
prefer the other to their assignment by the clearing house, then they would likely match with
each other and not participate in the centralized mechanism. Perhaps for this reason, clearing
houses that fail to select a stable match have often had difficulty attracting participants and
been discontinued (Roth, 1991).

Empirically, however, even clearing houses which produce stable matches may fail to prevent
early contracting. Examples include the market for Canadian law students (Roth and Xing,
1994) and the American gastroenterology match (Niederle and Roth, 2004; McKinney et al.,
2005). This is perhaps puzzling, as selecting a stable match ensures that no group of participants
can profitably circumvent the clearing house ex-post.

∗Dept. of Management Science & Engineering, Stanford University. Work conducted at Microsoft Research.
†Microsoft Research.
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Our work offers one possible explanation for this phenomenon. While stable clearing houses
ensure that for fixed, known preferences, no coalition can profitably deviate, in most natural
settings, participants contemplating deviation do so without complete knowledge of others’
preferences (and sometimes even their own preferences). Our main finding is that in the presence
of such uncertainty, no mechanism can prevent agents from signing mutually beneficial side
contracts.

We model uncertainty in preferences by assuming that agents have a common prior over the
set of possible preference profiles, and may in addition know their own preferences. We consider
two cases. In one, agents have no private information when contracting, and their decision of
whether to sign a side contract depends only on the prior (and the mechanism used by the
clearing house). In the second case, agents know their own preferences, but not those of others.
When deciding whether to sign a side contract, agents consider their own preferences, along
with the information revealed by the willingness (or unwillingness) of fellow agents to sign the
proposed contract.

Note that with incomplete preference information, agents perceive the partner that they are
assigned by a given mechanism to be a random variable. In order to study incentives for agents
to deviate from the centralized clearing house, we must specify a way for agents to compare
lotteries over match partners. One seemingly natural model is that each agent gets, from each
potential partner, a utility from being matched to that partner. When deciding between two
uncertain outcomes, agents simply compare their corresponding expected utilities. Much of
the previous literature has taken this approach, and indeed, it is straightforward to discover
circumstances under which agents would rationally contract early (see Appendix A). Such cases
are perhaps unsurprising; after all, the central clearing houses that we study solicit only ordinal
preference lists, while the competing mechanisms may be designed with agents’ cardinal utilities
in mind.

For this reason, we consider a purely ordinal notion of what it means for an agent to prefer
one allocation to another. In our model, an agent debating between two uncertain outcomes
chooses to sign a side contract only if the rank that they assign their partner under the proposed
contract strictly first-order stochastically dominates the rank that they anticipate if all agents
participate in the clearing house. This is a strong requirement, by which we mean that it is easy
for a mechanism to be stable under this definition, relative to a definition relying on expected
utility. For instance, this definition rules out examples of beneficial deviations, such as that
given in Appendix A, where agents match to an acceptable, if sub-optimal, partner in order to
avoid the possibility of a “bad” outcome.

Despite the strong requirements we impose on beneficial deviations, we show that every
mechanism is vulnerable to side contracts when agents are initially uncertain about their pref-
erences or the preferences of others. On the other hand, when agents are certain about their
own preferences but not about the preferences of others, then there do exist mechanisms that
resist the formation of side contracts, when those contracts are limited to involving only a pair
of agents (i.e., one from each side of the market).

2 Related Work
Roth (1989) and Roth and Rothblum (1999) are among the first papers to model incomplete
information in matching markets. These papers focus on the strategic implications of preference
uncertainty, meaning that they study the question of whether agents should truthfully report to
the clearinghouse. Our work, while it uses a similar preference model, assumes that the clearing
house can observe agent preferences. While this assumption may be realistic in some settings,
we adopt it primarily in order to separate the strategic manipulation of matching mechanisms
(as studied in the above papers) from the topic of early contracting that is the focus of this
work.

Since the seminal work of Roth and Xing (1994), the relationship between stability and
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unraveling has been studied using observational studies, laboratory experiments, and a range of
theoretical models. Although some work concluded that stability played an important role in en-
couraging participation (Roth, 1991; Kagel and Roth, 2000), other papers note that uncertainty
may cause unraveling to occur even if a stable matching mechanism is used.

A common theme in these papers is that unraveling is driven by the motive of “insurance.”
For example, the closely related models of Li and Rosen (1998); Suen (2000); Li and Suen
(2000, 2004) study two-sided assignment models with transfers in which binding contracts may
be signed in one of two periods (before or after revelation of pertinent information). In each of
these papers, unraveling occurs (despite the stability of the second-round matching) because of
agents’ risk-aversion: when agents are risk-neutral, no early matches form.

Even in models in which transfers are not possible (and so the notion of risk aversion has no
obvious definition), the motive of insurance often drives early matching. The models presented
by Roth and Xing (1994), Halaburda (2010), and Du and Livne (2014) assume that agents have
underlying cardinal utilities for each match, and compare lotteries over matchings by computing
expected utilities. They demonstrate that unraveling may occur if, for example, workers are
willing to accept an offer from their second-ranked firm (foregoing a chance to be matched to
their top choice) in order to ensure that they do not match to a less-preferred option.1

While insurance may play a role in the early contracting observed by Roth and Xing (1994),
one contribution of our work is to show that it is not necessary to obtain such behavior. In
this work, we show that even if agents are unwilling to forego top choices in order to avoid
lower-ranked ones, they might rationally contract early with one another. Put another way,
we demonstrate that some opportunities for early contracting may be identified on the basis
of ordinal information alone (without making assumptions about agents’ unobservable cardinal
utilities).

The works of Manjunath (2013) and Gudmundsson (2014) consider the stochastic dominance
notion used in this paper; however they treat only the case (referred to in this paper as “ex-post”)
where the preferences of agents are fixed, and the only randomness comes from the assignment
mechanism. One contribution of our work is to define a stochastic dominance notion of stability
under asymmetric information. This can be somewhat challenging, as agents’ actions signal
information about their type, which in turn might influence the actions of others.2

Perhaps the paper that is closest in spirit to ours is that of Peivandi and Vohra (2013), which
considers the operation of a centralized exchange in a two-sided setting with transferrable utility.
One of their main findings is that every trading mechanism can be blocked by an alternative; our
results have a similar flavor, although they are established in a setting with non-transferrable
utility.

3 Model and Notation
In this section, we introduce our notation, and define what it means for a matching to be ex-post,
interim, or ex-ante stable.

There is a (finite, non-empty) set M of men and a (finite, non-empty) set W of women.

Definition 1.
Given M and W , a matching is a function µ : M ∪W →M ∪W satisfying:

1In many-to-one settings, Sonmez (1999) demonstrates that even in full-information environments, it may be
possible for agents to profitably pre-arrange matches (a follow-up by Afacan (2013) studies the welfare effects
of such pre-arrangements). In order for all parties involved to strictly benefit, it must be the case that the firm
hires (at least) one inferior worker in order to boost competition for their remaining spots (and thereby receive a
worker who they would be otherwise unable to hire). Thus, the profitability of such an arrangement again relies
on assumptions about the firm’s underlying cardinal utility function.

2The work of Liu et al. (2014) has recently grappled with this inference procedure, and defined a notion of
stable matching under uncertainty. Their model differs substantially from the one considered here: it takes a
matching µ as given, and assumes that agents know the quality of their current match, but must make inferences
about potential partners to whom they are not currently matched.
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1. For each m ∈M , µ(m) ∈W ∪ {m}

2. For each w ∈W , µ(w) ∈M ∪ {w}

3. For each m ∈M and w ∈W , µ(m) = w if and only if µ(w) = m.

We let M(M,W ) be the set of matchings on M,W .

Given a set S, defineR(S) to be the set of one-to-one functions mapping S onto {1, 2, . . . , |S|}.
Given m ∈ M , let Pm ∈ R(W ∪ {m}) be m’s ordinal preference relation over women (and the
option of remaining unmatched). Similarly, for w ∈ W , let Pw ∈ R(M ∪ {w}) be w’s ordinal
preference relation over the men. We think of Pm(w) as giving the rank that m assigns to w;
that is, Pm(w) = 1 implies that matching to w is m’s most-preferred outcome.

Given sets M and W , we let P(M,W ) =
∏
m∈M R(W ∪ {m})×

∏
w∈W R(M ∪ {w}) be the

set of possible preference profiles. We use P to denote an arbitrary element of P(M,W ), and
use ψ to denote a probability distribution over P(M,W ). We use PA to refer to the preferences
of agents in the set A under profile P , and use Pa (rather than the more cumbersome P{a}) to
refer to the preferences of agent a.

Definition 2. Given M and W , and P ∈ P(M,W ), we say that matching µ is stable at
preference profile P if and only if the following conditions hold.

1. For each a ∈M ∪W , Pa(µ(a)) ≤ Pa(a).

2. For each m ∈M and w ∈W such that Pm(µ(m)) > Pm(w), we have Pw(µ(w)) < Pw(m).

This is the standard notion of stability; the first condition states that agents may only be
matched to partners whom they prefer to going unmatched, and the second states that whenever
m prefers w to his partner under µ, it must be that w prefers her partner under µ to m.

In what follows, we fix M and W , and omit the dependence of M and P on the sets M
and W . We define a mechanism to be a (possibly random) mapping φ : P →M. We use A′ to
denote a subset of M ∪W .

We now define what it means for a coalition of agents to block the mechanism φ, and what
it means for a mechanism (rather than a matching) to be stable. Because we wish to consider
randomized mechanisms, we must have a way for agents to compare lotteries over outcomes. As
mentioned in the introduction, our notion of blocking relates to stochastic dominance. Given
random variables X,Y ∈ N, say that X first-order stochastically dominates Y (denoted X � Y )
if for all n ∈ N, Pr(X ≤ n) ≥ Pr(Y ≤ n), with strict inequality for at least one value of n.

An astute reader will note that this definition reverses the usual inequalities; that is, X � Y
implies that X is “smaller” than Y . We adopt this convention because below, X and Y will
represent the ranks assigned by each agent to their partner (where the most preferred option
has a rank of one), and thus by our convention, X � Y means that X is preferred to Y .

Definition 3 (Ex-Post Stability). Given M,W and a profile P ∈ P(M,W ), coalition A′ blocks
mechanism φ ex-post at P if there exists a mechanism φ′ such that for each a ∈ A′,

1. Pr(φ′(P )(a) ∈ A′) = 1, and

2. Pa(φ
′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is ex-post stable at profile P if no coalition of agents blocks φ ex-post at P .
Mechanism φ is ex-post stable if it is ex-post stable at P for all P ∈ P(M,W ).
Mechanism φ is ex-post pairwise stable if for all P , no coalition consisting of at most one
man and at most one woman blocks φ ex post at P .

9



Note that in the above setting, because P is fixed, the mechanism φ′ is really just a random
matching. The first condition in the definition requires that the deviating agents can implement
this alternative (random) matching without the cooperation of the other agents; the second
condition requires that for each agent, the random variable denoting the rank of his partner
under the alternative φ′ stochastically dominates the rank of his partner under the original
mechanism.

Note that if the mechanism φ is deterministic, then it is ex-post pairwise stable if and only
if the matching it produces is stable in the sense of Definition 2.

The above notions of blocking and stability are concerned only with cases where the prefer-
ence profile P is fixed. In this paper, we assume that at the time of choosing between mechanisms
φ and φ′, agents have incomplete information about the profile P that will eventually be realized
(and used to implement a matching). We model this incomplete information by assuming that
it is common knowledge that P is drawn from a prior ψ over P. Given a mechanism φ, each
agent may use ψ to determine the ex-ante distribution of the rank of the partner that they will
be assigned by φ. This allows us to define what it means for a coalition to block φ ex-ante, and
for a mechanism φ to be ex-ante stable.

Definition 4 (Ex-Ante Stability). Given M,W and a prior ψ over P(M,W ), coalition A′

blocks mechanism φ ex-ante at ψ if there exists a mechanism φ′ such that if P is drawn
from the prior ψ, then for each a ∈ A′,

1. Pr(φ′(P )(a) ∈ A′) = 1, and

2. Pa(φ
′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is ex-ante stable at prior ψ if no coalition of agents blocks φ ex-ante at ψ.
Mechanism φ is ex-ante stable if it is ex-ante stable at ψ for all priors ψ.
Mechanism φ is ex-ante pairwise stable if, for all priors ψ, no coalition consisting of at most
one man and at most one woman blocks φ ex-ante at ψ.

Note that the only difference between ex-ante and ex-post stability is that the randomness
in Definition 4 is over both the realized profile P and the matching produced by φ, whereas in
Definition 3, the profile P is deterministic. Put another way, the mechanism φ is ex-post stable
if and only if it is ex-ante stable at all deterministic distributions ψ.

The notions of ex-ante and ex-post stability defined above are fairly straightforward because
the information available to each agent is identical. In order to study the case where each agent
knows his or her own preferences but not the preferences of others, we must define an appropriate
notion of a blocking coalition. In particular, if man m decides to enter into a contract with
woman w, m knows not only his own preferences, but also learns about those of w from the
fact that she is willing to sign the contract. Our definition of what it means for a coalition to
block φ in the interim takes this into account.

In words, given the common prior ψ, we say that a coalition A′ blocks φ in the interim if
there exists a preference profile P that occurs with positive probability under ψ such that when
preferences are P , all members of A′ agree that the outcome of φ′ stochastically dominates that
of φ, given their own preferences and the fact that other members of A′ also prefer φ′. We
formally define this concept below, where we use the notation ψ(·) to represent the probability
measure assigned by the distribution ψ to the argument.

Definition 5 (Interim Stability). Given M,W , and a prior ψ over P(M,W ), coalition A′

blocks mechanism φ in the interim if there exists a mechanism φ′, and for each a ∈ A′, a
subset of preferences Ra satisfying the following:

1. For each P ∈ P, Pr(φ′(P )(a) ∈ A′) = 1.

2. For each agent a ∈ A′ and each preference profile P̃a, P̃a ∈ Ra if and only if
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(a) ψ(Ya(P̃a)) > 0, where Ya(P̃a) = {P : Pa = P̃a} ∩ {P : Pa′ ∈ Ra′ ∀a′ ∈ A′\{a}}
(b) When P is drawn from the conditional distribution of ψ given Ya(P̃a), we have

Pa(φ
′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is interim stable at ψ if no coalition of agents blocks φ in the interim at ψ.
Mechanism φ is interim stable if it is interim stable at ψ for all distributions ψ.
Mechanism φ is interim pairwise stable if, for all priors ψ, no coalition consisting of at most
one man and at most one woman blocks φ in the interim at ψ.

To motivate the above definition of an interim blocking coalition, consider a game in which
a moderator approaches a subset A′ of agents, and asks each whether they would prefer to
be matched according to the mechanism φ (proposed by the central clearing house) or the
alternative φ′ (which matches agents in A′ to each other). Only if all agents agree that they
would prefer φ′ is this mechanism used. Condition 1 simply states that the mechanism φ′

generates matchings among the (potentially) deviating coalition A′.
We think of Ra as being a set of preferences for which agent a agrees to use mechanism

φ′. The set Ya(P̃a) is the set of profiles which agent a considers possible, conditioned on the
events Pa = P̃a and the fact that all other agents in A′ agree to use mechanism φ′. Condition
2 is a consistency condition on the preference subsets Ra: 2a) states that agents in A′ should
agree to φ′ only if they believe that there is a chance that the other agents in A′ will also agree
to φ′ (that is, if ψ assigns positive mass to Ya); moreover, 2b) states that in the cases when
Pa ∈ Ra and the other agents select φ′, it should be the case that a “prefers” the mechanism
φ′ to φ (here and in the remainder of the paper, when we write that agent a prefers φ′ to φ, we
mean that given the information available to a, the rank of a’s partner under φ′ stochastically
dominates the rank of a’s partner under φ).

We now move on to our main results.

4 Results
We begin with the following observation, which states that the three notions of stability dis-
cussed above are comparable, in that ex-ante stability is a stronger requirement than interim
stability, which is in turn a stronger requirement than ex-post stability.

Lemma 1.
If φ is ex-ante (pairwise) stable, then it is interim (pairwise) stable.
If φ is interim (pairwise) stable, then it is ex-post (pairwise) stable.

Proof. We argue the contrapositive in both cases. Suppose that φ is not ex-post stable. This
implies that there exists a preference profile P , a coalition A′, and a mechanism φ′ that only
matches agents in A′ to each other, such that all agents in A′ prefer φ′ to φ, given P . If we take
ψ to place all of its mass on profile P , then (trivially) A′ also blocks φ in the interim, proving
that φ is not interim stable.

Suppose now that φ is not interim stable. This implies that there exists a distribution ψ over
P, a coalition A′, a mechanism φ′ that only matches agents in A′ to each other, and preference
orderings Ra satisfying the following conditions: the set of profiles Y = {P : ∀a ∈ A′, Pa ∈ Ra}
has positive mass ψ (Y ) > 0; and conditioned on the profile being in Y , agents in A′ want to
switch to φ′ , i.e., for all a ∈ A′ and for all Pa ∈ Ra agent a prefers φ′ to φ conditioned on the
profile being in Y . Thus, agent a must prefer φ′ even ex ante (conditioned only on P ∈ Y ).

If we take ψ′ to be the conditional distribution of ψ given P ∈ Y , it follows that under ψ′,
all agents a ∈ A′ prefer mechanism φ′ to mechanism φ ex-ante, so φ is not ex-ante stable.

4.1 Ex-post Stability

We now consider each of our three notions of stability in turn, beginning with ex-post stability.
By Lemma 1, ex-post stability is the easiest of the three conditions to satisfy. Indeed, we show
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there not only exist ex-post stable mechanisms, but that any mechanism that commits to always
returning a stable matching is ex-post stable.

Theorem 1.
Any mechanism that produces a stable matching with certainty is ex-post stable.

Note that if the mechanism φ is deterministic, then (trivially) it is ex-post stable if and
only if it always produces a stable matching. Thus, for deterministic mechanisms, our notion
of ex-post stability coincides with the “standard” definition of a stable mechanism. Theorem
1 states further that any mechanism that randomizes among stable matchings is also ex-post
stable. This fact appears as Proposition 3 in (Manjunath, 2013).3

We next show in Example 1 that the converse of Theorem 1 does not hold. That is, there
exist randomized mechanisms φ which sometimes select unstable matches but are nevertheless
ex-post stable. In this and other examples, we use the notation Pm : w1, w2, w3 as shorthand
indicating that m ranks w1 first, w2 second, w3 third, and considers going unmatched to be the
least desirable outcome.

Example 1.
Pm1 : w1, w2, w3 Pw1 : m3,m2,m1

Pm2 : w1, w3, w2 Pw2 : m2,m1,m3

Pm3 : w2, w1, w3 Pw3 : m3,m2,m1

There is a unique stable match, given by {m1w2,m2w3,m3w1}.
Lemma 2. For the market described in Example 1, no coalition blocks the mechanism that
outputs a uniform random matching.

Proof. Because the random matching gives each agent their first choice with positive probability,
if agent a is in a blocking coalition, then it must be that the agent that a most prefers is also in
this coalition. Furthermore, any blocking mechanism must always match all participants, and
thus any blocking coalition must have an equal number of men and women. Thus, the only
possible blocking coalitions are {m2,m3, w1, w2} or all six agents. The first coalition cannot
block; if the probability that m2 and w2 are matched exceeds 1/3, m2 will not participate. If
the probability that m3 and w2 are matched exceeds 1/3, then w2 will not participate. But at
least one of these quantities must be at least 1/2.

Considering a mechanism that all agents participate in, for any set of weights on the six
possible matchings, we can explicitly write inequalities saying that each agent must get their
first choice with probability at least 1/3, and their last with probability at most 1/3. Solving
these inequalities indicates that any random matching µ that (weakly) dominates a uniform
random matching must satisfy

Pr(µ = {m1w1,m2w2,m3w3}) = Pr(µ = {m1w2,m2w3,m3w1}) = Pr(µ = {m1w3,m2w1,m3w2}),

Pr(µ = {m1w1,m2w3,m3w2}) = Pr(µ = {m1w2,m2w1,m3w3}) = Pr(µ = {m1w3,m2w2,m3w1}).
But any such mechanism gives each agent their first, second and third choices with equal
probability, and thus does not strictly dominate the uniform random matching.

Finally, the following lemma establishes a simple necessary condition for ex-post incentive
compatibility. This condition will be useful for establishing non-existence of stable outcomes
under other notions of stability.

Lemma 3.
If mechanism φ is ex-post pairwise stable, then if man m and woman w rank each other first

under P , it follows that Pr(φ(P )(m) = w) = 1.

Proof. This follows immediately: if φ(P ) matches m and w with probability less than one, then
m and w can deviate and match to each other, and both strictly benefit from doing so.

3We thank an anonymous reviewer for the reference.
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4.2 Interim Stability

The fact that a mechanism which (on fixed input) outputs a uniform random matching is ex-
post stable suggests that our notion of a blocking coalition, which relies on ordinal stochastic
dominance, is very strict, and that many mechanisms may in fact be stable under this definition
even with incomplete information. We show in this section that this intuition is incorrect:
despite the strictness of our definition of a blocking coalition, it turns out that no mechanism
is interim stable.

Theorem 2.
No mechanism is interim stable.

Proof. In the proof, we refer to permutations of a given preference profile P , which informally
are preference profiles that are equivalent to P after a relabeling of agents. Formally, given a
permutation σ on the set M ∪W which satisfies σ(M) = M and σ(W ) = W , we say that P ′

is the permutation of P obtained by σ if for all a ∈M ∪W and a′ in the domain of Pa, it
holds that Pa(a

′) = P ′σ(a)(σ(a′)).
The proof of Theorem 2 uses the following example.

Example 2. Suppose that each agent’s preferences are iid uniform over the other side, and
consider the following preference profile, which we denote P :

Pm1 : w1, w2, w3 Pw1 : m1,m2,m3

Pm2 : w1, w3, w2 Pw2 : m1,m3,m2

Pm3 : w3, w1, w2 Pw3 : m3,m1,m2

Note that under profile P , m1 and w1 rank each other first, as do m3 and w3. By Lemma
1, if φ is interim stable, it must be ex-post stable. By Lemma 3, given this P , any ex-post
stable mechanism must produce the match {m1w1,m2w2,m3w3} with certainty. Furthermore,
if preference profile P ′ is a permutation of P , then the matching φ(P ′) must simply permute
{m1w1,m2w2,m3w3} accordingly. Thus, on any permutation of P , φ gives four agents their
first choices, and two agents their third choices.

Define the mechanism φ′ as follows:

• If P ′ is the permutation of P obtained by σ, then

φ′(P ′) = {σ(m1)σ(w2), σ(m2)σ(w1), σ(m3)σ(w3)}.
• On any profile that is not a permutation of P , φ′ mimics φ.

Note that on profile P , φ′ gives four agents their first choices, and two agents their second choices.
If each agent’s preferences are iid uniform over the other side, then each agent considers his or
herself equally likely to play each role in the profile P (by symmetry, this is true even after agents
observe their own preferences, as they know nothing about the preferences of others). Thus,
conditioned on the preference profile being a permutation of P , all agents’ interim expected
allocation under φ offers a 2/3 chance of getting their first choice and a 1/3 chance of getting
their third choice, while their interim allocation under φ′ offers a 2/3 chance of getting their
first choice and a 1/3 chance of getting their second choice. Because φ′ and φ are identical
on profiles which are not permutations of P , it follows that all agents strictly prefer φ′ to φ
ex-ante.

The intuition behind the above example is as follows. Stable matchings may be “inefficient”,
meaning that it might be possible to separate a stable partnership (m1, w1) at little cost to m1

and w1, while providing large gains to their new partners (say m2 and w2). When agents lack
the information necessary to determine whether they are likely to play the role of m1 or m2,
they will gladly go along with the more efficient (though ex-post unstable) mechanism.
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Note that in addition to proving that no mechanism is interim stable for all priors, Example
2 demonstrates that when the priori ψ is (canonically) taken to be uniform on P, there exists
no mechanism which is interim stable at the prior ψ (this follows because if φ sometimes fails
to match pairs who rank each other first, then such pairs have a strict incentive to deviate; if
φ always matches mutual first choices, then all agents prefer to deviate to the mechanism φ′

described above).
Although Theorem 2 establishes that it is impossible to design a mechanism φ that eliminates

profitable deviations, note that the deviating coalition in Example 2 involves six agents, and the
contract φ′ is fairly complex. In many settings, such coordinated action may seem implausible,
and one might ask whether there exist mechanisms that are at least immune to deviations by
pairs of agents. The following theorem shows that the complexity of Example 2 is necessary:
any mechanism that always produces a stable match is indeed interim pairwise stable.4

Lemma 4.
Any mechanism which produces a stable match with certainty is interim pairwise stable.

Proof. Seeking a contradiction, suppose that φ always produces a stable match. Fix a man
m, and a woman w with whom he might block φ in the interim. Note that m must prefer w
to going unmatched; otherwise, no deviation with w can strictly benefit him. Thus, the best
outcome (for m) from a contract with w is that they are matched with certainty. According
to the definition of an interim blocking pair, m must believe that receiving w with certainty
stochastically dominates the outcome of φ; that is to say, m must be certain that φ will give
him nobody better than w. Because φ produces a stable match, it follows that in cases where
m chooses to contract with w, φ always assigns to w a partner that she (weakly) prefers to m,
and thus she will not participate.

4.3 Ex-ante Stability

In some settings, it is natural to model agents as being uncertain not only about the rankings
of others, but also about their own preferences. One might hope that the result of Theorem
4 extends to this setting; that is, that if φ produces a stable match with certainty, it remains
immune to pairwise deviations ex-ante. Theorem 3 states that this is not the case: ex-ante, no
mechanism is even pairwise stable.

Theorem 3.
No mechanism is ex-ante pairwise stable.

Proof. The proof of Theorem 3 uses the following example.

Example 3. Suppose that there are three men and three women, and fix p ∈ (0, 1/4). The prior
ψ is that preferences are drawn independently as follows:

Pm1 =


w1, w3, w2 w.p. 1− 2p
w2, w1, w3 w.p. p
w3, w2, w1 w.p. p

Pw1 =


m1,m3,m2 w.p. 1− 2p
m2,m1,m3 w.p. p
m3,m2,m1 w.p. p

Pm2 = w1, w2 Pw2 = m1,m2

Pm3 = w3 Pw3 = m3

4This result relies crucially on the fact that we’re using the notion of stochastic dominance to determine
blocking pairs. If agents instead evaluate lotteries over matches by computing expected utilities, it is easy to
construct examples where two agents rank each other second, and both prefer matching with certainty to the
risk of getting a lower-ranked alternative from φ (see Appendix A).
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Because m3 and w3 always rank each other first, we know by Lemmas 1 and 3 that if
mechanism φ is ex-ante pairwise stable, it matches m3 and w3 with certainty. Applying Lemma
3 to the submarket ({m1,m2}, {w1, w2}), we conclude that

1. Whenever m1 prefers w2 to w1, φ must match m1 with w2 (and m2 with w1) with certainty.
2. Whenever w1 prefers m2 to m1, φ must match w1 with m2 (and m1 with w2) with certainty.
3. Whenever m1 prefers w1 to w2 and w1 prefers m1 to m2, φ must match m1 with w1.

After doing the relevant algebra, we see that w1 and m1 each get their first choice with proba-
bility 1−3p+4p2, their second choice with probability p, and their third choice with probability
2p−4p2. If w1 and m1 were to match to each other, they would get their first choice with prob-
ability 1 − 2p, their second with probability p, and their third with probability p; an outcome
that they both prefer. It follows that φ is not ex-ante pairwise stable, completing the proof.

The basic intuition for Example 3 is similar to that of Example 2. When m1 ranks w1 first
and w1 does not return the favor, it is unstable for them to match and m1 will receive his third
choice. In this case, it would (informally) be more “efficient” (considering only the welfare of
m1 and w1) to match m1 with w1; doing so improves the ranking that m1 assigns his partner
by two positions, while only lowering the ranking that w1 assigns her partner by one. Because
men and women play symmetric roles in the above example, ex-ante, both m1 and w1 prefer
the more efficient solution in which they always match to each other.

5 Discussion
In this paper, we extended the notion of stability to settings in which agents are uncertain
about their own preferences and/or the preferences of others. We observed that when agents
can sign contracts before preferences are fully known, every matching mechanism is susceptible
to unraveling. While past work has reached conclusions which sound similar, we argue that our
results are stronger in several ways.

First, previous results have assumed that agents are expected utility maximizers, and relied
on particular assumptions about the utilities that agents get from each potential partner. Our
work uses the stronger notion of stochastic dominance to determine blocking coalitions, and
notes that there may exist opportunities for profitable circumvention of a central matching
mechanism even when agents are unwilling to sacrifice the chance of a terrific match in order
to avoid a poor one.

Second, not only can every mechanism be blocked under some prior, but also, for some
priors, it is impossible to design a mechanism that is interim stable at that prior. This striking
conclusion is similar to that of Peivandi and Vohra (2013), who find (in a bilateral transferable
utility setting) that for some priors over agent types, every potential mechanism of trade can
be blocked.

In light of the above findings, one might naturally ask how it is that many centralized clearing
houses have managed to persist. One possible explanation is that the problematic priors are
in some way “unnatural” and unlikely to arise in practice. We argue that this is not the case:
Example 2 shows that blocking coalitions exist when agent preferences are independent and
maximally uncertain, Example 3 shows that they may exist even when the preferences of most
agents are known, and in Appendix B we show that they may exist even when one side has
perfectly correlated (i.e. ex-post identical) preferences.

A more plausible explanation for the persistence of centralized clearing houses is that al-
though mutually profitable early contracting opportunities may exist, agents lack the ability
to identify and/or act on them. To take one example, even when profitable early contracting
opportunities can be identified, agents may lack the ability to write binding contracts with one
another (whereas our work assumes that they possess such commitment power). We leave a
more complete discussion of the reasons that stable matching mechanisms might persist in some
cases and fail in others to future work.
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A Interim Pairwise (In)Stability

The following example shows that Theorem 4 depends on our stochastic dominance notion of a
blocking pair; if agents compare lotteries by computing expected utilities, then pairs of agents
might benefit from circumventing a mechanism that always produces a stable match.

Example 4. There are three agents on each side. Men m2 and m3 are known to rank women in
the order w1, w2, w3; m1 has this preference with probability 1− p, and with probability p ranks
w3 first. Symmetrically, women w2 and w3 are known to rank men in the order m1,m2,m3; w1

has this preference with probability 1− p, and with probability p ranks m3 first.

For any realization, there is a unique stable match; note that when m1 ranks w3 first and w1

ranks m1 first and m3 last, this match gives w2 her least-preferred partner, m3. Under a stable
matching mechanism, both m2 and w2 get their first choice with probability p(1 − p), their
second choice with probability (1−p)2 +p2, and their third choice with probability p(1−p). So
long as their utility from their second choice is above their average utility from a lottery over
their first and third choices, m2 and w2 prefer matching with one another to the outcome of
the stable matching.

B Perfectly Correlated Preferences

Theorem 3 demonstrates that a stable matching mechanism may be blocked ex-ante by a coali-
tion when preferences are drawn independently and uniformly at random.

The following example considers an opposite extreme extreme, where one side has identical
preferences ex-post. It demonstrates that even in this case, it may be possible for a coalition to
profitably deviate ex-ante from a mechanism that always selects the unique stable matching.

In this appendix, we use the language of “schools” and “students,” and assume that schools
all rank students according to a common test.

Example 5. Each student has one of four possible preference profiles, drawn independently:

A,B,C w.p. (1− δ)/2
A,C,B w.p. δ/2
B,A,C w.p. (1− δ)/2
B,C,A w.p. δ/2

Schools have aligned preferences ex-post. The possibilities are the following:

1, 2, 3 w.p. (1− ε)/2
1, 3, 2 w.p. ε/2
2, 1, 3 w.p. (1− ε)/2
2, 3, 1 w.p. ε/2

If all agents participate in an assortative match, schools A and B get their first, second, and

third choices with probabilities (12 ,
1−δ
2 , δ2) respectively. Students 1 and 2 get their first, second,

and third choices with probabilities
(
3
4 ,

1
4 , 0
)
− ε

8

(
2− δ, 2− 5δ + 3δ2,−4 + 6δ − 3δ2

)
.

If only (A,B, 1, 2) participate in an assortative match, then the associated match probabil-

ities for schools A and B are (12 ,
1−ε
2 , ε2), and for students 1 and 2 are

(
3
4 ,

1
4 , 0
)
− δ

4 (0, 1,−1).

All four of A,B, 1, 2 prefer the latter option if ε < δ < 2ε(1− 3
2δ + 3

4δ
2).
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Abstract
A simple mechanism for allocating indivisible re-
sources is sequential allocation in which agents
take turns to pick items. We focus on possible and
necessary allocation problems, checking whether
allocations of a given form occur in some or all
mechanisms for several commonly used classes of
sequential allocation mechanisms. In particular, we
consider whether a given agent receives a given
item, a set of items, or a subset of items for natural
classes of sequential allocation mechanisms: bal-
anced, recursively balanced, balanced alternation,
and strict alternation. We present characterizations
of the allocations that result respectively from the
classes, which extend the well-known characteriza-
tion by Brams and King [2005] for policies without
restrictions. In addition, we examine the computa-
tional complexity of possible and necessary alloca-
tion problems for these classes.

1 Introduction
Efficient and fair allocation of resources is a pressing prob-
lem within society today. One important and challenging case
is the fair allocation of indivisible items [Chevaleyre et al.,
2006, Bouveret and Lang, 2008, Bouveret et al., 2010, Aziz
et al., 2014b, Aziz, 2014]. This covers a wide range of prob-
lems including the allocation of classes to students, landing
slots to airlines, players to teams, and houses to people. A
simple but popular mechanism to allocate indivisible items is
sequential allocation [Bouveret and Lang, 2011, Brams and
Taylor, 1996, Kohler and Chandrasekaran, 1971, Levine and
Stange, 2012]. In sequential allocation, agents simply take
turns to pick the most preferred item that has not yet been
taken. Besides its simplicity, it has a number of advantages
including the fact that the mechanism can be implemented in
a distributed manner and that agents do not need to submit
cardinal utilities. Well-known mechanisms like serial dicta-
torship [Svensson, 1999] fall under the umbrella of sequential
mechanisms.

The sequential allocation mechanism leaves open the par-
ticular order of turns (the so called “policy”) [Kalinowski
et al., 2013a, Bouveret and Lang, 2014]. Should it be a bal-
anced policy i.e., each agent gets the same total number of

turns? Or should it be recursively balanced so that turns oc-
cur in rounds, and each agent gets one turn per round? Or
perhaps it would be fairer to alternate but reverse the order of
the agents in successive rounds: a1Ba2Ba3Ba3Ba2Ba1 . . .
so that agent a1 takes the first and sixth turn? This par-
ticular type of policy is used, for example, by the Harvard
Business School to allocate courses to students [Budish and
Cantillion, 2012] and is referred to as a balanced alterna-
tion policy. Another class of policies is strict alternation
in which the same ordering is used in each round, such as
a1 B a2 B a3 B a1 B a2 B a3 . . . . The sets of balanced al-
ternation and strict alternation policies are subsets of the set
of recursively balanced policies which itself is a subset of the
set of balanced policies.

We consider here the situation where a policy is chosen
from a family of such policies. For example, at the Harvard
Business School, a policy is chosen at random from the space
of all balanced alternation policies. As a second example, the
policy might be left to the discretion of the chair but, for fair-
ness, it is restricted to one of the recursively balanced poli-
cies. Despite uncertainty in the policy, we might be inter-
ested in the possible or necessary outcomes. For example,
can I get my three most preferred courses? Do I necessarily
get my two most preferred courses? We examine the com-
plexity of checking such questions. There are several high-
stake applications for these results. For example, sequential
allocation is used in professional sports ‘drafts’ [Brams and
Straffin, 1979]. The precise policy chosen from among the set
of admissible policies can critically affect which teams (read
agents) get which players (read items).

The problems of checking whether an agent can get some
item or set of items in a policy or in all policies is closely
related to the problem of ‘control’ of the central organizer.
For example, if an agent gets an item in all feasible policies,
then it means that the chair cannot ensure that the agent does
not get the item. Apart from strategic motivation, the prob-
lems we consider also have a design motivation. The central
designer may want to consider all feasible policies uniformly
at random (as is the case in random serial dictatorship [Aziz
et al., 2013, Saban and Sethuraman, 2013]) and use them to
find the probability that a certain item or set of item is given
to an agent. The probability can be a suggestion of time shar-
ing of an item. The problem of checking whether an agent
gets a certain item or set of items in some policy is equiva-
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Problems Sequential Policy Class
Any Balanced Recursively Balanced Strict Alternation Balanced Alternation

POSSIBLEITEM in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)

NECESSARYITEM in P coNPC (Thm. 9);
in P for const. k (Thm. 10)

coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 21)

POSSIBLESET in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)
NECESSARYSET in P in P (Thm. 11) coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)

Top-k POSSIBLESET in P in P (trivial) NPC for all k ≥ 3 (Thm. 15);
in P for k = 2 (Thm. 14)

NPC for all k ≥ 3 (Thm. 18);
in P for k = 2 (Thm. 17)

NPC for all k ≥ 2 (Thm. 21)

Top-k NECESSARYSET in P in P (Thm. 11) coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)
POSSIBLESUBSET in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)

NECESSARYSUBSET in P coNPC (Thm. 9);
in P for const. k (Thm. 8)

coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 21)

POSSIBLEASSIGNMENT in P in P (Coro. 1) in P (Coro. 2) in P (Coro. 3) in P (Coro. 4)
NECESSARYASSIGNMENT in P in P (Thm. 7) in P (Thm. 12) in P (Thm. 16) in P (Thm. 20)

Table 1: Complexity of possible and necessary allocation for sequential allocation. All possible allocation problems are NPC
for k = 1. All necessary problems are in P for k = 1.

lent to checking whether an agent gets a certain item or set
of items with non-zero probability. Similarly, the problem of
checking whether an agent gets a certain item or set of items
in all policy is equivalent to checking whether an agent gets a
certain item or set of items with probability one.

We let A = {a1, . . . , an} denote a set of n agents, and I
denote the set of m = kn items1. P = (P1, . . . , Pn) is the
profile of agents’ preferences where each Pj is a linear order
over I . Let M denote an assignment of all items to agents,
that is, M : I → A. We will denote a class of policies by
C. Any policy π specifies the |I| turns of the agents. When
an agent takes her turn, she picks her most preferred item that
has not yet been allocated.

Example 1. Consider the setting in whichA = {a1, a2}, I =
{b, c, d, e}, the preferences of agent a1 are b � c � d � e
and of agent a2 are b � d � c � e. Then for the policy
a1 B a2 B a2 B a1, agent a1 gets {b, e} whilst a2 gets {c, d}.

We consider the following natural computational prob-
lems.

(i) POSSIBLEASSIGNMENT: Given (A, I, P,M) and pol-
icy class C, does there exist a policy in C which results in
M?; (ii) necessaryassignment : Given (A, I, P,M), and pol-
icy class C, is M the result of all policies in C? ; (iii)
POSSIBLEITEM: Given (A, I, P, aj , o) where aj ∈ A and
o ∈ I , and policy class C, does there exist a policy in C
such that agent aj gets item o? ; (iv) NECESSARYITEM:
Given (A, I, P, aj , o) where aj ∈ A and o ∈ I , and pol-
icy class C, does agent aj get item o for all policies in C? ;
(v) POSSIBLESET: Given (A, I, P, aj , I

′) where aj ∈ A and
I ′ ⊆ I , and policy class C, does there exist a policy in C such
that agent aj gets exactly I ′? ; (vi) NECESSARYSET: Given
(A, I, P, aj , I

′) where aj ∈ A and I ′ ⊆ I , and policy class
C, does agent aj get exactly I ′ for all policies in C? ; (vii)
POSSIBLESUBSET: Given (A, I, P, aj , I

′) where aj ∈ A and
I ′ ⊆ I , and policy class C, does there exist a policy in C such
that agent aj gets I ′? ; (viii) NECESSARYSUBSET: Given
(A, I, P, aj , I

′) where aj ∈ A and I ′ ⊆ I , and policy class C
does agent aj get I ′ for all policies in C?

1This is without loss of generality since we can add dummy items
of no utility to any agent.

We will consider problems top-k POSSIBLESET and top-k
NECESSARYSET that are restrictions of POSSIBLESET and
NECESSARYSET in which the set of items I ′ is the set of top
k items of the distinguished agent. When policies are chosen
at random, the possible and necessary allocation problems we
consider are also fundamental to understand more complex
problems of computing the probability of certain allocations.

