Strategyproof Matching of Roommates to RoomsHadi HosseiniShivika NarangSanjukta Roy

Pennsylvania State University

University of New South Wales

Sanjukta Koy University of Leeds

1. Problem

- **Given**: *n* rooms and 2*n* agents, each with preferences over both roommates and rooms
- **Goal**: Design **strategyproof** matching mechanisms that **maximize welfare**

3. Model

N-set of agents, *R*- set of rooms $v_i(j)$ and $\hat{v}_i(r)$ value of agent *i* for agent *j* and room *r* **Roommate Matching**: $\mu \subset N \times N \times R$

2. Motivation

Much work on matching agents to agents OR items

Often have to match agents AND items

- Shared dorms/offices
- Group projects

Preferences over both agent and item

Most work only considers preferences over one type with additive valuations

4. Technical Contributions

Utilities:

- Additive: $u_i(j,r) = v_i(j) + \hat{v}_i(r)$
 - \rightarrow Happy living with Darth Vader if it's in a mansion
- **Leontief**: $u_i(j,r) = \min \{v_i(j), \hat{v}_i(r)\}$
 - \rightarrow Unhappy with Darth Vader, even if it's in a mansion

Welfare: $\sum_{i \in N} u_i(\mu(i))$

- Strategyproof (SP): No incentive to misreport v_i or $\hat{v_i}$
- Binary Valuations: $v_i(j), \hat{v}_i(r) \in \{0,1\}$ Symmetric Valuations: $v_i(j) = v_j(i)$

5. Approximate Max Welfare

- Non-trivial to build maximal matchings.
- Naïve approach: arb. match agent to pref agent/room
- \circ 0-SW under Leontief + 1/4-SW under additive
- Not strategyproof
- Need to look at structures of matched triples:

- Introduce Leontief utilities to roommate matchings
- Study various maximal matching algorithms
- Max Welfare Strategyproof mech under binary Leontief

	General Valuations		Binary Valuations	
	Max Welfare	SP+ Max Welfare exists?	SP Mech (poly-time approx)	Upper Bound
Leontief Utilities	APX-hard	×	1/3	1
Additive Utilities	NPH ¹	×	1/7	2/3
Symmetric		X	1/6	3/4

1. Chan et al. Assignment and Pricing in Roommate Market. AAAI 2016

Triangle (T)

- L/T maximal: No more L/T triples can be added
- \circ 1/6-SW for Leontief
- \circ 1/7-SW for additive
- Serial Dictatorship version: best known SP for additive
- **T-then-L Maximal Matching**:
- 0 1/3-SW
- Strategyproof for Leontief
- O Best known poly-time SP mechanism for Leontief

Under true preference , two max welfare matchings Both a_1 and a_3 have an incentive to misreport under any α -SW mechanism:

- \circ General Additive/Leontief: for any lpha > 0
- Binary Additive: for any $\alpha > 2/3$
- \circ Binary Symmetric Additive: for any $\alpha > 3/4$

7. Max Welfare Strategyproof Mechanism for Binary Leontief

Welfare Set Reduction Mechanism:

- \circ $S_0 = ALL max welfare matchings$
- o For each agent *i* ∈ [2*n*], *S_i* = argmax_{µ∈Si-1}*u_i(µ)* o Pick arbitrarily from *S*_{2n}

Two max welfare matchings: $\mu_1 = \{(a_1, a_2, r_1), (a_3, a_4, r_2)\}$ and

Can be improved using 3-SET PACKING algorithm, but not SP **Precedence Based Search Mechanism**:

- Pick an arbitrary precedence order on agents
- \circ For each value w of max welfare in 2n to 1
 - Pick highest precedence subset N' of w agents not tried
 Find a matching that gives N' value 1 and others 0 (using 3-SET PACKING)

References: 1. Chan et al. Assignment and Pricing in Roommate Market. AAAI 2016
2. Gan, Li, Li. Your college dorm and dormmates: Fair resource sharing with externalities. JAIR 2023
3. Björklund et al. "Narrow sieves for parameterized paths and packings. JCSS 2017
4. Feng, Wang, Chen. Matching and weighted p2-packing: Algorithms and kernels. TCS 2014

 $\mu_1 = \{(a_1, a_2, r_1), (a_3, a_4, r_2)\}$

Precedence order: $a_1 > a_2 > a_3 > a_4$

HH supported by NSF grants #2144413 (CAREER), #2052488, and #2107173. Partly based upon work supported by the NSF under Grant No. DMS-1928930 and by the Alfred P. Sloan Foundation under grant G-2021-16778, while SN was in residence at the SLMath during the Fall . SR is supported by University of Leeds start up funds.