Motivation: user allocation

 \longrightarrow Users arrive sequentially on websites.

 $\sim \rightarrow$ Each ad campaign is displayed for a specific period of time.

 \longrightarrow The goal is to match users with ads based on their preferences.

Matching on bipartite graph

Offline version:

Let G = (U, V, E) be a a bipartite graph:

- U and V two sets of vertices.
- Each node in U has a budget $b_u = 1$.
- Edges are only between U and V, $E = \{(u, v), u \in U, v \in V\}$.

Online version: For $t = 1, \ldots, |V|$:

- v_t arrives with its edges.
- The algorithm can match it to a free vertex in U.
- The matching decision is irrevocable.

The performance measure of an algorithm

The competitive ratio: for $G \in \mathcal{G}$, where \mathcal{G} is a family of graphs, the competitive ratio is defined as: $\mathbf{T} \left(\mathbf{A} \mathbf{T} \mathbf{O} \left(\mathbf{O} \right) \right)$

$$CR = \frac{\mathbb{E}(ALG(G))}{OPT(G)}$$

Note that $0 \leq CR \leq 1$.

Related works

Online matching with unitary budget:

Greedy algorithm: For $t = 1, \ldots, V $:
Match v_t to any free neighbor at random.
Performance of Greedy: In the Adversarial setting, for Greedy (and any deterministic algo)
ministic aig.)
$CR(Greedy) = \frac{1}{2}$

A randomized algorithm can achieve,

$$\mathrm{CR}(\mathrm{ALG}) \geq 1 - \frac{1}{e} \approx 0.63$$

DYNAMIC ONLINE MATCHING WITH BUDGET REFILLS Maria Cherifa, Clément Calauzènes, Vianney Perchet CREST (ENSAE) / Criteo AI Lab

Online *b***-matching problem:** In this setting $b_u = b > 1$

Balance **algorithm**: For t = 1, ..., |V|: Match v_t to a neighbor with highest remaining budget. **Performance of** Balance: [2], when $b_u = b$ for all $u \in U$,

 $CR(Balance) = 1 - \frac{1}{(1+1/b)^b}$

[1] with different budget b_u ,

$$CR(Balance) = 1 - \frac{1}{(1+1/b_{\min})^{b_{\min}}}, \quad \text{with } \min_{u \in U} b_u$$

\longrightarrow More realistic setting: online matching with budget refills

Let $G \in \mathcal{G}$, with G = (U, V, E) a bipartite graph,

- |U| = n, |V| = T with $T \ge n$. Nodes in U are offline and nodes in V are revealed sequentially.
- Each node in U has a budget $b_{u,t} \ge 0$, at time $t \in [T]$.

Stochastic framework

 \mathcal{G} is a family of Erdős–Rényi sparse random graphs:

• Edges occurring independently with probability p = a/n. Each node in U has a budget $b_{u,t} \in \mathbb{N}$:

$$b_{u,t} = \min(K, b_{u,t-1} - x_{u,t} + \eta_t)$$

 η_t is a realization of a Bernoulli random variable $\mathcal{B}(\frac{\beta}{n})$, $x_{u,t} = 1$ if u and t are matched and $x_{u,t} = 0$ if not.

The

$$\texttt{Greedy}(G,T) = nh(\psi) + o(n)$$

orem (first result): For
$$\psi = \frac{T}{n} \ge 1$$
, with high probability $\operatorname{Greedy}(G, T)$ is given by,

$$\begin{aligned} \operatorname{Greedy}(G, T) &= nh(\psi) + o(n) \end{aligned}$$
Ire $h(\tau)$ is solution of the following system denoted (A) ,

$$\begin{cases} \dot{h}(\tau) &= 1 - e^{-a(1-z_0(\tau))} & 1/n \le \tau \le \psi \\ \dot{z}_0(\tau) &= -z_0(\tau)\beta + \frac{z_1(\tau)}{1-z_0(\tau)}(1 - e^{-a+az_0(\tau)}) & \text{for } k = 0 \\ \dot{z}_k(\tau) &= (z_{k-1}(\tau) - z_k(\tau))\beta + (z_{k+1}(\tau) - z_k(\tau))\frac{1 - e^{-a+az_0(\tau)}}{1-z_0(\tau)} & \text{for } 1 \le k \le K - 1 \\ \dot{z}_k(\tau) &= \beta z_{k-1}(\tau) - z_k(\tau)\frac{1 - e^{-a(1-z_0(\tau))}}{1-z_0(\tau)} & \text{for } k = K \\ \sum_{k=0}^K z_k(\tau) &= 1 \end{aligned}$$