Contributions: Our contributions are two fold. First, we
provide necessary and sufficient conditions for an allocation
to be the outcome of balanced, recursively balanced, balanced
alternation, and strict alternation policies respectively. Previ-
ously Brams and King [2005] characterized the outcomes of
arbitrary policies. In a similar vein, we provide sufficient and
necessary conditions for more interesting classes of policies
such as recursively balanced and balanced alternation. Sec-
ond, we provide a detailed analysis of the computational com-
plexity of possible and necessary allocations under sequential
policies. Table 1 summarizes our complexity results. Our
NP/coNP-completeness results also imply that there exists no
polynomial-time algorithm that can approximate within any
factor the number of admissible policies which do or do not
satisfy the target goals.

Related Work. Sequential allocation has been consid-
ered in the operations research and fair division literature
(e.g. [Kohler and Chandrasekaran, 1971, Brams and Tay-
lor, 1996]). It was popularized within the AI literature as
a simple yet effective distributed mechanism [Bouveret and
Lang, 2011] and has been studied in more detail subsequently
[Kalinowski et al., 2013a,b, Bouveret and Lang, 2014, 2011,
2014].

The problems considered in the paper are similar in spirit
to a class of control problems studied in voting theory: if it
is possible to select a voting rule from the set of voting rules,
can one be selected to obtain a certain outcome [Erdélyi and
Elkind, 2012]. They are also related to a class of control prob-
lems in knockout tournaments: does there exist a draw of a
tournament for which a given player wins the tournament [Vu
et al., 2009, Aziz et al., 2014a]. Possible and necessary win-
ners have also been considered in voting theory [Konczak and
Lang, 2005, Xia and Conitzer, 2011, Aziz et al., 2012].
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When n = m, serial dictatorship is a well-known mecha-
nism in which there is an ordering of agents and with respect
to that ordering agents pick the most preferred unallocated
item in their turns [Svensson, 1999]. We note that serial dic-
tatorship for n = m is a balanced, recursively balanced and
balanced alternation policy.

2 Characterizations of Outcomes of
Sequential Allocation

In this section we provide necessary and sufficient conditions
for a given allocation to be the outcome of a balanced policy,
recursively balanced policy, or balanced alternation policy.
We first define conditions on an allocation M . An allocation
is Pareto optimal if there is no other allocation in which each
item of each agent is replaced by at least as preferred an item
and at least one item of some agent is replaced by a more
preferred item.

Condition 1. M is Pareto Optimal.

Condition 2. M is balanced.

It is well-known that Condition 1 characterizes outcomes
of all sequential allocation mechanisms (without constraints).
Brams and King [2005] proved that an assignment is achiev-
able via sequential allocation iff it satisfies Condition 1. The
theorem of Brams and King [2005] generalized the character-
ization of Abdulkadiroğlu and Sönmez [1998] of Pareto op-
timal assignments as outcomes of serial dictatorships when
m = n. We first observe the following simple adaptation of
the characterization of Brams and King [2005] to characterize
possible outcomes of balanced policies:

Remark 1. Given a profile P , an allocation M is the out-
come of a balanced policy if and only if M satisfies Condi-
tions 1 and 2.

Given a balanced allocation M , for each agent aj ∈ A and
each i ≤ k, let pij denote the item that is ranked at the i-th
position by agent aj among all items allocated to agent aj by
M . The third condition requires that for all 1 ≤ t < s ≤ k,
no agent prefers the s-th ranked item allocated to any other
agent to the t-th ranked item allocated to her.

Condition 3. For all 1 ≤ t < s ≤ k and all pairs of agent
aj , aj′ , agent aj prefers ptj to psj′ .

The next theorem states that Conditions 1 through 3 char-
acterize outcomes of recursively balanced policies.

Theorem 1. Given a profile P , an allocation M is the out-
come of a recursively balanced policy if and only if it satisfies
Conditions 1, 2, and 3.

Proof. To prove the “only if” direction, clearly if M is the
outcome of a recursively balanced policy then Condition 1
and 2 are satisfied. If Condition 3 is not satisfied, then there
exists 1 ≤ t < s ≤ k and a pair of agents aj , aj′ such that
agent aj prefers psj′ to ptj . We note that in the round when
agent aj is about to choose ptj according to M , psj′ is still
available, because it is allocated by M in a later round. How-
ever, in this case agent aj will not choose ptj because it is not
her top-ranked available item, which is a contradiction.

To prove the “if” direction, for any allocation M that sat-
isfies the three conditions we will construct a recursively bal-
anced policy π. For each i ≤ k = m/n, we let phase i
denote the ((i − 1)n + 1)-th round through in-th round. It
follows that for all i ≤ k, {pij : j ≤ n} are allocated in phase
i. Because of Condition 3, {pij : j ≤ n} is a Pareto opti-
mal allocation when all items in {pi′j : i′ < i, j ≤ n} are
removed. Therefore there exists an order πi over A that gives
this allocation. Let π = π1 B π2 B · · ·B πk. It is not hard to
verify that π is recursively balanced and M is the outcome of
π.

Given a profile P and an allocation M that is the outcome
of a recursively balanced policy, that is, it satisfies the three
conditions as proved in Theorem 1, we construct a directed
graph GM = (A,E), where the vertices are the agents, and
we add the edges in the following way. For each odd i ≤ k,
we add a directed edge aj′ → aj if and only if agent aj
prefers pij′ to pij and the edge is not already in GM ; for each
even i ≤ k, we add a directed edge aj → aj′ if and only if
agent aj prefers pij′ to pij and the edge is not already in GM .
Condition 4. SupposeM is the outcome of a recursively bal-
anced policy. There is no cycle in GM .

Theorem 2. An allocation M is achievable by a balanced
alternation policy if and only if satisfies Conditions 1, 2, 3,
and 4.

Proof. The “only if” direction: Suppose M is achievable by
a balanced alternation policy π. Let π′ denote the suborder
of π from round 1 to round n. Let Gπ′ = (A,E′) denote the
directed graph where the vertices are the agents and there is
an edge aj′ → aj if and only if aj′Bπ′aj . It is easy to see that
Gπ′ is acyclic and complete. We claim thatGM is a subgraph
ofGπ′ . For the sake of contradiction suppose there is an edge
aj → aj′ in GM but not in Gπ′ . If aj → aj′ is added to GM
in an odd round i, then it means that agent j′ prefers pij to pij′ .
Because aj → aj′ is not in Gπ′ , aj′ Bπ′ aj . This means that
right before aj′ choosing pij′ inM , pij is still available, which
contradicts the assumption that aj′ chooses pij′ inM . If aj →
aj′ is added toGM in an even round, then following a similar
argument we can also derive a contradiction. Therefore, GM
is a subgraph of Gπ′ , which means that GM is acyclic.

The “if” direction: Suppose the four conditions are satis-
fied. Because GM has no cycle, we can find a linear order π′
overA such thatGM is a subgraph ofGπ′ . We next prove that
M is achievable by the balanced alternation policy π whose
first n rounds are π′. For the sake of contradiction suppose
this is not true and let t denote the earliest round that the al-
location in π differs the allocation in M . Let aj denote the
agent at the t-th round of π, let pi

′

j′ denote the item she gets
at round t in π, and let pij denote the item that she is sup-
posed to get according to M . Due to Condition 3, i′ ≤ i. If
i′ < i then agent aj′ didn’t get item pi

′

j′ in a previous round,
which contradicts the selection of t. Therefore i′ = i. If i
is odd, then there is an edge aj′ → aj in GM , which means
that aj′ Bπ′ aj . This means that aj′ would have chosen pij′
in a previous round, which is a contradiction. If i is even,
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then a similar contradiction can be derived. Therefore M is
achievable by π.

Given a profile P and an allocation M that is the outcome
of a recursively balanced policy, that is, it satisfies the three
conditions as proved in Theorem 1, we construct a directed
graph HM = (A,E), where the vertices are the agents, and
we add the edges in the following way. For each j ≤ n and
i ≤ k, we let pij denote the item that is ranked at the i-th
position among all items allocated to agent j. For each i ≤ k,
if we add a directed edge aj′ → aj if j prefers pij′ to pij if the
edge is not already there.

Condition 5. SupposeM is the outcome of a recursively bal-
anced policy. There is no cycle in HM .

Theorem 3. An allocation M is achievable by a strict alter-
nation policy if and only if satisfies Condition 1, 2, 3, and
5.

Proof. The “only if” direction: IfM is an outcome of a recur-
sively balanced policy but does not satisfy 5, then this means
that there is a cycle in HM . Let agents ai and aj be in the
cycle. This means that ai is before aj in one round and aj is
before ai in some other round.

The “if” direction: Now assume that M is an outcome of a
recursively balanced policy but is not alternating. This means
that there exist at least two agents ai and aj such that ai
comes before aj in one round and aj comes before ai in some
other round. But this means that there is cycle ai → aj → ai
in graph HM .

3 General Complexity Results
Before we delve into the complexity results, we observe the
following reductions between various problems.

Lemma 1. Fixing the policy class to be one of {all, bal-
anced policies, recursively balanced policies, balanced al-
ternation policies}, there exist polynomial-time many-one
reductions between the following problems: POSSIBLESET
to POSSIBLESUBSET; POSSIBLEITEM to POSSIBLESUB-
SET; Top-k POSSIBLESET to POSSIBLESET; NECESSARY-
SET to NECESSARYSUBSET; NECESSARYITEM to NECES-
SARYSUBSET; and Top-k NECESSARYSET to NECESSARY-
SET.

A polynomial-time many-one reduction from problemQ to
problem Q′ means that if Q is NP(coNP)-hard then Q′ is also
NP(coNP)-hard, and if Q′ is in P then Q is also in P. We also
note the following. For n = 2, POSSIBLEASSIGNMENT and
POSSIBLESET are equivalent for any type of policies. Since
n = 2, the allocation of one agent completely determines the
overall assignment.

For m = n, checking whether there is a serial dictatorship
under which each agent gets exactly one item and a desig-
nated agent aj gets item o is NP-complete [Theorem 2, Saban
and Sethuraman, 2013]. They also proved that for m = n,
checking if for all serial dictatorships, agent aj gets item o is
polynomial-time solvable. Hence, we get the following state-
ments.

Theorem 4. POSSIBLEITEM and POSSIBLESET is NP-
complete for balanced, recursively balanced as well as bal-
anced alternation policies.

Theorem 4 does not necessarily hold if we consider the
top element or the top k elements. Therefore, we will es-
pecially consider top-k POSSIBLESET. Fimilarly, we get
that for m = n, NECESSARYITEM and NECESSARYSET is
polynomial-time solvable for balanced, recursively balanced,
and balanced alternation policies.

For arbitrary policies, we first observe that POSSI-
BLEITEM, NECESSARYITEM and NECESSARYSET are triv-
ial: POSSIBLEITEM always has a yes answer (just give all the
turns to that agent) and NECESSARYITEM and NECESSARY-
SET always have a no answer (just don’t give the agent any
turn). Similarly, NECESSARYASSIGNMENT always has a no
answer.

Theorem 5. POSSIBLEASSIGNMENT is polynomial-time
solvable for arbitrary policies.

Proof. By the characterization of Brams and King [2005], all
we need to do is to check whether the assignment is Pareto op-
timal. It can be checked in polynomial time O(|I|2) whether
a given assignment is Pareto optimal via an extension of a
result Abraham et al. [2005].

There is also a polynomial-time algorithm for POSSIBLE-
SET for arbitrary policies via a greedy approach.

Theorem 6. POSSIBLESET is polynomial-time solvable for
arbitrary policies.

4 Balanced Policies
In contrast to arbitrary policies, POSSIBLEITEM, NEC-
ESSARYITEM, NECESSARYSET, and NECESSARYASSIGN-
MENT are more interesting for balanced policies since we
may be restricted in allocating items to a given agent to en-
sure balance. Before we consider them, we get the following
corollary of Remark 1.

Corollary 1. POSSIBLEASSIGNMENT for balanced assign-
ments is in P.

Note that an assignment is achieved via all balanced poli-
cies iff the assignment is the unique balanced assignment that
is Pareto optimal. This is only possible if each agent gets his
top k items. Hence, we obtain the following.

Theorem 7. NECESSARYASSIGNMENT for balanced as-
signments is in P.

Compared to NECESSARYASSIGNMENT, the other ‘neces-
sary’ problems are intractable.

Theorem 8. For any constant k, NECESSARYSET and NEC-
ESSARYSUBSET for balanced policies are in P.

Proof. W.l.o.g. given a NECESSARYSET instance
(A, I, P, a1, I

′), if I ′ is not the top-ranked k items of
agent a1 then it is a “No” instance because we can simply
let agent a1 choose items in the first k rounds. When
I ′ is top-ranked k items of agent a1, (A, I, P, a1, I

′) is
a “No” instance if and only if (A, I, P, a1, o) is a “No”

21



instance for some o ∈ I ′, which can be checked in polyno-
mial time by Theorem 10. A similar algorithm works for
NECESSARYSUBSET.

Theorem 9. NECESSARYITEM and NECESSARYSUBSET
for balanced policies where k is not fixed is coNP-complete.

Proof. Membership in coNP is obvious. By Lemma 1 it suf-
fices to prove that NECESSARYITEM is coNP-hard, which we
will prove by a reduction from POSSIBLEITEM for k = 1,
which is NP-complete [Saban and Sethuraman, 2013]. Let
(A, I, P, a1, o) denote an instance of the possible alloca-
tion problem for k = 1, where A = {a1, . . . , an}, I =
{o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is the preference
profile of the n agents, and we are asked whether it is pos-
sible for agent a1 to get item o in some sequential alloca-
tion. Given (A, I, P, a1, o), we construct the following NEC-
ESSARYITEM instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪D∪F1∪· · ·∪Fn, where |D| = n−1 and

for each aj ∈ A, |Fj | = n−2. We have |I ′| = (n+1)(n−1)
and k = n− 1.

Preferences:
• The preferences of a1 is [F1 � P1 � others].

• For any j ≤ n, the preferences of aj are obtained from
[Fj � Pj ] by replacing o by D, and then add o to the
bottom position.

• The preferences for an+1 is [o � others].

We are asked whether agent an+1 always gets item o.
If (A, I, P, a1, o) has a solution π, we show that the

NECESSARYITEM instance is a “No” instance by consider-
ing π B · · ·B π︸ ︷︷ ︸

n−1

B an+1 B · · ·B an+1︸ ︷︷ ︸
n−1

. In the first (n − 2)n

rounds all Fj’s are allocated to agent aj’s. In the following n
rounds o is allocated to a1, which means that an+1 does not
get o.

Suppose the NECESSARYITEM instance is a “No” instance
and agent n + 1 does not get o in a balanced policy π′. Be-
cause agent a2 through an rank o in their bottom position, o
must be allocated to agent a1. Clearly in the first n− 2 times
when agent a1 through an choose items, they will choose F1

through Fn respectively. Let π denote the order over which
agents a1 through an choose items for the last time. We ob-
tain another order π∗ overA from π by moving all agents who
choose an item inD after agent a1 while keeping other orders
unchanged. It is not hard to see that the outcomes of running
π and π∗ are the same from the first round until agent a1 gets
o. This means that π∗ is a solution to (A, I, P, a1, o).

The problems becomes easier when k is constant or we are
concerned about top k items.

Theorem 10. For any constant k, NECESSARYITEM for bal-
anced policies is in P.

Proof. Given a NECESSARYITEM instance (A, I, P, a1, o), if
o is ranked below the k-th position by agent a1 then we can
return “No”, because by letting agent a1 choose in the first
k rounds she does not get item o. Suppose o is ranked at

the k′-th position by agent a1 with k′ ≤ k, the next claim
provides an equivalent condition to check whether the NEC-
ESSARYITEM instance is a “No” instance.

Claim 1. Suppose o is ranked at the k′-th position by agent a1
with k′ ≤ k, the NECESSARYITEM instance (A, I, P, a1, o)
is a “No” instance if and only if there exists a balanced policy
π such that (i) agent a1 picks items in the first k′ − 1 rounds
and the last k − k′ + 1 rounds, and (ii) agent a1 does not get
o.

Let I∗ denote agent a1’s top k′ − 1 items. In light of the
claim above, to check whether the (A, I, P, a1, o) is a “No”
instance, it suffices to check for every set of k − k′ + 1 items
ranked below the k′-th position by agent a1, denoted by I ′,
whether it is possible for agent a1 to get I∗ and I ′ by a bal-
anced policy where agent a1 picks items in the first k′ − 1
rounds and the last k − k′ + 1 rounds. To this end, for each
I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1, we construct the
following maximum flow problem FI′ , which can be solved
in polynomial-time by e.g. the Ford-Fulkerson algorithm.

• Vertices: s, t, A− {a1}, I − I ′ − I∗.
• Edges and weights: For each a ∈ A − {a1}, there is

an edge s → a with weight k; for each a ∈ A − {a1}
and c ∈ I − I ′ − I∗ such that agent a ranks c above all
items in I ′, there is an edge a → c with weight 1; for
each c ∈ I− I ′− I∗, there is an edge c→ t with weight
1.

• We are asked whether the maximum amount of flow
from s to t is k(n−1) (the maximum possible flow from
s to t).

Claim 2. (A, I, P, a1, o) is a “No” instance if and only if
there exists I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 such
that FI′ has a solution.

Because k is a constant, the number of I ′ we will check is
a constant. Algorithm 1 is a polynomial algorithm for NEC-
ESSARYITEM with balanced policies.

Algorithm 1: NECESSARYITEM for balanced policies.
Input: A NECESSARYITEM instance (A, I, P, aj , o).

1 if o is ranked below the k-th position by agent aj then
2 return “No”.
3 end
4 Let I∗ denote agent aj’s top k′ − 1 items.
5 for I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 do
6 if F|I′| has a solution then
7 return “No”
8 end
9 end

10 return “Yes”.

Theorem 11. NECESSARYSET and top-k NECESSARYSET
for balanced policies are in P even when k is not fixed.
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Proof. Given an instance of NECESSARYSET, if the target set
is not top-k then the answer is “No” because we can simply
let the agent choose k items in the first k rounds. It remains
to show that top-k NECESSARYSET for balanced policies is
in P. That is, given (A, I, P, a1), we can check in polynomial
time whether there is a balanced policy π for which agent a1
does not get exactly her top k items.

For NECESSARYSET, suppose agent a1 does not get her
top-k items under π. Let π′ denote the order obtained from
π by moving all agent a1’s turns to the end while keeping the
other orders unchanged. It is easy to see that agent a1 does
not get her top-k items under π′ either. Therefore, NECES-
SARYSET is equivalent to checking whether there exists an
order π where agent a1 picks item in the last k rounds so that
agent a1 does not get at least one of her top-k items.

We consider an equivalent, reduced allocation instance
where the agents are {a1, a2, . . . , an}, and there are k(n −
1)+ 1 items I ′ = (I − I∗)∪ {c}, where I∗ is agent a1’s top-
k items. Agent aj’s preferences over I ′ are obtained from
Pj by replacing the first occurrence of items in I∗ by c, and
then removing all items in I∗ while keeping the order of other
items the same. We are asked whether there exists an order π
where agent a1 is the last to pick and a1 picks a single item,
and each other agents picks k times, so that agent a1 does
not get item c. This problem can be solved by a polynomial-
time algorithm based on maximum flows that is similar to
the algorithm for NECESSARYITEM for balanced policies in
Theorem 10.

5 Recursively Balanced Policies
From Theorem 1, we get the following corollary.
Corollary 2. POSSIBLEASSIGNMENT for recursively bal-
anced policies is in P.

We also report computational results for problems other
than POSSIBLEASSIGNMENT. The following algorithm
works via a greedy approach.
Theorem 12. NECESSARYASSIGNMENT for recursively bal-
anced policies is in P.

The other ‘necessary problems’ turn out to be computation-
ally intractable.
Theorem 13. For k ≥ 2, NECESSARYITEM, NECESSARY-
SET, top-k NECESSARYSET, and NECESSARYSUBSET for
recursively balanced policies are coNP-complete.

On the other hand, Top-2 POSSIBLESET is easy via a re-
duction to maximum matching.
Theorem 14. Top-k POSSIBLESET for recursively balanced
policies is in P for k = 2.

Finally, top-k-POSSIBLESET is NP-complete iff k ≥ 3.
Theorem 15. For all k ≥ 3, top-k POSSIBLESET for bal-
anced policies is NP-complete.

6 Strict Alternation Policies
Since there are n! possible strict alternation policies, so if n
is constant, then all problems can be solved in polynomial
time by brute force search. Note that such an argument does

not apply to recursively balanced policies. As a result of our
characterization of strict alternation outcomes (Theorem 3),
we get the following.
Corollary 3. POSSIBLEASSIGNMENT for strict alternation
polices is in P.

We also present other computational results.
Theorem 16. NECESSARYASSIGNMENT for strict alterna-
tion polices is in P.
Theorem 17. Top-k POSSIBLESET for strict alternation
policies is in P for k = 2.

For Theorem 17, the polynomial-time algorithm is similar
to the algorithm for Theorem 14. The next theorems state that
the remaining problems are hard to compute. Both theorems
are proved by reductions from POSSIBLEITEM.
Theorem 18. For all k ≥ 3, top-k POSSIBLESET is NP-
complete for strict alternation policies.
Theorem 19. For all k ≥ 2, NECESSARYITEM, NECES-
SARYSET, top-k NECESSARYSET, and NECESSARYSUBSET
are coNP-complete for strict alternation policies.

7 Balanced Alternation Policies
If n is constant, then all problems can be solved in polyno-
mial time by brute force search. As a result of our characteri-
zation of balanced alternation outcomes (Theorem 2), we get
the following.
Corollary 4. POSSIBLEASSIGNMENT for balanced alterna-
tion polices is in P.

NECESSARYASSIGNMENT can be solved efficiently as
well.
Theorem 20. NECESSARYASSIGNMENT for balanced alter-
nation polices is in P.

We already know that for k = m/n = 1, top-k possible
and necessary problems can be solved in polynomial time.
The next theorems state that for any other k, they are NP-
complete for balanced alternation policies. Theorem 21 is
proved by a reduction from the EXACT 3-COVER problem
and Theorem 22 is proved by a reduction from the POSSI-
BLEITEM problem.
Theorem 21. For all k ≥ 2, top-k POSSIBLESET is NP-
complete, NECESSARYITEM is coNP-complete, and NEC-
ESSARYSUBSET is coNP-complete for balanced alternation
policies.
Theorem 22. For all k ≥ 2, top-k NECESSARYSET for bal-
anced alternation policies is coNP-complete.

8 Conclusions
We have studied sequential allocation mechanisms where the
policy has not been fixed or has been fixed but not announced.
We have characterized the allocations achievable with com-
mon classes of policies.We have also identified the compu-
tational complexity of identifying the possible or necessary
items, set or subset of items to be allocated to an agent when
using one of the policy classes. There are interesting fu-
ture directions including considering other common classes
of policies, as well as other properties of the outcome like the
possible or necessary welfare.
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Arbitrary

Balanced
Rec-Balanced

Strict-Alt Bal-Alt

Figure 1: Inclusion relationships between sets of policies.
We use abbreviations Rec-Balanced (recursively balanced);
Strict-Alt (strict alternation), and Bal-Alt (balanced alterna-
tion).

Relation between policy classes
In Figure 1.

Proof of Theorem 6
Proof. Let the target allocation of agent ai be S. If there is any
agent aj ∈ A \ {ai} who wants to pick an item o′ ∈ I \ S, let him
pick it. If no agent in A \ {i} wants to pick such an item o′ ∈ I \S,
and i does not want to pick an item from S return no. If no agent in
A\{ai} wants to pick such an item o′ ∈ I \S, and ai wants to pick
an item o ∈ S, let ai pick o. If some agents in A \ {ai} wants to
pick such an item o ∈ S, and also i wants to pick o ∈ S, then we let
ai pick o. Repeat the process until all the items are allocated or we
return no at some point.

We now argue for the correctness of the algorithm. Observe the
order in which agent a1 picks items in S is exactly according to his
preferences.

Claim 3. Let us consider the first pick in the algorithm. If agent a1
picks an item o = max%i

(S), then if there exists a policy π in which
agent ai gets S, then there also exists a policy π′ in which agent a1
first picks o and agent i gets S overall.

Proof. In π, by the time agent ai picks his second most preferred
item from S, all items more preferred have already been allocated.
In π, if ai 6= π(1), then we can obtain π′ by bringing ai to the
first place and having all the other turns in the same order. Note that
in π′, for any agent’s turn the set of available items are either the
same or o is the extra item missing. However since o was not even
chosen by the latter agents, the picking outcomes of π and π′ are
identical.

Claim 4. Let us consider the first pick in the algorithm. If some
agent aj picks an item o′ ∈ A \ S in the algorithm, then if there
exists a policy in which agent ai gets S, then there also exists a
policy in which agent aj first picks o′ and agent ai gets S overall.

Proof. In π, if aj 6= π(1), then we can obtain π′ by bringing aj to
the first place and having all the other turns in the same order. If j
does not get o′ in π, then when we construct π′ we simply delete the
turn of the agent who got o′. Note that in π′, for any agent’s turn
the set of available items are either the same or o′ is the extra item
missing. However since o′ was not even chosen by the latter agents,
the picking outcomes of π and π′ are identical.

By inductively applying Claims 3 and 4, we know that as long
as a policy exists in which i gets allocation S, our algorithm can
construct a policy in which i gets allocation S.

Proof of Theorem 10
Proof. In a NECESSARYITEM instance we can assume the distin-
guished agent is a1. Given (A, I, P, a1, o), if o is ranked below the
k-th position by agent a1 then it we can return “No”, because by
letting agent a1 choose in the first k rounds she does not get item o.

Suppose o is ranked at the k′-th position by agent a1 with k′ ≤ k,
the next claim provides an equivalence condition to check whether
the NECESSARYITEM instance is a “No” instance.

Claim 5. Suppose o is ranked at the k′-th position by agent a1 with
k′ ≤ k, the NECESSARYITEM instance (A, I, P, a1, o) is a “No”
instance if and only if there exists a balanced policy π such that (i)
agent a1 picks items in the first k′−1 rounds and the last k−k′+1
rounds, and (ii) agent a1 does not get o.

Proof. Suppose there exists a balanced policy π′ such that agent a1
does not get item o, then we obtain π∗ from π′ by moving the first
k′ − 1 occurrences of agent a1 to the beginning of the sequence
while keeping other positions unchanged. When preforming π∗, in
the first k′ − 1 rounds agent a1 gets her top k′ − 1 items.

By the next time agent a1 picks an item in π∗, o must have been
chosen by another agent. To see why this is true, for each agent from
the k′-th round until agent a1’s next turn in π∗, we compare side by
side the items allocated before this agent’s turn by π∗ and by π′. It
is not hard to see by induction that the item allocated by π∗ before
agent a1’s next turn is a superset of the item allocated by π′ before
agent a1’s k′-th turn. Because the latter contains o, agent a1 does
not get o in π∗.

Then, we obtain π from π∗ by moving the k′-th through the k-
th occurrence of agent a1 to the end of the sequence while keeping
other positions unchanged. It is easy to see that agent a1 does not
get o in π. This completes the proof.

Let I∗ denote agent a1’s top k′ − 1 items. In light of the claim
above, to check whether the (A, I, P, a1, o) is a “No” instance, it
suffices to check for every set of k − k′ + 1 items ranked below the
k′-th position by agent a1, denoted by I ′, whether it is possible for
agent a1 to get I∗ and I ′ by a balanced policy where agent a1 picks
items in the first k′ − 1 rounds and the last k − k′ + 1 rounds. To
this end, for each I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1, we
construct the following maximum flow problem FI′ , which can be
solved in polynomial-time by e.g. the Ford-Fulkerson algorithm.

• Vertices: s, t, A− {a1}, I − I ′ − I∗.
• Edges and weights: For each a ∈ A − {a1}, there is an

edge s → a with weight k; for each a ∈ A − {a1} and c ∈
I−I ′−I∗ such that agent a ranks c above all items in I ′, there
is an edge a → c with weight 1; for each c ∈ I − I ′ − I∗,
there is an edge c→ t with weight 1.

• We are asked whether the maximum amount of flow s to t is
k(n− 1) (the maximum possible flow from s to t).

Claim 6. (A, I, P, o) is a “No” instance if and only if there exists
I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 such that FI′ has a
solution.

Proof. If (A, I, P, o) is a “No” instance, then by Claim 1 there ex-
ists π such that agent a1 picks items in the first k′ − 1 rounds and
the last k − k′ + 1 rounds, and agent a1 gets I∗ ∪ I ′ for some
I ′ ⊆ I − I∗ − {o}. For each agent aj with j 6= 2, let there be a
flow of amount k from s to aj and a flow of amount 1 from aj to all
items that are allocated to her in π. Moreover, let there be a flow of
amount 1 from any c ∈ I − I∗ − {o} to t. It is easy to check that
the amount of flow is k(n− 1).

If FI′ has a solution, then there exists an integer solution because
all weights are integers. This means that there exists an assignment
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of all items in I − I ′ − I∗ to agent 2 through n such that no agent
gets an item that is ranked below any item in I∗. Starting from this
allocation, after implementing all trading cycles we obtain a Pareto
optimal allocation where I−I ′−I∗ are allocated to agent 2 through
n, and still no agent gets an item that is ranked below any item in I∗.
By Proposition 1 in Brams and King, there exists a balanced policy
π∗ that gives this allocation. It follows that agent a1 does not get o
under the balanced policy π = a1 B . . .B a1︸ ︷︷ ︸

k′−1

Bπ∗Ba1 B . . .B a1︸ ︷︷ ︸
k−k′+1

.

Because k is a constant, the number of I ′ we will check is a con-
stant. The polynomial algorithm for NECESSARYITEM for balanced
policies is presented as Algorithm 1.

Proof of Theorem 12
Proof. In the allocation p, let pji be the j-th most preferred item for
agent i among his set of k allocated items.

Claim 7. If there exists a recursively balanced policy achieving the
target allocation. Then, in any such recursively balanced policy, we
know that in each t-th round, each agent gets item pti .

We initialize t to 1 i.e., focus on the first round. We check if
there is an agent whose turn has not come in the round whose most
preferred unallocated item is not pti . In this case return “no”. Other-
wise, we complete the round in any arbitrary order. If all the items
are allocated, we return “yes”. If t 6= k, we increment t by one and
repeat the process.

We now argue for correctness. If the algorithm returns no, then
we know that there is a recursively balanced policy that does not
achieve the allocation. This policy was partially built during the
algorithm and can be completed in an arbitrary way to get an al-
location that is not the same as the target allocation. Now assume
for contradiction that there is a policy which does not achieve the
allocation but the algorithm incorrectly returns yes. Consider the
first round where the algorithm makes a mistake. But in each round,
each agent had a unique and mutually exclusive most preferred un-
allocated item. Hence no matter which policy we implement in the
round, the allocation and the set of unallocated items after the round
stays the same. Hence a contradiction.

Proof of Theorem 13
Proof Sketch. Membership in coNP is obvious. By Lemma 1 it
suffices to show coNP-hardness for NECESSARYITEM and top-k
NECESSARYSET. We will prove the co-NP-hardness for them for
k = 2 by the same reduction from POSSIBLEITEM for k = 1,
which is NP-complete [Saban and Sethuraman, 2013]. The proof
for other k ≥ 2 can be done similarly by constructing prefer-
ences so that the distinguished agent always get her top k − 2
items. Let (A, I, P, a1, o) denote an instance of POSSIBLEITEM
for k = 1, where A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I ,
P = (P1, . . . , Pn) is the preference profile of the n agents, and we
are asked wether it is possible for agent a1 to get item o in some
sequential allocation. Given (A, I, P, a1, o), we construct the fol-
lowing necessary allocation instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c, d} ∪D, where |D| = n+ 1.
Preferences:

• The preferences of a1 is obtained from P1 by inserting d right
before o, and append the other items such that the bottom item
is c.

• For any 2 ≤ j ≤ n, the preferences of aj is obtained from Pj

by replacing o by D and then appending the remaining items
such that the bottom items are c � d � o.

• The preferences for an+1 is [c � o � others � d].
For NECESSARYITEM, we are asked whether agent an+1 always

get item o; for top-k NECESSARYSET, we are asked whether agent
an+1 always get {c, o}, which are her top-2 items.

Suppose the (A, I, P, a1, o) has a solution, denoted by π. We
claim that π′ = an+1BπBa1B(A′−{a1}) is a “No” answer to the
NECESSARYITEM and top-k NECESSARYSET instance. Following
π′, in the first round an+1 gets c. In the next n rounds a1 gets d.
Then in the (n+2)-th round agent a1 gets item o, which means that
an+1 does not get item o after all items are allocated.

We note that an+1 always get item c for any recursively balanced
policy. We next show that if NECESSARYITEM or top-k NECES-
SARYSET instance is a “No” instance, then the POSSIBLEITEM in-
stance is a “Yes” instance. Suppose π′ is a recursively balanced
policy such that an+1 does not get o. We let phase 1 denote the
first n + 1 rounds, and let phase 2 denote the (n + 2)-th through
2(n+ 1)-th round.

Because o is the least preferred item for all agents except a1 and
an+1, if an+1 does not get o in the second phase, then o must be
allocated to a1. This is because for the sake of contradiction suppose
o is allocated to agent aj with j 6= 1, n, then aj must be the last
agent in π′ and o is not chosen in any previous round. However,
when it is an’s turn in the second phase, o is still available, which
means that an would have chosen o and contradicts the assumption
that aj gets o.

Claim 8. If a1 gets o under π′, then a1 gets d in the first phase.

Proof. For the sake of contradiction, suppose in the first phase a1
does not get d, then either she gets an item before d, or she gets
o, because it is impossible for a1 to get an item after o otherwise
another agent must get o in the first phase, which is impossible as
we just argued above.

• If a1 gets an item before d in the first phase, then in order for
a1 to get o in the second phase, d must be chosen by another
agent. Clearly d cannot be chosen by an+1 before a1 gets o,
because d is the bottom item by an+1, which means that the
only possibility for an+1 to get d is that an+1 is the last agent
in π′. If d is chosen by aj with j ≤ n, then because d, o are
the bottom two items by aj , the last two agents in π′ must be
aj Ba1 . Therefore, when an+1 chooses an item in the second
phase, o is still available, which means that an+1 gets o in π′,
a contradiction to the assumption that an+1 does not get her
top-2 items.

• If a1 gets o in the first phase, then it means that another agent
must get d in the first phase, which is impossible because all
other agents rank d within their bottom two positions, which
means that the earliest round that any of them can get d is 2n+
1.

Let π denote the order overA that is obtained from the first phase
of π′ by removing an+1, and them moving all agents who get an
item in D after a1. We claim that π is a solution to (A, I, P, a1, o),
because when it is a1’s round all items before o must be chosen
and o has not been chosen (if another agent gets o before a1 in π
then the same agent must get an item in D in the first phase of π′,
which contradicts the construction of π). This proves the co-NP-
completeness of the allocation problems mentioned in the theorem.
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Proof of Theorem 14
Proof. We give agent a1 the first turns in each round. He is guar-
anteed to get s1. We now construct a bipartite graph G = ((A \
{a1}) ∪ (I \ {s1}), E) in which each {i, o} ∈ E iff o is strictly
more preferred for i than s2. We check whether G admits a per-
fect matching. If G does not admit a perfect matching, we return
no. Otherwise, there exists a recursively balanced policy for which
agent a1 gets s1 and s2.

Claim 9. G admits a perfect matching if and only if there a recur-
sively balanced policy for which a1 gets {s1, s2}.

Proof. If G admits a perfect matching, then each agent in A \ {a1}
can get a more preferred item than s2 in the first round. If this partic-
ular allocation is not Pareto optimal for agents in A \ {a1} for items
among I \ {s1}, we can easily compute a Pareto optimal Pareto im-
provement over this allocation by implementing trading cycles as in
setting of house allocation with existing tenants. This takes at most
O(n3). Hence, we can compute an allocation in which each agent in
A \ {a1} gets a strictly more preferred item than s2 and this alloca-
tion for agents in A \ {a1} is Pareto optimal. Since the allocation is
Pareto optimal, we can easily build up a policy which achieves this
Pareto optimal allocation via the characterization of Brams. In the
second round, a1 gets s2 and then subsequently we don’t care who
gets what because agent a1 has already got s1 and s2.

IfG does not admit a perfect matching, then there is no allocation
in which each agent in A \ {a1} get a strictly better item than s2 in
I \ {s1}. Hence in each policy in the first round, some agent in
A \ {a1} will get s2.

Proof of Theorem 15
Proof. Membership in NP is obvious. We prove that top-k POSSI-
BLESET for k = 3 is NP-hard by a reduction from POSSIBLEITEM
for k = 1, which is NP-complete [Saban and Sethuraman, 2013].
Hardness for other k’s can be proved similarly by constructing pref-
erences so that the distinguished agent always get her top k − 2
items. Let (A, I, P, a1, o) denote an instance of POSSIBLEITEM
for k = 1, where A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I ,
P = (P1, . . . , Pn) is the preference profile of the n agents, and we
are asked wether it is possible for agent a1 to get item o in some
sequential allocation. Given (A, I, P, a1, o), we construct the fol-
lowing POSSIBLESET instance.

Agents: A′ = A ∪ {an+1} ∪ {d1, . . . , dn−1}.
Items: I ′ = I ∪ {c1, c2, c3} ∪D ∪ E ∪ F , where |D| = |E| =

n− 1 and |F | = 3n− 1. We have |I ′| = 6n.
Preferences:
• The preferences of a1 is [P1 � others � c1 � c2 � c3].
• For any 2 ≤ j ≤ n, the preferences of aj is obtained from

[Pj � others � c1 � c2 � c3 � E] by switching o and E.

• The preferences for an+1 is [c1 � c2 � c3 � others].

• For all j ≤ n−1, the preferences for dj is [D � ((I−{o})∪
E) � c3 � c2 � c1 � others].

We are asked whether agent an+1 can get items {c1, c2, c3},
which are her top-3 items.

If (A, I, P, a1, o) has a solution π, we show that the top-3
POSSIBLESET instance is a “Yes” instance by considering π′ =
an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸

Phase 1

B an+1 B d1 B · · ·B dn−1 BA︸ ︷︷ ︸
Phase 2

B

an+1 B others︸ ︷︷ ︸
Phase 3

. In the first phase an+1 gets c1; dj’s get D a1 gets

o and other agents in A get n − 1 items in (I − {o}) ∪ E. In the
second phase an+1 gets c2; dj’s get the remaining n − 1 items in
(I − {o}) ∪ E; agents in A get n items in F . In the third phase
an+1 gets c3.

Suppose the top-3 POSSIBLESET instance is a “Yes” instance and
agent an+1 gets {c1, c2, c3} in a recursively balanced policy π′. Let
π denote the order over which agents a1 through n choose items
in the first phase of π′. We obtain another order π∗ over A from
π by moving all agents who choose an item in D after agent a1
without changing the order of other agents. We claim that π∗ is a
solution to (A, I, P, a1, o). For the sake of contradiction suppose
π∗ is not a solution to (A, I, P, a1, o). It follows that in the first
phase of π′ agent a1 gets an item she ranks higher than o, because
no other agents can get o. This means that in the first phase n items
in (I−{o})∪E are chosen byA. We note that in the first phase dj’s
must chose items inD. Then in the second phase at least one dj will
choose {c3}, because there are n−1 of them and only 2(n−1)−n =
n − 2 items available before {c3}. This contradicts the assumption
that an+1 gets c3.

Proof of Theorem 16
Proof. We prove that an assignment M is the outcome of all strict
alternating policies iff in each round, each agent has a unique most
preferred item from among the unallocated items from the previous
round. If in each round, each agent gets the most preferred item from
among the unallocated items from the previous round, the order does
not matter in any round. Hence all alternating policies result in M .

Now assume that it is not the case that in each round, each agent
gets the most preferred item from among the unallocated items from
the previous round. Then, there exist at least two agent who have the
same most preferred item from among the remaining items. There-
fore, a different relative order among such agents results in different
allocations which means that M is not the unique outcome of all
strict alternating policies.

Proof of Theorem 18
Proof. Membership in NP is obvious. We prove that top-k POS-
SIBLESET for k = 3 is NP-hard by a reduction from POSSI-
BLEITEM for k = 1, which is NP-complete [Saban and Sethura-
man, 2013]. The reduction is similar to the proof of Theorem 15.
Hardness for other k’s can be proved similarly by constructing pref-
erences so that the distinguished agent always get her top k − 2
items. Let (A, I, P, a1, o) denote an instance of POSSIBLEITEM
for k = 1, where A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I ,
P = (P1, . . . , Pn) is the preference profile of the n agents, and we
are asked wether it is possible for agent a1 to get item o in some
sequential allocation. Given (A, I, P, a1, o), we construct the fol-
lowing POSSIBLESET instance.

