Motivation: user allocation
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2 Users arrive sequentially on

websites.
2 2 Each ad campaign is dis-
played for a specific period of time.
| M2 The goal is to match users with
MANGO ads based on their preferences.

Fig. 1: ad allocations

Matching on bipartite graph

Offline version:
Let G = (U, V, E) be a a bipartite graph:

U and V two sets of vertices.

« Each node in U has a budget 0,, = 1.
- Edges are only between U and V, E = {(u,v),u € U,v € V}.

Online version: Fort =1,... |V|:
vy arrives with its edges.
« The algorithm can match it to a free vertex in U.
« The matching decision is irrevocable.

The performance measure of an algorithm

Fig. 2: ALG =2 Fig. 3: OPT =3

The competitive ratio: for G € G, where G is a family of graphs, the competitive

ratio is defined as:
E(ALG(G))

OPT(G)

Note that 0 < CR < 1.

Related works

Online matching with unitary budget:

Greedy algorithm: Fort =1,... |V]|:

Match v; to any free neighbor at random.

Performance of Greedy: In the Adversarial setting, for Greedy (and any deter-
ministic alg.)

CR(Greedy) = =

A randomized algorithm can achieve,

1
CR(ALG) > 1 — = ~ 0.63
&

DYNAMIC ONLINE MATCHING WITH BUDGET REFILLS

Maria Cherifa, Clement Calauzenes, Vianney Perchet
CREST (ENSAE) / Criteo Al Lab

Online /-matching problem: In this setting b, = b > 1

Balance algorithm: Fort =1,...,|V]|:
Match v+ to a neighbor with highest remaining budget.
Performance of Balance: [2], when b, = b for all u € U,

1
(1+1/b)b

CR(Balance) =1 —

[1] with different budget b,
1
(1 + 1/Z7min>bnﬁn7

CR(Balance) =1 — with min by,

uel

~~ More realistic setting: online matching with budget refills

Let G € G, with G = (U, V, F) a bipartite graph,

« |U| = n,|V| = T with T > n. Nodes in U are offline and nodes in V' are revealed
sequentially.

« Each node in U has a budget b, ; > 0, attime t € |T].

The goal is to study
the effect of the refills

N

[ In the stochastlc [ In the adversarial }

framework framework

Stochastic framework

G is a family of Erdos—Rényi sparse random graphs:

« Edges occurring independently with probability p = a/n. Each node in U has a budget
bu,t e N:
bu,t — min<K7 bu,t—l — Tyt T+ 77t) (1)

n; is a realization of a Bernoulli random variable B(g), xy,t = 1 if uw and ¢ are matched
and x, + = 0 if not.

SN

Theorem (first result): For v = = > 1, with high probability Greedy(G, T') is given by,

Greedy(G,T) = nh(y) + o(n)
where h(7) is solution of the following system denoted (A),

hr)=1-— e—a(l—zo( 7))

20(7) = —20(7)8 + 2L (1 -
= (2k—1(7) — 2(7)) B + (241(7) —
B 21 (7) — zy(r) e T

—20(7)
i zk(T) =1

1/n <1<
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Corollary: For K > 1, with probability at least 1 — 2e=¢""?/8T

(Greedy(G,T) — nh*(T/n)| < o(T)

with h*(z) = [, (1 — e@0=20)dr = (:1: _ l) (1 — e~®0=50)), and 2 is the unique

k —a(1—2)
1— 0
Zg)) = 1 with g(z) = —=

120

solution of -4 2! (g

3
Corollary: For K = 1, with probability at least 1 — 2e=4"72/57
, it
E|Greedy(G, T —T(1 — e~ oll=%)) | <c = o(1’
ElGreedy (G T)] - T )| < o = o)

1

where 2% = 5 —iW Ge “(13)> , with T¥/(-) the Lambert function, and ¢ is

some universal constant.

Proposition (informal): For 7', K, n, by, 8 € N*,

(K+1)p5+1 >

N _ g _
T'g(2y)(1 — zp5) + nbg n(g(zak)_ﬁ g(z)FH BRI

nby + BT

CR™°(Greedy, D) >

+ O g(TH4)

Theorem: For any o, 5 > 0, the competitive ratio tends to 1, as 1, K, n ap-
proach infinity, as

lim lim CR™(Greedy, D) = 1
K,n—+o0o T —+o0

Adversarial framework

G = (U, V, F) is a bipartite graph generated by an oblivious adversary:
=nand |V| =T, with T > n.

 Each node in U has a budget b, + € N:

bu,t — bu,t—l — Lu,t + ILt mod m=0 (2)

Theorem (informal): For m > /T,

CR(Balance) <1 —

Theorem (informal): For m = o(~/T),

(1-a)
=) (3)

_J/

CR(Balance) < 1 —

~(.73325...
where « is defined by & = [ £ dz.
Balance is the optimal deterministic algorithm
Theorem (informal):

sup inf CR(ALG) < inf CR(Balance 4
ALgGEg (ALG) Geg ( ) )
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