Corollary: For
$$K \ge 1$$
, with probability at least $1 - 2e^{-a^2n^2/8T}$,
 $|\text{Greedy}(G,T) - nh^*(T/n)| \le o(T)$
with $h^*(x) = \int_{1/n}^x (1 - e^{-a(1-z_0^*)}) d\tau = \left(x - \frac{1}{n}\right) (1 - e^{-a(1-z_0^*)})$, and
solution of $\sum_{k=0}^K z_0^* \left(\frac{\beta}{g(z_0^*)}\right)^k = 1$ with $g(z_0^*) = \frac{1 - e^{-a(1-z_0^*)}}{1 - z_0^*}$.

(1)

 z_0^* is the unique

$$\begin{split} & \left| \mathbb{E}[\operatorname{Greedy}(G,T)] - T(1-e^{-a(1-z_0^*)}) \right| \leq c \frac{T}{(\log(T))} \\ & \left| \mathbb{E}[\operatorname{Greedy}(G,T)] - T(1-e^{-a(1-z_0^*)}) \right| \leq c \frac{T}{(\log(T))} \\ & \text{where } z_0^* = \frac{1}{\beta} - \frac{1}{a} W\left(\frac{a}{\beta} e^{-a\left(1-\frac{1}{\beta}\right)}\right), \text{ with } W(\cdot) \text{ the Lamberson one universal constant.} \\ & \text{Proposition (informal): For } T, K, n, b_0, \beta \in \mathbb{N}^*, \\ & \operatorname{CR}^{\mathrm{sto}}(\operatorname{Greedy}, \mathcal{D}) \geq \frac{Tg(z_0^*)(1-z_0^*) + nb_0 - n\left(\frac{\beta}{g(z_0^*)-\beta} - nb_0 + \beta T\right)}{nb_0 + \beta T} \\ & + \mathcal{O}_{K,\beta}(T^{-1/4}) \end{split}$$

Theorem: For any $\alpha, \beta > 0$, the competitive ratio tends to 1, as T, K, n approach infinity, as

 $\lim_{K,n\to+\infty}\lim_{T\to+\infty} \operatorname{CR}^{\operatorname{sto}}(\operatorname{Greedy},\mathcal{D}) = 1$

Adversarial framework

G = (U, V, E) is a bipartite graph generated by an oblivious adversary:

- |U| = n and |V| = T, with $T \ge n$.
- Each node in U has a budget $b_{u,t} \in \mathbb{N}$:

 $b_{u,t} = b_{u,t-1} - x_{u,t} + \mathbb{1}_t \mod m = 0$

Theorem (informal): For $m \ge \sqrt{T}$,

$$\mathtt{CR}(\mathtt{Balance}) \leq 1 - \frac{1}{\left(1 + \frac{1}{b_0}\right)^{b_0}}$$

Theorem (informal): For $m = o(\sqrt{T})$,

$$\operatorname{CR}(\operatorname{Balance}) \leq \underbrace{1 - \frac{(1 - \alpha)}{e^{(1 - \alpha)}}}_{\simeq 0.73325...}$$

where α is defined by $\frac{1}{2} = \int_0^\alpha \frac{xe^x}{1-x} dx$.

Balance is the optimal deterministic algorithm

Theorem (informal):

$$\sup_{\mathbf{ALG}} \inf_{G \in \mathcal{G}} \mathbf{CR}(\mathbf{ALG}) \leq \inf_{G \in \mathcal{G}} \mathbf{CR}(\mathbf{Balance})$$

References

[1] Susanne Albers and Sebastian Schubert. "Optimal Algorithms for Online b-Matching with Variable Vertex Capacities". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Ed. by Mary Wootters and Laura Sanità. Vol. 207. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 2:1–2:18.

[2] Bala Kalyanasundaram and Kirk R. Pruhs. "An optimal deterministic algorithm for online b-matching". In: Theoretical Computer Science 233.1 (2000), pp. 319–325.