Agents: A′ = A ∪ {an+1} ∪ {d1, . . . , dn−1}.
Items: I ′ = I ∪ {c1, c2, c3} ∪D ∪ E ∪ F , where |D| = |E| =

n− 1 and |F | = 3n− 1. We have |I ′| = 6n.
Preferences:
• The preferences of a1 is [P1 � others � c1 � c2 � c3].
• For any 2 ≤ j ≤ n, the preferences of aj is obtained from

[Pj � others � c1 � c2 � c3 � E] by switching o and E.

• The preferences for an+1 is [c1 � c2 � c3 � others].

• For all j ≤ n−1, the preferences for dj is [D � ((I−{o})∪
E) � c3 � c2 � c1 � others].

We are asked whether agent an+1 can get items {c1, c2, c3},
which are her top-3 items.

If (A, I, P, a1, o) has a solution π, we show that the top-3
POSSIBLESET instance is a “Yes” instance by considering π′ =
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an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 1

B an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 2

B

an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 3

. In the first phase an+1 gets c1, a1

gets o; other agents in A get n− 1 items in (I − {o}) ∪E; dj’s get
D. In the second phase an+1 gets c2; dj’s get the remaining n − 1
items in (I − {o}) ∪ E; agents in A get n items in F . In the third
phase an+1 gets c3.

Suppose the top-3 POSSIBLESET instance is a “Yes” instance and
agent an+1 gets {c1, c2, c3} in a strict alternation policy π′. Let
π denote the order over which agents a1 through n choose items
in the first phase of π′. We obtain another order π∗ over A from
π by moving all agents who choose an item in D after agent a1
without changing the order of other agents. We claim that π∗ is a
solution to (A, I, P, a1, o). For the sake of contradiction suppose
π∗ is not a solution to (A, I, P, a1, o). It follows that in the first
phase of π′ agent a1 gets an item she ranks higher than o, because
no other agents can get o. This means that in the first phase n items
in (I−{o})∪E are chosen byA. We note that in the first phase dj’s
must chose items inD. Then in the second phase at least one dj will
choose {c3}, because there are n−1 of them and only 2(n−1)−n =
n − 2 items available before {c3}. This contradicts the assumption
that an+1 gets c3.

Proof of Theorem 19
Proof Sketch. The proof is similar to the proof of Theorem 13.
Membership in coNP is obvious. By Lemma 1 it suffices to show
coNP-hardness for NECESSARYITEM and top-k NECESSARYSET.
We will prove the co-NP-hardness for them for k = 2 by the
same reduction from POSSIBLEITEM for k = 1, which is NP-
complete [Saban and Sethuraman, 2013]. The proof for other k ≥ 2
can be done similarly by constructing preferences so that the distin-
guished agent always get her top k − 2 items. Let (A, I, P, a1, o)
denote an instance of POSSIBLEITEM for k = 1, where A =
{a1, . . . , an}, I = {o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is
the preference profile of the n agents, and we are asked wether it is
possible for agent a1 to get item o by some strict alternation policy.
Given (A, I, P, a1, o), we construct the following necessary alloca-
tion instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c, d} ∪D, where |D| = n+ 1.
Preferences:
• The preferences of a1 is obtained from P1 by inserting d right

before o, and append the other items such that the bottom item
is c.

• For any 2 ≤ j ≤ n, the preferences of aj is obtained from Pj

by replacing o by D and then appending the remaining items
such that the bottom items are c � d � o.

• The preferences for an+1 is [c � o � others � d].
For NECESSARYITEM, we are asked whether agent an+1 always

get item o; for top-k NECESSARYSET, we are asked whether agent
an+1 always get {c, o}, which are her top-2 items.

Suppose the (A, I, P, a1, o) has a solution, denoted by π. We
claim that π′ = π B an+1︸ ︷︷ ︸

Phase 1

Bπ B an+1︸ ︷︷ ︸
Phase 2

is a “No” answer to the

NECESSARYITEM and top-k NECESSARYSET instance. Following
π′, in phase a1 gets d gets d and an+1 gets c. In phase 2 a1 gets
o, which means that an+1 does not get item o after all items are
allocated.

We next show that if NECESSARYITEM or top-k NECESSARY-
SET instance is a “No” instance, then the POSSIBLEITEM instance
is a “Yes” instance. We note that an+1 always get item c in the first

phase of any strict alternation policy. Let π′ denote a strict alterna-
tion policy where an+1 does not get o. If a1 does not get d in the
first phase, then following a similar argument in the proof of The-
orem 13, we have that an+1 gets o in the second phase, which is a
contradiction. Therefore, a1 must get d in the first phase.

Let π denote the order overA that is obtained from the first phase
of π′ by removing an+1, and them moving all agents who get an
item in D after a1. We claim that π is a solution to (A, I, P, a1, o),
because when it is a1’s round all items before o must be chosen
and o has not been chosen (if another agent gets o before a1 in π
then the same agent must get an item in D in the first phase of π′,
which contradicts the construction of π). This proves the co-NP-
completeness of the allocation problems mentioned in the theorem.

Proof of Theorem 21
Proof. Membership in NP and coNP are obvious. By Lemma 1, if
NECESSARYITEM is coNP-hard then NECESSARYSUBSET is coNP-
hard. We show the NP-hardness of top-k POSSIBLESET and coNP-
hardness of NECESSARYITEM by the same reduction from EXACT
3-COVER (X3C) for k = 2. Hardness for other k can be proved
similarly by constructing preferences so that the distinguished agent
always get her top k − 2 items. In an X3C instance (S, X), we are
given S = {S1, . . . , St} and X = {x1, . . . , xq}, such that q is a
multiple of 3 and for all j ≤ t, |Sj | = 3 and Sj ⊆ X; we are asked
whether there exists a subset of q/3 elements of S whose union is
exactly X .

Given an X3C instance (S, X), we construct the following
agents, items, and preferences.

Agents: A = {a}∪
⋃

j≤t Sj∪X∪C, whereC = {c1, . . . , cq/3}
and Sj = {Sj , S

j1
j , S

j2
j , S

j1
j } such that j ≤ t, j1, j2, j3 are the

indices of elements Sj . That is, Sj = {xj1 , xj2 , xj3}. We note that
|A| = 4t+ 4q/3 + 1.

Items: 8t + 8q/3 + 2 items are defined as follows. Let I =
{a, b, c} ∪

⋃
j≤t Sj ∪ D ∪ E ∪ F , where |D| = 8q/3, E = q/3,

and F = 4t − q/3 − 1. We note that |I| = 2|A|. For each i ≤ q,
we let Ki denote the sets in S that cover xi. That is, Ki = {S ∈ S :
xi ∈ S}.

Preferences are illustrated in Table 2.

Agent Preferences
a: a � b � c � others

∀j, Sj : Sj � a � D � b � others � c
∀j, s = 1, 2, 3, Sjs

j : Sj � Sjs
j � a � D � b � others � c

∀i, xi: Ki � b � others � c
∀k ≤ q/3, ck: a � S1 � . . . � St � E � others � c

Table 2: Agents’ preferences, whereKi = {S ∈ S : xi ∈ S}.

For top-2 POSSIBLESET, we are asked whether agent a can get
{a, b}. For NECESSARYITEM, we are asked whether agent a always
get item c.

If the X3C instance has a solution, w.l.o.g. {S1, . . . , Sq/3}, we
show that there exists a solution to the constructive control problem
and destructive control problem described above. For each j ≤ t,
we let Lj = Sj B Sj1

j B Sj2
j B Sj3

j . Let the order π over agents be
the following.

π = Lq/3+1 BLq/3+2 B · · ·BLt BX B aBC BL1 B · · ·BLq/3

The balanced alternation policy is thus π B inv(π), where inv(π) is
the inverse order of π. It is not hard to verify that in the first round
the allocation w.r.t. π is as follows:
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• for each j ≥ q/3 + 1, agent Sj gets item Sj and agent Sjs
j

gets item Sjs
j ;

• for each i ≤ q, agent xi get Si
j for the (only) j ≤ q/3 such

that xi ∈ Sj ;

• agent a gets item a;

• for each k ≤ q/3, agent ck gets item Sk;

• for each j ≤ q/3 and s = 1, 2, 3, agent Sj gets an item in D
and agent Sjs

j gets an item in D.

In the second round, the allocation w.r.t. inv(π) is as follows:

• for each j ≤ q/3 and s = 1, 2, 3, agent Sj gets an item in D
and agent Sjs

j gets an item in D; all items in D (|D| = 8q/3)
are allocated;

• for each k ≤ q/3, agent ck gets an item in E; all items in E
are allocated (|E| = q/3).

• agent a gets item b;

• other agents get the remaining items.

Specifically, agent a gets {a, b}.
Now suppose the constructive control has a solution, namely

there exists an order π over A such that in the sequential allocation
w.r.t. π B inv(π) agent a gets {a, b}. We next show that the X3C
instance has a solution. For convenience, we divide the sequential
allocation of π B inv(π) into three stages:

• Stage 1: turns before agent a’s first turn, where each agent
ranked before agent a in π chooses an item;

• Stage 2: turns between agent a’s first turn and agent a’s second
turn, where each agent ranked after agent a in π chooses two
items;

• Stage 3: turns after agent a’s second turn, where each agent
ranked before agent a in π chooses an item.

Claim 10. Agents in C must be after agent a in π, and they get at
least q/3 items in S.

Proof. Because any agent in C ranks item a at their top, all of them
must be after agent a in π. We note that |C| = q/3, |E| = q/3, and
each agent in C will choose two items before agent a’s second turn.
Therefore, agents in C must get at least q/3 items in S, otherwise
one of them will choose b, which contradicts the assumption that
agent a gets b.

W.l.o.g. let {S1, . . . , Sq′} (for some q′ ≥ q/3) be the items in S that
are chosen by agents in C.

Claim 11. q′ = q/3. For all j ≤ q/3, agents in Sj are ranked after
agent a in π, and for all j ≥ q/3+1, agents in Sj are ranked before
agent a in π.

Proof. Let K =
⋃

j≤t Sj ∪ D denote the set of 4t + 8q/3 items.
The crucial observation is that for any agent s ∈

⋃
j≤t Sj , if s is

ranked before a in π, then in the sequential allocation she will get
at least one item in K, because she picks an item in K in Stage 1,
and maybe another item inK in Stage 3; and if s is ranked after a in
π, then in the sequential allocation she will get exactly two items in
K in Stage 2. Moreover, each agent in X must get at least one item
in K and agents in C must get at least q/3 items in K. Therefore,
agents in

⋃
j≤t Sj get no more than 4t+ 4q/3 items in K. Because

|
⋃

j≤t Sj | = 4t, at most 4q/3 of these agents are ranked after a in
π.

On the other hand, for all j ≤ q′, agents in Sj must be ranked
after all agents in C in π, otherwise some item Sj would have been

allocated to an agent in Sj (because all of them rank item Sj at the
top). By Claim 10 all agents in C must be ranked after agent a in
π, which means that for all j ≤ q′, all agents in Sj are ranked after
agent a in π. Because q′ ≥ q/3, we must have that q′ = q/3 and
for all j ≤ q/3, agents in Sj are ranked after agent a in π, and for
all j ≥ q/3 + 1, agents in Sj are ranked before agent a in π.

Finally, we are ready to show that {S1, . . . , Sq/3} is an exact
cover of X . For the sake of contradiction suppose xi is not covered.
Let Si

j (with j > q/3) denote an item that agent xi gets in the
sequential allocation. Because agents in Sj are before a in π, it
follows that agent Si

j must get item Sj (because her top-ranked items
are Sj , S

i
j , a). However, in this case agent Sj must be allocated

item a, which contradicts the assumption that agent a gets item a.
Therefore, {S1, . . . , Sq/3} is an exact cover of X . This proves the
top-2 POSSIBLESET is NP-complete.

We note that item c is the most undesirable item for all agents
except agent a, which means that agent a gets item c if and only if
she does not get item a and b. This proves that the NECESSARYITEM
is coNP-complete.

Proof of Theorem 22
Proof. Membership in coNP is obvious. We prove that top-k NEC-
ESSARYSET for k = 2 is coNP-hard by a reduction from POSSI-
BLEITEM for k = 1, which is NP-complete [Saban and Sethura-
man, 2013]. Hardness for other k’s can be proved similarly by con-
structing preferences so that the distinguished agent always get her
top k − 2 items. Let (A, I, P, a1, o) denote an instance of pos-
sible allocation problem for k = 1, where A = {a1, . . . , an},
I = {o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn), and we are asked
wether it is possible for agent a1 to get item o in some sequential
allocation. Given (A, I, P, a1, o), we construct the following top-2
NECESSARYSET instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c1, c2} ∪D, where |D| = n. We have |I ′| =

2n+ 2.
Preferences:
• The preferences of a1 is obtained from P1 by inserting c2 right

after o, and then append D � c1.

• For any j ≤ n, the preferences of aj is obtained from [Pj �
D � c2 � c1] by switching o and D.

• The preferences for an+1 is [c1 � c2 � others � o].
We are asked whether agent an+1 always gets items {c1, c2},

which are her top-2 items.
If (A, I, P, a1, o) has a solution π, we show that the top-2

NECESSARYSET instance is a “No” instance by considering π′ =
an+1 B π B π B an+1. In the first phase of π′, an+1 gets c1 and a1
gets o. In the third phase a1 gets c2.

Suppose the top-2 NECESSARYSET instance is a “No” instance
and agent an+1 does not get {c1, c2} in an balanced alternation pol-
icy π′. It is easy to see that an+1 must get c1 in the first phase.
Suppose a1 does not get o in the first phase, then in the beginning
of the second phase both o and c2 are still available. In this case
an+1 must get c2, because clearly none of a2 through an can get
c2, which means that a1 must get c2 in the second phase. However,
this means that o must be chosen by another agent before, which
is impossible since it is ranked in the bottom position after c1 and
c2 are removed by all other agents. Let π∗ denote a linear order
over A obtained from the restriction of the first phase of π′ on A by
moving all agents who choose an item in D after agent a1 without
changing other orders. It is not hard to see that π∗ is a solution to
(A, I, P, a1, o).
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Ágnes Cseh∗
Institute for Mathematics, TU Berlin

cseh@math.tu-berlin.de

Brian C. Dean†
School of Computing, Clemson University

bcdean@clemson.edu

February 3, 2015

Abstract

The stable allocation problem is a many-to-many generalization of the well-known stable
marriage problem, where we seek a bipartite assignment between, say, jobs (of varying sizes)
and machines (of varying capacities) that is “stable” based on a set of underlying preference
lists submitted by the jobs and machines. Building on the initial work of [5], we study
a natural “unsplittable” variant of this problem, where each assigned job must be fully
assigned to a single machine. Such unsplittable bipartite assignment problems generally tend
to be NP-hard, including previously-proposed variants of the unsplittable stable allocation
problem [12]. Our main result is to show that under an alternative model of stability, the
unsplittable stable allocation problem becomes solvable in polynomial time; although this
model is less likely to admit feasible solutions than the model proposed in [12], we show that
in the event there is no feasible solution, our approach computes a solution of minimal total
congestion (overfilling of all machines collectively beyond their capacities). We also describe
a technique for rounding the solution of a stable allocation problem to produce “relaxed”
unsplit solutions that are only mildly infeasible, where each machine is overcongested by at
most a single job.

1 Introduction

Consider a bipartite assignment problem over a graph G = (V = J ∪ M, E) involving the
assignment of a set of jobs J to a set of machines M . Each job j ∈ J has a processing time
q(j), each machine m ∈ M has a capacity q(m), and there is a capacity c(jm) for each edge
jm ∈ E governing the maximum amount of job j that can be assigned to machine m. A feasible
allocation of jobs to machines is described by a function x : E → R≥0 such that

1. 0 ≤ x(jm) ≤ c(jm) for all edges jm ∈ E,

2. x(j) :=
∑

m∈M x(jm) ≤ q(j) for all jobs j ∈ J , and

3. x(m) :=
∑

j∈J x(jm) ≤ q(m) for all machines m ∈M .

If x(jm) ∈ {0, q(j)} for all jm ∈ E, we say the allocation is unsplit, since each assigned job is
assigned in its entirety to a single machine. We often forgo the use of edge capacities c(jm)
when discussing unsplit allocations, since an edge jm can simply be deleted if c(jm) < q(j).
∗Supported by the Deutsche Telekom Stiftung and the Deutsche Forschungsgemeinschaft within the research

training group ‘Methods for Discrete Structures’ (GRK 1408).
†Supported by USA National Science Foundation CAREER Award CCF-0845593.
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Problems of the form above have been extensively studied in the algorithmic literature, where
typical objectives are to find a feasible assignment or one of maximum weight (maximizing a
linear objective function

∑
jm∈E w(jm)x(jm), with w(jm) being the weight of edge jm). While

the fractional (splittable) variants of these problems are easy to solve in polynomial time via
network flow techniques, it is NP-hard to find an unsplit allocation of either maximum total
size |x| =

∑
jm∈E x(jm) or of maximum weight; the former is a variant of the multiple subset

sum problem [3], and the latter is known as the multiple knapsack problem [4].

In contrast to problems with explicit edge costs, the stable allocation problem is an “ordinal”
problem variant where the quality of an allocation is expressed in a more game theoretic setting
via ranked preference lists submitted by the jobs and machines, with respect to which we seek
an assignment that is stable (defined shortly). In this paper, we study the stable allocation
problem in the unsplittable setting, which was shown to be NP-hard in [12] using one natural
definition for stability. We show here that by contrast, a different and more strict notion of
stability, proposed initially in [5], leads to an O(|E|) algorithm for the unsplit problem. The
tradeoff is that under this different notion of stability, it is unlikely that feasible allocations will
exist. However, we show that by relaxing the problem to allow mildly infeasible allocations, our
algorithm computes a “relaxed” unsplit stable allocation (in which each machine is filled beyond
its capacity by at most the allocation of a single job) in which the total amount of overcongestion
across all machines,

∑
m∈M max (0, x(m)− q(m)), is minimized (so in particular, if there is a

feasible allocation with no congestion, we will find it).

Through the work of several former authors [7, 16, 15], the “relaxed” model has become rela-
tively popular in the context of unsplittable bipartite assignment and unsplittable flow problems.
The standard approximation algorithm framework (finding an approximately-optimal, feasible
solution) typically does not fit these problems, since finding any feasible solution is typically
NP-hard. Instead, authors tend to focus on pseudo-approximation results with minimal con-
gestion per machine or per edge. Analogous results were previously developed for unsplit stable
allocation problems in [5], where an unsplit stable allocation can be found in linear time in which
each machine is overcongested by at most a single job. The model of stability proposed in [5]
is the one we further develop in this paper, and among all of these prior approaches (including
those for standard unsplittable bipartite assignment and flows), it seems to be the only unsplit
model studied to date in which minimization of total congestion is possible in polynomial time.
Hence, there is a substantial algorithmic incentive to consider this model, even though its notion
of stability is less natural than in [12].

The classical stable marriage problem, perhaps the simplest relative of our problem in the
domain of ordinal matching, is known to satisfy a number of remarkable mathematical prop-
erties. For example, one can always find stable solutions that are “left-hand-side optimal” or
“right-hand-side optimal”, and the exact same subset of left-hand side and right-hand side ele-
ments are matched in every stable solution (the so-called “rural hospital” theorem, named after
applications involving the assignment of medical residents to hospitals). We show natural gen-
eralizations of all of these structural properties in our relaxed unsplit stable allocation setting
(further justifying the utility of this model from a mathematical perspective). For example
we show how to compute in O(|E|) time a “job-optimal” allocation that maximizes the total
size |x| of all assigned jobs, and a “machine-optimal” allocation that minimizes |x|. It is this
machine-optimal solution that we show also minimizes total congestion. In order to produce
potentially other solutions (e.g., that might be more fair to both sides), we show also a technique
for “rounding” a solution of the fractional stable allocation problem to obtain a relaxed unsplit
solution.
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2 Background and Preliminaries

2.1 Stable Matching and Allocation Problems

Stable Marriage. The stable marriage (or stable matching) problem takes place on a bipartite
graph with men on one side and women on the other, where each individual submits a strictly-
ordered, but possibly incomplete preference list of the members of the opposite sex. The goal
is to find a matching that is stable, containing no blocking pair – an unmatched (man, woman)
pair (m, w) where m is either unmatched or prefers w to his current partner, and likewise for w.

In their seminal paper [9], Gale and Shapley describe a simple O(|E|) algorithm to find a stable
matching for any instance. The most typical incarnation of their algorithm generates a solution
that is “man-optimal” and “woman-pessimal”, where each man is matched with the best possible
partner he could receive in any stable matching, and each woman is matched with the worst
possible partner she could receive in any stable matching. By reversing the roles of the men
and women, the algorithm can also generate a solution that is simultaneously woman-optimal
and man-pessimal.

Stable Allocation. The stable allocation problem was introduced by Bäıou and Balinski [1] as
a high-multiplicity variant of the stable matching problem, where we match non-unit elements
with non-unit elements – here, we speak of matching jobs of varying size with machines of varying
capacity. Just as before, jobs and machines submit strict preferences over their outgoing edges
in the bipartite assignment graph. If job j ∈ J prefers machine m1 ∈ M to machine m2 ∈ M ,
we write rankj(jm1) > rankj(jm2). A stable allocation in this setting is a feasible allocation
(as defined in the introduction) where for every edge jm ∈ E with x(jm) < c(jm), either j is
fully assigned to machines at least as good as m, or m is fully assigned to jobs at least as good
as j. That is, there can be no blocking edge jm where x(jm) < c(jm) and both j and m would
prefer to use more of jm. We say that edges with positive x value are in x. If any machine
m has q(m) >

∑
j∈J c(jm), then q(m) is set to

∑
j∈J c(jm). Machines with x(m) = q(m) are

saturated. Later, when x(m) > q(m) occurs in the relaxed version of the problem, we talk
about over-capacitated machines. If any job prefers machine m to any of its allocated machines,
then m is called popular, otherwise m is unpopular. Note that all popular machines must be
saturated in any stable allocation.

The stable allocation problem can be solved in O(|E| log |V |) time [6]. There can be many
different solutions for the same instance, but they all have the same total allocation |x|, and
even stronger, the values of x(j) and x(m) for each job and machine remain unchanged across all
stable allocations. This holds for both stable marriage [10] and stable allocation [1], moreover,
even for stable roommate [11], the non-bipartite version of the problem, and is known as the
rural hospital theorem. A common application of stable matching in practice is the National
Resident Matching Program (NRMP) [14], where medical school graduates in the USA are
matched with residency positions at hospitals via a centralized stable matching procedure. A
consequence of the rural hospital theorem is that if a less-preferred (typically rural) hospital
cannot fill its quota in some stable assignment, then there is no stable assignment in which its
quota will be filled.

Like the stable marriage problem, one can always find job-optimal, machine-pessimal and job-
pessimal, machine-optimal solutions. To define these notions for the stable allocation problem,
Bäıou and Balinski [1] define an order on stable solutions based on a min-min criterion, where a
job j prefers allocation x1 to allocation x2 if x1(jm) < x2(jm) implies x1(jm′) = 0 for every jm′

worse than jm for j. A similar relation can be defined for machines as well. Stable matchings
and stable allocations both are known to form distributive lattices with an ordering relation
based on the min-min criterion.
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2.2 Unsplittable Stable Allocation Problems

An unsplit allocation x satisfies x(jm) ∈ {0, q(j)} for all jm ∈ E, so each assigned job is
assigned in its entirety to one machine. For simplicity, we introduce a “dummy” machine md

with high capacity, which acts as the last choice for every job. This lets us assume without
loss of generality that an unsplittable allocation always exists in which every job is assigned. In
this context, we define the size |x| of an allocation so that jobs assigned to md do not count,
since they are in reality unassigned. In addition to the application of scheduling jobs in a
non-preemptive fashion, a motivating application for the unsplittable stable allocation problem
is in assigning personnel with “two-body” constraints. For example, in the NRMP, a married
pair of medical school graduates might act as an unsplittable entity of size 2 (this particular
application has been studied in substantial detail in the literature; see [2] for further reference).

From an algorithmic standpoint, one of the main results of this paper is that how we define
stability in the unsplit case seems quite important. In [12], the following natural definition was
proposed: an edge jm is blocking if j prefers m to its current partner, and if m prefers j over
q(j) units of its current allocation or unassigned quota. Unfortunately, it was shown in [12] that
this definition makes the computation of an unsplit stable allocation NP-hard. We therefore
consider an alternative, stricter notion of stability where edge jm is blocking if j prefers m to
its current partner, and if m prefers j over any amount of its current allocation or has free
quota. That is, if j would prefer to be assigned to m over its current partner, than m must be
saturated with jobs that m prefers to j. Aside of the integrity constraint, this definition is fully
aligned with the classical definition of a stable allocation. As in the splittable case, popular
machines must therefore be saturated. Practice shows [13] that if a hospital is willing to hire
one person in a couple, but it has no free job opening for the partner, it is most likely amenable
to make room for both applicants. Therefore, our definition of a blocking pair serves practical
purposes.

Relaxed Unsplit Allocations. The downside of our alternative definition of stability is that it
is unlikely to allow feasible unsplit stable allocations to exist in most large instances. Therefore,
we consider allowing mildly-infeasible solutions where each machine can be over-capacitated by
a single job – a model popularized by previous results in the approximation algorithm literature
for standard unsplittable assignment problems [7, 16, 15], and introduced in the context of
unsplittable stable allocation by Dean et al. [5]. Specifically, we say that x : E → R≥0 is a
relaxed unsplit allocation if x(jm) ∈ {0, q(j)} for every edge jm ∈ E, x(j) ≤ q(j) for every job
j ∈ J , and for each machine m, the removal of the least-preferred job assigned to m would cause
x(m) < q(m)1. Our definition of stability extends readily to the relaxed setting, and we would
argue that it is perhaps the most natural mathematical notion of stability to consider in this
setting (whereas the form of stability in [12] is probably the most natural for the hard capacity
setting). We say a relaxed unsplit allocation x is stable if for every edge jm with x(jm) = 0,
either j is assigned to a machine that j prefers to m, or m’s quota is filled or exceeded with
jobs that m prefers to j. Otherwise, if edge jm with x(jm) = 0 is preferred by j to its allocated
machine and m’s quota is not filled up with better edges than jm, then jm blocks x.

Note that the relaxed unsplit model differs from the non-relaxed unsplit model with capacities
inflated by max q(j), since stability is still defined with respect to original capacities. It may
be best to regard “capacities” here as constraints governing start time, rather than completion
time of jobs. A machine below its capacity is always willing to launch a new job, irrespective
of job size.

1The model introduced in [5] allows x(m) ≤ q(m), but we believe strict inequality is actually a better choice –
mathematically and from a modeling perspective. For example, the old definition applied to a hospital-resident
matching scenario with married couples might cause a hospital to accept two more residents than its quota, while
the new definition would only require accepting one more resident. The results in [5] hold with either definition.
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Figure 1: The upper-left instance admits two relaxed unsplit allocations differing in cardinality:
The dashed edges form a stable allocation of size 3, while the remaining edges build another stable
allocation of size 5. The lower-left example is evidence against an exact rural hospital theorem,
where m1 is empty in one relaxed unsplit stable allocation (given by the dashed edges) but filled
beyond its capacity in another (given by the solid edges). The graph in the middle shows two
relaxed unsplit allocations that are incomparable from the perspective of m3. The last instance is a
counterexample showing the difficulty of formulating join and meet operations.

3 Machine-Optimal Relaxed Unsplit Allocations

In [5], a version of the Gale-Shapley algorithm is described to find the job-optimal relaxed
unsplit stable allocation xjopt. In this context, job-optimal means that there is no relaxed
unsplit stable allocation x′ such that any job is assigned to a better machine in x′ than in xjopt.
The implementation described in [5] runs in O(|E||V | log |V |) time, but O(|E|) is also easy to
achieve. In this section, we show how to define and compute a machine-optimal relaxed unsplit
stable allocation xmopt also in O(|E|) time, and we prove the following:

Theorem 1. Among all relaxed unsplit stable allocations x, |x| is maximized at x = xjopt and
minimized at x = xmopt.

One of the main challenges with computing a machine-optimal allocation is defining machine-
optimality. In the stable allocation problem, existence of a machine-optimal allocation follows
from the fact that all stable allocations form a distributive lattice under the standard min-min
ordering relationship introduced in [1]. However, this ordering seems to depend crucially on the
existence of a rural hospital theorem, which no longer holds in the relaxed unsplit case, since
relaxed unsplit stable allocations may differ in cardinality (Figure 1). Even an appropriately
relaxed version of the rural hospital theorem seems difficult to formulate over relaxed instances:
machines can be saturated or even over-capacitated in one relaxed unsplit stable allocation,
while being empty in another one (Figure 1). Nonetheless, we can still prove a result in the
spirit of the rural hospital theorem, which we discuss further in Section 3.3.

Without an “exact” rural hospital theorem, comparing two allocations using the original min-

34



1: x(jmd) := q(j) for all j ∈ J , x(jm) := 0 for every other jm ∈ E
2: while ∃m : x(m) < q(m) with a non-empty preference list do
3: m proposes to its best job j with value q(j)
4: if j prefers m to its current partner then
5: x(jm) := q(j)
6: x(jm′) := 0 for ∀m′ 6= m
7: end if
8: delete j from m’s preference list
9: end while

Figure 2: Reversed relaxed unsplit Gale-Shapley algorithm.

min ordering seems problematic, and indeed one can construct instances where two relaxed
unsplit stable allocations are incomparable according to this criterion (Figure 1). We therefore
adopt a different but nonetheless natural ordering relation: lexicographical order. We say that
machine m prefers unsplit allocation x1 to allocation x2 if the best edge in x14x2 belongs to x1,
where 4 denotes the symmetric difference operation. The opposite ordering relation is based
on the position of jobs, and since jobs are always assigned to machines in an unsplit fashion, the
lexicographic and min-min relations are actually the same from the job’s perspectives; hence,
“job optimal” means the same thing under both. The lexicographical position of the same
agent in different allocations can always be compared, and we say a relaxed stable allocation x
is machine-optimal if it is at least as good for all machines as any other relaxed stable allocation
(although we still need to show that such a allocation always exists).

3.1 The Reversed Gale-Shapley Algorithm

For the classical stable marriage problem, the Gale-Shapley algorithm can be reversed easily,
with women proposing instead of men, to obtain a woman-optimal solution. We show that this
idea can be generalized (carefully accounting for multiple assignment and congestion among
machines) to compute a machine-optimal relaxed unsplit stable allocation. Pseudocode for the
algorithm appears in Figure 2.

Claim 2. The algorithm terminates in O(|E|) time.

Proof. In each step, a job is deleted from a machine’s preference list.

Claim 3. The algorithm produces an allocation x that is a relaxed unsplit stable allocation.

Proof. First, we check the three feasibility constraints for x. Since proposals are always made
with q(j) and refusals are always full rejections, the quota constraints of the jobs may not
be violated. Moreover, each job is assigned to exactly one machine. Machines can be over-
capacitated, but deleting the worst job from their preference list results in an allocation under
their quota. Otherwise the machine would not have proposed along the last edge. If x is
unstable, then there is an empty edge jm blocking x. During the execution, m must have
proposed to j. This offer was rejected, because j already had a better partner in the current
allocation. Since jobs monotonically improve their position in the allocation, this leads to a
contradiction.

Claim 4. The output x is the machine-optimal relaxed unsplit stable allocation (i.e., no machine
has a better lexicographical position in any other relaxed unsplit stable allocation).
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Proof. Assume that there is a relaxed unsplit stable allocation x′, where some machines come
better off than in x. To be more precise, in the symmetric difference x4x′, the best edge
incident to these machines belongs to x′. When running the reversed relaxed unsplit Gale-
Shapley algorithm, there is a step when the first such edge jm1 carries a proposal from m1
but gets rejected. Otherwise, m1 filled up or exceeded its quota in x with only better edges
than jm1. Let us consider only this edge first and denote the feasible, but possibly unstable
relaxed allocation produced by the algorithm so far by x0.

When j refused jm1, it already had a partner m0 in x0, better than m1. Even if there is
no guarantee that jm0 ∈ x, it is sure that jm0 /∈ x′ and jm0 does not block x′, though
rankj(jm0) > rankj(jm1) for jm1 ∈ x′. It is only possible if m0 is saturated or over-capacitated
in x′ with edges better than jm0. Since jm0 ∈ x0, x0 may not contain all of these edges,
otherwise m0 is congested in x0 beyond the level required for a relaxed unsplit allocation.
During the execution of the reversed relaxed unsplit Gale-Shapley algorithm, m0 proposed
along all of these edges and got rejected by at least one of them. This edge is never considered
again, it may not enter x later. Thus, jm1 is not the first edge in x′ \x that was rejected in the
algorithm.

With this, we completed the constructive proof of the following theorem:

Theorem 5. The machine-optimal relaxed unsplit stable allocation xmopt can be computed in
O(|E|) time.

3.2 Properties of the Job- and Machine-Optimal Solutions

Theorem 6. The job-optimal relaxed unsplit stable allocation xjopt is the machine-pessimal
relaxed unsplit stable allocation and vice versa, the machine-optimal relaxed unsplit stable allo-
cation xmopt is the job-pessimal relaxed unsplit stable allocation.

Proof. We start with the first statement. Suppose that there is a relaxed unsplit stable allocation
x′ that is worse for some machine m than xjopt. This is only possible if m’s best edge jm in
xjopt4x′ belongs to xjopt. Since xjopt is the job-optimal solution, jm′, j’s edge in x′ is worse
than jm. But then, m is saturated or over-capacitated in x′ with better edges than jm. We
assumed that all edges in x′ that are better than jm are also in xjopt. Thus, omitting m’s worst
job from xjopt leaves m at or over its quota.

The second half of the theorem can be proved similarly, using the reversed Gale-Shapley algo-
rithm. Assume that there is a relaxed unsplit stable allocation x′ that assigns some jobs to worse
machines than xmopt does. Let us denote the set of edges preferred by any job to its allocated
machine in x′ by E′. Due to our indirect assumption, E′ contains some edges of xmopt. When
running the reversed Gale-Shapley algorithm on the instance, there is an edge jm ∈ E′ that is
the first edge in E′ carrying a proposal. Since j is not yet matched to a better machine, it also
accepts this offer. Even if jm /∈ xmopt, j’s edge in xmopt is at least as good as m, because jobs
always improve their position during the course of the reversed Gale-Shapley algorithm. On
the other hand, m cannot fulfill its quota in xmopt with better edges than jm, simply because
the proposal step along jm took place.

Since jm /∈ x′, but j prefers jm to its edge in x′, m is saturated or over-capacitated with better
edges than jm in x′. As observed above, not all of these edges belong to xmopt. Let us denote
one of them in x′ \ xmopt by j′m. Before proposing along jm, m submitted an offer to j′ that
has been refused. The only reason for such a refusal is that j′ has already been matched to a
better machine m′. But since j′m ∈ x′, j′m′ ∈ E′. This contradicts to our indirect assumption
that jm is the first edge in E′ that carries a proposal.
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Theorem 1 also follows from the proof above.

We note that although we can compute the job-optimal and machine-optimal relaxed unsplit
stable allocations, there in general does not appear to be an obvious underlying lattice structure
behind relaxed unsplit solutions. For stable matching or fractional stable allocation, computing
the meet or join of two solutions is fairly easy. In order to reach the join (meet) of x1 and x2,
all machines (jobs) choose the better edge set out of those two allocations [8]. The example
in Figure 1 illustrates that this property does not carry over to relaxed unsplit allocations. If
all jobs chose the better allocation, m3 remains empty and j7m3 becomes blocking. Similar
examples can easily be constructed to show that choosing the worse allocation also can lead to
instability.

Our ability to compute xmopt in O(|E|) time now gives us a linear-time method for solving
the (non-relaxed) unsplittable stable allocation problem (according to our, stricter notion of
stability).

Lemma 7. If an instance I admits an unsplit stable assignment x, then the machine-optimal
relaxed unsplit stable assignment xmopt on the corresponding relaxed instance I ′ is also an unsplit
stable assignment on I.

Proof. Suppose the statement is false, e.g. although there is an unsplit stable assignment x, xmopt
is no unsplit stable assignment on I. This can be due to two reasons: either the feasibility or
the stability of xmopt is harmed on I. The latter case is easier to handle. An allocation that is
feasible on both instances and stable on I ′ may not be blocked by any edge on I, since the set
of unsaturated edges is identical on both instances. The second case, namely if xmopt violates
some feasibility constraint on I, needs more care.

I and I ′ differ only in the constraints on the quota of machines. If xmopt is infeasible on I, then
there is a machine m for which xmopt(m1) > q(m1). Regarding the unsplit stable assignment x,
the inequality x(m1) ≤ q(m1) trivially holds. Now we use Theorem 1 for x and xmopt that are
both relaxed unsplit stable assignments on I ′. This corollary implies that if there is a machine
m1 with xmopt(m1) > x(m1), then another machine m2 exists for which xmopt(m2) < x(m2)
holds.

This machine m2 plays a crucial role in our proof. It has a lower allocation value in the machine-
optimal relaxed solution xmopt than in another relaxed stable solution x on I. Its lexicographical
position can only be better in xmopt than in x if the best edge j2m2 in x4xmopt belongs to xmopt.
Moreover, x4xmopt also contains an edge j3m2 ∈ x, otherwise xmopt(m2) > x(m2). Naturally,
rankm(j2m2) < rankm(j3m2). At this point, we use the property that xmopt(m2) < q(m2). Since
m2 has free quota in xmopt and j3m2 is not a blocking edge, j3 must be matched to a machine
better than m2 in xmopt. Thus, there is a job that comes better off in the machine-optimal
(and job-pessimal) relaxed solution than in another relaxed stable solution. This contradiction
to Theorem 6 finishes our proof.

Lemma 7 shows that if there is an unsplit solution, it can be found in linear time by computing
the machine-optimal relaxed solution. Unfortunately, the existence of such an unsplit assign-
ment is not guaranteed. Our next result applies to the case when no feasible unsplit solution
can be found. In terms of congestion, with the machine-optimal solution we come as close as
possible to feasibility.

Theorem 8. Amongst all relaxed unsplit stable solutions, xmopt has the lowest total congestion.

Proof. Let Mu denote the set of machines that remain under their quota in xmopt. Note that∑
m/∈Mu

xmopt(m), the total allocation value on the remaining machines clearly determines the
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total congestion of xmopt, given by
∑

m/∈Mu
xmopt(m)− q(m). Let x be an arbitrary relaxed

solution. Due to Theorem 1, the total allocation value is minimized at xmopt. Therefore, for
any relaxed unsplit stable allocation x, the following inequalities hold:∑

m∈M

x(m) ≥
∑

m∈M

xmopt(m)

∑
m/∈Mu

x(m) +
∑

m∈Mu

x(m) ≥
∑

m/∈Mu

xmopt(m) +
∑

m∈Mu

xmopt(m)

∑
m/∈Mu

x(m)−
∑

m/∈Mu

xmopt(m) ≥
∑

m∈Mu

xmopt(m)−
∑

m∈Mu

x(m)

∑
m/∈Mu

(x(m)− q(m))−
∑

m/∈Mu

(xmopt(m)− q(m)) ≥
∑

m∈Mu

xmopt(m)−
∑

m∈Mu

x(m)

At this point, we investigate the sign of both sides of the last inequality. The core of our
proof is to show that for each m ∈ Mu and relaxed stable solution x, xmopt(m) ≥ x(m). This
result, proved below, has two benefits. On one hand, the term on the right hand-side of the
last inequality is non-negative. Therefore, the inequality implies that the total congestion on
machines in M \Mu is minimized at xmopt. On the other hand, no machine in Mu is over-
capacitated in any relaxed solution. Thus, the total congestion is minimized at xmopt.

Our last observation in this subsection refers to the unsaturated machines.

Lemma 9. For every m ∈Mu and relaxed solution x, the inequality xmopt(m) ≥ x(m) holds.

Proof. Suppose that there is a machine m ∈ Mu for which xmopt(m) < x(m) for some relaxed
solution x. Since m is unsaturated in xmopt, it is unpopular. On the other hand, there is
at least one job j for which jm ∈ x \ xmopt. As m is unpopular in xmopt, j is allocated to
a better machine in xmopt than in x. Since xmopt is the job-pessimal solution, we derived a
contradiction.

3.3 A Variant of the “Rural Hospital” Theorem

In the relaxed unsplit case, one can find counterexamples against an exact rural hospital theorem
(e.g., where all machines have the same amount of allocation in all relaxed unsplit allocations)
or even a weakened theorem stating that all unsaturated / congested machines have the same
status in all relaxed unsplit allocations. Lemma 9 above however suggests an alternative variant
of “rural hospital” theorem that does hold.

Theorem 10. A machine m that is not saturated in xmopt will not be saturated in every re-
laxed unsplit stable solution, and a machine m that is over-capacitated in xjopt must at least be
saturated in every relaxed unsplit stable solution.

Proof. The first part is shown by Lemma 9. For the second part, consider a machine m that is
over-capacitated in xjopt but has x(m) < q(m) in some relaxed unsplit allocation x. Consider
any job j in xjopt\x, and note that since xjopt is job-optimal, j prefers m to its partner in x.
Hence, jm blocks x.

As of the jobs’ side, Theorem 6 already guarantees that if a job is unmatched in xjopt, then it
is unmatched in all relaxed stable solutions and similarly, if it is matched in xmopt, then it is
matched in all relaxed stable solutions.
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4 Rounding Algorithms

We have seen now how to compute xjopt and xmopt in linear time. We now describe how
to find potentially other relaxed unsplit solutions by “rounding” solutions to the (fractional)
stable allocation problem. For example, this could provide a heuristic for generating relaxed
unsplit solutions that are more balanced in terms of fairness between the jobs and machines.
Our approach is based on augmentation around rotations, alternating cycles that are commonly
used in stable matching and allocation problems to move between different stable solutions (see,
e.g., [6, 11]).

We begin with a stable allocation x with x(j) = q(j) for every job j, thanks to the existence of
a dummy machine. For each job j that is not fully assigned to its first-choice machine, we define
its refusal edge r(j) to be the worst edge jm incident to j with x(jm) > 0. Jobs with refusal
edges also have proposal edges – namely all their edges ranked better than r(j). Recall that a
machine with incoming proposal edges is said to be popular. We call a machine dangerous if it
is over-capacitated and has zero assignment on all its incoming proposal edges.

Claim 11. Consider a popular machine m in some fractional stable allocation x. Amongst all
proposal edges incoming to m, at most one has positive allocation value in x, and this positive
proposal edge is ranked lower on m’s preference list than any other edge into m with positive
allocation.

Proof. Let rankm(j1m) > rankm(j2m) be proposal edges such that x(j1m) and x(j2m) are both
positive. Note that j1m blocks x, since j1 and m have worse allocated edges in x. A similar
argument implies the last part of the claim.

Our algorithm proceeds by a series of augmentations around rotations, defined as follows. We
start from a popular, non-dangerous machine m (if no such machine exists, the algorithm
terminates, having reached an unsplit solution). Since m is popular and non-dangerous, it has
incoming proposal edges with positive allocation, and due to the preceding claim, it must have
exactly one such edge jm. We include jm as well as j’s refusal edge jm′ in our partial rotation,
then continue building the rotation from m′ (again finding an incoming proposal edge, etc.).
We continue until we close a cycle, visiting some machine m visited earlier (in which case we
keep just the cycle as our rotation, not the edges leading up to the cycle), or until we reach a
machine m that is unpopular or dangerous, where our rotation ends.

To enact a rotation, we increase the allocation on its proposal edges by ε and decrease along the
refusal edges by ε, where ε is chosen to be as large as possible until either (i) a refusal edge along
the rotation reaches zero allocation, or (ii) a dangerous machine at the end of the rotation drops
down to being exactly saturated from being over-capacitated, and hence ceases to be dangerous.
We call case (i) a “regular” augmentation. This concludes the algorithm description.

Claim 12. The algorithm terminates after O(|E|) augmentations.

Proof. Jobs remain fully allocated during the whole procedure, and their lexicographical posi-
tions never worsen. With every regular augmentation, some edge stops being a refusal edge,
and will never again be increased or serve as a proposal or refusal edge. We can therefore have
at most O(|E|) regular augmentations. Furthermore, a machine can only become dangerous if
one of its incoming refusal pointers reaches zero allocation, so the number of newly-created dan-
gerous machines over the entire algorithm is bounded by |E|. Hence, the number of non-regular
augmentations is at most O(|M |+ |E|) = O(|E|).

Claim 13. The final allocation x is a feasible relaxed unsplit assignment.
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Proof. Since we start with a feasible assignment and jobs never lose or gain allocation, the quota
condition on jobs cannot be harmed. If there is any edge jm with 0 < x(jm) < q(j), then j has
at least two positive edges, the better one must be a positive proposal edge. This contradicts
the termination condition, and hence x is unsplit.

We now show that deleting the worst job from each machine results in an allocation strictly below
the machine’s quota. It is clearly true at the beginning, where no machine is over-capacitated
(since x starts out as a feasible stable allocation). The only case when x(m) increases is when m
is the first machine on a rotation. As such, m has a positive proposal edge jm, which is also its
worst allocated edge, due to our earlier claim. If m is not over-capacitated when choosing the
rotation, then even if x(jm) rises as high as q(j), this increases x(m) by strictly less than q(j).
Thus, deleting jm, the worst allocated edge of m, guarantees that x(m) sinks under q(m). If
m is saturated or over-capacitated when choosing the rotation, then jm would have been the
best proposal edge of m earlier, when x(m) was not greater than q(m). Thus, assigning j
entirely to m does not harm the relaxed quota condition. Let us consider the last step as x(m)
exceeded q(m). Again, m was the starting vertex of an augmenting path, having a positive
proposal edge. If it was jm, our claim is proved. Otherwise m became over-capacitated while
x(jm) was zero, and then increased the allocation on jm. But between those two operations,
m had to become dangerous, because it switched its best proposal edge to jm. Dangerous
machines never start alternating paths. Thus, we have a contradiction to the fact that we
considered the last step when x(m) exceeded q(m).

Claim 14. The final allocation x is stable.

Proof. Suppose some edges block x. Since we started with a stable allocation, there was a step
during the execution of the algorithm when the first edge jm became blocking. Before this
step, either j or m was saturated or over-capacitated with better edges than jm. The change
can be due to two reasons: either j gained allocation on an edge worse than jm, or m gained
allocation on an edge worse than jm. As already mentioned, j’s lexicographical position never
worsens: rankj(p) > rankj(r(j)) always holds. The second event also may not occur, because
machines always play their best response strategy. An edge jm that becomes blocking when
allocation is increased on an edge worse than it, was already a proposal edge before. Thus, m
would have chosen jm, or an edge better than jm to add it to the augmenting path.

Since each augmentation requires O(|V |) time and there are O(|E|) augmentations, our round-
ing algorithm runs in O(|E||V |) total time. If desired, dynamic tree data structures can be
used (much like in [6]) to augment in O(log |V |) time, bringing the total time down to just
O(|E| log |V |).

Although jobs improve their lexicographical position in each rotation, the output of the algo-
rithm is not necessarily xjopt. In fact, even xmopt can be reached via this approach. Ideally, this
approach can serve as a heuristic to generate many other relaxed unsplit stable allocations, if
run from a variety of different initial stable solutions x.
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Abstract

Stable matching with ties and incomplete lists (SMTI) is one of the most prominent
NP-hard problems in the domain of ordinal matching, where we seek to find a bipartite
matching between a set of men and a set of women that is “stable” with respect to their
preferences. When ties in preference lists are restricted to one side of the problem, Iwama et
al. [9] devised a variant of the famous Gale-Shapley stable matching algorithm that breaks
ties using edge weights from a linear programming (LP) relaxation of the problem, leading
to an approximation ratio of 25

17 ≈ 1.4706. We apply ideas from factor-revealing LPs to
show, via computational proof involving the solution of massive LPs, that their analysis can
be systematically improved to yield an approximation ratio of 19/13 ≈ 1.4615, improving
the best currently-known ratio (obtained via different techniques in [15]) of 41

28 ≈ 1.4643.

1 Introduction

Consider an instance I of a bipartite matching problem over a graph G = (L ∪R,E), where
L and R represent sets of men and women. Each man m ∈ L and woman w ∈ R submits a
ranked preference list over potential partners in E. In the context of a matching M ⊆ E, edge
(m,w) ∈ E is a blocking pair if m is unmatched or prefers w to his partner in M , and similarly
w is unmatched or prefers m to her partner in M . Informally, m and w would be unhappy if
we imposed the matching M , since they would prefer to be matched with each-other. We say
M is stable if no blocking pairs exist. Stable matchings and their variants have been a vibrant
subfield of algorithmic game theory since the seminal work of Gale and Shapley [1] in the 1960s.
In particular, the following results are now well known:

• Gale and Shapley proposed a simple algorithm that computes a stable matching in O(|E|)
time (i.e., linear time).

• If preference lists are strictly ordered (no ties) and complete (E = L × R), then the
Gale-Shapley (GS) algorithm finds a matching M of maximum possible size, with |M | =
min(|L|, |R|). Otherwise, if preference lists are not complete, the resulting matching may
include both unmatched men and women, but the unmatched men and women are the
same in every stable matching, so all stable matchings have equal cardinality.

• If preference lists are complete but contain ties, the GS algorithm still computes a match-
ing of size min(|L|, |R|). Here, stability is typically defined such that an edge (m,w) /∈M
is blocking if m is unmatched or strictly prefers w to his partner in M , and likewise for w.

Stable matching with both ties and incomplete lists (SMTI) is more challenging. Here, stable
matchings may differ in cardinality, as shown in Figure 1, and the problem of computing a
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maximum-cardinality stable matching is NP-hard [7, 12], even with ties restricted to one side of
the problem (in preference lists of the women, as is the typical convention). Since one-sided ties
and incomplete preference lists are anticipated in many ordinal matching problems in practice
(e.g., [6]), the SMTI problem has received substantial attention recently, and is currently one of
the most actively-studied problems in the ordinal matching research community. In this paper,
we show a polynomial-time algorithm with the strongest approximation ratio for this problem to
date, 19/13 ≈ 1.4615. Our approach is somewhat distinct in that we rely on the computational
solution of a massive “factor-revealing” LP to systematically generalize and strengthen the
analysis of Iwama al. [9]. The application of factor-revealing LPs to online bipartite matching
has recently appeared in [2, 3], but to the best of our knowledge, this work is the first involving
factor-revealing LPs in the domain of stable matching.

Background. The GS algorithm produces a maximal stable matching, since any edge (m,w) ∈
E between two unmatched individuals m and w would be blocking. It therefore gives a 2-
approximate solution, owing to the well-known fact that a maximum matching can be at most
twice the cardinality of any maximal matching. Using local search techniques, Iwama et al. [8]
improved the factor to 15

8 for the general case where ties are allowed on both sides. Király
[10] introduced the idea of promoting unmatched men to higher levels of priority to break ties,
achieving a ratio of 5

3 for the general case and 3
2 for the case where ties are restricted to one side.

McDermid [13] improved the factor for the general case to 3
2 by exploiting a classical graph theory

result known as the Gallai-Edmonds decomposition, and Paluch [14] and Király [11] gave linear
time algorithms obtaining the same ratio. Following this, Iwama, Miyazaki, and Yanagisawa [9]
improved the approximation factor for the case with one-sided ties to 25

17 ≈ 1.4706, by using the
edge weights in a fractional linear programming (LP) relaxation of the problem to break ties
in a natural way while running the GS algorithm. More recently, paper, Huang et al. [5] used
different techniques to improve the ratio for the one-sided case to 22

15 ≈ 1.4667; the analysis was
tightened to 41

28 ≈ 1.4643 by Radnai [15]. In terms of hardness results, the SMTI problem with
two-sided ties cannot be approximated to a ratio better than 33

29 unless P = NP, or 4
3 assuming

the unique games conjecture [18]. These results even apply when each individual has a single
tie of length two. For the one-sided variant, we cannot approximate with a ratio better than 21

19
unless P = NP [18], or 5

4 assuming the unique games conjecture [4].

2 Linear Programming Relaxation

The following LP relaxation of the one-sided SMTI problem was initially studied in [16] and
[17]. The notation m �w m′ indicates that m is preferred to m′ by w.

LP (I) = max
∑

(m,w)∈ E

xmw

subject to:
∑

w:(m,w)∈E
xmw ≤ 1 ∀m ∈ L (1)

∑
m:(m,w)∈E

xmw ≤ 1 ∀w ∈ R (2)

∑
w′�mw

xmw′ +
∑

m′�wm

xm′w ≥ 1 ∀(m,w) ∈ E (3)

xmw ≥ 0 ∀(m,w) ∈ E

For each edge (m,w) ∈ E, the variable xmw ∈ [0, 1] indicates the extent to which m and w
are matched. Constraints (1) and (2) are standard for matching problems, and ensure that
each person can be matched to at most one other person. Constraint (3) enforces stability if
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Figure 1: Simple instances admitting two stable matchings M and MOPT of different cardinality:
(a) an “augmenting 3-path”, and (b)-(c) “augmenting 5-paths”. Preference lists are shown alongside
each man and woman, with ties in brackets.

xmw’s are restricted to integers, since it states that for every edge (m,w) ∈ E, at least one of
m or w should be matched to a partner that is equally or more preferred than along this edge.
Since the SMTI problem is exactly modeled by the formulation above with the added constraint
that xmw ∈ {0, 1} for all (m,w) ∈ E, we have LP (I) ≥ |MOPT (I)| for any instance I, where
MOPT (I) is a maximum-cardinality stable matching for I.

Iwama et al. [9] show that the integrality gap of this LP relaxation is at least 1 + 1
e ≈ 1.3679.

Any analysis based on comparing to the objective of this LP relaxation therefore cannot lead
to a stronger approximation guarantee.

3 The GS-LP Algorithm

Our algorithm is essentially the same as used by Iwama et al. [9], which is built from the standard
GS algorithm by adding extra machinery to decide how to break ties. Since the GS algorithm
is known to generate a stable matching irrespective of how ties are broken, we are therefore
still guaranteed to find a stable matching. The standard GS algorithm is quite straightforward
to describe: in each iteration, an arbitrary unassigned man proposes to the next woman on his
preference list. Each woman tentatively holds on to the best proposal she has received to date,
rejecting all other offers. When a man is rejected, he continues issuing proposals down his list.
Each edge is proposed along at most once, leading to a linear running time.

3.1 A Prioritization Scheme for Tie-Breaking

As a preprocessing step, we solve the LP relaxation to obtain a solution x∗. Each man m is
then assigned integer and fractional priority levels Pi(m) ∈ {0, 1, 2, . . .} and Pf (m) ∈ [0, 1], both
initially zero. These priorities are used to resolve ties: if w is tentatively matched with m but
receives a proposal from a man m′ for which m =w m′, she accepts if Pi(m

′) > Pi(m), or if
Pi(m) = Pi(m

′) but Pf (m′) > Pf (m).

Let w(m) denote the farthest woman down m’s preference list up to whom he has proposed;
initially, w(m) = ∅. The fractional priority for m is defined as Pf (m) =

∑
w�mw(m) x

∗
mw. Every

time m is rejected by w(m), he returns to the start of his preference list and has another chance
to propose to all the women up to w(m) in sequence (he may be more successful this time, since
his fractional priority now includes the contribution due to x∗m,w(m)). If m runs off the end of

his preference list (after being rejected by the final woman and then proposing one last time to
everyone on the list), he increments the value of his integer priority Pi(m), resets w(m) to ∅ (so
Pf (m) resets to zero as well), and restarts the proposal process from the beginning of his list.
Men whose priorities reach a specified threshold T cease to issue any further proposals, and the
algorithm terminates when every unmatched man m has Pi(m) = T . The algorithm of Iwama
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et al. uses T = 3, but we consider using higher thresholds; it turns out that T = 4 is sufficient
for our analysis.

The entire algorithm clearly runs in polynomial time. Speedups to the GS-based part above
may certainly be possible, although these may offer diminishing returns, since the solution of
the LP relaxation will likely dominate the running time.

3.2 Integer Prioritization and Restricted Augmenting Paths

Many prior approximation algorithms for the SMTI problem are structured as above, using the
GS algorithm along with some method of prioritization to break ties. The work of Paluch [14]
and Kiraly [11] used essentially only the integer part of the prioritization scheme above (for
which the LP solution is not needed), and leads to an approximation bound of 3/2 due to the
following observation on the resulting matching M . This holds in our case as well since we
use the same integer prioritization machinery, and it takes precedence over any tie-breaking
decisions made due to fractional priorities.

Lemma 1. Integer prioritization, where man m′ wins a tie over man m only if Pi(m
′) > Pi(m),

yields a matching M with no augmenting paths of length 3 or shorter.

Fixing a particular optimal matching MOPT , M ⊕MOPT is the graph formed by taking edges
that occur in M or MOPT but not both. An augmenting path is a odd-length path in M⊕MOPT

containing one more edge from MOPT than from M . It is well-known that if all augmenting
paths admitted by M have length at least 2k+1, then |MOPT | ≤ k+1

k |M |. This is easy to argue
by looking at how much |M | expands when transforming M into MOPT by toggling all the edges
in M ⊕MOPT : cycles, even-length paths, and odd-length non-augmenting paths in M ⊕MOPT

can be toggled without increasing |M |, and an augmenting path of length 2n+ 1 ≥ 2k + 1 has
n edges from M and n+ 1 from MOPT , so its cardinality expands by a factor of n+1

n ≤
k+1
k .

Proof of Lemma 1. The GS algorithm itself prevents augmenting 1-paths, since it produces a
maximal matching. Any augmenting 3-path must have the structure shown in Figure 1(a) in
order for its edges in both M and MOPT to be non-blocking. Woman w1 clearly never saw a
proposal, since any woman receiving a proposal will become and henceforth remain matched.
Thus, Pi(m1) = 0. However, since m2 is unassigned, Pi(m2) > 0, and so w2 would have chosen
m2 over m1.

Integer prioritization is not sufficient to prevent all augmenting paths of length 5 or longer,
although it can prevent some types of these paths from arising. Iwama et al. show that an
augmenting 5-path in the specific form shown in Figure 1(b) can occur, since no amount of
prioritization on the single man m3 can induce w3 to accept him instead of m2. Figure 1(c)
depicts one of several augmenting 5-paths that cannot occur with T ≥ 3. To see why, let us
number the men and women in any path in M ⊕MOPT sequentially as in Figure 1, so that if
the path contains a woman unmatched in M , such a woman is labeled w1 at the beginning of
the path. Edges in MOPT are of the form (mj , wj), and edges in M are of the form (mj , wj+1).

Definition 1 (High and low priority for men). Man mj in a path in M ⊕ MOPT has high
priority if Pi(mj) ≥ j at termination; otherwise mj has low priority.

Definition 2 (High and low priority for women). Any woman wj in a path in M ⊕MOPT

unmatched in M has low priority; otherwise if matched in M , woman wj has high priority if
and only if mj−1 (her partner in M) has high priority.

The following facts are easy to establish:
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Figure 2: The only possible configurations for (a) an augmenting 5-path (assuming T ≥ 3), and (b)-
(h) augmenting 7-paths (assuming T ≥ 4). Darkened nodes indicate individuals with high priority.

(i) Pi(mj) = 0 (and hence mj has low priority) if he is matched in MOPT to a woman (wj)
unmatched in M . Otherwise, he would have proposed to wj , and she would have accepted.
Since matched women stay matched, wj could not have ended up single.

(ii) Man mj has Pi(mj) = 0 (and hence has low priority) if mj �wj mj−1, for similar reasons.
Otherwise, mj would have proposed to wj and she would have accepted, preventing the
edge (mj−1, wj) from becoming part of M .

(iii) If mj has high priority and mj =wj mj−1, then mj−1 has high priority, since Pi(mj) ≥ j
implies that mj must have been proposed to wj at least at priority level j − 1. Hence,
Pi(mj−1) ≥ j − 1, or else there is no way wj could have accepted mj−1 in the matching
M .

If T ≥ 3, then the highest man (m3) in an augmenting 5-path will have high priority, since m3

ends up unmatched, with priority Pi(m3) = T . For The augmenting 5-path in Figure 1(c) there-
fore cannot occur because by applying (iii) twice, m1 would have high priority, contradicting
(i).

If T ≥ 4, the highest man (m4) in an augmenting 7-path will have high priority, and we can
similarly deduce that augmenting 7-paths can only occur in the seven configurations shown
in Figure 2(b)-(h). One can programatically enumerate all such possible types of augmenting
k-paths for larger values of k by filtering out those that would violate the priority rules above,
as well as those where edges in M block MOPT or vice versa. These grow at an exponential
rate: there are 37 different augmenting 9-paths, 181 augmenting 11-paths, and so on. As we
discover in our analysis, however, we only need to consider up to augmenting 7-paths, so we
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can set T = 4. Raising T higher, while useful for restricting augmenting 9-paths and longer,
cannot further help us restrict the set of augmenting 7-paths.

Taking into account the restricted structure of augmenting 5-paths, and by adding fractional
prioritization based on the LP relaxation, Iwama et al. were able to show using a fairly compli-
cated “ad hoc” analysis that a solution cannot admit only augmenting 5-paths. Longer paths
are also necessary, thereby improving slightly on the 3/2 approximation ratio one would obtain
with only augmenting 5-paths. Our analysis follows a similar pattern, but using a more general
approach involving a factor-revealing LP that considers augmenting 7-paths and beyond.

4 Towards a Factor-Revealing LP

In order to analyze the approximation factor of the GS-LP algorithm, we look for an instance I
maximizing the ratio A(I) = |MOPT (I)|/|M(I)|, where M(I) is the smallest possible matching
GS-LP can produce when run on I. We search for I systematically by solving a large LP, known
as a factor-revealing LP since its output gives us a valid upper bound on the approximation
ratio of the GS-LP algorithm. The factor-revealing LP, which we call FLP, has two types of
decision variables, “class” variables (α’s) and “edge bundle” variables (β’s).

4.1 Class variables

Fixing an instance I, consider overlaying the edges of M = M(I) and MOPT = MOPT (I).
We find a number of different classes of structures, shown in Figure 3, which allow us to
characterize the edges in M as well as the individuals who are unmatched in M . We find: (a)
edges (m,w) ∈ M ∩ MOPT , (b) individuals that are unmatched in both M and MOPT , (c)
individuals matched in MOPT but not M (these are the endpoints of paths in M ⊕MOPT ),
(d) edges (m,w) ∈ M where both m and w are matched, differently, in MOPT , and where
(m,w) belongs to a path in M ⊕MOPT , (e) edges (m,w) ∈ M where only w is matched in
MOPT (these are found at the ends of paths in M ⊕MOPT that are not augmenting paths),
(f) edges (m,w) ∈M where only m is matched in MOPT (these are found at the ends of paths
in M ⊕MOPT that are not augmenting paths), and (g) edges (m,w) ∈ M found in cycles in
M ⊕MOPT .

Every edge (m,w) ∈ M can be categorized into one of these classes, and similarly every man
m ∈ L and woman w ∈ R in our instance belongs to exactly one of these classes. Observe that
we have further differentiated our classes based on the structure of their preference lists with
respect to placement of partners in M and MOPT , and also whether individuals are high or low
priority (note that this designation is only defined for individuals on paths in M ⊕MOPT ). For
example, the first class shown in Figure 3(f) represents all edges (m,w) ∈ M in our instance
where m is matched to a better partner (wo) in MOPT than in M , where w is unmatched in
MOPT , and where both m and w have low priority.

Let C denote the set of the classes above (note that soon we will enlarge C to contain even more
classes, namely explicit representations of all the valid configurations of augmenting 5-paths,
7-paths, etc.). For each class c ∈ C, let gc denote the number of edges in M represented by a
single instance of c. We have gc = 1 for all classes above except those of types (b) and (c), where
gc = 0. Let nc denote the number of occurrences of class c when we overlay M and MOPT ,
and let the decision variable αc represent nc/|M |. Since all edges in M appear in exactly one
occurrences of some class, ∑

c∈C
gcnc = |M |,
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Figure 3: Classes of structures over which the factor-revealing LP optimizes, where mo and wo

indicate partners in MOPT . Boxes denote distinct “regions” in preference lists, where “· · · ” indicates
a region with possibly several entries. Since women can have ties in their lists, a right-hand side
region with a specific label like “m2,m3” represents a block of preference list entries that are all tied
with m2 and m3. In contrast, a left-hand side region with a specific label like “w1” represents only
a single specific entry in a preference list. The pair (l, r) is one example of a pair of regions between
which edges in our instance cannot run, since they would block M . The single man in (c) will have
high priority provided that T is sufficiently large.

and by dividing both sides by |M |, we obtain∑
c∈C

gcαc = 1, (4)

giving a simplex-like constraint in FLP that governs the relative proportion αc of each class
c ∈ C.

Let fc denote the “local” approximation factor for class c – that is, an upper bound on the factor
by which the edges of M belonging to instances of c would expand if we were to transform M
into MOPT by toggling the edges in M ⊕MOPT . We set fc = 0 by convention for the special
cases of (b) and (c), since these involve no edges from M . We have fc = 1 trivially for classes c
of type (a), and we also have fc = 1 for classes c of types (e), (f), and (g) since these can only
belong to non-augmenting paths or cycles in M ⊕MOPT . For classes c of type (d), we have
fc = 3/2, since these represent edges in M that might belong to augmenting paths of length
5 or longer (these could also belong to non-augmenting paths, of course, but in this case the
local approximation ratio is at most 1 ≤ 3/2). We let CR denote the 10 classes of type (d),
singling them out since they are the only classes so far with a non-trivial local approximation
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Figure 4: The part of an augmenting path class to which a tie-breaking constraint applies. Woman
wj−1 could be either unmatched in M or she must prefer her partner mj−1 in MOPT to her partner
mj−2 in M .

ratio. Since every edge in M is represented by an instance of some class c ∈ C, we have

|MOPT | ≤
∑
c∈C

gcfcnc. (5)

4.2 Edge Bundle Variables

In addition to the class variables αc, FLP also contains edge bundle variables βlr that represent
the aggregate weight allocated to specific bundles of edges in an optimal solution x∗ to LP (I).

In Figure 3, the preference lists in each class c ∈ C are each partitioned into distinct regions.
For example, consider again the first of the two classes shown in Figure 3(f), describing an
edge (m,w) ∈ M where m is matched in MOPT (to wo) but w remains single in MOPT . Here,
the preference list of m is divided into five regions: (1) women m prefers more than wo, (2)
the woman wo, (3) women m prefers less than wo but more than w, (4) the woman w, and
(5) women m prefers less than both w and wo. The preference list of w is divided into three
regions: (1) men she prefers more than m, (2) men she prefers the same amount as m, and (3)
men she prefers less than m.

Let ZL and ZR respectively denote the sets of all left-hand and right-hand regions across all
the classes c ∈ C. For any edge e = (m,w) ∈ E in our problem instance, we can classify its
left endpoint according to its region type l(e) ∈ ZL and its right endpoint according to its type
r(e) ∈ ZR. We now define βlr to represent the following quantity:

βlr =
1

|M |
∑
e∈E

l(e)=l,r(e)=r

x∗e. (6)

That is, βlr denotes the aggregate weight assigned by LP (I) to the bundle of all edges from
region type l ∈ ZL to region type r ∈ ZR. Note that not every pair of regions (l, r) ∈ ZL×ZR is
valid in its ability to describe edges from E. The following pairings (l, r) are invalid, since there
cannot be any edges e ∈ E satisfying l = l(e) and r = r(e): (i) region pairs (l, r) corresponding
to edges that would block M (for example, the pair (l, r) shown in Figure 3), (ii) region pairs
(l, r) corresponding to edges that would block MOPT , (iii) region pairs (l, r) corresponding to
edges from a high-priority man m to a woman w, where m is preferred to her partner in M (this
is not possible since Pi(m) > 0, so m would have proposed to w, and w would have accepted,
preventing later acceptance of her partner in M), (iv) region pairs (l, r) corresponding to edges
from a high-priority man m to a low-priority woman w, where m is tied with her partner in M
(similarly, m would have proposed to w, and w would have accepted, preferring m to her partner
in M), and (v) region pairs (l, r) where l is a region representing a single specific individual
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(e.g., one’s partner wo in MOPT ), but r is not a compatible match for that individual (e.g., not
labeled with wo).

Let B ⊂ ZL × ZR denote the set of all valid region pairs that remain after filtering out the
invalid pairs enumerated above. Since every edge e ∈ E appears in exactly one such pair
(l(e), r(e)) ∈ B, we have ∑

(l,r)∈B
βlr =

1

|M |
∑
e∈E

x∗e. (7)

4.3 The Factor-Revealing LP

We can now state FLP:

FLP = max

min

∑
c∈C

gcfcαc,
∑

(l,r)∈B
βlr

 : (α, β) ∈ P

 , (8)

where P denotes its feasible region, described with 5 types of constraints:

• Nonnegativity constraints: α, β ≥ 0.

• A simplex constraint:
∑
gcαc = 1.

• Tie-breaking constraints, stating that weights assigned to edge bundles would have resulted
in fractional priorities leading to tie-breaking that would have resulted in the formation of
augmenting paths. Consider any part of an augmenting path class matching the situation
described by Figure 4. Note that Pi(mj−1) = 0, since mj−1 must never have proposed to
wj−1. Therefore, the fact that wj chose mj−1 over mj implies that Pi(mj) = 0 and so
P ′f (mj) ≤ P ′f (mj−1) where P ′f denotes Pf at the last point in time at which the algorithm
broke the tie. Since mj is matched with wj+1 in M , his fractional priority at that point
in time was equal to the weight of all entries in his preference list prior to wj+1:

P ′f (mj) =
∑

e=(mj ,w)∈E
l(e)�ρj

x∗e,

where ρj is the region of mj ’s list containing wj+1, as indicated in the figure. Since mj−1
never proposed to wj−1 and also never proposed to any woman w matched in M to a man
m for which mj−1 �w m, we have

P ′f (mj−1) ≤
∑

e=(mj−1,w)∈E
l(e)�ρj−1,r(e)/∈ZM

R

x∗e,

where ZMR ⊂ ZR denotes the set of all right-hand side regions that are more preferred
than the partner in M within their same list. Combining these, we have∑

e=(mj ,w)∈E
l(e)�ρj

x∗e ≤
∑

e=(mj−1,w)∈E
l(e)�ρj−1,r(e)/∈ZM

R

x∗e,

which in aggregate across all class instances becomes the following tie-breaking constraint
in FLP: ∑

(l,r)∈B
l�ρj

βlr ≤
∑

(l,r)∈B
l�ρj−1,r /∈ZM

R

βlr.
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• Matching constraints, stating that the total weight incident to any generic man or woman
in class c must not exceed αc. Consider some generic man m belonging to class c, and let
L(m) denote the set of nc individual men in L represented by the generic man m. Since
each individual man m′ ∈ L(m) satisfies constraint (1) in LP (I), we sum these constraints
to obtain ∑

(m′,w)∈E
m′∈L(m)

x∗m′w ≤ nc,

Therefore, ∑
(l,r)∈B
l∈ZL(m)

βlr =
1

|M(I)|
∑

(m′,w)∈E
m′∈L(m)

x∗m′w ≤
nc
|M(I)|

= αc,

where ZL(m) denotes the regions in m’s preference list. Similar constraints hold for the
women.

• Stability constraints, which correspond to aggregations of the stability constraints from
the original SMTI LP relaxation across our edge bundle variables. Consider any class c
and region pair (l, r) representing an edge explicitly found within c. So far, this includes
just the single edge (m,w) ∈ M represented by class c, but soon we will expand C by
including larger augmenting structures that also explicitly include edges from MOPT . We
must have ∑

(l′,r′)∈B
l′�l

βl′r′ +
∑

(l′,r′)∈B
r′�r

βl′r′ ≥ αc, (9)

where the notation r′ � r indicates that r′ is a region more preferred than r belonging
to the same preference list. That is, the total weight incident to regions in the preference
list of l preceding l, plus the total weight incident to regions in the preference list of r up
to and including r, must be at least αc.

5 Analysis and Refinement of FLP

Lemma 2. For any instance I, let α and β be defined as above. Then (α, β) ∈ P .

Proof. Nonnegativity of α and β is clear, validity of the simplex constraint is shown in (4), and
validity of the tie-breaking and matching constraints are argued above. Validity of the stability
constraints are shown exactly the same way, by aggregating constraint (3) from LP (I) over all
nc individual instances of an edge appearing explicitly within some class c.

We now establish our main result:

Theorem 3. Let A(I) denote the approximation ratio of GS-LP when run on instance I. Then
FLP ≥ A(I).

Proof. Let α, β be defined as above. Lemma 2 shows that (α, β) ∈ P . We now have∑
c∈C

gcfcαc =
1

|M(I)|
∑
c∈C

gcfcnc ≥
1

|M(I)|
|MOPT (I)| = A(I),

where the first equality follows from the definition of αc, and the next inequality is a re-statement
of (5). From (7), we also have∑

(l,r)∈B
βlr =

1

|M(I)|
∑
e∈E

x∗e =
1

|M(I)|
LP (I) ≥ 1

|M(I)|
|MOPT (I)| = A(I).
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Hence,

min

∑
c∈C

gcfcαc,
∑

(l,r)∈B
βlr

 ≥ A(I),

so we have demonstrated a feasible solution of FLP with objective value at least A(I). The
maximum value of FLP is therefore also an upper bound for A(I).

5.1 Adding More Classes

The optimal solution value of FLP as stated above is 3/2, and this is not surprising, since it
really isn’t capturing any insight beyond the fact that there are no augmenting 3-paths. To
improve it, we need to add more explicit knowledge about the structure of augmenting 5-paths,
so that it can deduce (like the work of Iwama et al.) that it is not possible to form an instance
I admitting only augmenting 5-paths.

We therefore add a new class c representing the unique structure of an augmenting 5-path to
C, with gc = 2 and fc = 3/2. Accordingly, we reduce fc to 4/3 for all classes c ∈ CR – since we
are now explicitly representing augmenting 5-paths as their own class, the classes in CR now
represent the “left-over” edges in M that are at worst now part of augmenting 7-paths. Solving
FLP now yields an optimal solution of value 25/17, matching the result of Iwama et al. In fact,
we can think of FLP in this case as automating the proof of Iwama et al. Instead of starting
with known inequalities (e.g., the constraints from the LP relaxation) and combining them in
an “ad hoc” series of lemmas and theorems, FLP automatically finds the best combination.

To improve further, we can add more classes to C that explicitly represent all possible arrange-
ments of augmenting 7-paths, reducing fc to 5/4 for all c ∈ CR. This yields an optimal solution
of value 19/13 ≈ 1.4615. One might hope that this process would continue reducing the up-
per bound on our approximation ratio in an asymptotic manner, since each time we explicitly
include longer augmenting paths, the optimum solution of FLP cannot increase.

Lemma 4. Let FLPk denote FLP when up through augmenting k-paths are explicitly repre-
sented. Then FLPk+2 ≤ FLPk.

Proof. This follows from the fact that FLPk is a relaxation of FLPk+2. That is, the optimal
solution (α, β) for FLPk+2 can be naturally mapped to a feasible solution (α′, β′) for FLPk (by
assigning all weight from classes representing augmenting (k + 2)-paths to the corresponding
classes in CR), for which FLPk ≥ FLPk(α′, β′) ≥ FLPk+2(α, β) = FLPk+2.

Unfortunately, when we solve FLP after explicit inclusion of augmenting 9-paths and beyond,
we still obtain an optimal solution of 19/13, and indeed this is the best result we can obtain,
since when we build FLP up to just augmenting 7-paths, we find an optimal solution in which
αc = 0 for all c ∈ CR.

Lemma 5. If an optimal solution of FLPk assigns αc = 0 for all c ∈ CR, then FLPk = FLPk′

for all k′ ≥ k.

Proof. The fact that FLPk ≥ FLPk′ comes from Lemma 4. To show the reverse inequality,
observe that any optimal solution (α, β) for FLPk with αc = 0 for all c ∈ CR can be naturally
mapped to an equivalent solution (α′, β′) of FLPk′ with FLPk = FLPk(α, β) = FLPk′(α

′, β′) ≤
FLPk′ , since only the classes c ∈ CR change their meaning and local approximation ratio fc
when moving from k to k′.
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To ensure that our results are accurate (due to the highly complex nature of FLP), we built
three independent code bases for generating and solving FLP, all of which agreed in their output.
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Abstract

For the task assignment problem in an expert crowdsourcing platform, we propose that
the dynamically arriving workers report their preferences for the tasks as ordinal prefer-
ences to the platform. We model then the task assignment problem as a dynamic two sided
matching problem. In this paper we study the dynamic two sided matching when the men
(the workers) side of the market is arriving dynamically and the women (the requesters) side
is available since beginning. We assume strict preferences of the agents. Using a deferred
acceptance algorithm as a building block, we first develop fAPODA, a class of strategy-proof
online mechanisms. We design fAPODA and fThODA in this class. As no mechanism can
achieve stability in our settings, we propose a weaker notion of stability, namely, progressive
stability. We introduce an online mechanism fRODA that achieve the progressive stability.
For achieving good rank-efficiency, we design an online matching mechanism fBOMA. We
study all the four mechanisms empirically for stability and rank-efficiency.

1 Introduction

The term crowdsourcing was introduced by Howe [11]. Since then, crowdsourcing has become
popular to get tasks done in the form of an open call over Internet. Currently there are thousands
of websites, also called as platforms, available for crowdsourcing.1 In the crowdsourcing market,
there are two types of users of the platform, the one who posts the task is called a requester
and the one who seeks to work on the task is called a worker. Crowdsourcing of complex macro
tasks is referred to as expert crowdsourcing [21]. For example, oDesk, topcoder are expert
crowdsourcing platforms. Consider the following scenario of an expert crowdsourcing as shown
in the Figure 1.

Example 1 On a Monday morning three requesters login to a crowdsourcing platform with
their tasks. These tasks are to develop software modules and are having deadlines in two weeks.
Rewards for these tasks are $600, $700 and $650 respectively. m1, m2 and m3 are eligible and
interested workers for these tasks. The requester of task w1 prefers m3, then m1 and then m2.
The worker m3 prefers to work on w1 then m2,m3. Similarly the other workers (and also the
requesters) have preferences over the tasks (workers). m1 is available from Monday morning till
Tuesday evening for the task assignment, where as m2 and m3 are present only on Monday and
Tuesday respectively. The goal is to optimally assign the tasks to the dynamic workers.

As seen in the above example, in expert crowdsourcing market, the requesters have prefer-
ences over the workers who are assigned to their tasks and the workers have preferences over the
tasks they are assigned. For the workers, one of the important advantages is to select tasks of
their own choice. Hence in such task assignments, it is very important to cater to the preferences
of the workers to retain them with the platform.

1http://crowdsourcing.org
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Figure 1: Crowdsourcing scenario

We model the task assignment problem as a matching in two sided market: the requesters
as one side and the workers as another, both the sides having preferences for the match they
obtain. We refer to the requesters as Women and the workers as Men. Two sided matching
problem is extensively studied using game theory in static settings, that is, all men and women
are simultaneously available for matching. However, this need not be the case in the real world
applications. As seen in the above example, each worker arrives dynamically and needs to get
the task before he leaves. Matching in such dynamic settings is called as online matching. The
strategic men may manipulate a matching mechanism by misreporting their preferences. Gujar
and Parkes [8] addressed the online matching in two sided markets in a game theoretic setting.
However, in their setting men are static where as in our settings men are dynamic. The authors
[8] assume external pool of men available as substitutes. In this paper we do not assume such
pool of men or women and construct online matching mechanisms. In particular, the following
are our contributions.

Contributions We propose to use dynamic two sided matching for the task assignment prob-
lem of an expert crowdsourcing platform.

• First we develop a class of online matching mechanisms, by partitioning dynamically ar-
riving men, which we call as Partition Online Deferred Acceptance, fPODA. These mech-
anisms are truthful.

– We design two partition mechanisms, Arrival Priority Online Deferred Acceptance,
fAPODA and Threshold Online Deferred AcceptancefThODA .

• It is impossible to achieve stability in online settings. Hence, we introduce a notion of
progressive stability in online matching. We propose a fRODA, an online matching mech-
anism that achieves the progressive stability at the cost of truthfulness. We believe that
fRODA satisfies weaker notion of truthfulness, namely ex-ante truthful.

• To obtain a good rank efficiency, that is average rank of a matching proposed by a mech-
anism, we devise an online matching mechanism fBOMA.

The rest of the paper is organized as follows.

Organization First we review the related research in Section 2. In Section 3, we explain our
model and notation. We design truthful mechanisms in Section 4. We propose mechanisms to
improve stability and rank-efficiency in Section 5. We study our mechanisms empirically and
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discuss the properties achieved by these mechanisms in Section 6. We conclude the paper in
Section 7.

2 Related Work

Task Assignment in Crowdsourcing [10, 9, 4, 13, 17, 12, 21, 2] addressed the task assign-
ment problem in crowdsourcing. However, most of them are concerned only about the quality
of the answers received and how to assign tasks to workers so as to meet a requester’s goals.
Difallah et. al. [6] proposed to push the tasks to the workers based on their preferences. These
are only categorical preferences and not the workers’ preferences for the requesters or for any
specific tasks. The authors did not address the requesters’ preferences. Moreover, the workers
may be strategic in reporting their preferences which is not addressed in [6].

Akbarpour et. al. [1] designed algorithms for dynamic matching markets. The goal in [1]
is to assign a maximum number of matches in large markets with dynamic population. The
authors did not consider the preferences of the participants.

Two Sided Matching In their seminal work, Gale and Shapley abstracted two sided match-
ing as a marriage problem [7]. The authors introduced a notion of stability and proposed an algo-
rithm Deferred Acceptance (DA). Since then two sided matching problem has been extensively
studied and applied in many real world settings. Roth [18] proved that there is no strategy-proof
mechanism that achieves stability. Majumdar [15] proved that, under certain conditions, the DA
satisfies a weaker notion of strategy-proofness, namely Bayesian Incentive Compatibility. If we
allow the participants to report weak preferences, that is, indifference among alternatives, there
are exponential number of stable matchings and selecting a stable matching in such settings
poses algorithmic challenges. For details about static two sided matching, we refer the readers
to [20, 19, 16].

In online settings, [14] designed algorithms assuming agents are truthful. Compte and Jehiel
[5] considered a different dynamic matching problem to the one studied here. In their model,
all men and women are static, but the men and women experience a preference shock and are
interested in re-match. It imposes an individual-rationality constraint across periods so that no
man or woman becomes worse off as the match changes in response to a shock. The authors
demonstrated how to modify the deferred acceptance algorithm to their problem. The dynamic
matching was addressed by [8] for the case of static men.

3 Preliminaries and Notation

Motivated by the task assignment problem in an expert crowdsourcing, we make certain as-
sumptions.

Assumptions

• The men side is dynamic where as the women side is static. (In Expert crowdsourcing
scenario: the tasks are complex and need much longer duration to complete them. We
restrict to time window during which these tasks needs to be completed once posted. The
workers log-in at different times.)

• The Men are strategic and the women are honest in reporting the preferences. (In our
example, preferences of the requesters can be derived from skills required for the tasks
and performance of the workers in similar tasks in the past where as the workers may be
strategic in reporting their preferences.)
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• The preferences of the men and women are strict.2

• The men do not lie about their arrival departure periods. Such settings are called as
exogenous.

We use the following notation in the rest of the paper.

3.1 Notation

In the market there are n men (M) at one side and n women (W ) at the other. Every agent
is interested in obtaining a match at the other side. Let �i be strict preference order of an
agent i ∈M ∪W over other side of the market. A preference profile of the agents is denoted as:
�= (�i,�−i), where �−i is the preferences of all the remaining agents apart from i. mj arrives
into the market in period aj and is available for matching till dj . We denote the schedules
of arrival and departure of men by ρ = {(aj , dj) : j ∈ M} We denote a match by µ where
µ(m) ∈W ∪ {φ} and µ(w) ∈M ∪ {φ}. Our notation is summarized in Table 1.

n Total number of men (women)

M Set of Men

W Set of Women

aj , dj Arrival time and departure time for a man mj

ρ = {(aj , dj)mj∈M} Arrival-Departure Schedule of Men

�i Preference of i ∈M ∪W
� = (�i,�−i) Preference profile of all agents

W (t) Women that are not matched till t.

M(t) {mj 3 aj ≤ t ≤ dj and mj is not matched.}
AM(t) {mj |aj = t} Set of men arriving in time slot t

DM(t) {mj |dj = t} Set of men departing in time slot t

f Matching mechanism

µ = f(�, ρ). A matching

Table 1: Notation

An online matching mechanism f selects a matching µ = f(�, ρ) [8]. A matching mechanism
f should be feasible. That is, it should match each mj ∈ M before dj , that is before he leaves
the system. Important desirable properties of a matching mechanism are truthfulness, stability
and rank-efficiency.

Definition 1 (Strategy-Proof) Online mechanism f is strategy-proof (or truthful) for men
if for each man m, for all arrival-departure schedules ρ, and for all preferences ≺−m, and for
all �′m 6=�m,

µ′(m) � µ(m),

where µ′ = f(�′m,�−m, ρ).

Definition 2 (Stability) We say a pair (m,w) ∈M ×W blocks a matching µ if, w �m µ(m)
and m �w µ(w). If there is no blocking pair, we say the matching is stable. And if a matching
mechanism always produce stable matching, we say the mechanism is stable.

2We further assume that the agents are able to identify their preferences. In general crowdsourcing, it may be
in-feasible for agents to know own preferences over large number of tasks. However, in an expert crowdsourcing,
the number of tasks in which the worker is interested, is limited.
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To evaluate performance of an online mechanism, we also consider its rank-efficiency. Rank-
efficiency of an online mechanism is an expected rank for each agent that it assigns to its match.
We, following Budish and Cantillon [3], assume risk neutral agents with a constant difference
in utility across the matches that are adjacent in their preference list. The rank of an agent
i for a matching µ, written rank i(µ), is the rank order of the agent with whom he or she is
matched. A match by i with the most-preferred agent in �i receives rank order 1 and with the
least-preferred receives rank order n. If µ(i) = φ then the rank-order is n + 1. Based on this,
the rank of a matching µ is rank(µ) = 1

2n

∑
i∈M∪W rank i(µ).

To define the rank-efficiency of a mechanism we assume a distribution function Φ on (�, ρ)
and compute the expected rank over the induced distribution on matches:

Definition 3 (Rank-efficiency) The rank-efficiency of an online mechanism f , given distri-
bution function Φ, is

rankf = E(�,ρ)∼Φ[rank(f(�, ρ))].

We first describe a celebrated algorithm, Deferred Acceptance, in the next subsection.

3.2 Static Matching Mechanisms

Lets say ρ = {(1, 1)mi∀mi ∈ M}. We refer to this as static settings. Gale and Shapley [7]
proposed a deferred acceptance algorithm when all the agents are static.

Definition 4 (Man-proposing DA) Each man states his most preferred woman. Each woman
keeps the best match and rejects other men. All rejected men then propose to their next preferred
women. The procedure continues until there are no more rejections.

We denote matching produced by the above algorithm as DA(M,W ). This mechanism is
strategy-proof for men and always selects a man-optimal stable matching [19]. That is no other
stable matching is preferred by all the men. Similarly we can define a woman-proposing DA.3

In general, it is not possible to have a matching mechanism that is stable and strategy-proof
for both sides of the market [18]. Hence, we address incentive constraints only for the men side.
Since a DA has interesting game theoretic properties, we design strategy-proof mechanisms for
the dynamic settings using the DA as a building block.

4 Dynamic Matching: Truthful Mechanisms

In dynamic settings, either one of the two sides is dynamic or both the sides are dynamic. In
this paper, we do not address the case when both the sides are dynamic.

4.1 Dynamic Matching: The Static Men and The Dynamic Women

Gujar and Parkes [8] consider a setting when the strategic side (men) is static and the honest side
(women) is dynamic. The authors propose a matching mechanism GSODAS. In GSODAS, the
authors propose to use DA(M,W (t)) in each period t where W (t) is a set of women available
in t. If a man gets matched with a woman better than his previous period match, he skips
the previous match. If his previously matched woman has already left the market, she gets a
substitute for him. The authors assume an external pool of men available as substitutes, may
be in a secondary market. The authors prove that the GSODAS is stable and strategy-proof for
the men.

Though their setting resembles to our setting, in our setting the men side is dynamic where
as in [8] it is static.

3Unless otherwise stated, when we say DA in this paper, we mean man-proposing DA.
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4.2 Dynamic Matching: The Dynamic Men and The Static Women

As seen in Section 3, a DA is very simple, fast algorithm and always leads to stable matching
in static settings. It is strategy-proof for men. Hence, we use it as a building block in designing
matching mechanisms. We make some observations for dynamic settings.

(1) We do not assume possibility of substitutes. For example, consider the expert crowd-
sourcing market described in the Introduction. Once a worker is assigned a task and he starts
working on it, the platform cannot preempt it from him and request him to get another task in
another market. Thus, if a woman w is matched with a man m and if m leaves the system in
period time t, she is not available for matching for all time periods > t.

(2) Suppose we execute DA at t1 and t2 > t1 with all the men available in the system at
those periods. If a man m participates in both the DAs, he gets better or worse match than the
first DA. Due to possible collisions across multiple DAs, it is not feasible to guarantee him the
best match across multiple DAs. This can potentially create misreports by allowing him to get
better match in the end. This motivates our mechanisms in the next section.

4.3 Partition Online Deferred Acceptance (PODA)

Every man is matched using DA at one period in his availability and this match is final. No
man is considered for DA more than once. This induces a partition among the men based on
the time of their matching. Let Π = {M1, . . . ,Mk} be collection of subsets of M such that (i)
Mi ∩Mj = φ∀i 6= j, (ii) ∪Mi = M , (iii) t1, . . . , tk such that ∀mj ∈ Mi, aj ≤ ti ≤ dj , and (iv)
this partition is is independent of the preferences of men.

With this we propose a class of online matching mechanisms which we call as Partition
online DA (PODA).

ALGORITHM 1: Matching Mechanism fPODA

Input: Preferences of Men and Women (�), ρ, Π, {t1, . . . , tk}
Output: A matching µ

1 t = 1, W (1) = W
2 if t ∈ {t1, . . . , tk} then
3 µti = DA(Mi,W (t))

4 t← t+ 1
5 W (t)←W (t− 1) \ {w : µt(w) 6= φ}
6 if W (t) == φ then
7 µ = ∪tiµti
8 STOP.

9 GO TO STEP 2.

Proposition 1 fPODA is strategy-proof for men.

In fPODA, each man is part of a DA only once. A DA is strategy-proof for men, hence no man
can benefit by misreporting his preference when he is matched using a DA. As the partition is
independent of the preferences of the men, no man’s preference can influence his competitors
in DA. That implies that no man can benefit by misreporting. Hence, fPODA is strategy-proof
for men.

�
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Examples of fPODA

fPODA assumes Π is given. We show with two examples how to create partition without knowing
any details about the men arriving in the future and their schedule.

4.3.1 Arrival Priority Online Deferred Acceptance (fAPODA)

In this mechanism we consider the partition of men induced by their arrival periods. That
is, in each period t if AM(t) 6= φ we execute DA(AM(t),W (t)). Its very simple and easy to
implement. However, it may lead to many blocking pairs. To optimize for stability, we propose
the following mechanism.

4.3.2 Threshold Online Deferred Acceptance (fThODA)

In this mechanism, we induce a partition of the men greedily and based on a given parameter
threshold (Th). The basic idea is to accumulate more men for matching every time we execute
the DA. The parameter Th can be optimized for a given stochastic process of arrival-departure
of the men. The proposed matching mechanism is follows:

ALGORITHM 2: Matching Mechanism fThODA

Input: Preferences of Men and Women (�), ρ, Th
Output: A matching µ

1 t = 1, M(1) = AM(1),W (1) = W
2 if DM(t) == φ then
3 DO NOTHING

4 if DM(t) 6= φ and |M(t)| > Th then
5 µt = DA(M(t),W (t))

6 if DW (t) 6= φ and |M(t)| ≤ Th then
7 µt = DA(DM(t),W (t))

8 t← t+ 1
9 W (t)←W (t− 1) \ {w : µt(w) 6= φ},
M(t)← {M(t− 1) ∪AM(t)} \ {m : µt(m) 6= φ} ∪DM(t)

10 if W (t) == φ then
11 µ = ∪tµt
12 STOP.

13 GO TO STEP 2.

Both the above mechanisms are truthful. We now discuss the stability of these mechanisms
in the following subsection.

4.4 Stability in Partition DA

In general, no mechanism can predict preferences of the agents yet to arrive. So, it is not fair
to expect stability in dynamic settings. Note that GSODAS can achieve stability with external
pool of men in secondary markets. We do not assume possibility of substitutes. It follows from
Proposition 3.1 in [8] that stability is impossible in our settings. Hence, in this paper, we propose
a weaker notion of stability, namely progressive stability. The idea is, at each instance of time,
there is no blocking pair in the system. We do not allow women, that are matched with men
who are no longer available for matching, to form a blocking pair. More formally, progressive
stability is defined as follows.
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Definition 5 (Progressive Stability) A pair (m,w) is said to be blocking pair at time t if
(i) m,w both are present in the system at t, and not matched with each other, (ii) prefer to
match with each other than their current match, (iii) their current matches are also present in
the system. In each time period, if no such pair exists, we say a matching is progressively stable.

PODA mechanisms cannot achieve progressive stability. The partition is independent of the
preferences. Consider the following instance of preferences. Let t1 < t2 and w matched with
m1 ∈ M1 with d1 > t2. For some m2 ∈ M2, if m2 �w m1 and m2 prefers w most, (m2, w) is
blocking pair at t2.

In the next section, we look for non-strategy proof mechanisms to improve stability and
rank-efficiency.

5 Dynamic Mechanisms: Progressive Stability and Rank-Efficiency

5.1 Repeated Online Deferred Acceptance (RODA)

We run the DA in every period and only the matches involving the departing men are final.

ALGORITHM 3: Matching Mechanism fRODA

Input: Preferences of Men and Women (�), ρ
Output: A matching µ

1 t = 1, M(1) = AM(1),W (1) = W
2 µt = DA(M(t),W (t))
3 for m ∈ DM(t) do
4 µ(m) = µt(m) and µ(µt(m)) = m

5 t← t+ 1
6 M(t)← {M(t− 1) ∪AM(t)} \DM(t), W (t)← {W (t− 1) \ {w : µt(w) ∈ DM(t)}
7 if W (t) == φ then
8 STOP.

9 GO TO STEP 2.

In fRODA, men get match only at their departure. Hence, men may have strong incentive
for early departure. However, in this paper, we focus only on exogenous settings. We illustrate
fRODA with the following example.

Example 2 Consider the example shown in Figure 1. Let their preferences be as in Table 2.
We refer to Monday as t = 1 and Tuesday as t = 2. Workers m1,m2 arrive at t = 1 and m2

leaves in the same slot. m3 arrives at t = 2. In first round, (m1, w1) and (m2, w2) are matched
using the DA. As m2 has to leave by end of slot 1, that match is final. m1 has deadline t = 2
and hence does not start working on T1. In second period, using the DA (m1, w3) and (m3, w1)
are matched and as all workers have appeared in the system, this match is final.

Workers (Men) Requesters (Women
m1 w1 � w2 � w3 w1 m3 � m1 � m2

m2 w2 � w1 � w3 w2 m1 � m2 � m3

m3 w1 � w3 � w2 w3 m1 � m2 � m3

Table 2: fRODA Example Preferences

Theorem 5.1 fRODA is progressively stable.
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Proof : We prove by induction. At t = 1, we are using the static version of a DA and hence the
matching at t = 1 are stable. Say fRODA is progressively stable till t = τ . We show that fRODA

cannot introduce any blocking pair at t = τ + 1. Let’s assume (m,w) is blocking at τ + 1. Say
at τ + 1, m is matched with w′ and w is matched with m′. For m : w � w′, and for w : m � m′.
In the time slot τ + 1, m must have proposed to w before w′. If w is matched with m′ from
previous round and is still present in the system, w would had rejected him and be matched
with m. Thus, w must be matched with some worker who already left the system. Hence, w
cannot be part of blocking pair in progressive stability. Thus, fRODA is progressively stable.

�

fRODA achieves progressive stability but is manipulable:

Claim 1 fRODA is not strategy-proof.

Proof: In Example (2), m1 can report preference to be w2 � w1 � w3. He gets matched with
w2 in period 1 and this does not change in period 2. By misreporting, he obtains a preferable
match than w3.

�

Note that, (i) such manipulation requires information about the preference of a man yet to ar-
rive. (ii) By simulations with uniform preferences, we observed, Prob(rank i(f

RODA(�, ρ)) = k)
decreases with k. Hence we believe that fRODA is ex-ante strategy-proof for uniform prefer-
ences. (iii) If beliefs of men about the preferences of men yet to arrive are uniform even after
observing their own preference, it need not give any incentive to men to misreport in fRODA.

5.2 Rank-Efficiency

In the static settings, the DA selects a man-optimal stable matching and hence, it is Pareto-
efficient. However, as we consider ordinal preferences, to measure efficiency, we use a rank-
efficiency of a matching mechanism. To achieve stability, the DA mechanism has to compromise
on rank-efficiency.

For example, say there are three men m1,m2,m3 and three women w1, w2, w3. Let �m1=
w1 � w2 � w3 and �m2=�m3= w1 � w3 � w2. All three women have preference m1 �
m2 � m3. Assume am = dm = 1 for all three men. The DA will produce matching µD :
(m1, w1), (m2, w3), (m3, w2) with rank(µD) = 2 and a matching µ : (m1, w2), (m2, w1), (m3, w3)
has rank(µ) = 11

6 .
With this example, to improve rank-efficiency, we propose fBOMA, an online matching

mechanism that uses maximum weight bipartite matching for matching the men.

5.2.1 Bipartite Online Matching Algorithm

fBOMA is same as fThODA except that in lines 5 and 7 of Algorithm 2, we use Max-wt-Bipartite(M(t),W (t))
and Max-wt-Bipartite(DM(t),W (t)) respectively instead of the DA. Max-wt-Bipartite(A,B)
gives maximum weight bipartite matching between men A and women B. An edge between a
man m and woman w has weight 2n+ 2− rankm(w)− rankw(m).

We now perform an empirical study of the proposed mechanisms in the next section.

6 Evaluation of the Mechanisms

6.1 Empirical Evaluation

In this section, we describe the simulations that we carried to measure stability and rank-
efficiency of the proposed mechanisms. We assume the men arrive into the system according a
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(a) Stability of the four mechanisms for various
n with λ = 3, µ = 0.5

(b) Rank-efficiency of the four mechanisms for
various sn with λ = 3, µ = 0.5

(c) Scatter Plot for rank-efficiency and stability
of the four mechanisms for n = 20, λ = 3, µ = .05

(d) Scatter Plot for rank-efficiency and stability
of the four mechanisms for n = 24, λ = 5, µ = .05

Figure 2: Comparison of fAPODA, fThODA, fRODA, fBOMA

Poisson process with parameter λ and wait in the system according to a exponential distribution
with mean µ = 0.5. The preferences of every man and woman are drawn uniformly at random
from all possible preference profiles. With these setup, we generated 5,000 instances of matching
problem for each of various n, λ combinations and measured stability and rank-efficiency across
these instances.

To study stability, we measure the average number of unstable men produced by the mech-
anism. We say a man is unstable if he is involved in at least one blocking pair.

Figure 2 (a) and (b) shows how the stability and rank-efficiency changes for all the mecha-
nism as we increase n by fixing λ = 3 Figure 2 (c) is a scatter plot for stability vs rank-efficiency
of all the mechanisms for n = 20, λ = 3 and (d) is a scatter plot for n = 24, λ = 6.

We discuss compare all the proposed mechanisms in the next subsection.

6.2 Discussion

We designed four mechanisms for two sided matching problem when the men side is dynamic.
Based on a design goal, we can choose which mechanism to be used. If strategy-proofness is im-
portant, we propose to use any mechanism from a class fPODA. These are partition mechanism
in which a feasible partition of the men is given. If men are impatient or if it is difficult to know
how to partition, one can use fAPODA ∈ fPODA. If underlying stochastic model is available, we
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propose to use fThODA ∈ fPODA. It improves the stability by 2%-5% over fAPODA.
If stability is of utmost important, we recommend to use fRODA which is progressively

stable and performs better than other mechanisms on conventional stability. If the design goal
is to improve rank-efficiency, we recommend to use fBOMA that improves rank-efficiency by
25% but the average number of unstable men increases by 35%. This is summarized in Table 3.
The numbers in a row indicate ranking among the four mechanisms on respective performance
measure.

fAPODA fThODA fRODA fBOMA

Strategy-proof Y Y N N

Stability 3 2 1 4

Progressive Stability N N Y N

Rank-efficiency 3 4 2 1

Table 3: Notation

7 Conclusion

Motivated by an expert crowdsourcing market, in this paper, we addressed two sided dynamic
matching problem when one side, the men side, is dynamically arriving to the market where as
the other side, the women side, is available for matching from the start. We focused on exogenous
men settings. We first proposed strategy-proof mechanisms, fPODA, fAPODA, fThODA. As it is
impossible to achieve stability in online settings, we introduced a weaker notion of stability,
namely progressive stability. We proposed a mechanism fRODA that achieves the progressive
stability if all the agents are truthful. However, fRODA is not strategy-proof. We also proposed a
mechanism fBOMA to improve the rank-efficiency, but it has poor stability and is not strategy-
proof. In the previous section we compared all the mechanisms empirically. Based on a design
goal, one can choose an appropriate matching mechanism.
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Abstract. Hospitals/Residents with Ties (HRT) forms a class of problems
with many applications, some of which are of considerable size. Solving
these problems has been shown to be NP-hard. In previous work, we de-
veloped a local search algorithm which displays very high performance in
solving Stable Matching with Ties and Incomplete lists (SMTI) problems.
In this paper, we propose a method to tackle HRT problems with a slightly
modified version of our SMTI solver. We describe our method and provide
an initial performance assessment, which turns out to show that the re-
sulting solver can deal with significant HRT problems, providing optimal
solutions in most cases, in a very short time.

1 Introduction

In 1962, Gale and Shapley introduced the Stable Matching (SM) problem [4]. An
SM instance of size n involves a set of n men and a set of n women, each of whom
has ranked all members of the other set in strict order of preference. Solving such a
problem consists of finding a matching, i.e. a one-to-one matching between the men
and the women. In addition the matching must be stable, meaning that there is
no man-woman pair where both would rather marry each other than their current
partner – such a pair is called a blocking pair. Gale and Shapley proved that such
a stable matching always exists and proposed an O(n2) algorithm (called GS in
what follows) to find one.

However, requiring each member to rank all members of the opposite sex in
a strict order is too strong a restriction for many real-life, large-scale applica-
tions. A natural variant of SM is the Stable Matching with Ties and Incomplete
Lists (SMTI) problem [14, 17]. In SMTI, the preference lists may include ties (to
express indifference) and may be incomplete (to express that some partners are
unacceptable). More formally, an SMTI instance of size n consists of n men and n
women, and a preference list for each of them, which contains some of the people
of the other gender. Such preference lists are weak orders, that is, total orders
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possibly containing ties. Given an SMTI instance, a matching M is a set of pairs
(m,w) representing a (possibly partial) one-to-one matching of men and women.
If a man m is not matched in M (i.e. for no w is it the case that (m,w) ∈M), we
say that m is single in M (similarly for women). The size of a matching M is the
cardinality of M , denoted |M |.

With the introduction of ties in the preference lists, three different notions of
stability may be used [10, 17, 14]. As we consider only weak stability (the most
challenging), we simply call it stability. In the context of M , a pair (m,w) is a
Blocking Pair (BP) iff (a) m and w accept each other and (b) m is either single
in M or strictly prefers w to his current wife, and (c) w is either single in M or
strictly prefers m to her current husband. A matching M is stable iff it has no
blocking pairs.

A (weakly) stable matching always exists and can be found with variants of
the GS algorithm. Since any given SMTI instance may have stable matchings of
different sizes, a natural requirement is to find one of maximum cardinality. This
optimization problem (called MAX-SMTI) has many real-life applications [17, 14]
and has attracted a lot of research in recent years because of that: car sharing or
bipartite market sharing, job markets and social networks. Many of these appli-
cations involve very large sets. Unfortunately, the MAX-SMTI problem has been
shown to be NP-hard, even for very restricted cases (e.g. only men declare ties,
ties are of length two, the whole list is a tie) [13, 17].

We have recently proposed a Local Search (LS) algorithm for the SMTI prob-
lem [19]. For this, an SMTI problem is first modeled as a permutation problem and
then solved by the Adaptive Search (AS) method [1, 2]. Basically, starting from a
random matching, our algorithm iteratively tries to improve the current matching
by performing a swap between two variables (i.e. two men exchange their part-
ner). For this, a limited neighbourhood is explored and the most promising swap
is selected based on a heuristic which selects the most significant blocking pair to
fix and/or a single man to marry. The algorithm stops when a perfect matching
is found (a stable matching with no singles) or when a given timeout is reached
(in which case the best matching found so far is returned). This algorithm turned
out to have very high performance and is able to optimally solve several large
instances.

Another very useful variant of SM is the Hospitals / Residents problem with
Ties (HRT) [12, 11, 17]. An HRT instance consists of two sets: the residents R =
{r1, . . . rn1} who apply to the hospitals H = {h1, . . . hn2}. The preference list of a
resident ri ∈ R consists of the ordered list of acceptable hospitals (a subset of H).
The preference list of a hospital hj ∈ H contains the ordered list of residents (a
subset of R) who consider hj acceptable. All preference lists are allowed to contain
ties. In addition, each hospital hj ∈ H has a capacity cj indicating the maximum
number of positions it offers.

The problem consists of finding a stable matching between residents and hos-
pitals satisfying both the preference lists (the matching must be stable) and the
capacities (each resident being assigned to at most one hospital and the number
of residents assigned to any hospital hj must not exceed cj). At any stage during
the matching process, a hospital hj with aj assignees is said to be over-subscribed
if aj > cj , full if aj = cj , and under-subscribed if aj < cj .

The previously discussed notion of weak stability can be adapted to HRT: in
the context of M , a pair (r, h) give rise to a blocking pair iff (a) r and h accept
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each other and (b) r is either unassigned in M or strictly prefers h to his assigned
hospital, and (c) h is either under-subscribed or strictly prefers r to the worst
resident assigned to it. As for SMTI, a matching M is stable iff it has no blocking
pairs.

HRT problem has many practical applications, e.g. assignment of applicants
to positions in job markets. In the medical employment domain, there are na-
tional programs in various countries such as the Scottish Foundation Allocation
Scheme (SFAS), the Canadian Resident Matching Service (CARMS) or the Na-
tional Resident Matching Program (NRMP) in the USA. Obviously, such programs
involve very large sets. Unfortunately, as for SMTI, the problem of finding a stable
matching of maximum cardinality (called MAX-HRT) for a given instance of HRT
is NP-hard (even for restricted cases, e.g. if the ties are only allowed on one side).
Finding an efficient algorithm to solve HRT problems is thus a true challenge with
many real applications.

We deem it interesting to see if we can attack the HRT problem with our LS
algorithm. While SMTI is a special case of HRT (where each hospital has capacity
one) we chose to adopt a reverse approach, considering an HRT as a special case
of SMTI so as to keep the main lines of our algorithm (permutation-based, which
ensures a compact memory representation and an implicit modeling of the all-
different constraint). To this end, we can use the so-called cloning technique [9]
which basically consists of creating cj copies of the hospital hj , each of capacity
1, and to use these copies (inside a tie) each time this hospital is referenced in a
resident’s preference list. Strictly speaking, the resulting problem instance is not
exactly an STMI instance since the resulting sets (residents and cloned hospitals)
can have different sizes but it is trivial to add dummy elements (residents or
hospitals). The extension of our algorithm to deal with this feature is very simple.
All of this makes HRT and SMTI equivalent problems.

This RISC -like approach is analogous to what occurs with SAT modeling:
the object formulation is often voluminous and cumbersome but its resolution by
the best SAT solvers is very efficient – often faster than what is obtained with
dedicated solvers which take higher-level formulations, such as CSP or constraint
programming. Upon dealing with hard problem instances, we try to improve the
solver at low level, meaning that the techniques which we may come up with to
better solve HRT will also benefit SMTI, in the general case. We stress that our LS
algorithm gets much better performance than complete methods (i.e. enumerative,
branch and bound, linear and integer programming, etc.), even though we do not
always reach the optimum solution.

As the rest of this paper will show, we manage to get very competitive per-
formance on real-world data sets of considerable size and difficulty. We are also
convinced that this will further benefit from the efficiency improvements we ex-
plored in [19], namely parallelism.

2 A Local Search Method for SMTI

Local search is a meta-heuristic method for solving optimization problems. It re-
quires a cost function to evaluate the quality of a given assignment of variables
(i.e. a configuration). The method also needs a transition function which defines,
for each configuration, a set of neighbours. The simplest Local Search algorithm
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starts from a random configuration, explores the neighbourhood, selects a promis-
ing neighbour and moves to it. This iterative process continues until a solution is
found. In this paper, we use a Local Search method developed by our team: the
Adaptive Search method [1].

Adaptive Search (AS) is a generic, domain-independent, constraint-based local
search method. This meta-heuristic takes advantage of the modeling of the problem
in terms of constraints and variables, in order to guide the search more precisely
than a single global cost function.

The error function in AS is a heuristic value which stands for the degree of
satisfaction of the constraints. The method combines the error for each constraint
to obtain a global cost and then, for each variable, AS projects constraint errors
on the involved variables. AS repairs the worst variable (highest error) with the
best (most promising) available value.

AS also includes an adaptive memory inspired by Tabu Search [8] in which
each variable leading to a local minimum is marked and cannot be selected for
the next few iterations. A local minimum is a configuration for which none of the
neighbours improve the current cost. Finally, the algorithm also includes partial
resets in order to escape stagnation around local minima.

For this work we use a particular implementation of AS, specialized for permu-
tation problems. In this case all n variables have the same initial domain of size n
and are subject to an implicit all-different constraint.

2.1 AS Model for SMTI Problems

We recently developed an efficient Adaptive Search model to solve SMTI prob-
lems (AS-SMTI). In this section we sketch the main features of the modeling; the
interested reader may refer to [19] for details.

To use AS, we model the SMTI problem as a permutation problem: we define a
sequence of n variables (X1 . . . Xn) which take for values permutations of the vector
(1 . . . n). Xi = j is interpreted as either (mi, wj) ∈ M , or mi is single if wj is not
on its preference list. Note that this interpretation remains valid when the values
of any two variables are swapped (this is how value assignment is implemented in
permutation problems).

The AS method seeks to improve the stability of a matching by removing
blocking pairs (BPs). Some BPs may be useless in that fixing them does not
improve things since the man involved remains part of another BP. To avoid this,
the method focuses only on the so-called undominated blocking pairs [15, 5]. Let
(m,w) and (m,w′) be BPs. BP (m,w) dominates (from the men’s point of view)
BP (m,w′) iff m prefers w to w′. A BP (m,w) is undominated iff there is no other
BP dominating (m,w). In the following we only consider undominated BPs, which
we simply call BPs.

Adaptive Search relies on a global objective function (called cost function) to
measure the degree of error of a configuration. The cost function of a matching M
is defined as follows:

cost(M) = #BP (M)× n + #Singles(M)

where #BP (M) is the number of BPs in M , and #Singles(M) is the number
of single men in M . The number of BPs is weighted with n to prioritize stable
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matchings over matchings with fewer singles. A matching M is stable iff cost(M) <
n, and perfect iff cost(M) = 0. AS stops as soon as the cost function reaches 0 or
when a given time limit is hit, in which case it returns the best matching found
so far.

The AS-SMTI modeling defines the function R(w,m) as the rank of m in the
preference list of w, ranging over 1..(n+1), with i < j implying w prefers (man with
rank) i to (man with rank) j, and R(w,m) = n + 1 iff m is not in the preference
list of w. The implementation does some straightforward pre-computation to avoid
the linear cost of recomputing R(w,m). The algorithm computes the BPs in the
match M , going through all men in the problem. For each men m, let w the current
partner of m such that (m,w) ∈ M , AS-SMTI verifies in the preference list of m
if there is a woman w′ with a higher level of preference than w. If w′ exists, let
m′ the current partner of w′ such that (m′, w′) ∈ M , the algorithm checks in the
preference list of w′ if the man m has a higher level of preference than m′. If this
happens, the algorithm has found the BP (m,w′). The associated error for this BP
is determined by the following expression: R(w′,m′)−R(w′,m). Thus, the further
the assigned man is from the BP (in the preference list of w′), the larger the error.

It is worth noticing that while (undominated) BPs are considered from the
men point of view, the associated errors are computed from the women point
of view. Since preference lists can include ties, a man can be implied in several
undominated BPs. For efficiency and simplicity reasons, AS-SMTI only considers
the first encountered BP for a given man m and computes its error as explained
above. Other strategies exist to aggregate the error associated to all BPs (select
the maximum error, the average error, randomly one error, . . . ).

At each iteration, AS selects the “worst” variable from the current matching
M to improve it (the man involved in the BP with the largest error as explained
above). In case of several man have the same highest cost, one is selected randomly.
AS then fixes the culprit by swapping Xm and Xm′ . In short, AS considers all BPs,
chooses the variable corresponding to the worst one, fixes it by moving to a new
configuration and re-evaluates the cost of the resulting matching. This heuristic
avoids the cost of fixing all BPs, one by one.

In most cases, the resulting matching improves on the current one, and AS
continues iteratively. When this is not the case, AS has reached a minimum (global
or local). As AS has no way of knowing when the optimum has been reached (except
when the cost is 0) it handles both cases similarly trying to escape the minimum
invoking a “reset” procedure. This procedure slightly alters the current assignment
of variables, trying to fix the 2 worst BPs and/or to assign a woman to a single
man. The reset procedure is stochastic; it will also fix the second worst variable
with a probability p: good results are obtained with a high value, e.g. p ' 0.98. This
procedure turns out to be very effective: while preserving most of the configuration
(no more than 2 swaps are performed), it enables AS to escape all local minima
and reach very good solutions.

AS stops when one of the following conditions is reached: (a) a perfect solution
has been found (i.e. cost = 0), (b) a given target cost T is reached (it is possible to
ask the solver to find a solution with at most T singles) or (c) a timeout is reached
(in which case the best solution found so far is returned).
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Fig. 1: a) average number of BP b) average number of singles
when solving SMTI problems (n = 100, p2 = 0.5, varying p1)

2.2 Performance evaluation on SMTI problems

We present here an evaluation of our AS-SMTI algorithm. For this, we used a
dataset composed of random problems created using the generator described in [6]
which takes three parameters: the size (n), the probability of incompleteness (p1)
and the probability of ties (p2). Given a triple, (n, p1, p2), a SMTI problem instance
with n men and n women is generated as follows: for each man and woman, the
algorithm generates a random permutation of size n, as a preference list. Then, the
algorithm iterates over each object in the preference lists, and with a probability
p1, this object is deleted from the preference list. Finally, the algorithm iterates
again over each remaining object (in the men and women preference lists) and
with a probability p2, a tie is created between the current object and the previous
one.

For a given combination of p1 and p2 100 different problems were generated.
Since AS is a stochastic procedure, each problem is solved 50 times and results
are averaged. We used an X10 implementation of AS running sequentially on an
AMD Opteron 6380 clocked at 2.5 GHz, i.e. using only one core.

The first experiment analyzes the number of iterations needed to solve an
SMTI problem. Every 10 iterations, the solver reports the number of BPs and
the number of singles of the current configuration. Due to space limitation, we
here consider problems of size 100, for different values of p1 in [0.1, 0.9] and for
p2 = 0.5 (ties may appear in both sides). Figure 1 presents the averaged results of
this experimentation. It appears that the average number of BPs quickly decreases.
For instance, on average, after 200 iterations, a stable matching is already reached
in 99, 88% of the cases. It is worth noticing that some difficult instances can require
more iterations (the maximum observed has been 460 iterations for a problem
generated with p1 = 0.5). Figure 1 b) shows the evolution of the number of singles
with respect to the number of iterations. Again, this number quickly decreases. It
is worth noticing that when the incompleteness of the problem is high (e.g. when
p1 = 0.9), some problems do not have a perfect solution and the number of singles
does not fall below some boundary value.
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Fig. 2: Runtime behaviour of AS-SMTI: a) number of iterations, b) execution time
(varying the size of the problem, p1=0.5 p2=0.5)

The second experiment analyzes the scalability of the AS-SMTI algorithm. For
this we fixed the parameters p1 and p2 to 0.5, and we varied the size n of the
problem in the range of [100, 1000] using steps of 100. Figure 2 shows the curves
corresponding to the number of iterations and to the runtime when varying n. We
can observe that the number of iterations to obtain a perfect solution for SMTI
problems varies linearly from 200 iterations for n = 100 to 2000 iterations for
n = 1000, with a corresponding runtime in O(n2 log n). Obviously, the results of
this test cannot be generalized and we plan to extend the experimentation with
other values for p1 and p2.

Finally, we compared our AS solver with McDermid’s method (MD) [18], a
very efficient 3/2-approximation algorithm, as implemented in [20]. For this test
we used a data set composed of SMTI problems of size n = 100, with p1 ranging
over [0.1, 0.9] and p2 over [0, 1], with step 0.1. With MD, for each (p1, p2) pair, we
solved the 100 instances once and averaged the the execution time.
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Fig. 3: AS vs. MD: a) quality of solutions b) execution time.
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Figure 3a compares the quality of solutions. The percentage of perfect stable
matchings found by the AS algorithm is considerably higher than those found by
MD, in particular using a probability of ties p2 ∈ [0.1..0.8].

Figure 3b compares the execution times, as a 3D chart. In many cases, AS
is up to an order of magnitude faster than MD. With higher probability of in-
completeness (e.g. p1 = 0.9), MD outperforms AS. This can be explained by the
time-complexity of MD which is proportional to the total length of the preference
lists, i.e. it linearly decreases as p1 increases. The MD algorithm seems to perform
faster than our AS approach only when p1 = 0.9. We note that MD always re-
turns the same, single and (sub)optimal solution, while AS will yield more than
one solution, with observably better quality. Moreover, a solution quality vs. per-
formance trade-off is always possible in AS, by tweaking the timeout parameter.
A complete comparison of the AS-SMTI algorithm with a state-of-the-art Local
Search method [5] and a SAT encoding of the SMTI problem [7] may be found
in [19].

3 Solving HRT Problems

In this section, we propose an algorithm to solve the HRT problem based on
the algorithm presented above (we call this extension AS-HRT). Our goal is to
obtain an HRT solver with minimum changes in the AS-SMTI algorithm. For
this purpose, AS-HRT resorts to the “cloning” technique described in [3, 9, 21].
The main idea in cloning an HRT problem is to define a match between residents
and positions instead of hospitals. A position being a single post offered by a
hospital (a hospital hj can offer cj positions), each position can only be assigned
to only one resident (capacity equal to one). To convert an HRT problem into
an SMTI formulation, we create a new set of positions composed of the single
positions offered by the hospitals. Each position has the same preference list as its
“root” hospital. In the residents’ preference lists, each hospital hj is replaced by a
sequence composed of the associated cj positions (all forming a tie). The resulting
equivalent SMTI problem consists of matching residents and positions. The main
drawback of the cloning process is a significant increase in the size of the problem
(but this remains manageable with modern computers).

Using cloning we may convert an HRT problem into an (asymmetric) SMTI
problem, in a polynomial time. We use the term “asymmetric” because the re-
sulting SMTI problem can have sets of different sizes. More formally, an asym-
metric SMTI problem is specified by (a) two sets M and W of cardinality m
and n respectively, (b) a ranking function R : M × W → {1 . . . n + 1} and
R : W × M → {1 . . .m + 1} (we use the same name R for the ranking func-
tion for men and women). Note that the only point of generality over the standard
SMTI formulation is that m is not required to be identical to n. From the AS-
SMTI algorithm this comes down handling a vector of max(m,n) values with some
“dummy” values for missing elements.

It is interesting to characterize the cj clones in the resulting SMTI problem
since they play the same role (they are interchangeable). Given an SMTI instance,
m1,m2 ∈ M are said to be equivalent (written m1 ∼ m2) if ∀w,R(m1, w) =
R(m2, w). Similarly, w1, w2 ∈ W are said to be equivalent if ∀m,R(w1,m) =
R(w2,m). Note that ∼ is an equivalence relation.
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A given SMTI problem may have equivalent elements or not. When we translate
an HRT problem into SMTI we get equivalences: the cj elements corresponding to
a hospital hj are all equivalent to each other.

When walking through several matchings, it would be nice to avoid explor-
ing equivalent matchings (i.e. those whose difference only concerns equivalent ele-
ments). Indeed, only one matching from an equivalence class needs to be examined.
It is worth observing that given a matching M if (m,w) and (m′, w′) ∈ M give
rise to a blocking pair (m,w′), then m 6∼ m′ and w 6∼ w′. Therefore, the swap
executed by the main loop of the AS-SMTI algorithm to fix a BP already ensures
that a matching is not changed to an equivalent matching. However, it is not the
case of the reset procedure invoked to escape a local minimum which performs
some random swaps. We have not yet improved this point (if a reset procedure
swaps two equivalent elements the local minimum is not escaped and another reset
will occur resulting in a waste of time). To be fully aware of equivalences in the
current AS-SMTI algorithm, we should first compute equivalences upfront (this
is an easy linear operation) and avoid swaps between equivalent elements in the
reset procedure. We plan to do this in a second version of the algorithm.

3.1 Implementation

To implement the extension to HRT problems, we developed a pre-processor and a
post-processor (see Figure 4). The pre-processor converts an HRT problem instance
I into an equivalent SMTI problem instance I ′. The post-processor systems takes
the match found by the AS-SMTI solver for I ′ and converts back into HRT match
form. The resulting HRT match is the solution to the initial problem.

HRT problem Pre-process
HRT -> SMTI

Equivalent
SMTI problem

AS - SMTI
solver

 SMTI 

match

Post-process
Match

SMTI → HRT

Mapping 

Information

HRT
match

HRT Solver

Fig. 4: Description of the solver extension to solve HRT problems

3.2 Preliminary Performance Evaluation

We did preliminary experiments to assess the performance of the HRT extension
to AS-SMTI. We used a data set composed by randomly generated problems,6

with the the same parameters as in [16]:

– Number of residents n1 = 300 (size of the problem).

6 The data set was kindly provided by Augustine Kwanashie and David F. Manlove from
the University of Glasgow, UK, and is the same as that in [16].
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– Number of hospitals n2 = 21.
– Length of the residents’ preference list l = 5.
– Total number of positions C = 300.
– Tie density td ranging over [0, 1] with step 0.1.

For each td value, we used 10000 instances. The experiment was carried out on a
machine with 4× 16-core AMD Opteron 6380 CPUs, running at 2.5 GHz and 128
GB of RAM, using only 1 core. We solve each problem instance once, collecting
the maximum size of the match and the execution time. We tested the timeout for
AS-SMTI solver at 50, 100, 200, 400 and 1000ms.

Figure 5a shows the maximum size of the match found by AS-HRT, varying
the tie density and using different timeout limits. We also include the optimal
match size found with the Integer Programming method developed in [16]. AS-
HRT almost reaches the optimal match size when using low values of the tie density
(td < 0.6) and when the tie density is 1. These results are obtained even with low
timeout values, i.e. 50ms. When the tie density is between 0.6 and 0.9, AS-HRT
does not always reach the optimal solution: yet in these cases, the minimum ratio
to the optimal size we obtained was 0.998 times (for the td = 0.9).
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Fig. 5: AS-HRT: a) match size and b) execution time (size=300, varying td)

Figure 5b presents the average execution time of AS-HRT. The results show that
when using td = 1, the execution time to get the optimal solution is almost con-
stant, at about 40ms. When the tie density decreases, the average execution time
tends to be the same as the chosen timeout value. This behaviour can be ex-
plained because, when the optimal solution of a problem instance is not perfect
(|M | < 300), the AS-SMTI method, which doesn’t know this, will keep trying to
improve on it until the timeout is reached.

4 Conclusions and Future Work

We recently developed a Local Search solver for SMTI problems based on the
Adaptive Search method. To use this, we need to model problems as permutations
and provide some heuristics based on the study of relevant blocking pairs to guide
the search process, in order to iteratively improve the current matching. A reset
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procedure is invoked when the solver is trapped in local minima. This solver is
very efficient and can solve optimally large instances quickly. For the most difficult
problems, it is possible to tune the trade-off between solution quality and solving
performance by tweaking the timeout parameter.

On the top of this solver, we have built a solver for HRT which basically maps
an HRT problem to an equivalent SMTI problem using the cloning technique. This
required a slight modification to the core solver. We also characterized the result-
ing clones with the notion of equivalence which captures the fact that clones are
interchangeable and thus it is not desirable to replace a matching by another which
is equivalent (i.e. one that only differs in equivalent elements). We showed that
the core LS algorithm mainly satisfies this property, save in the reset procedure.
We have plans to improve on this situation.

We presented a preliminary experimental evaluation based on thousands of
problems of size 300. The solver already performs very well: using a timeout of
1s, it reaches the optimal solution for most of the instances. For the most difficult
instances, when the optimum is not reached within this timeout, the returned solu-
tions are very good with size within a factor 0.998 w.r.t. the optimal solution. We
plan to experiment with other dataset reflecting a more realistic case of the HRT
problem, e.g. modeling the popularity or unpopularity of the hospitals. Moreover,
we also plan to use larger problem instances, as a future development.

There are several avenues for improvement, of which we name a few: we already
mentioned how to take equivalence into account in the reset procedure. It is also
possible to see if other problem reduction techniques are fruitful (e.g. those men-
tioned in [16] for the IP formulation). It would also be interesting to start from a
pertinent solution, instead of a pure random assignment: this could be done with
the help of a very fast approximation algorithm. The size of this solution could be
also used as a lower bound.

Finally, as our base method is amenable to massive parallelisation, we will
explore parallelism to tackle both hard and large problem instances, as we already
did in [19].
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Fairness and Efficiency in a Random Assignment: Three
Impossibility Results

Alexander S. Nesterov ∗
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Abstract

We consider the problem of allocating N indivisible objects among N agents according to
their preferences when transfers are absent. We study the tradeoff between fairness and effi-
ciency in the class of strategy-proof mechanisms. The main finding is that for strategy-proof
mechanisms the following efficiency and fairness criteria are mutually incompatible: (1) Ex-
post efficiency and envy-freeness, (2) ordinal efficiency and weak envy-freeness and (3) ordinal
efficiency and equal division lower bound. Result 1 is the first impossibility result for this
setting that uses ex-post efficiency; results 2 and 3 are more practical than similar results in
the literature. In addition, for N = 3 we provide two characterizations of the celebrated ran-
dom serial dictatorship mechanism: it is the unique strategy-proof, ex-post efficient mechanism
that (4) eliminates strict ordinal envy among agents with the same ordinal preferences, or (5)
eliminates cardinal envy among agents with the same cardinal preferences (by providing these
agents with assignments of equal expected utility). Result 4 strengthens the characterization by
Bogomolnaia and Moulin (2001), and result 5 implies the impossibility result by Zhou (1990).

This paper is a short version of Nesterov (2014) and omits all the proofs.
JEL Classification: C78; D71; D78

Key words: random assignment; random serial dictatorship; strategy-proofness; ex-post effi-
ciency; weak envy-freeness; equal division lower bound.

1 Introduction

In this paper we study the assignment problem, where a set of indivisible objects is allocated to a
set of agents according to their preferences so that each agent receives precisely one object.1

Since the formal introduction of the assignment problem by Hylland and Zeckhauser (1979)
there has been a search for “nice” mechanisms that would satisfy three major properties: incentive
compatibility, efficiency and fairness. Hylland and Zeckhauser (1979) themselves propose a pseudo-
market mechanism that optimally satisfies the latter two properties: their mechanism is ex-ante
∗WZB, Reichpietschufer 50, 10785, Berlin, Germany; e-mail: alexander.nesterov@wzb.eu
1The assignment problem is also known as the one-sided matching problem and the house allocation problem.
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efficient and envy-free. However, the reliability of these efficiency and fairness properties is doubt-
ful because the mechanism does not satisfy strategy-proofness − it is not incentive compatible.
Therefore, it may not satisfy these properties under true preferences.

The further search for a reliably “nice” mechanism gave rise to a series of negative results. It
was Gale (1987) who for the first time conjectured that for an assignment problem with at least
three agents, no mechanism can satisfy ex-ante Pareto efficiency, strategy-proofness and anonymity.
(Anonymity is weak notion of fairness that requires that any two agents with identical reported
utilities get the same individual random assignment.) Later, Zhou (1990) showed a slightly stronger
result, where instead of anonymity he used symmetry. (Symmetry is implied by anonymity, it
requires that any two agents with identical reported utilities get the same expected utility and not
necessarily the same random assignments).

Subsequently, in their seminal paper Bogomolnaia and Moulin (2001), hereinafter referred to
as BM, show a similar but logically independent impossibility result. BM consider agents with
strict ordinal preferences over objects (as opposed to utilities in the papers mentioned above).
Based on these preferences, BM redefine the efficiency concept: they call a random assignment
ordinally efficient if it is not stochastically dominated by any other random assignment for all
agents simultaneously.2 Using this criterion, they show the following impossibility result: for the
assignment problem with at least four agents, no mechanism can satisfy strategy-proofness, ordinal
efficiency and equal treatment of equals. (The latter is a weak fairness criterion that requires that
agents with the same ordinal preferences get the same random assignments.)3

The goal of the current paper is to further study the feasibility set of the “nice” mechanisms.
There are five main results in this paper: three impossibilities and two characterizations.

The first result states a general impossibility regarding ex-post efficiency. We show that when
there are at least three agents, there is no ex-post efficient, envy-free and strategy-proof mechanism.
In fact, Lemma 1 shows an even stronger result, in which envy-freeness and strategy-proofness are
substituted by a pair of weaker properties. This result is most relevant for deterministic assignment
mechanisms that are usually required to be Pareto efficient and strategy-proof, but they are very
unfair ex-post. 4 That is why modifications of these mechanisms may involve randomization in order
to restore fairness ex-ante. However, as implied by the impossibility result, in these modifications
envy-freeness can only be achieved at the cost of either ex-post efficiency or strategy-proofness.

The second result states that if there are at least four agents, there is no weak envy-free, ordi-
nally efficient and strategy-proof mechanism. (A random assignment is weak envy-free if, for each
agent, her own assignment is not strictly stochastically dominated by any other agent’s assignment.)
Together with the previous impossibility result, it shows the tradeoff between efficiency and fairness
in terms of envy. Precisely, given strategy-proofness, when relaxing the fairness criterion from envy-

2Ordinal efficiency is also often referred to as sd-efficiency. Ex-post efficiency is implied by ordinal efficiency,
which in turn is implied by ex-ante efficiency.

3Equal treatment of equals implies anonymity but is logically independent from symmetry, since the latter does
not require equal random assignments for equals unlike the other two notions.

4In fact, ex-post fairness is an extremely restrictive property, as shown Kesten and Yazici (2012).
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freeness to weak envy-freeness, the feasibility threshold in terms of efficiency shifts from ex-post
efficiency to ordinal efficiency.

This result is very close to the impossibility result in BM, namely the mutual incompatibility of
strategy-proofness, ordinal efficiency, and equal treatment of equals. Equal treatment of equals and
weak envy-freeness are logically independent, but the latter is arguably more relevant in practice
for two main reasons. First, weak envy-freeness applies to the full set of preference profiles, while
equal treatment of equals restricts assignments of agents with identical preferences. Second, when
equal treatment of equals is applicable, it excessively restricts the random assignment, similarly to
envy-freeness. 5

The third result of the paper is the characterization of the random serial dictatorship mechanism
(RSD) for the case of three agents. For the case with three agents, BM also characterize RSD as
the unique ex-post efficient, strategy-proof mechanism that satisfies equal treatment of equals.
We strengthen this result by showing that RSD is the unique strategy-proof and ex-post efficient
mechanism that eliminates sd-envy between agents with identical preferences, the property that we
call weak envy-freeness among equals.6

This result implies the characterization by BM. Another implication of our result is that RSD can
be characterized as a unique mechanism that is strategy-proof, ex-post efficient and weak envy-free
(for all agents).

The fourth result is another characterization of RSD; it is strongly related to the previous
result, though logically independent. This time, for N = 3 RSD is characterized as the only
mechanism that is ex-post efficient, strategy-proof and that satisfies symmetry, the fairness notion
used by Zhou (1990). Symmetry is quite similar to weak envy-freeness among equals—agents
with identical preferences receive assignments that do not dominate one another—but symmetry is
defined in cardinal terms. Since RSD is not ex-ante efficient, this charaterization result implies the
impossibility by Zhou (1990). This result also implies the characterization in BM (since symmetry
is weaker than equal treatment of equals).

In the last part of the paper we focus on the second most important approach to fairness: the
so-called “fare share guaranteed”. Here, the agents’ assignments are compared not one to another,
as in envy-freeness, but to the equal division assignment such that each agent receives each object
with equal probability 1

N . A random assignment that ordinally dominates the equal division is said
to satisfy equal division lower bound.7

In the fifth result of the paper we show that there is no strategy-proof and ordinally efficient
mechanism that satisfies equal division lower bound. This result is important for a large class of
mechanisms that satisfy equal division lower bound by construction. In these mechanisms, agents
always have the opportunity to get at least the equal division assignment. For example, in the

5Indeed, one can see equal treatment of equals as envy-freeness for a limited set of agents − only for the agents
with identical preferences.

6Weak envy-freeness among equals can be seen as a natural relaxation of either the equal treatment of equals or
the weak envy-freeness.

7An extensive review on comparison to equal division and other notions of fairness for allocation rules can be
found in Moulin (2014) and Thomson (2007).
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Table 1: Summary of results
Strategy-proof mechanisms

Envy-free Weak envy-free Equal division
lower bound

Equal treatment
of equals

Ex-post
efficient

N = 3
∅

(Theorem 1,
BM*)

RSD!
(Corollary 2) RSD

RSD!
(Corollary
1, BM)

N > 3
∅

(Theorem 1) RSD (BM) RSD RSD

Ordinally
efficient N > 3 ∅ ∅

(Theorem 2)
∅

(Theorem 3)
∅

(BM)
Exclamation mark denotes uniqueness, BM stands for Bogomolnaia and Moulin (2001).
*The case of three agents is also mentioned by BM, p.310, though informally.

pseudo-market mechanism proposed in Hylland and Zeckhauser (1979) the agents have equal budgets
with which they purchase probability shares of objects at competitive equilibrium prices. As a result,
in any feasible random assignment, the budget is sufficient to purchase the assignment that is at least
as good as the equal division. Therefore, such mechanism inevitably lacks either ordinal efficiency
or strategy-proofness (in fact, the latter is the case since the mechanism is ex-ante efficient, which
implies ordinal efficiency).

Despite the negative results presented in this paper we, however, can still hope to find a strategy-
proof, fair, and efficient mechanism in some relevant cases. For large markets in which every object
has an increasing number of copies (for example, in the school choice setting, one can think of seats
in one school as copies of a unique seat; the number of seats grows large while the number of schools
remains the same), Che and Kojima (2010) show that RSD is asymptotically ordinally efficient.
For a similar large market, Kojima and Manea (2010) show that the probabilistic serial mechanism
is asymptotically strategy-proof. Therefore, the impossibility results presented here do not hold
asymptotically for these types of large markets.

Some of the results of this paper are limited by the nature of the standard framework that is
used. In a more general setting where the number of houses may be higher than the number of
agents (especially in the case with a null object), the agents have a richer strategy set and thus
one cannot directly transfer the results to that setting. For instance, in such settings RSD is no
longer ex-post efficient for some preference profiles; it can also be dominated by another strategy-
proof mechanism (see Erdil (2014) for these and other results in the general setting). However, the
negative results must hold, since the standard setting is a special case of the general setting.

Table 1 summarizes the main findings of this paper as well as the relevant results of BM.
The paper proceeds as follows: Section 2 introduces the framework, section 3 presents the first

impossibility result (Theorem 1), section 4 covers two characterization results (Proposition 1 and
Proposition 2), section 5 presents the second impossibility result (Theorem 2), section 6 — the
third impossibility result (Theorem 3), and section 6 concludes by discussing the implications of the
findings and the remaining open questions.
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2 The Model

In this section we introduce the framework: define the assignment problem, the random assignment
mechanism and its properties..

Let A = {a1, a2, ..., aN} be the set of N agents and H = {h1, h2, ..., hN} be the set of N houses.
Each agent a ∈ A is endowed with a strict preference relation �a on H with a corresponding
weak preference relation <a. A set of individual preferences of all agents constitutes a preference
profile �= (�a)a∈A. Let R be the set of all possible individual preferences, and RN be the set of
all possible preference profiles. In what follows we assume that the sets A and H are fixed and that
the house allocation problem is defined by the preference profile � only.

Each assignment problem has either a deterministic solution, called matching, or a probabilistic
solution, called random assignment. A random assignment P is a doubly stochastic matrix of
size N . Each element Pa,h of the matrix P represents a probability of agent a to be assigned house
h. Let P be a set of all possible random assignments P .

A matching µ is a random assignment whose elements can only be zeros or ones, so that µ
precisely prescribes which agent receives which house. Let M be a set of all possible matchings
µ. According to the Birkhoff-von Neumann theorem, any random assignment P can be represented
as a lottery over the set of matchings M (but this representation is not necessarily unique). For
this reason and since agents care only about their own assignment, we can concentrate on random
assignments without specifying the exact matchings that these random assignments correspond to.

In order to be able to compare different random assignments we need the following definitions.
A set of houses that agent a weakly prefers to some house h is the upper contour set of house
h at �a: U(�a, h) = {h′ ∈ H : h′ <a h}. For example, the upper contour set of the most preferred
house is always this same house, of the second most preferred house − the two best houses and so
forth.

Given the individual random assignment Pa, the overall probability of agent a being assigned
some house that is at least as good as house h is her surplus at h under Pa: F (�a, h, Pa) =∑

h′∈U(�a,h)
Pa,h′ . In other words, the surplus at h is the probability of being assigned some object

from the upper contour set of h.
An individual random assignment Pa ordinally dominates another individual random assign-

ment P ′a at �a (denoted by Pa ≥a P ′a) if it first order stochastically dominates it. The equiv-
alent condition is that all surpluses of Pa weakly exceed the surpluses of P ′a: for each h ∈ H

F (�a, h, Pa) ≥ F (�a, h, P
′
a). A strict ordinal domination (denoted by Pa >a P

′
a) occurs under

the additional condition that the two random assignments are not identical. Finally, a random
assignment P is said to dominate another random assignment P ′ if it dominates for all agents
simulatneously; P strictly dominates P ′ if it just dominates P ′ and the assignments are not
identical.
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2.1 Axioms

Below we introduce the properties of random assignments and mechanisms − the systematic pro-
cedures that associate each preference profile �∈ RN with some random assignment P ∈ P:
P = ϕ(�), where ϕ denotes a mechanism.

Efficiency. For a matching there is a single definition of efficiency: a matching is (Pareto) ef-
ficient at some preference profile if it is not dominated by any other matching at this preference
profile. A random assignment is ex-post efficient (ExPE) at a preference profile if it can be
represented as a lottery over efficient matchings. A random assignment is ordinally efficient (OE)
at a preference profile if it is not stochastically dominated by any other random assignments at
this preference profile. A mechanism is said to be ex-post efficient (ordinal efficient) if for any
preference profile it results in an ex-post efficient (ordinally efficient) random assignment.

Strategy-proofness. A mechanism ϕ is strategy-proof (SP) if at any preference profile
no agent can benefit by misreporting her preferences: for each a ∈ A, for each �∈ RN and for
each �′a∈ R the following holds: ϕ(�) ≥a ϕa(�′a,�−a). In other words, under a strategy-proof
mechanism, truth-telling is always a dominant strategy for every agents.

Now we introduce an auxiliary notion of incentive compatibility which is weaker than strategy-
proofness; we use this property for the first impossibility result below. This notion restricts the
set of (potentially) profitable strategies for agents. A mechanism is upper shuffle-proof (USP)
if no agent a can change her surplus at some object h by “shuffling” the objects that are strictly
better than h (or misreporting the preferences within the upper contour set of h excluding h itself).
Formally, for each a ∈ A, h ∈ H, and for each �∈ RN ,�′a∈ R such that U(�a, h) = U(�′a, h), the
following holds: F (�a, h, ϕa(�))− ϕah(�) = F (�a, h, ϕa(�′))− ϕah(�′) (the difference represents
the sum of assignment probabilities for houses that are strictly better than h).8

Fairness. A random assignment P is envy-free (EF) if every agent prefers her assignment
to any other agent’s assignment: for each a, a′ ∈ A Pa ≥a Pa′ . A random assignment P is weak
envy-free (wEF) if no agent strictly prefers some other agent’s assignment: there do not exist
a, a′ ∈ A such that Pa′ >a Pa. Another widely used notion of fairness is the equal treatment of
equals (ETE): for each a, a′ ∈ A with �a=�a′ the individual random assignments are identical:
Pa = Pa′ . A weaker combination of the previous two properties is called weak envy-freeness
among equals. A random assignment P is weak envy-free among equals if for any two agents
a, a′ with identical preferences �a=�a′ none of them strictly prefers the assignment of the other:
Pa′ ≯a Pa.

Another approach to fairness is the so-called “fair-share guaranteed”. It requires that each agent
weakly prefers her individual assignment to the equal division assignment where each agent receives
1/N of each object. Formally, P satisfies equal division lower bound (EDLB) if P ≥ ED,
where ED denotes the equal division random assignment.

8For example, if N = 3 upper shuffle-proofness requires that no agent can benefit—in terms of the sum of
assignment probabilities for the top two houses—by swapping these two houses. The agents could still possibly
benefit: either in some other respect (not in terms of the surplus of the second best object), or from using other
strategies (that involve other swaps).
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Next, we introduce two auxiliary notions of fairness. A random assignment P is upper envy-
free (UEF) if any two agents with identical upper contour sets of some house h receive equal
assignment probabilities of h: for each a, a′ ∈ A, h ∈ H such that U(�a, h) = U(�a′ , h) it follows
that Pah = Pa′h. The other fairness notion is a generalization of equal treatment of equals. A random
assignment P satisfies the strong equal treatment of equals (SETE) if any two agents with
identical preferences from the top house down to some particular house receive identical assignments
from the top down to that house.

Finally, we introduce two fairness notions and one efficiency notion for the cardinal framework.9

Assume that each agent a ∈ A reports her utility ua = {uah}h∈H : uah ∈ R for each object h ∈ H.
A random assignment P is symmetric if every two agents a and a′ with the same reported utilities
ua = ua′ receive equal expected utility:

∑
uahPah =

∑
ua′hPa′h. A random assignment P is

anonymous if the same two agents in addition receive identical random assignments: Pa = Pa′ . A
random assignment P is ex-ante efficient at utility U = {ua}a∈A if there does not exist any other
random assignment P ′ such that for each agent a assignment P provides at least as high (expected)
utility as assignment P ′:

∑
Pahuah ≥

∑
P ′ahuah, and at least for one of the agents the inequality is

strict.
The fairness notions presented above can be logically ordered as follows.

(i) Envy-freeness =⇒ upper envy-freeness =⇒ strong equal treatment of equals =⇒ equal treatment
of equals =⇒ anonymity =⇒ symmetry;
(ii) envy-freeness =⇒ weak envy-freeness;
(iii) envy-freeness =⇒ equal division lower bound. Weak envy-freeness, equal division lower bound
and upper envy-freeness (as well as strong equal treatment of equals and equal treatment of equals)
are logically independent.

We have now prepared all necessary definitions and their logical relations to study the first
impossibility result presented in the next section.

3 First Impossibility Result

We begin by studying the tradeoff between the properties of a mechanism when fairness is of a higher
concern than efficiency. The following theorem considers the set of strategy-proof mechanisms that
are moderately efficient (at least ex-post efficient) and very fair (envy-free, which implies all other
fairness criteria). The set of such mechanisms turns out to be empty:

Theorem 1. For N ≥ 3 there does not exist a mechanism that is ex-post efficient, strategy-proof,
and envy-free.

The result above is a direct corollary to a stronger result of Lemma 1:

9We need the cardinal framework only for the second characterization, apart from that we use the ordinal frame-
work.
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Lemma 1. There does not exist a mechanism that is ex-post efficient, upper-shuffle-proof, and
upper-envy-free.We first prove the claim for N = 3 and we do it by contradiction. Suppose there
exists a mechanism ϕ satisfying ex-post efficiency, upper shuffle-proofness an upper envy-freeness.

All three assumptions in the lemma are necessary. Should we drop the ex-post efficiency require-
ment, a uniform lottery mechanism satisfies strategy-proofness and envy-freeness (and, therefore,
upper shuffle-proofness and upper envy-freeness). If we drop the strategy-proofness requirement,
then the probabilistic serial mechanism satisfies ex-post efficiency and envy-freeness (and upper
envy-freeness). Finally, RSD is a natural benchmark to discuss the fairness requirement. It is easy
to show that RSD is always SETE because of the underlying dictatorship procedure: the assignment
probabilities for every house depend only on the preferences for the corresponding upper contour
set.10 In the same time RSD is not upper envy-freeness, which is true, for instance, for the prefer-
ence profile � in the proof above. The lemma shows that this gap between strong equal treatment
of equals and upper envy-freeness is so big, that even the certain compromise on strategy-proofness
(requiring upper shuffle-proofness instead of strategy-proofness) is not enough to close it.

Lemma 1 can be seen as a generalization of the statement in BM (p. 310) about the incompat-
ibility of ex-post efficiency, strategy-proofness, and no envy for the case of three agents. Here we
show the incompatibility of ex-post efficiency and two weaker properties: upper strategy-proofness
and upper envy-freeness for any number of agents.11

In the following section we interchange the fairness and efficiency requirements: we relax the
fairness criterion and strengthen the efficiency criterion in order to obtain a different but closely
related impossibility result.

4 Two Characterizations

We begin by characterizing the RSD mechanism as a unique strategy-proof, ex-post efficient, and
weak envy-free mechanism for a problem with three agents.

Proposition 1. (First characterization of RSD) For N = 3 a mechanism is strategy-proof, ex-post
efficient, and weak envy-free for equals if and only if it is RSD.

We get two immediate corollaries from the proposition by relaxing the weak envy-freeness among
equals requirement.

Corollary 1. (BM) For N = 3, a mechanism is strategy-proof, ex-post efficient, and satisfies the
equal treatment of equals if and only if it is RSD.

The second corollary follows from the fact that RSD satisfies weak envy-freeness (shown in BM):
10This property is defined as a weak invariance in Hashimoto et. al (2014) and plays a central role in their

characterization of the probabilistic serial mechanism.
11Perhaps BM did not show this impossibility result for the general case since they had a different focus: “For

problems involving four agents and more, the impossibility result is more severe” (p.310). However, the result
they show (the incompatibility of strategy-proofness, ordinal efficiency and equal treatment of equals) is logically
independent from Theorem 1 and especially from Lemma 1 since ordinal efficiency is stricter than ex-post efficiency.
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Corollary 2. For N = 3, a mechanism is strategy-proof, ex-post efficient and weak envy-free if and
only if it is RSD.

We now complement this result by another characterization result in which we use a slightly
different fairness criterion: symmetry. Symmetry is defined using cardinal terms. 12 For a moment,
assume that agents report their utilities and not just their ordinal preferences. Then a random
assignment is symmetric if any two agents with identical utilities receive the assignments of the
same expected utility.

Although symmetry is related to weak envy-freeness (equal agents receive individual assign-
ments such that they do not dominate one another), these two properties are logically independent:
symmetry applies to a smaller subset of utility domain, but for this set of utilities it also has stricter
implications.

Proposition 2. (Second characterization of RSD) For N = 3, a mechanism is strategy-proof,
ex-post efficient and symmetric if and only if it is RSD.

One of the consequences of the proposition is that for the case of three agents RSD can also be
characterized using anonymity, a property used by Gale (1987) in his conjecture, and also using a
stronger equal treatment of equals (Corollary 1). Since RSD has this property and since anonymity
implies symmetry, any mechanism that is strategy-proof, ex-post efficient and anonymous is equiv-
alent to RSD.

Another immediate consequence of the characterization is the impossibility (for the case of three
agents) to find a mechanism that would cardinally dominate RSD and in the same time be symmetric
and strategy-proof.

Corollary 3. For N = 3, if a mechanism is strategy-proof and symmetric, it cannot dominate RSD.

Given this result we can show the famous impossibility result from Zhou (1990): ex-ante effi-
ciency, strategy-proofness and symmetry are mutually incompatible.

Corollary 4. (Zhou 1990) For N ≥ 3, there does not exist a mechanism that is strategy-proof,
ex-ante efficient and symmetric.

For the case N = 3 the proof is just the combination of the Corollary 3 and the fact that RSD
is not ex-ante efficient but only ex-post efficient. For the general case N ≥ 3, as it is done in the
second part of the proof of the Theorem 1, we construct a preference profile such that any ex-post
efficient mechanism cannot be cardinally dominated for any of the agents except the first three
agents. For this preference profile the problem is effectively reduced to the size of three.

In the next section we use Corollary 2 for the second impossibility result.
12Since the focus of the paper is on ordinal properties, we describe the cardinal definitions and results rather

informally.
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5 Second Impossibility Result

In the previous two sections we mostly discussed the problems with only three agents. For these cases
ex-post efficiency mechanism cannot be ordinally dominated, hence, ex-post efficiency coincides with
ordinal efficiency. This changes when the number of agents is four or higher: an ex-post efficient
mechanism such as RSD can be first-order stochastically dominated for some preference profiles. In
the following two sections we further study the trade-off between fairness and efficiency, where we
put a higher weight on the latter and require ordinal efficiency and not just ex-post efficiency.

The next result shows the loss in fairness required to satisfy ordinal efficiency: any ordinally
efficient mechanism must be either non-strategy-proof or cannot eliminate sd-envy.

Theorem 2. For N ≥ 4 there does not exist a mechanism that is ordinally-efficient, strategy-proof,
and weak envy-free.

It is easy to see the independence of axioms in Theorem 2. First, let us weaken the ordinal
efficiency requirement and demand ex-post efficiency. Then there exist at least one ex-post efficient,
strategy-proof, weak envy-free mechanism: random serial dictatorship mechanism. Next, let us
drop the weak-envy-freeness requirement. Then there exists at least one strategy-proof, ordinally
efficient mechanism: serial dictatorship mechanism. Finally, the probabilistic serial mechanism is
an example of an ordinally efficient, (weak) envy-free mechanism.

Overall, when the fairness of a random assignment is judged by comparing the individual as-
signments between each other, weak envy-freeness is arguably a reasonable minimum fairness re-
quirement. In the following section, we discuss a different approach to fairness, where the individual
assignments are compared to some alternative “fair” assignment such as equal division.

6 Third Impossibility Result

The last impossibility result also uses a strong notion of efficiency and a weak notion of fairness,
but this time fairness is defined by the equal division lower bound.

Theorem 3. For N ≥ 4 there does not exist a mechanism that is ordinally-efficient, strategy-proof,
and satisfies the equal division lower bound.

We can easily check the independence of the axioms in this result. First, a pure lottery mecha-
nism is strategy-proof and satisfies equal division lower bound, but is not ordinally efficient. Second,
a serial dictatorship mechanism is strategy-proof and ex-ante efficient (and therefore ordinally effi-
cient), but does not satisfy equal division lower bound. Finally, the probabilistic serial mechanism
is ordinally efficient and envy-free (and therefore satisfies equal division lower bound), but is not
strategy-proof.

From a theoretical point of view, equal division lower bound is related more to how efficient rather
that how equitable the assignment is, as compared to weak envy-freeness and equal treatment of
equals. Unlike the other two notions, EDLB does not compare the individual assignments to each
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other but to the (usually inefficient) equal division benchmark. Therefore, EDLB does not require
the assignment to be fair in the egalitarian sense, but only that this assignment dominates the most
egalitarian assignment − equal division.

Another essential feature of the equal division lower bound is that several popular mechanisms
satisfy this property. One of these mechanisms is RSD. Indeed, in the RSD procedure each agent
has an equal chance to be the first in the ordering (and thus receive her first best house), the second
(and thus receive at least her second best) and so on. Therefore, under the RSD assignments all
agents are weakly better off than under the uniform lottery. Hence, an important implication of
Theorem 3 is the restriction that it puts on the feasibility set of mechanisms that dominate RSD.

Corollary 5. For N > 3 any ordinally efficient mechanism dominating RSD is not strategy-proof.

The corollary, however, does not restrict the set of mechanisms that dominate RSD without
being ordinally efficient. Thus, in the set of strategy-proof mechanisms there might still be room
for improvement upon RSD.

7 Conclusions

This paper considers the standard random assignment problem of assigning N indivisible objects to
N agents and shows the impossibility for a strategy-proof mechanism to be simultaneously fair and
efficient (in three specific ways). Theorem 1 shows the impossibility to combine a weak notion of
efficiency − ex-post efficiency, with a strong notion of fairness − envy-freeness; it is the first known
impossibility result in the related literature that involves ex-post efficiency. Theorem 2 shows the
impossibility for the opposite set of properties: a weak notion of fairness − weak envy-freeness and
a strong notion of efficiency − ordinal efficiency. Finally, Theorem 3 shows a similar impossibility
result with a different weak fairness notion: equal division lower bound.

The paper also shows that for the case of three agents the trinity of strategy-proofness, ex-
post efficiency, and weak envy-freeness for agents with identical preferences uniquely defines the
random serial dictatorship mechanism. Alternatively, if we use symmetry—a cardinal fairness no-
tion—instead of the ordinal weak envy-freeness among equals, we get the same characterization of
the random serial dictatorship mechanism.

It, however, remains unclear, what combination of properties characterizes RSD for the general
case. The characterization result in this paper cannot be directly generalized even for the case of
four agents (however, there are also no counter examples found). The reason for this complication
is that weak envy-freeness (and especially weak envy-freeness among equals) is not handy enough as
compared to the equal treatment of equals. For instance, for two agents with identical preferences
weak envy-freeness gives precise implications only in case these agents receive identical probabilities
for all but two objects. Then the two agents have to have the same random assignment for the
remaining objects as well. Equal treatment of equals, on the contrary, has implications for the
assignment probabilities of all objects. Therefore, I believe, generalizing this characterization result
would be more difficult than the result that uses equal treatment of equals.
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Another open question is to what extent one of the three properties can be satisfied should the
other two be taken at their extreme. For instance, if ordinal efficiency and envy-freeness are satisfied,
then the probabilistic serial mechanism appears to be the “most” strategy-proof mechanism since it is
weakly invariant (limits the set of profitable deviations) and weak strategy-proof (which means that
no agent can receive a stochastically dominant assignment by manipulating). Similarly, one could
be interested in the “most fair” mechanism that satisfies strategy-proofness and ordinal efficiency
(since the only known SD mechanism is very unfair), and in the “most” efficient mechanism that
satisfies strategy-proofness and envy-freeness (again, the only known equal division or pure lottery
mechanism disregards preferences and therefore is almost always inefficient).
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Abstract

In 1976, Knuth [14] asked if the stable marriage problem (SMP) can be generalized to
marriages consisting of 3 genders. In 1988, Alkan [2] showed that the natural generalization
of SMP to 3 genders (3GSM) need not admit a stable marriage. Three years later, Ng and
Hirschberg [16] proved that it is NP-complete to determine if given preferences admit a
stable marriage. They further prove an analogous result for the 3 person stable assignment
(3PSA) problem.

In light of Ng and Hirschberg’s NP-hardness result for 3GSM and 3PSA, we initiate the
study of approximate versions of these problems. In particular, we describe two optimization
variants of 3GSM and 3PSA: maximally stable marriage/matching (MSM ) and maximum
stable submarriage/submatching (MSS ). We show that both variants are NP-hard to ap-
proximate within some fixed constant factor. Conversely, we describe a simple polynomial
time algorithm which computes constant factor approximations for the maximally stable
marriage and matching problems. Thus both variants of MSM are APX-complete.

1 Introduction

1.1 Previous Work

Since Gale and Shapley first formalized and studied the stable marriage problem (SMP) in 1962
[6], many variants of the SMP have emerged (see, for example, [7, 14, 15, 20]). While many of
these variants admit efficient algorithms, two notably do not1: (1) incomplete preferences with
ties [10], and (2) 3 gender stable marriages (3GSM) [16].

In the case of incomplete preferences with ties, it is NP-hard to find a maximum cardinality
stable marriage [10]. The intractability of exact computation for this problem led to the study
of approximate versions of the problem. These investigations have resulted in hardness of
approximation results [9, 21] as well as constant factor approximation algorithms [12, 13, 18, 21].

In 3GSM, players are one of three genders: women, men, and dogs (as suggested by Knuth).
Each player holds preferences over the set of pairs of players of the other two genders. The
goal is to partition the players into families, each consisting of one man, one woman, and one
dog, such that no triple mutually prefer one another to their assigned families. In 1988, Alkan
showed that for this natural generalization of SMP to three genders, there exist preferences

∗University of California, Los Angeles (Departments of Computer Science and Mathematics). Work supported
in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Founda-
tion Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Re-
search under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

†University of California, Los Angeles (Department of Mathematics).
1Assuming, of course, P6=NP!
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which do not admit a stable marriage [2]. In 1991, Ng and Hirschberg showed that, in fact, it
is NP-complete to determine if given preferences admit a stable marriage [16]. They further
generalize this result to the three person stable assignment problem (3PSA). In 3PSA, each
player ranks all pairs of other players without regard to gender. The goal is to partition players
into disjoint triples where again, no three players mutually prefer each other to their assigned
triples.

Despite the advances for stable marriages with incomplete preferences and ties (see [15] for
an overview of relevant work), analogous approximability results have not been obtained for 3
gender variants of the stable marriage problem. In this paper, we achieve the first substantial
progress towards understanding the approximability of 3GSM and 3PSA.

1.2 Overview of our results

1.2.1 3 gender stable marriages (3GSM)

We formalize two optimization variants of 3GSM: maximally stable marriage (3G-MSM) and
maximum stable submarriage (3G-MSS). For 3G-MSM, we seek a perfect (3 dimensional) mar-
riage which minimizes the number of unstable triples—triples of players who mutually prefer
each other to their assigned families. For 3G-MSS, we seek a largest cardinality submarriage
which contains no unstable triples among the married players. Exact computation of both of
these problems is NP-hard by Ng and Hirschberg’s result [16]. Indeed, exact computation of
either allows one to detect the existence of a stable marriage.

We obtain the following inapproximability result for 3G-MSM and 3G-MSS.

Theorem 1.1 (Special case of Theorem 3.1). There exists an absolute constant c < 1 such that
it is NP-hard to approximate 3G-MSM and 3G-MSS to within a factor c.

In fact, we prove a slightly stronger result for 3G-MSM and 3G-MSS. We show that the
problem of determining if given preferences admit a stable marriage or if all marriages are “far
from stable” is NP-hard. See Section 2.1 and Theorem 3.1 for the precise statements. In the
other direction, we describe a polynomial time constant factor approximation algorithm for
3G-MSM.

Theorem 1.2. There exists a polynomial time algorithm, AMSM, which computes a 4
9 -factor

approximation to 3G-MSM.

Corollary 1.3. 3G-MSM is APX-complete.

1.2.2 Three person stable assignment (3PSA)

We also consider the three person stable assignment problem (3PSA). In this problem, players
rank all pairs of other players and seek a (3 dimensional) matching—a partition of players
into disjoint triples. Notions of stability, maximally stable matching, and maximum stable
submatching are defined exactly as the analogous notions for 3GSM. We show that Theorems
1.1 and 1.2 have analogues with 3PSA:

Theorem 1.4. There exists a constant c < 1 such that it is NP-hard to approximate 3PSA-
MSM and 3PSA-MSS to within a factor c.

Theorem 1.5. There exists a polynomial time algorithm, ASA, which computes a 4
9 -factor

approximation to 3PSA-MSM.

Remark 1.6. We remark that the hardness of approximation of 3PSA-MSM bears a strong
resemblance to the work of Abraham, Biró, and Manlove [1], who prove a similar hardness
of approximation result for the two person stable assignment problem. The authors prove
that finding a matching which minimizes the number of “blocking pairs” is NP-hard, as is
approximating the minimum number of blocking pairs to within an additive error of n1/2−ε.
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Our proofs of the lower bounds in Theorems 1.1 and 1.4 use a reduction from the 3 dimen-
sional matching problem (3DM) to 3G-MSM. Kann [11] showed that Max-3DM is Max-SNP
complete. Thus, by the PCP theorem [3, 4] and [5], it is NP-complete to approximate Max-3DM
to within some fixed constant factor. Our hardness of approximation results then follow from
a reduction from 3DM to 3G-MSM.

Theorems 1.2 and 1.5 follow from a simple greedy algorithm. Our algorithm constructs
marriages (or matchings) by greedily finding triples whose members are guaranteed to partici-
pate in relatively few unstable triples. Thus, we are able to efficiently construct marriages (or
matchings) with a relatively small fraction of blocking triples.

2 Background and Definitions

2.1 3 Gender Stable Marriage (3GSM)

In the 3 gender stable marriage problem, there are disjoint sets of women , men , and dogs

denoted by A (for Alice), B (for Bob), and D (for Dog), respectively. We assume |A| = |B| =
|D| = n, and we denote the collection of players by V = A ∪B ∪D. A family is a triple abd
consisting of one woman a ∈ A, one man b ∈ B, and one dog d ∈ D. A submarriage S is a set
of pairwise disjoint families. A marriage M is a maximal submarriage—that is, one in which
every player v ∈ V is contained in some (unique) family so that |M | = n. Given a submarriage
S, we denote the function pS : V → V 2 ∪{∅} which assigns each player v ∈ V to their partners
in S, with pS(v) = ∅ if v is not contained in any family in S.

Each player v ∈ V has a preference , denoted ≻v over pairs of members of the other
two genders. That is, each woman a ∈ A holds a total order ≻a over B × D ∪ {∅}, and
similarly for men and dogs. We assume that each player prefers being in some family to having
no family. For example, bd ≻a ∅ for all a ∈ A, b ∈ B and d ∈ D. An instance of the three

gender stable marriage problem (3GSM ) consists of A, B, andD together with preferences
P = {≻v | v ∈ V } for all of the players v ∈ V .

Given a submarriage S, a triple abd is an unstable triple if a, b and d each prefer the
triple abd to their assigned families in S. That is, abd is unstable if and only if bd ≻a pS(a),
ad ≻b pS(b), and ab ≻d pS(d). A triple abd which is not unstable is stable . In particular, abd
is stable if at least one of a, b and d prefers their family in S to abd. Let AS , BS and DS be
the sets of women, men and dogs (respectively) which have families in S. A submarriage S is
stable if there are no unstable triples in AS ×BS ×DS .

Unlike the two gender stable marriage problem, this three gender variant arbitrary prefer-
ences need not admit a stable marriage. In fact, for some preferences, every marriage has many
unstable triples (see Section 3.1). Thus we consider two optimization variants of the three
gender stable marriage problem.

2.1.1 Maximally Stable Marriage (3G-MSM)

The maximally stable marriage problem (3G-MSM) is to find a marriage M with the
maximum number of stable triples with respect to given preferences P . For fixed preferences
P and marriage M , the stability of M with respect to P is the number of stable triples in
A×B ×D:

stab(M) = |{abd | abd is stable}| .

Thus, M is stable if and only if stab(M) = n3. Dually, we define the instability of M by
ins(M) = n3 − stab(M). For fixed preferences P , we define

MSM(P ) = max {stab(M) |M is a marriage} .

For preferences P and fixed c < 1, we define Gapc-3G-MSM to be the problem of determining
if MSM(P ) = n3 or MSM(P ) ≤ cn3.
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2.1.2 Maximum Stable Submarriage

The maximum stable submarriage problem (3G-MSS) is to find a maximum cardinality
stable submarriage S. We denote

MSS(P ) = max {|S| |S is a stable submarriage}

Note that P admits a stable marriage if and only if MSS(P ) = n. For fixed c < 1, we define
Gapc-3G-MSS to be the problem of determining if MSS(P ) = n or if MSS(P ) ≤ cn.

2.2 Three person stable assignment (3PSA)

In the three person stable assignment problem (3PSA), there is a set U of |U | = 3n
players who wish to be partitioned into n disjoint triples. For a set C ⊆ U , we denote the set of
k-subsets of C by

(

C
k

)

. A submatching is a set S ⊆
(

U
3

)

of disjoint triples in U . A matching

M is a maximal submatching—a submatching with |M | = n. Given a submatching S, US is
the set of players contained in some triple in S:

US = {u ∈ U |u ∈ t for some t ∈ S} .

Each player u ∈ U holds preferences among all pairs of potential partners. That is, each u ∈ U
holds a linear order ≻u on

(U\{u}
2

)

∪ {∅}. We assume that each player prefers every pair to an
empty assignment. Given a set P of preferences for all the players and a submatching S, we call
a triple uvw ∈

(

US

3

)

unstable if each of u, v and w prefer the triple uvw to their assigned triples
in S. Otherwise, we call uvw stable . A submatching S is stable if it contains no unstable
triples in

(

US

3

)

. We define the stability of S by

stab(S) =

∣

∣

∣

∣

{

uvw ∈

(

US

3

)
∣

∣

∣

∣

uvw is stable

}
∣

∣

∣

∣

.

Dually, the instability of S is ins(S) =
(|S|
3

)

− stab(S).
Themaximally stable matching problem (3PSA-MSM ) is to find a matching M which

maximizes stab(M). The maximum stable submatching problem (3PSA-MSS) is to find
a stable submatching S of maximum cardinality.

Remark 2.1. We may consider a variant of 3PSA with unacceptable partners. In this
variant, each player u ∈ U ranks only a subset of

(

U\{u}
2

)

, and prefers being unmatched to
unranked pairs. 3GSM is a special case of this variant where U = A ∪ B ∪D and each player
ranks precisely those pairs consisting of one player of each other gender. This observation will
make our hardness results for 3GSM easily generalize to 3PSA.

2.3 Hardness of Gapc-3DM-3

Our proofs of Theorems 1.1 and 1.4 use a reduction from the three dimensional matching
problem (3DM). In this section, we briefly review 3DM, and state the approximability result
we require for our lower bound results.

Let W , X and Y be finite disjoint sets with |W | = |X| = |Y | = m. Let E ⊆W ×X × Y be
a set of edges. A matching M ⊆ E is a set of disjoint edges. The maximum 3 dimensional

matching problem (Max-3DM ) is to find (the size of) a matching M of largest cardinality in
E. Max-3DM-3 is the restriction of Max-3DM to instances where each element in W ∪X ∪ Y
is contained in at most 3 edges. For a fixed constant c < 1, we define Gapc-3DM-3 to be the
problem of determining if an instance I of Max-3DM-3 has a perfect matching (a matching M
of size m) or if every matching has size at most cm.

Theorem 2.2. There exists an absolute constant c < 1 such that Gapc-3DM-3 is NP-hard.
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Kann showed that Max-3DM-3 is Max-SNP complete2 by giving an L-reduction from Max-
3SAT-B to Max-3DM-3 [11]. By the celebrated PCP theorem [3, 4] and [5], Kann’s result
immediately implies that Max-3DM-3 is NP-hard to approximate to within some fixed constant
factor. However, Kann’s reduction gives a slightly weaker result than Theorem 2.2. In Kann’s
reduction, satisfiable instances of 3SAT-B do not necessarily reduce to instances of 3DM-3 which
admit perfect matchings. In the extended version of this paper [17], we describe a straightfor-
ward alteration of Kann’s reduction such that satisfiable instances of 3SAT-B admit perfect
matchings, while far-from-satisfiable instances are still far from admitting perfect matchings.

3 Hardness of Approximation

In this section, we prove the main hardness of approximation results. Specifically, we will prove
the following theorems.

Theorem 3.1. There exists and absolute constant c < 1 such that Gapc-3G-MSM and Gapc-
3G-MSS are NP-hard.

Theorem 3.2. There exists an absolute constant c < 1 such that Gapc-3PSA-MSM and Gapc-
3PSA-MSS are NP-hard.

3.1 Preferences for 3GSM with Many Unstable Triples

In this section, we construct preferences P for 3GSM such that any marriage M induce many
unstable triples with respect to P .

Theorem 3.3. There exist preferences P for 3GSM and a constant c < 1 for which MSM(P ) ≤
cn3.

We first consider the case where n = 2. We denote A = {a1, a2}, B = {b1, b2}, and
D = {d1, d2}. Consider preference lists P as described in the following table, where most
preferred partners are listed first.

player preferences

a1 b1d1 b2d2 · · ·
a2 b2d1 · · ·
b1 a1d1 · · ·
b2 a1d2 a2d1 · · ·
d1 a2b2 a1b1 · · ·
d2 a1b2 · · ·

The ellipses indicate that the remaining preferences are otherwise arbitrary. Suppose M is a
stable marriage for P . We must have either a1b1d1 ∈M or a1b2d2 ∈M , for otherwise the triple
a1b2d2 is unstable. However, if a1b1d1 ∈ M , then a2b2d1 is unstable. On the other hand, if
a1b2d2 ∈ M then a1b1d1 is unstable. Therefore, no such stable M exists. In particular, every
marriage M contains at least one unstable triple.

The idea of the proof of Theorem 3.3 is to choose preferences P such that when restricted
to many sets of two women, two men and two dogs, the relative preferences are as above. Thus
any marriage containing families consisting of these players must induce unstable triples.

Proof of Theorem 3.3. We partition the sets A, B and D each into two sets of equal size:
A = A1 ∪ A2, B = B1 ∪ B2, D = D1 ∪D2. Consider the preferences P described in Figure 1.
We will prove that for P , every matching M contains at least n3/128 unstable triples. Let M
be an arbitrary marriage, and suppose ins(M) < n3/128. We consider two cases separately.

2The complexity class Max-SNP was introduced by Papadimitriou and Yannakakis in [19], where the authors
also show that Max-3SAT-B is Max-SNP complete.
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player preferences

a1 ∈ A1 B1D1 B2D2 · · ·
a2 ∈ A2 B2D1 · · ·
b1 ∈ B1 A1D1 · · ·
b2 ∈ B2 A1D2 A2D1 · · ·
d1 ∈ D1 A2B2 A1D1 · · ·
d2 ∈ D2 A1B2 · · ·

Figure 1: Preferences P inducing many blocking triples. Assuming n is even, we partition each
gender into two equal sized sets A = A1∪A2, B = B1∪B2, andD = D1∪D2. The sets appearing
in the preferences indicate that the player prefers all pairs in that set (in any order) followed by
the remaining preferences. For example, all a1 ∈ A1 prefer all partners bd ∈ B1 ×D1, followed
by all partners in B2 ×D2, followed by all other pairs in arbitrary order. Within B1 ×D1 and
B2 ×D2, a1’s preferences are arbitrary.

Case 1: |M ∩ (A1 ×B1 ×D1)| ≤ n/4. Let A′
1, B

′
1 and D′

1 be the subsets of A1, B1 and D1

respectively of players not in triples contained in A1 × B1 × D1. By the hypothesis,
|A′

1| , |B
′
1| , |D

′
1| ≥ n/4. Let d1 ∈ D′

1. Notice that if pM(d1) /∈ A2 × B2, then a1b1d1 is
unstable for all a1 ∈ A′

1, b2 ∈ B′
1. Since fewer than n3/128 triples in A′

1 × B′
1 × D′

1 are
unstable, at least 3n/8 dogs d1 ∈ D′

1 must have families a2b2d1 ∈ A2 ×B2 ×D′
1.

Since |M ∩ (A2 ×B2 ×D1)| ≥ 3n/8, we must have |M ∩ (A1 ×B2 ×D2)| ≤ n/8. Thus,
there must be at least n/8 women a1 ∈ A1 with partners not in (B1 ×D1) ∪ (B2 ×D2).
However, every such a1 forms an unstable triple with every b2 ∈ B2 and d2 ∈ D2 which
are not in families in A1×B2×D2. Since there at least 3n/8 such b2 and d2, there are at
least

(n

8

)

(

3n

8

)(

3n

8

)

>
n

128

blocking triples, a contradiction.

Case 2: |M ∩ (A1 ×B1 ×D1)| > n/4. In this case, we must have |M ∩ (A2 ×B2 ×D1)| <
n/4. This implies that

|M ∩ (A1 ×B2 ×D2)| > 3n/8 (1)

for otherwise triples a2b2d1 ∈ (A2 × B2 × D1) with pM (b2) /∈ A1 × D1 form more than
n3/128 unstable triples. But (1) contradicts the Case 2 hypothesis, as |A1| = n/2.

Since both cases lead to a contradiction, we may conclude that any M contains at least n3/128
unstable triples, as desired.

3.2 The Embedding

We now describe an embedding of 3DM-3 into 3G-MSM. Our embedding is a modification of the
embedding described by Ng and Hirschberg [16]. Let I be an instance of 3DM-3 with ground
sets W,X, Y and edge set E. We assume |W | = |X| = |Y | = m. We will construct an instance
f(I) of 3G-MSM with sets A,B and D of women, men and dogs of size n = 6m and suitable
preferences P . We divide each gender into two sets A = A1∪A2, B = B1∪B2 and D = D1∪D2

where
∣

∣Aj
∣

∣ =
∣

∣Bj
∣

∣ =
∣

∣Dj
∣

∣ = 3m for j = 1, 2. Let W = {a1, a2, . . . , am}, X = {b1, b2, . . . , bm}
and Y = {d1, d2, . . . , dm}, and denote

E =

n
⋃

i=1

{aibk1dℓ1 , aibk2dℓ2 , aibk3dℓ3} .
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Without loss of generality, we assume each ai is contained in exactly 3 edges by possibly increas-
ing the multiplicity of edges containing ai. The idea of the embedding f(I) is that each ai ∈W
is mapped to 6 players a1i [1], a

1
i [2], a

1
i [3] ∈ A1 and a2i [1], a

2
i [2], a

2
i [3] ∈ A2. These three players

in A1 and A2 correspond to the three edges in E which contain ai. We choose preferences
in such a way that at most one family from a1i [1]b

1
kd

1
ℓ , a

1
i [2]b

1
kd

1
ℓ , and a1i [3]b

1
kd

1
ℓ can be in any

(sub)marriage, where aibkdℓ ∈ E. Such a family corresponds to a choice of an edge containing ai
to include in a maximal matching. We then show that if I admits a perfect matching, then f(I)
admits a stable marriage. On the other hand, if I is far from admitting a perfect matching, then
our choice of preferences ensure that any marriage induces many unstable triples by appealing
to Theorem 3.3.

For j = 1, 2, we form the sets

Aj =
{

aji [k]
∣

∣

∣
i ∈ [n], k ∈ [3]

}

, Bj =
{

bji , wj
i , yji

∣

∣

∣
i ∈ [n]

}

, Dj =
{

dji , xji , zji

∣

∣

∣
i ∈ [n]

}

.

We now define preferences for each set of players, beginning with those in A.

a1i [m] w1
i x

1
i y1i z

1
i b1kmd

1
ℓm

B1D1 B2D2 · · ·

a2i [m] w2
i x

2
i y2i z

2
i b2kmd

2
ℓm

B2D1 · · ·

The players in B have preferences given by

w1
i a1i [1]x

1
i a1i [2]x

1
i a1i [3]x

1
i A1D1 · · ·

y1i a1i [1]z
1
i a1i [2]z

1
i a1i [3]z

1
i A1D1 · · ·

b1i A1D1 · · ·

w2
i a2i [1]x

2
i a2i [2]x

2
i a2i [3]x

2
i A1D2 A2D1 · · ·

y2i a2i [1]z
2
i a2i [2]z

2
i a2i [3]z

2
i A1D2 A2D1 · · ·

b2i A1D2 A2D1 · · ·

The preferences for D are given by

x1i a1i [3]w
1
i a1i [2]w

1
i a1i [1]w

1
i A2B2 A1B1 · · ·

z1i a1i [3]y
1
i a1i [2]y

1
i a1i [1]y

1
i A2B2 A1B1 · · ·

d1i A2B2 A1B1 · · ·

x2i a2i [3]w
2
i a2i [2]w

2
i a2i [1]w

2
i A1B2 · · ·

z2i a2i [3]y
2
i a2i [2]y

2
i a2i [1]y

2
i A1B2 · · ·

d2i A1B2 · · ·

The sets Aj , Bj and Dj in the preferences described above indicate that all players in these
sets appear consecutively in some arbitrary order in the preferences. Ellipses indicate that
all remaining preferences may be completed arbitrarily. For example, a11[1] most prefers w1

1x
1
1,

followed by y11z
1
1 and b1kmd

1
ℓm

. She then prefers all remaining pairs in B1D1 in any order, followed
by all pairs in B2D2, followed by the remaining pairs in any order.

Lemma 3.4. The embedding f : 3DM-3 −→ 3GSM described above satisfies

1. If opt(I) = m—that is, I admits a perfect matching—then f(I) admits a stable marriage
(i.e. MSM(P ) = n3).

2. If opt(I) ≤ cm for some c < 1, then there exists a constant c′ < 1 depending only on c
such that MSM(P ) ≤ c′n3.
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Proof. To prove the first claim assume, without loss of generality, that M ′ = {aibk1dℓ1 | i ∈ [n]}
is a perfect matching in E. It is easy to verify the marriage

M =
{

aji [1]b
j
k1
djℓ1

}

∪
{

aji [2]w
j
i x

j
i

}

∪
{

aji [3]y
j
i z

j
i

}

contains no blocking triples, hence is a stable marriage.
For the second claim, let M be an arbitrary marriage in A×B ×D. We observe that there

are at least (1− c)m players a1 ∈ A1 and (1− c)m players a2 ∈ A2 that are not matched with
pairs from their top three choices. Suppose to the contrary that α > (2 + c)m players a1 ∈ A1

are matched with their top 3 choices. This implies that more than cm women a1 ∈ A1 are
matched in triples of the form a1b1kd

1
ℓ with abkdℓ ∈ E, implying that E contains a matching of

size α − 2m > cm, a contradiction. Thus at least 2(1 − c)m women in A1 ∪ A2 are matched
below their top three choices.

Let A′ denote the set of women matched below their top three choices, and B′ and D′ the
sets of partners of a ∈ A′ in M . By the previous paragraph, |A′| ≥ 2(1 − c)m = (1 − c)m/6.
Further, the relative preferences of players in A′, B′ and D′ are precisely those described in
Theorem 3.3. Thus, by Theorem 3.3, any marriage M among these players induces at least
|A′|3 /128 blocking triples. Hence M must contain at least

|A′|

128
≥

(1− c)3

3456
n3

blocking triples.

Proof of Theorem 3.1. The reduction f : 3DM-3 −→ 3GSM is easily seen to be polynomial
time computable. Thus, by Lemma 3.4, f is a polynomial time reduction from Gapc-3DM-3 to
Gapc′-3G-MSM where c′ = 1 − (1 − c)3/3456. The NP hardness of Gapc-3G-MSM is then an
immediate consequence of Theorem 2.2.

The hardness of Gapc-3G-MSS is a consequence of the hardness Gapc-3G-MSM. Consider
an instance of 3GSM with preferences P . We make the following observations.

1. MSM(P ) = n3 if and only if MSS(P ) = n.

2. If MSM(P ) ≤ (1− 3ε)n3 for ε > 0, then MSS(P ) ≤ (1− ε)n.

The first observation is clear. To prove the second, suppose that MSS(P ) > (1− ε)n, and let S
be a maximum stable submarriage. We can form a marriage M by arbitrarily adding εn disjoint
families to S. Since each new family can induce at most 3n2 blocking triples, M has at most
3εn3 blocking triples, hence MSM(P ) > (1−3ε)n3. The two observations above imply that any
decider for Gap(1−ε)-3G-MSS is also a decider for Gap(1−3ε)-3G-MSM. Thus, the NP-hardness
of Gapc-3G-MSM immediately implies the analogous result for Gapc-3G-MSS.

Here we sketch a proof of the analogous lower bounds for 3PSA given in Theorem 3.2.

Proof sketch of Theorem 3.2. As noted in Remark 2.1, we may view 3GSM as a special case of
3PSA with incomplete preferences. The NP-hardness of approximation of 3PSA with incomplete
preferences is analogous to the proof of Theorem 3.1. Given an instance I of 3GSM with sets A,
B, and D and preferences P , take U = A∪B ∪D and form 3PSA preferences P ′ by appending
the remaining pairs to P arbitrarily. Analogues of Theorem 3.3 and Lemma 3.4 hold for this
instance of 3PSA, whence Theorem 3.2 follows. We leave details to the reader.
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4 Approximation Algorithms

4.1 3GSM approximation

In this section, we describe a polynomial time approximation algorithm for MSM, thereby
proving Theorem 1.2. Consider an instance of 3GSM with preferences P , and as before A =
{a1, a2, . . . , an}, B = {b1, b2, . . . , bn}, and D = {d1, d2, . . . , dn}. Given a triple aibjdk, we define
its stable set Sijk to be the set of (indices of) triples which cannot form unstable triples with
aibjdk. Specifically, we have

Sijk =
{

αβδ ∈ [n]3
∣

∣ bβdδ �ai bjdk, α = i
}

∪
{

αβδ ∈ [n]3
∣

∣ aαdδ �bj aidk, β = j
}

∪
{

αβδ ∈ [n]3
∣

∣ aαbβ �dk aibj, δ = k
}

The idea of our algorithm is to greedily form families that maximize |Sijk|. Pseudocode is given
in Algorithm 1.

Algorithm 1 AMSM(A,B,D,P )

find ijk ∈ [n]3 which maximize |Sijk|
A′ ← A \ {ai}, B

′ ← B \ {bj}, D
′ ← D \ {dk}

P ′ ← P restricted to A′, B′, and D′

return {aibjdk}∪AMSM(A′, B′,D′, P ′)

It is easy to see that AMSM can be implemented in polynomial time. The naive algorithm
for computing |Sijk| for fixed ijk ∈ [n]3 by iterating through all triples αβδ ∈ [n]3 and querying
each player’s preferences can be implemented in time Õ(n3). The maximal such |Sijk| can then
be found by iterating through all ijk ∈ [n]3. Thus the first step in AMSM can be accomplished
in time Õ(n6). Finally, the recursive step of AMSM terminates after n iterations, as each
iteration decreases the size of A, B, and D by one.

Lemma 4.1. For any preferences P , and sets A, B and D with |A| = |B| = |D| = n, there
exists a triple ijk ∈ [n]3 with

|Sijk| ≥
4n2

3
− n− 1. (2)

Proof. We will show that there exists a triple aibjdk such that at least two of ai, bj , and dk
respectively rank bjdk, aidk, and aibj among their top n2/3 + 1 choices. Note that this occurs
precisely when at least two of the the following inequalities are satisfied

∣

∣

{

βδ ∈ [n]2
∣

∣ bβdδ �ai bjdk
}∣

∣ ≤
n2

3
+ 1,

∣

∣

{

αδ ∈ [n]2
∣

∣ aαdδ �bj aidk
}∣

∣ ≤
n2

3
+ 1,

and
∣

∣

{

αβ ∈ [n]2
∣

∣ aαbβ �dk aibj
}∣

∣ ≤
n2

3
+ 1

Mark each triple aibjdk which satisfies one of the above inequalities. Each ai induces
n2

3 + 1

marks, so we get n3

3 + n marks from all a ∈ A. Similarly, we get n3

3 + n marks from B and D.
Thus, marks are placed on at least n3 + 3n triples. By the pigeonhole principle, at least one
triple is marked twice.

We claim that the triple aibjdk satisfying two of the above inequalities satisfies equation (2).
Without loss of generality, assume that aibjdk satisfies the first two equations. Thus, ai and

bj must each contribute at least 2n3

3 − 1 stable triples with respect to aibjdk. Further, at most
n − 1 such triples can be contributed by both ai and bj, as such triples must be of the form
aibjdδ for δ 6= k. Thus (2) is satisfied, as desired.

We are now ready to prove that AMSM gives a constant factor approximation for the
maximally stable marriage problem.
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Proof of Theorem 1.2. Let M be the marriage found by AMSM, and suppose

M = {a1b1d1, a2b2d2, . . . , anbndn}

where a1b1d1 is the first triple found by AMSM, a2b2d2 is the second, et cetera. By Lemma 4.1,
|S111| ≥

4
3n

2−O(n). Therefore, the players a1, b1, and d1 can be contained in at most 5
3n

2+O(n)
unstable triples in any marriage containing the family a1b1d1. Similarly, for 1 ≤ i ≤ n the ith
family aibidi can contribute at most 5

3(n− i+ 1)2 +O(n) new unstable triples (not containing
any aj, bj, or dj for j < i). Thus, the total number of unstable triples in M is at most

n
∑

i=1

(

5

3
(n − i+ 1)2 +O(n)

)

=
5

9
n3 +O(n2).

Thus, we have stab(M) ≥ 4n3/9−O(n2) as desired.

4.2 3PSA approximation

AMSM can easily be adapted for 3PSA. Let U be a set of players with |U | = 3n, and let
P be a set of complete preferences for the players in U . Given a triple abc ∈

(U
3

)

, we form
the stable set Sabc consisting of triples that at least one of a, b, c does not prefer to abc.
The approximation algorithm ASA for 3PSA is analogous to AMSM: form a matching M by
finding a triple abc that maximizes |Sabc|, then recursing. The following lemma and its proof
are analogous to Lemma 4.1.

Lemma 4.2. For any set U of players with |U | = 3n and complete preferences P , there exists
a triples abc ∈

(U
3

)

such that
|Sabc| ≥ 6n2 −O(n).

Using Lemma 4.2, we prove Theorem 1.5 analogously to Theorem 1.2.

Proof of Theorem 1.5. Each triple abc can intersect at most 3
(3n
2

)

≤ 27
2 n

2 blocking triples.
Thus, by Lemma 4.2, the total number blocking triples in the matching M found by ASA is
at most

n−1
∑

i=0

(

15

2
(n− i+ 1)2 +O(n)

)

=
5

2
n3 +O(n2).

Therefore,
stab(M) ≥ 2n3 −O(n2),

as the total number of triples in
(U
3

)

is 9
2n

3 − O(n2). Hence M is a 4
9 -approximation to a

maximally stable matching, as desired.

5 Concluding Remarks and Open Questions

While AMSM gives a simple approximation algorithm for 3G-MSM, we do not generalize this
result to 3G-MSS. Indeed, even the first two families output by AMSM may include blocking
triples. We leave the existence of an efficient approximation for 3G-MSS as a tantalizing open
question.

Open Problem 5.1. Is it possible to efficiently compute a constant factor approximation to
3G-MSS?

Finding an approximation algorithm for maximally stable marriage was made easier by the
fact that any preferences admit a marriage/matching with Ω(n3) stable triples. However, for
3G-MSS, it is not clear whether every preference structure admits stable submarriages of size
Ω(n). We feel that understanding the approximability of 3G-MSS is a very intriguing avenue
of further exploration.
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Open Problem 5.2. How small can a maximum stable submarriage/submatching be? What
preferences achieve this bound?

In our hardness of approximation results (Theorems 3.1 and 3.2), we do not state explicit
values of c for which Gapc-3G-MSM and Gapc-3G-MSS (and the corresponding problems for
three person stable assignment) are NP-complete. The value implied by our embedding of
3SAT-B via 3DM-3 is quite close to 1. It would be interesting to find a better (explicit) factor
for hardness of approximation. Conversely, is it possible to efficiently achieve a better than
4/9-factor approximation for maximally stable marriage/matching problems?

Open Problem 5.3. For the maximally stable marriage/matching problems, close the gap be-
tween the 4/9-factor approximation algorithm and the (1−ε)-factor hardness of approximation.

Notice that in the preference structure described in the proof of Theorem 3.3 (upon which
our hardness of approximation results rely), for any i 6= j, w2

i prefers a2i [1]x
2
i to a1i [1]x

2
i , but

prefers a1i [1]x
2
j to a2i [1]x

2
j . Thus, depending on the the second player (x2j or x2i ), w2

i does

not consistently prefer pairs involving a1i [1] to a2i [1] or vice versa. Ng and Hirschberg call
such preferences as inconsistent , and asked whether consistent preferences always admit a (3
gender) stable marriage. Huang [8] showed that consistent preferences need not admit stable
marriages, and indeed it is still NP-complete to determine whether or not given consistent
preferences admit a stable marriage.

Open Problem 5.4. Are MSM and MSS still hard to approximate if preferences are restricted
to be consistent?
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Sticky Matching in School Choice

Mustafa Og̃uz Afacan∗ Zeynel Harun Aliog̃ulları† Mehmet Barlo‡

November, 2014

Abstract

We analyze the school choice model and introduce costly appeals against violations of stu-
dents’ priorities. If these costs are sufficiently high, then some of such appeals may not
provide benefits to the parents even when their priorities are violated. Instead of work-
ing with cardinal notions, our construction elicits the relevant ordinal implications of these
costs, the information about the least rank decrease a student would be appealing against
a priority violation (his/her stickiness degree), from the students before the assignment is
determined. Then the notion of stability, the main desiderata in school choice known to be
at odds with efficiency, is weakened by disregarding priority violations not worth the cost
and the notion of sticky stability is obtained. The first mechanism we introduce is “effi-
ciency improving deferred acceptance mechanism” (EIDA) and we show that it is sticky
stable and superior to the Gale and Shapley (1962)’s deferred acceptance mechanism (DA)
in terms of efficiency and involves truthful revelations of the stickiness degrees. The EIDA
not maximally improving efficiency in the class of sticky stable solutions, leads us to design
“efficiency corrected deferred acceptance mechanism” (ECDA) which turns out to be both
sticky stable and efficient within the class of sticky stable mechanisms. While both mecha-
nisms lack full incentive properties in the complete information case, in certain incomplete
information settings, the former becomes immune to manipulations, whereas, the latter is
still manipulable but with a diminished scope.
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Generalized Three-Sided Assignment Markets:
Consistency and the Core∗
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Departament de Gestió d’Empreses, Universitat Rovira i Virgili-CREIP, Spain.

Abstract

A class of three-sided markets (and games) is considered, where
value is generated by pairs or triplets of agents belonging to different
sectors, as well as by individuals. For these markets we analyze the
situation that arises when some agents leave the market with some
payoff. To this end, we introduce the derived market (and game) and
relate it to the Davis and Maschler (1965) reduced game. Consistency
with respect to the derived market, together with singleness best and
individual anti-monotonicity axiomatically characterize the core for
these generalized three-sided assignment markets. These markets may
have an empty core, but we define a balanced subclass, where the
worth of each triplet is defined as the addition of the worths of the
pairs it contains.

∗The authors acknowledge the support from research grant ECO2011-22765 (Ministe-
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College Admission with Multidimensional Privileges:
The Brazilian Affirmative Action Case

Orhan Aygün˚ Inácio Bó:

November, 2014

Abstract

In August of 2012 the Brazilian federal government enacted a law mandating
the implementation of affirmative action policies in public federal universities for
candidates from racial minorities, low income families and those coming from pub-
lic high-schools. We show that by using the method proposed by the government,
students who strategize over the privileges that they claim may improve their place-
ment. Moreover, the choices made by the colleges will not satisfy a general fairness
condition, implying that high achieving students target of the affirmative action
policies may be rejected while low achieving high income majorities are accepted.
Data from university admissions in more than 3,000 programs in 2013 show that
the conditions for those unintended consequences are observed in more than 49%
of those programs. We propose a choice function for the colleges that removes any
gain from strategizing over the privileges claimed, is fair, satisfies the substitutes
condition and under reasonable assumptions on the type distribution of the popu-
lation fully satisfies the diversity objectives expressed by the law. We also propose
a strategy-proof mechanism that matches students and colleges with the use of the
proposed choice function.

JEL classification: C78, D63, D78, D82
Keywords : Mechanism Design, Matching with Contracts, College admissions, Affirmative
Action, Diversity.
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Manipulating the Probabilistic Serial Rule

Haris Aziz, Serge Gaspers, Simon Mackenzie, Nicholas Mattei

NICTA and UNSW, Kensington 2033, Australia

Nina Narodytska

Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA

Toby Walsh

NICTA and UNSW, Kensington 2033, Australia

Abstract

The probabilistic serial (PS) rule is one of the most prominent randomized rules
for the assignment problem. It is well-known for its superior fairness and welfare
properties. However, PS is not immune to manipulative behaviour by the agents.
We initiate the study of the computational complexity of an agent manipulating
the PS rule. We show that computing an expected utility better response is NP-
hard. On the other hand, we present a polynomial-time algorithm to compute
a lexicographic best response. For the case of two agents, we show that even an
expected utility best response can be computed in polynomial time. Our result
for the case of two agents relies on an interesting connection with sequential
allocation of discrete objects.

Keywords: Assignment problem, probabilistic serial mechanism, fair
allocation
JEL: C62, C63, and C78

Email addresses: haris.aziz@nicta.com.au (Haris Aziz), serge.gaspers@nicta.com.au
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Nicholas.Mattei@nicta.com.au (Nicholas Mattei), ninan@cs.toronto.edu (Nina
Narodytska), toby.walsh@nicta.com.au (Toby Walsh)
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A new solution concept for the roommate problem:

The Q-stable matchings∗

Peter Biró† Elena Inarra‡ Elena Molis§

Abstract

It is well-known that roommate problems (Gale and Shapley, AMM, 1962) can have
stable matchings (solvable problems) or not (unsolvable problems). The aim of this paper is
to propose a new solution concept for the class of roommate problems with strict preferences.
We believe that it is essential to require a solution concept which provides a stable matching
when it exists and some matching otherwise. Thus, we focus on core consistent solutions.
Several solution concepts have been proposed explicitly for dealing with unsolvable problems,
but there has yet to be any in-depth discussion regarding comparisons between solution
concepts and there is scope for new ones.

In our work we first introduce maximum irreversible matchings. These matchings incor-
porate pairings so stable that once they are formed they never split. At the interface between
Economics and Computer Science two solution concepts have been proposed explicitly for
dealing with unsolvable problems. Almost stable matchings (Abraham et al., AO-L Algo-
rithms, 2006) form a subclass of Pareto optimal matchings with the minimum number of
blocking pairs. Maximum stable matchings (Tan, BIT, 1990) single out matchings with the
largest set of pairs that are stable within themselves.

All three of the solution concepts mentioned show sufficient grounds for consideration as
good candidates for solving roommate problems. Hence, it seems to make sense to consider
a proposal that could conciliate most if not all of those solution concepts. However, we find
that almost stable matchings are incompatible with the other two concepts. Hence, to solve
the roommate problem we propose matchings that lie at the intersection of the maximum
irreversible matchings and maximum stable matchings, which we call Q- stable matchings.
We construct an efficient algorithm for computing one element of this set for any roommate
problem.

For the roommate problem Inarra et al. (GEB, 2013). seek to determine which matchings
a decentralized process may lead to. They consider a dynamic process in which a matching
is adjusted when a blocking pair of agents mutually decide to become partners. If there
are stable matchings the process eventually converges to one of them. Otherwise it leads
to a set of matchings (an absorbing set) such that any matching in the set can be obtained
from any other and it is impossible to escape from the matchings in that set. Therefore it is
important to investigate whether our proposal, the Q-stable matching, is achievable from a
free interactions of agents, i.e. whether it belongs to an absorbing set. The answer is in the
affirmative and we show that although not all Q-stable matchings belong to an absorbing
set, any matching determined by our algorithm does.
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support from the Hungarian Academy of Sciences under its Momentum Programme (LD-004/2010), and the Hungarian
Scientific Research Fund, OTKA, grant no. K108673.
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The Stable Fixtures Problem with Payments
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Abstract. We introduce multiple partners matching games, which consist
of a graph G = (N,E), with an integer vertex capacity function b and
an edge weighting w. The set N consists of a number of players that
are to form a set M ⊆ E of 2-player coalitions ij with value wij , such
that each player i is in at most bi coalitions. A payoff p is a vector with
p(i, j)+p(j, i) = wij if ij ∈M and p(i, j) = p(j, i) = 0 if ij /∈M . The pair
(M,p) is called a solution. A pair of players i, j with ij ∈ E \M blocks a
solution (M,p) if i, j can form, possibly only after withdrawing from one
of their existing 2-player coalitions, a new 2-player coalition in which they
are mutually better off. A solution is stable if it has no blocking pairs.

We give a polynomial-time algorithm that either finds that no stable
solutions exists, or obtains a stable solution. This generalizes a known
result of Sotomayor (1992) for multiple partners assignment games, where
the underlying graph G is bipartite. We also characterize the set of stable
solutions and initiate a study on the core of the corresponding cooperative
game, where coalitions of any size may be formed.

? Visiting professor at Stanford University until 31 January 2015, supported by the
Hungarian Academy of Sciences under Momentum Programme LD-004/2010 and
also by OTKA grant no. K108673.

?? Supported by EPSRC Grant EP/K025090/1.

108



The most ordinally-egalitarian of random voting
rules

Anna Bogomolnaia
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February 2015

Abstract

We consider a random social choice model, where n agents are to
jointly choose one alternative from a given finite set A. Agents might have
arbitrary, not necessarily strict, preferences over A. An ordinal random
choice mechanism specifies a probability distribution on A for any given
profile of agents’preferences over sure outcomes in A.

In this setting, Aziz and Stursberg (“A Generalization of Probabilistic
Serial to Randomized Social Choice”, Proceedings of the 28-th AAAI Con-
ference on Artificial Intelligence (2014), 559—565) propose an “Egalitarian
Simultaneous Reservation”rule (ESR), a generalization of Serial rule, one
of the most discussed mechanisms in random assignment problem, to this
more general random social choice domain.

We provide an alternative definition, or characterization, of ESR as
the unique most ordinally-egalitarian one. Specifically, given a lottery p
over alternatives, for each agent i we define tpi (k) to be the total share
in p of objects from her first k indifference classes. ESR is shown to
be the unique one which leximin maximizes the vector of all such shares
(tpi (k))i,k. We submit that this is a proper way to apply the Egalitarian
Principle for random mechanisms with ordinal input.

Serial rule is known to be characterized by the same property (see Bo-
gomolnaia, A., “Random Assignment: Redefining the Serial Rule”(2014),
mimeo). Thus, we provide an alternative way to show that ESR, indeed,
coincides with Serial rule on the assignment domain. Moreover, since both
rules are defined as the unique most ordinally-egalitarian ones, out result
shows that ESR is “the right way”to think about generalizing Serial rule.

Keywords: Random Social choice, Random assignment, Serial Rule,
Leximin
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DRIVEN BY PRIORITIES MANIPULATIONS UNDER THE BOSTON
MECHANISM

DAVID CANTALA AND JUAN SEBASTIÁN PEREYRA

Abstract. Inspired by real-life manipulations used when the Boston mechanism is

in place, we study school choice markets where students submit preferences driven by

priorities; that is, when students declare among the most preferred those schools for

which they have high priority. Under this assumption, we first prove that the outcome of

the Boston mechanism is the school-optimal stable matching. Moreover, the condition

is necessary: if the outcome of the Boston mechanism is the school-optimal stable

matching, then preferences are driven by priorities. Thus, under these manipulations,

the final allocation of students may be purely shaped by schools’ priorities. Second,

we analyze a situation where the Boston mechanism is replaced either by a stable

mechanism or by the top trading cycles mechanism, but it takes some periods before

students begin to behave truthfully. If during this transition students try to manipulate

the new mechanism as other students did before, we show that the new matching

will not present large changes respect to previous allocations. Additionally, we run

some computational simulations to show that the assumption of driven by priorities

preferences can be relaxed by introducing an idiosyncratic preference component, and

our main results hold for almost all students.

Keywords : Two-sided many-to-one matching; school choice; Boston algorithm; ma-

nipulation strategies; Deferred Acceptance algorithm; Top trading cycles.

JEL Classification: C72; D47; D78; D82.
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A New Efficiency Criterion for Probabilistic Assignments
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For probabilistic assignment of objects, when only ordinal preference information is available,

we propose the following efficiency criterion: a probabilistic assignment dominates another assign-

ment if, whenever the latter assignment is utilitarian efficient at a utility profile consistent with the

ordinal preferences, the former assignment is utilitarian efficient too; and there is a utility profile

consistent with the ordinal preferences at which the latter assignment is not utilitarian efficient

but the former assignment is utilitarian efficient. We provide a simple characterization of this

domination relation. We show that, if preferences are strict (no agent is indifferent between two

different objects), an sd-efficient assignment π sw-dominates another sd-efficient assignment π′ if

and only if π has a finer support, i.e. the set of agent-object pairs assigned with positive proba-

bility in π is a proper subset of the set of agent-object pairs assigned with positive probability in

π′. If preferences are weak (indifferences are allowed), we extend the support of an assignment so

that it possibly includes a pair of agent and object that are not assigned with positive probability

provided that there is an “equivalent assignment” that includes the pair. Then, we show that

an sd-efficient assignment π sw-dominates another sd-efficient assignment π′ if and only if π has

a finer extended support. A consequence of these results is that when preferences are strict, the

only sw-efficient assignments are the Pareto efficient deterministic assignments; and when the pref-

erences are weak, the only undominated assignments are the sd-efficient assignments where each

agent is indifferent among the objects that he is assigned with positive probability. We revisit an

extensively studied probabilistic assignment mechanism, the Probabilistic Serial rule (Bogomolnaia

and Moulin [JET, 2001]), and show that it can be improved in efficiency without sacrificing fairness.
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The Secure Boston Mechanism

Umut Dur†. Robert G. Hammond‡ Thayer Morrill§
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Abstract

The two primary objections to the Boston Mechanism (BM) are that it is

not strategy-proof and that sophisticated students benefit at the expense of

naive students. However, it is an attractive algorithm from an optimization

standpoint. We introduce an intuitive modification of BM that secures any

school a student was initially guaranteed but otherwise prioritizes a student

at a school based upon how she ranks it. This algorithm is less manipulatable

than BM and provides some protection for naive students. Our main result is

to show that an equilibrium, in undominated strategies, of this new algorithm

Pareto dominates the Deferred Acceptance algorithm when the student opti-

mal stable assignment is Pareto inefficient. Key Words: Boston Mechanism,

School Choice, Assignment.

JEL Classification: C78, D61, D78, I20

†Department of Economics, North Carolina State University. Contact: udur@ncsu.edu
‡Department of Economics, North Carolina State University. Contact:

robert hammond@ncsu.edu.
§Department of Economics, North Carolina State University. Contact: thayer morrill@ncsu.edu.

112



The Curse of Stability:
Designing the Appeals Round in School Choice

Umut Mert Dur1 Onur Kesten2

North Carolina State University Carnegie Mellon University

Abstract
Almost all school choice plans feature an additional supplementary round where students

who declare to be dissatisfied with the outcome in the main round can appeal to be re-assigned.
The largest of these plans, the current New York City (NYC) high school matching system,
assigns students to the schools via Gale and Shapley Deferred Acceptance (DA) mechanism in
the main round which is next followed by a supplementary round employing the Top Trading
Cycles (TTC) mechanism. Although both DA and TTC are strategy-proof, the current two-
round system does not eliminate students’ incentives to be strategic in their reported choices.
In particular, a student may misreport his preferences in the main round in order to be assigned
to a school which he can later trade with a more desirable school in the supplementary round.
We ask whether we can design two-round school choice systems with good incentive properties
and show that the answer to this questions does not only depend on the properties of the specific
mechanisms used in each round, but also whether or not the non-appealing students are taken
into account in the supplementary round. Our results show that the deficiency of the NYC
system can be mitigated by either reversing the order of the two mechanisms, or by applying
DA in both rounds together with allowing non-appealing students to passively participate in
the supplementary round.

JEL Classification: C78, D61, H75, I28
Key Words: Matching Theory, Market Design, School Choice Problem
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School Choice with Neighbors1

Umut Mert Dur2 Thomas Wiseman3

North Carolina State University University of Texas at Austin

Abstract
We consider the school choice problem where students may prefer to be assigned to the

same school as a neighbor. In that setting, the set of stable matchings can be empty. Moreover,
there does not exist a strategy-proof mechanism satisfying even a much weaker stability notion.
Instead, we show that a variation on the Top Trading Cycles mechanism is both strategy-proof
and Pareto efficient, and that it is in a well-defined sense one of the “most stable” strategy-
proof mechanism. We also present a modified Deferred Acceptance algorithm with improved
stability properties.

JEL Classification: C78, D61, H75, I28
Key Words: Matching Theory, Market Design, School Choice Problem
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Object Allocation via Deferred-Acceptance:
Strategy-Proofness and Comparative Statics∗

Lars Ehlers† Bettina Klaus‡

Abstract

We study the problem of assigning indivisible and heterogenous objects (e.g.,
houses, jobs, offices, school or university admissions etc.) to agents. Each
agent receives at most one object and monetary compensations are not possi-
ble. We consider mechanisms satisfying a set of basic properties (unavailable
type invariance, individual rationality, weak non-wastefulness, or truncation-
invariance).

In the house allocation problem, where at most one copy of each object is
available, deferred-acceptance (DA)-mechanisms allocate objects based on ex-
ogenously fixed objects’ priorities over agents and the agent-proposing deferred-
acceptance-algorithm. For house allocation we show that DA-mechanisms
are characterized by our basic properties and (i) strategy-proofness and
population-monotonicity or (ii) strategy-proofness and resource-monotonicity.

Once we allow for multiple identical copies of objects, on the one hand
the first characterization breaks down and there are unstable mechanisms
satisfying our basic properties and (i) strategy-proofness and population-
monotonicity. On the other hand, our basic properties and (ii) strategy-
proofness and resource-monotonicitycharacterize (the most general) class of
DA-mechanisms based on objects’ fixed choice functions that are acceptant,
monotonic, substitutable, and consistent. These choice functions are used by
objects to reject agents in the agent-proposing deferred-acceptance-algorithm.
Therefore, in the general model resource-monotonicity is the “stronger” com-
parative statics requirement because it characterizes (together with our basic
requirements and strategy-proofness) choice-based DA-mechanisms whereas
population-monotonicity (together with our basic properties and strategy-
proofness) does not.
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The theory of matroid-kernels and their corresponding sets of blockers and antiblockers can be

utilized to obtain a linear description of the stable b-matching problem (MM) [4]. We utilize the

relation between antiblockers and rotations [2] to revisit that description and establish the dimen-

sion of the MM polytope. Moreover, we provide a minimal representation of the MM polytope

by identifying its minimal equation system and facet-defining inequalities. This representation

includes O(m) constraints, m being the number of pairs, hence being significantly sparser than

the existing one and linear with respect to the size of the problem. This minimal representation

carries over to the stable admissions problem (SA), for which we also establish the facial corre-

spondence of the linear representation based on matroid-kernels to the one based on combs, thus

making the separation algorithm appearing in [1] obsolete.

Besides bringing a closure to the polyhedral study of the MM and SA polytopes, the minimal

representation established here can be of practical importance in variants of the MM and SA

involving additional constraints, e.g., couples in residency schemes; it provides a minimal linear

relaxation which can admit additional constraints per variant and can be used efficiently in the

framework of general solution methods (e.g., Branch & Cut) in cases where problem specific

combinatorial algorithms [3] become useless, since not having the versatility of linear relaxations.
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Abstract. We study the problem of approximate social welfare maxi-
mization (without money) in one-sided matching problems when agents
have unrestricted cardinal preferences over a finite set of items. Ran-
dom priority is a very well-known truthful-in-expectation mechanism for
the problem. We prove that the approximation ratio of random prior-
ity is Θ(n−1/2) while no truthful-in-expectation mechanism can achieve
an approximation ratio better than O(n−1/2), where n is the number of
agents and items. Furthermore, we prove that the approximation ratio of
all ordinal (not necessarily truthful-in-expectation) mechanisms is upper
bounded by O(n−1/2), indicating that random priority is asymptotically
the best truthful-in-expectation mechanism and the best ordinal mech-
anism for the problem.
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On weighted kernels of two posets∗

Tamás Fleiner† Zsuzsanna Jankó‡

Sands, Sauer and Woodrow in [4] proved an interesting generalization of the stable marriage
theorem by Gale and Shapley in [3]. This result can be formulated in terms of partially ordered
sets as follows. If �1 and �2 are two partial orders on the same ground set V then there is a
common antichain K of these posets such that for any element v ∈ V \K, there exists a vertex
k ∈ K such that v �1 k or v �2 k holds. This antichain is also called a kernel.

Fix a poset P = (V,�) and a demand function w : V → R+. Weight function f : V → R+

is �-tame (with respect to w) if the total weight of no chain exceeds the demand of its minimal
element unless this minimal element has zero weight. We say that element v of V is �-dominated
by f if there is a chain starting at v of total weight not less than the demand of v.

Let P1 = (V,�1) and P2 = (V,�2) be posets on ground set V and w : V → R+ be a demand
function. Weight function f : V → R+ is a weighted kernel if f is both �1-tame and �2-tame
and moreover each element v of V is �1-dominated or �2-dominated (or both). The main result
of Aharoni, Berger and Gorelik [1] states that there always exists a weighted kernel.

We generalize this result with the help of choice functions. Function F : X → X is a
choice function on lattice L = (X,�) if F(x) � x holds for any element x of X. Mapping
F : X → X is antitone if x � y implies F(y) � F(x). Function D : X → X is a determinant
of F if F(x) = x ∧ D(x) holds for any element x of X. Choice function F : X → X is
called substitutable if there is an antitone determinant A : X → X of F , and F : X → X
is path-independent if F(x ∨ y) = F(x ∨ F(y)) holds for any elements x, y of X. If F1 and
F2 are path-independent substitutable choice functions on lattice L = (X,�) then s ∈ X is
F1F2-stable if F1(s) = F2(s) = s and F1(s ∨ x) ∧ F2(s ∨ x) � s holds for each element x of X.

Based on Tarski’s fixed point theorem [5], we show that there always exist a F1F2-stable
element. We generalize Blair’s theorem [2] to our setting and prove that weighted kernels form
a lattice under a certain natural partial order. To illustrate the robustness of our approach we
indicate other possibilities for generalizing the result by Sands, Sauer and Woodrow that can
be done by picking different path-independent substitutable choice functions.
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Distributional constraints are important in many market design settings.
Prominent examples include the minimum manning requirements at each
Army branch in military cadet matching and diversity considerations in
school choice, whereby school districts impose constraints on the demo-
graphic distribution of students at each school. Standard assignment mecha-
nisms implemented in practice are unable to accommodate these constraints.
This leads policymakers to resort to ad-hoc solutions that eliminate blocks
of seats ex-ante (before agents submit their preferences) to ensure that all
constraints are satisfied ex-post (after the mechanism is run). We show that
these current solutions ignore important information contained in the sub-
mitted preferences, resulting in avoidable inefficiency. We then introduce
new dynamic quotas mechanisms that result in Pareto superior allocations
while at the same time respecting all distributional constraints and satisfying
important fairness and incentive properties. We expect the use of our mech-
anisms to improve the performance of matching markets with distributional
constraints in the field.
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Abstract

We consider the clearing of barter exchange markets in which pro-
posed transactions must be verified before they can proceed. Proposed
transactions may fail to go forward if verification fails or if a participant
withdraws. The clearing problem for these markets is a combinatorial
optimization problem that can be modelled as a vertex-disjoint cycle
packing problem in an unreliable digraph. The arcs and nodes of this
graph are subject to failure.

Our research finds a natural application in kidney exchange mar-
kets, which aim to enable transplants between incompatible donor-
patient pairs. A set of pairs must be chosen in such a way that each
selected patient can receive a kidney from a compatible donor from an-
other pair in the set. The pairs are then notified and crossmatch tests
must be performed to ensure the success of the transplants. We study
the case in which if incompatibilities are discovered, a partaker has to
withdraw and a new set of pairs may be selected. The new set should
be as close as possible to the initial set in order to minimize the ma-
terial and emotional costs of the alteration. Various recourse policies
that determine the allowed post-matching actions are proposed. For
each recourse policy, a robust model is developed. Besides the develop-
ment of a novel adjustable robust optimization model, our contribution
includes techniques to solve exactly the optimization problems in hand.
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College	  Admissions	  with	  Entrance	  Exams:	  Centralized	  
versus	  Decentralized1	  

	  
Isa	  Hafalir	   Rustamdjan	  Hakimov	   	  Dorothea	  Kubler	  	   Morimitsu	  Kurino2	  

	  
Extended	  Abstract	  

	  
We	  theoretically	  and	  experimentally	  study	  a	  college	  admissions	  problem	  in	  which	  
colleges	  accept	  students	  by	  ranking	  students'	  efforts	  in	  entrance	  exams.	  Students'	  
ability	  levels	  affect	  the	  cost	  of	  their	  efforts.	  We	  solve	  and	  compare	  equilibria	  of	  
``centralized	  college	  admissions''	  (CCA)	  where	  students	  apply	  to	  all	  colleges,	  and	  
``decentralized	  college	  admissions''	  (DCA)	  where	  students	  only	  apply	  to	  one	  college.	  	  
	  
After	  solving	  for	  the	  equilibrium	  of	  CCA	  and	  DCA,	  we	  compare	  the	  equilibria	  in	  
terms	  of	  students'	  interim	  expected	  utilities.	  We	  show	  that	  students	  with	  lower	  
abilities	  prefer	  DCA	  to	  CCA	  when	  the	  number	  of	  seats	  is	  smaller	  than	  the	  number	  of	  
students.	  The	  main	  intuition	  for	  this	  result	  is	  that	  students	  with	  very	  low	  abilities	  
have	  almost	  no	  chance	  of	  getting	  a	  seat	  in	  CCA,	  whereas	  their	  probability	  of	  getting	  a	  
seat	  in	  DCA	  is	  bounded	  away	  from	  zero	  due	  to	  the	  fewer	  number	  of	  applications	  
than	  the	  capacity.	  Moreover,	  we	  show	  that	  students	  with	  higher	  abilities	  prefer	  CCA	  
to	  DCA.	  The	  main	  intuition	  for	  this	  result	  is	  that	  high-‐ability	  students	  (i)	  can	  only	  get	  
a	  seat	  in	  the	  good	  school	  in	  DCA,	  whereas	  they	  can	  get	  seats	  in	  both	  the	  good	  and	  the	  
bad	  school	  in	  CCA,	  and	  (ii)	  their	  equilibrium	  probability	  of	  getting	  a	  seat	  in	  the	  good	  
school	  is	  the	  same	  across	  the	  two	  mechanisms.	  
	  
We	  test	  the	  theory	  with	  the	  help	  of	  lab	  experiments.	  We	  implement	  five	  markets	  for	  
the	  college	  admissions	  game	  that	  are	  designed	  to	  capture	  different	  levels	  of	  
competition	  (in	  terms	  of	  the	  supply	  of	  seats,	  the	  demand	  ratio,	  and	  the	  quality	  
difference	  between	  the	  two	  colleges).	  We	  compare	  the	  two	  college	  admission	  
mechanisms	  and	  find	  that	  in	  most	  (but	  not	  all)	  markets,	  the	  comparisons	  of	  the	  
students'	  ex-‐ante	  expected	  utilities,	  their	  effort	  levels,	  and	  the	  students'	  preferences	  
regarding	  the	  two	  college	  admission	  mechanisms	  are	  well	  organized	  by	  the	  theory.	  
However,	  the	  experimental	  subjects	  exert	  a	  higher	  effort	  than	  predicted.	  The	  
overexertion	  of	  effort	  is	  particularly	  pronounced	  in	  DCA,	  which	  makes	  it	  relatively	  
less	  attractive	  for	  the	  applicants	  compared	  to	  CCA.	  
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Full Substitutability in Trading Networks∗
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Abstract
The trading network framework generalizes and unifies models of matching with

bilateral contracts and indivisible goods exchange. We extend earlier models’ canonical
definitions of substitutability to that framework and show that all these definitions are
equivalent. We also show that substitutability corresponds to submodularity of the
indirect utility function, the single improvement property, and a no complementarities
condition. We prove that substitutability is preserved under economically important
transformations such as trade endowments, mergers, and limited liability. Finally, we
show that substitutability implies monotonicity conditions called the Laws of Aggregate
Supply and Demand.
JEL classification: C78; C71; D47; D85; L14
Keywords: Matching; Exchange Economies; Auctions; Trading Networks;

Substitutes; Submodularity; Law of Aggregate Demand
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Abstract

We consider the setting of many-to-one matching with contracts, where firms may
demand multiple contracts but each worker desires at most one contract. We introduce
three novel conditions—observable substitutability, observable size monotonicity, and
non-manipulatability—and show that when these conditions are satisfied, a stable and
strategy-proof (for workers) mechanism exists. Moreover, we show that when any of our
three conditions fails, one may construct preferences for the doctors and unit-demand
choice functions for the other firms such that no stable and strategy-proof mechanism
exists. Finally, we show that, whenever our three conditions are satisfied, the outcome
of any stable and strategy-proof mechanism coincides with the cumulative offer process.

JEL Classification: C62; C78; D44; D47

Keywords: Matching with contracts, Stability, Strategy-proofness, Substitutability,
Size monotonicity
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Gale and Sotomayor (1985) gave a remark on thestable marriage problemthat the set of people who are
matched with themselves is the same for all stable matchings. Motivated by a larger cardinality matching,
Huang and Kavitha (2013) investigated the structure ofpopular matchings, an extended notion of stable
matching: Given an instance of the stable marriage problem, a matchingM is popularif there is no matching
M ′ such that more vertices are better off inM ′ than inM . They established the Gale-Sotomayor’s type
theorem forminimumcardinality popular matchings, and showed that any stable matching is a minimum
cardinality popular matching.

We establish the same type of the theorem formaximumcardinality popular matchings. To be precise,
we show the following.

Theorem 1. LetM be an arbitrary max popular matching. Then,V (M ′) ⊆ V (M) holds for any popular
matchingM ′, whereV (M) denotes the set of end vertices of a matchingM .

Theorem 1 implies that the familyV of sets of endpoints of popular matchings has the (unique) max-
imum and minimum with respect to the inclusion relation, combining with Huang-Kavitha’s result. As a
consequence, one may naturally presume thatV is closed under intersection and union, and thenV forms a
(distributive) lattice. We disprove the former presumption, as follows:

Proposition 2. There exists an instance of the stable marriage problem which has a pair of popular match-
ingsM1 andM2 such that no popular matchingM satisfiesV (M) = V (M1) ∩ V (M2).

Proposition 3. There exists an instance of the stable marriage problem which has a pair of popular match-
ingsM1 andM2 such that no popular matchingM satisfiesV (M) = V (M1) ∪ V (M2).
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Time Horizons, Lattice Structures, and Welfare in

Multi-period Matching Markets∗

Sangram V. Kadam† Maciej H. Kotowski‡

Abstract

Consider a T -period, bilateral matching economy without monetary transfers. Un-

der natural restrictions on agents’ preferences, which accommodate switching costs,

status-quo bias, and other forms of inter-temporal complementarity, dynamically-stable

matchings exist. Generally, “optimal” dynamically-stable matchings may not exist, but

under a suitable partial order the stable set forms a lattice. The welfare properties

of different stable outcomes is ascertained and the implications for normative market-

design are discussed. The robustness of dynamically-stable matchings with respect to

the market’s time horizon is examined.

∗Kadam gratefully acknowledges the support of the Danielian Travel & Research Grant.
†Department of Economics, Harvard University, 1805 Cambridge Street, Cambridge MA 02138. E-mail:

<svkadam@fas.harvard.edu>
‡John F. Kennedy School of Government, Harvard University, 79 JFK Street, Cambridge MA 02138.

E-mail: <maciej_kotowski@hks.harvard.edu>
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Condensation Problems with Strict Preferences
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Abstract. The popular matching problem introduced by Abraham, Irving, Kavitha, and
Mehlhorn [1] is a matching problem in which there exist applicants and posts, and applicants
have preference lists over posts. A matching M is said to be popular, if there exists no other
matching N such that the number of applicants that prefer N to M is larger than the number
of applicants that prefer M to N . The concept of popularity was introduced by Gärdenfors [2]
in the context of matching problems with two-sided preference lists. The goal of the popular
matching problem is to decide whether there exists a popular matching in a given instance, and
find a popular matching if one exists. Abraham, Irving, Kavitha, and Mehlhorn [1] presented
polynomial-time algorithms for this problem. Since their seminal paper, several extensions of
the popular matching problem have been investigated [6, 7, 8]. In this talk, we first consider a
matroid generalization of the popular matching problem with strict preferences, and present a
polynomial-time algorithm for this problem.

Unfortunately, it is known [1] that a given instance of the popular matching problem may
admit no popular matching. For coping with such instances, several alternative solutions were
presented. Kavitha and Nasre [4] considered the problem of deciding capacities of posts so
that a given instance has a popular matching. Kavitha, Nasre, and Nimbhorkar [5] considered
the problem of augmenting capacities of posts with minimum costs. These problems are hard
in general. Wu, Lin, Wang, and Chao [9] considered the popular condensation problem whose
goal is to transform a given instance by deleting a minimum number of applicants so that it
has a popular matching, and gave a polynomial-time algorithm for this problem. In the second
half of this talk, we consider a matroid generalization of the popular condensation problem
with strict preferences, and give a polynomial-time algorithm for this problem.

The main results of this talk have appeared in [3].
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The size of the core in assignment markets

Yash Kanoria Daniela Saban Jay Sethuraman∗

Abstract

Assignment markets involve matching with transfers, as in labor markets and housing mar-
kets. We consider a two-sided assignment market with agent types and stochastic structure
similar to models used in empirical studies, and characterize the size of the core in such mar-
kets. Each agent has a randomly drawn productivity with respect to each type of agent on
the other side. The value generated from a match between a pair of agents is the sum of the
two productivity terms, each of which depends only on the type but not the identity of one of
the agents, and a third deterministic term driven by the pair of types. We allow the number
of agents to grow, keeping the number of agent types fixed. Let n be the number of agents
and K be the number of types on the side of the market with more types. We find, under
reasonable assumptions, that the relative variation in utility per agent over core outcomes is
bounded as O∗(1/n1/K), where polylogarithmic factors have been suppressed. Further, we show
that this bound is tight in worst case. We also provide a tighter bound under more restrictive
assumptions.

Keywords: Assignment markets, matching, transferable utility, core, uniqueness of equilibrium,
random market.

∗All the authors are at Columbia University. Emails: {ykanoria,dhs2131,js1353}@columbia.edu
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Abstract

This paper studies an allocation problem with multiple assignments, indivisible
objects, no endowments and no monetary transfers, where a single object may be as-
signed to several agents as long as the set of agents assigned the object satisfy a com-
patibility constraint. The assignments of two agents are said to overlap if they have
non-empty intersection. Due to the restrictions imposed on the compatibility struc-
ture, the set of agents can be partitioned into groups of compatible agents, such that
each agent is incompatible with every agent belonging to a different group. An object
may be assigned to any number of compatible agents, but it may never be assigned to
a set containing incompatible agents. Only direct mechanisms are considered in this
paper. Agents report their preferences over bundles of objects and a rule selects an
allocation of objects to agents. On the domain of complete, transitive and strict pref-
erences, it is shown that group-sorting sequential dictatorships are the only rules that
are coalitionally strategyproof, Pareto efficient and group-monotonic. This charac-
terization still holds if coalitional strategyproofness is replaced by strategyproofness
and nonbossiness or if group-monotonicity is replaced by group-invariance. A sequen-
tial dictatorship is group-sorting if the priority structure associated with the rule is
sorted by groups of compatible agents until every object has been assigned to at least
one agent. When assignments are not allowed to overlap, it has been demonstrated
by Pápai (2001) that a rule is strategyproof, Pareto efficient and non-bossy if and
only if it is a sequential dictatorship. This result is contained as a special case of
the characterization of group-sorting sequential dictatorships above. Finally, some
different properties featured in various characterizations of serial dictatorships for
similar allocation problems without overlapping assignments are considered. It is
shown that neither serial dictatorships nor group-sorting sequential dictatorships are
consistent or population-monotonic when assignments are allowed to overlap. Fur-
thermore, on the domain of complete, transitive and strict preferences, there exists
no rule that satisfies both Pareto efficiency and resource-monotonicity. This result
holds regardless of whether assignments are allowed to overlap.
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Two School Systems, One District:
What to do when a unified admissions

process is impossible∗

Vikram Manjunath† and Bertan Turhan‡

When groups of schools within a single district run their admission pro-
cesses independently of one another, the resulting match is often inefficient:
many children are left unmatched and seats are left unfilled.

In a context where school priorities are to be respected, we study the prob-
lem of re-matching students to take advantage of these empty seats in a context
where there are priorities to respect. We propose an iterative way in which each
group may independently match and re-match students to its schools.

The advantages of this process are that every iteration leads to a Pareto im-
provement and a reduction in waste while maintaining respect of the priorities.
Furthermore, it reaches a non-wasteful match within a finite number of itera-
tions.

While iterating may be costly, as it involves asking for inputs from the chil-
dren, there are significant gains from the first few iterations. We show this
analytically for two stylized problems. Both involve a continuum of children
but a finite number of schools. The priority of a child at each school is drawn
randomly from the uniform distribution. The first stylized problem is where
every child has the same preferences over this finite set of schools. The second
is where each child’s preference is randomly drawn from the uniform distri-
bution. More general problems where a child’s preferences are informed by a
convex combination of a private value and a common value are not analytically
tractable. Instead, we confirm this result through simulations.

∗We thank M. Oğuz Afacan, Ahmet Alkan, Samson Alva, Orhan Aygun, Isa Hafalir, Parag
Pathak, William Phan, Erin Richards, Tayfun Sönmez, Utku Ünver, and Rodrigo Velez for help-
ful comments and suggestions. Manjunath gratefully acknowledges support from the Social
Sciences and Humanities Research Council of Canada.
†Texas A&M University, vmanjunath@tamu.edu
‡Boston College, turhan@bc.edu
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Abstract

It is shown that a matching market with contracts may be embed-
ded into a matching market with salaries under weaker conditions than
substitutability of contracts. In particular, the result applies to the
recently studied problem of cadet-to-branch matching. As an applica-
tion of the embedding result, a new class of mechanisms for matching
markets with contracts is defined that generalize the firm-proposing
deferred acceptance algorithm to the case where contracts are unilat-
eral substitutes for firms. JEL-classification: C78
Keywords: Matching; Matching with contracts; Matching with
salaries; Embedding; Substitutes; Unilateral substitutes; Bilateral sub-
stitutes

∗I am very grateful to my supervisor Bettina Klaus for many helpful discussions and
comments. I thank William Thomson for detailed comments that greatly improved the ex-
position of the results. I thank Battal Doğan, Federico Echenique, Lars Ehlers, Flip Klijn,
Fuhito Kojima, Scott Kominers, Tayfun Sönmez, participants of the 2014 Meeting of the
Social Choice and Welfare Society and workshop participants in Marseille and Montréal
for comments on a previous version of this paper. I gratefully acknowledge financial sup-
port by the Swiss National Science Foundation (SNSF) and by the COST Action IC1205
on Computational Social Choice. The paper extends and replaces a previous comment
that circulated under the title: ”Contracts versus Salaries in Matching: Comment”
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Trading networks with bilateral contracts

Alexander Teytelboym∗

Abstract

We consider general networks of bilateral contracts that include supply chains (Os-

trovsky, 2008; Westkamp, 2010; Hatfield and Kominers, 2012). We define a new stabil-

ity concept called path stability and show that any network of bilateral contracts has

a path-stable outcome whenever agents’ preferences satisfy full substitutability (same-

side substitutability and cross-side complementarity). In supply chains, path stability is

equivalent to chain stability (Ostrovsky, 2008). However, in general contract networks,

path-stable outcomes may not be immune to group deviations or efficient. We examine

previous results on (group) strategy-proofness and the rural hospitals theorem. When

contracts specify trades and prices (Hatfield et al. 2013), we also show that competitive

equilibrium exists in networked markets even in the absence of transferrable utility. The

competitive equilibrium outcome is path-stable.

∗Institute for New Economic Thinking, University of Oxford, Walton Well Road, Oxford, OX2 6ED,
United Kingdom. Email: alexander.teytelboym@inet.ox.ac.uk. I would like to thank Vincent Crawford,
Jens Gudmundsson, Claudia Herrestahl, Paul Klemperer, Collin Raymond, and Zaifu Yang for their valuable
comments on a much earlier draft that appeared in my D.Phil. thesis “Essays on Networks and Market De-
sign” (2013). I also benefitted from comments, especially from Samson Alva, Umut Dur, Tamás Fleiner, Alex
Westkamp and M. Bumin Yenmez, during talks at the Southern Methodist University, National University
of Singapore, CIREQ Matching Conference (Montréal), Workshop on Coalitions and Networks (Montréal),
and the 12th Meeting of the Society of Social Choice and Welfare (Chestnut Hill).
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Abstract

Choice functions are common tools in many-to-one or many-to-
many matching models. They can represent more general preferences
of agents than the classical form that consists of a list and a quota.
Choice functions are usually assumed to satisfy the substitutability,
which is an essential condition for the existence of stable matchings.

In this paper, we introduce “matroidal choice functions” as a class
of choice functions which satisfy a kind of matroid constraints in ad-
dition to the substitutability. We show that matroidal choice func-
tions admit succinct representations, with which one can find a stable
matching efficiently utilizing a greedy algorithm for matroids.

Furthermore, we show that matroidal choice functions afford nice
properties of stable matchings such as the strategy-proofness of the
deferred acceptance algorithm, and the distributive lattice structure
of the set of stable matchings.
The full version is available at http://www.keisu.t.u-tokyo.ac.jp/

research/techrep/data/2014/METR14-32.pdf.
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ABSTRACT
The Deferred Acceptance Algorithm (DAA) is the most
widely accepted and used algorithm to match students, work-
ers, or residents to colleges, firms or hospitals respectively.
In this paper, we consider for the first time, the complexity
of manipulating DAA by agents such as colleges that have
capacity more than one. For such agents, truncation is not
an exhaustive strategy. We present efficient algorithms to
compute a manipulation for the colleges when the colleges are
proposing or being proposed to. We then conduct detailed
experiments on the frequency of manipulable instances in
order to get better insight into strategic aspects of two-sided
matching markets. Our results bear somewhat negative news:
assuming that agents have information other agents’ prefer-
ence, they not only often have an incentive to misreport but
there exist efficient algorithms to find such a misreport.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Behav-
ioral Sciences - Economics

Keywords
Stable matchings, Gale-Shapley algorithm, matching markets,
college admission.
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Maximin Envy-Free Division of Indivisible Items 
Steven J. Brams1, D. Marc Kilgour2, Christian Klamler3 

 

Abstract 

In this paper, we assume that two players strictly rank a set of indivisible items 
from best to worst.  If there is an envy-free allocation of these items, two algorithms, AL 
(Brams, Kilgour, and Klamler, 2014) and SA (Brams, Kilgour, and Klamler, 2015), have 
been proposed for finding such an allocation.  However, neither algorithm guarantees that 
an allocation will be maximin—one that maximizes the ranking of the players’ lowest-
ranked items.     

We propose a new algorithm, SD, which provides this guarantee.  The allocation it 
yields is envy-free, based on an item-wise definition of envy-freeness, if there exists an 
envy-free allocation.  If there is no such allocation, an SD allocation will still be maximin.   

In the paper we also define four properties of fair division—Pareto-optimality, 
envy-freeness, maximinality, and Borda maximinality—that we use to assess the fairness 
of maximin allocations.  We prove two lemmas about their maximin depth, which is the 
lowest rank, of either player, of a maximin allocation.  Furthermore, we give an algorithm 
for determining all maximin allocations, which we illustrate with an example. 

The maximin algorithm is applied to several examples to determine which, if any, 
of the maximin allocations is envy-free.  We provide two conditions for the existence of 
an envy-free allocation, the second of which simplifies the first.  It is then proven that if 
there exists an envy-free allocation that is not maximin, there is always one that is 
maximin. 

The first algorithm we propose is single-stage SD, which ensures that a maximin 
allocation is envy-free if there is an envy-free allocation.  We show how SD can be 
revised by applying it in later stages to items not allocated earlier—unless both players 
rank one of the remaining items last—which we call multi-stage SD.   

In addition we show that maximin, envy-free allocations may not satisfy other 
properties, such as Borda maximinality and Pareto-optimality. Although not strategyproof, 
the SD algorithms would be difficult to manipulate unless one player has complete 
information about the preference rankings of the other player. 

Finally, we offer some thoughts on the relative merits of SD, SA, and AL.  
Although SD may require the application of AL to some, if not all, the items, SD, 
especially the multi-stage version, is generally simpler to compute than AL. It is 
preferable to SA if one wishes to ensure that the allocation is maximin.  We conclude by 
suggesting SD’s applicability to real-world problems, such as assigning people to 
committees and allocating the marital property in a divorce. 
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christian.klamler@uni-graz.at 
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Dynamics of Swaps in House Markets
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Abstract. A house market is a resource allocation setting consisting in
assigning exactly one resource per agent, with each agent initially own-
ing one such resource. In this setting, the top trading cycle procedure
stands out as the uncontroversial method of choice, since it satisfies key
desirable properties: Pareto-efficiency, individual rationality, and strat-
egy proofness. It remains however a centralized procedure which may not
well suited in the context of multiagent systems, where distributed co-
ordination may be problematic. In this paper, we investigate the power
of dynamics based on sequences of rational bilateral deals (swaps) in
such settings. Agents randomly meet in a pairwise fashion, and con-
tract a deal with their partner if exchanging their resources proves to be
mutually beneficial. The process iterates until a stable state (an equi-
librium) is reached. The same resource can thus successively be held by
several agents over the sequence. While it is clear that they may induce
a high efficiency loss (in particular, Pareto-efficiency is not guaranteed
any longer), we provide several new elements that temper this fact:
1. we show that when preferences of agents are single-peaked, conver-

gence to a Pareto-optimal allocation can still be guaranteed,
2. under a Borda count interpretation of preferences, we show that

while the worst-case loss of utilitarian welfare —i.e. the Price of
Anarchy— is 2, it is as good as it can be under the assumption
of individual rationality (in particular, top-trading cycle does not
perform better in this respect),

3. we provide a number of experimental results, under different pref-
erences cultures, showing that such dynamics often provide good
outcomes, especially in light of their simplicity, and

4. we prove the NP-hardness of deciding whether an allocation max-
imizing utilitarian or egalitarian welfare is reachable from a given
initial allocation.

Acknowledgments. This work is partially supported by the ANR project 14-
CE24-0007-01 - CoCoRICo-CoDec.
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Abstract

In this note we study properties of a general parametrized form of fractional
relaxation that naturally captures the weighted bipartite matching, optimal stable
matching, and optimal “uniform” stable allocation problems, all by varying the
norm used in a single constraint. Among our results, we show equivalence, in terms
of polynomial-time approximability, of the optimal stable matching and optimal
uniform stable allocation problems with ties and incomplete preference lists, giving
a richer understanding of recently-proposed methods by Huang and Kavitha [1] and
Radnai [2], and broadening the design space for future work on these problems. We
also discuss potential heuristic applications.
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Algorithms for stable marriage and related matching problems typically assume
that full preference information is available. While the Gale-Shapley algorithm can
be viewed as a means of eliciting preferences incrementally, it does not prescribe a
general means for matching with incomplete information, nor is it designed to min-
imize elicitation. Furthermore, little work has investigated schemes for effectively
eliciting agent preferences using either preference (e.g., comparison) queries or in-
terviews (to form such comparisons); and no work has addressed how to combine
both.

We describe the use of maximum regret to measure the (inverse) degree of sta-
bility of a matching with partial preferences; minimax regret to find matchings that
are maximally stable given partial preferences; minimax regret to find matchings
that are maximally stable in the presence of partial preferences; and heuristic elic-
itation schemes that use max regret to determine relevant preference queries. We
show that several of our schemes find stable matchings while eliciting considerably
less preference information than Gale-Shapley.

We also develop a new model for representing and assessing agent preferences
that accommodates both eliciting known preference information and (heuristically)
minimizing the number of queries and interviews required to determine a stable
matching. Our Refine-then-Interview (RtI) scheme uses coarse preference queries
to refine knowledge of agent preferences and relies on interviews only to assess
comparisons of relatively “close” options. Empirical results show that RtI compares
favorably to a recent pure interview minimization algorithm, and that the number
of interviews it requires is generally independent of the size of the market.

Acknowledgments. We acknowledge the support of NSERC. Drummond was
supported by OGS and a Microsoft Research Graduate Women’s Scholarship.
Thanks to Ettore Damiano for helpful discussions and the reviewers for their sug-
gestions.
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For several variants of matching under preferences, it is customary to reveal some combinatorial

properties of the set of solutions before obtaining algorithms finding a feasible or an optimal

solution. The approach of examining the problem structure before embarking on algorithmics

is common also in the polyhedral combinatorics literature, i.e., the literature that examines a

problem via studying the convex hull of vectors that represent its feasible solutions. This approach

has been applied to the fundamental variants of two-sided matchings under preferences, namely

Stable Marriage [4], Stable Admissions [1] and Stable b-matchings [2].

Here, we proceed in the same direction by introducing the first, to the best of our knowledge,

formulations of Stable Allocations and House Allocations (see definitions in [3]). The former

problem is a generalization of all two-sided stable matching problems, while the latter is the

simplest matching problem with one-sided preferences. Specifically, we provide a linear program

for extreme Stable Allocations and establish the minimality of that formulation by employing

known polyhedral results on partially ordered sets. Then, we provide an integer program for

House Allocations, which has an exponential number of constraints hence being accompanied by

a polytime separation algorithm. Last, we discuss outstanding issues regarding the polyhedral

structure of these problems.
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[1] M. Bäıou, M.L. Balinski, The stable admissions polytope, Math Program 87 (2000), 427-439.

[2] T. Fleiner, On the stable b-matching polytope, Math Social Sci 46 (2003), 149-158.

[3] D. Manlove, Algorithmics Of Matching Under Preferences, World Scientific Publishing (2013).

[4] A.E. Roth, U.G. Rothblum, J.H. Vande Vate, Stable matchings, optimal assignments, and

linear programming. Math Oper Res 18 (1993), 803-828.

∗This research has been co-financed by the European Union (European Social Fund ESF) and Greek national
funds through the Operational Program ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the
European Social Fund.

139



DYNAMIC VCG MECHANISMS IN QUEUEING

SAMBUDDHA GHOSH, YAN LONG, AND MANIPUSHPAK MITRA

Abstract. In a dynamic queueing problem, agents arrive at discrete times to use

a rival resource for one period each, and exit permanently thereafter. Each agent

privately knows his own per-period waiting cost, and does not observe any other

information. The mechanism designer knows neither costs nor future arrivals, and

can charge agents present in the system.

We identify the complete class of outcome-e�cient and dynamically strategy-

proof mechanisms for queueing that use only the reported waiting costs of past and

current cohorts to determine an agent's transfer. Finally, from within this class we

characterise a canonical one that also achieves dynamic budget balance under equal

treatment of equals and a weak constraint on the sequence of arrivals.
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Abstract

Since its first application in 1984 (Roth 1984), the practice of market design has been
gaining a certain relevance in the field of labor markets, especially at their entry-level.
The purpose of this paper is to use what learned from the literature for presenting a
proposal of redesign of the entry-level of the Academic Job Market in Italy. The two-sided
matching  researchers/Universities,  currently  obtained  through  local  contests,  suffer
different  inefficiencies  firstly  due  to  its  decentralized  structure.  I  deeply  analyzed the
selection structure and process in order to highlight problems as thickness, congestion
and safety, to officially categorize the market as failing (Roth 2007), and meritocracy
(Perotti 2008; Perotti et al. 2009) in addition. The first step of the study was to create a
unique centralized procedure of matching based on a researchers-proposing deferred-
acceptance algorithm that cleverly solve  the first  three issues.  On the other hand,  the
question of merit – established as the possibility that non-deserving candidates will be
hired  instead of  more  qualified  ones  -  represents  a  new challenge  in  the  practice  of
market design. It has been treated as a misrepresentation of the Universities' preferences
due  to  an  agency  problem  between  the  institutions  –  that  express  propensities  in
regulations – and committees – who practically  have to realize the list  of candidates
using their judgments in line with the institutions' guidelines – into the decision process.
A  misalignment  of  interests  between  the  two  agents  causes  the  false  declaration  of
Universities'  preferences and the outcomes of the matching procedure result to be not
stable (Roth and Sotomayor 1992; Roth 2008). I formalize the agency problem in the
study of the Universities' decision process in order to analyze the players' behaviors and
relations for working out a set of rules to control it. Focusing on how agents build up
their preferences' lists, a new categorization of two-sided matching markets is offered in
order to classify the kind of markets where the agency problem could be noticed and,
mostly, can cause the failure of the matching system.

Keywords: matching, market design, two-sided, preferences, academic job market, 
researchers, decision process, agency problem
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Consider the problem of studying the choices that people make over which school to send their
children to, or which university to attend, or which employment to take. In these contexts it
is often difficult to find useful data about agents’ preferences to inform research. The classic
revealed preference approach would be to use the observed choices themselves as revealing
agents’ preferences . However, in the settings described above, choice is usually constrained by
scarcity of places at institutions, and the fact that the institutions themselves have preferences
(or act as if they have preferences) over whom to admit. These institutional preferences may
themselves be of substantive interest.

The problem of empirically modelling preferences in two-sided matching markets has received
increasing attention recently. It has been shown that, under an assumption of stability, pa-
rameters of underlying random utility models for both agents and institutions are identifiable
(cf. [1, 2, 3, 4]). So far, however, methods to estimate models for unaggregated data have suf-
fered from computational intractability or partial identification that has restricted their use in
real-world applications.

This paper introduces a flexible, tractable partial-likelihood for estimating the parameters of
a two-sided random utility model, which uses the information within a stable many-to-one
matching, such as a school choice setting. This stability–likelihood can be incorporated into
maximum–likelihood or Bayesian approaches, and a number of methods are possible. In this
paper we focus on a computationally convenient maximum–likelihood method and show that it
can be fitted quickly even for large matchings.

We study a context in which the data at our disposal is a many-to-one matching m between
agents and institutions, that we can assume is stable, and a set of attributes of the agents
and institutions. We wish to estimate θ, the model parameters that govern the relationship
between observable attributes and latent utilities. Given m, a likelihood of the form P(m|θ)
is intractable, as it depends on the unknown matching mechanism used. In the absence of
a generative model for the matching itself, we base inference on a model for the stability of
the observed matching: P(m ∈ M∗|m, θ). We present monte carlo simulation results for
identifiability and consistency, and discuss the theoretical properties of this class of model.

Finally, we present the results of a pilot study, estimating parental preferences for school at-
tributes in a UK public school setting. In the pilot study, conducted using the admissions data
for seven schools and 838 pupils in a single school district, we present evidence that parents
attach high importance to proximity to the school. There is also some tentative evidence of
ethnic in-group preferences.
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Biró, Péter 107, 108 Long, Yan 140
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