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Motivation

Trade of indivisible goods between unit-demand agents with money.
Introduced by Quinzii (1984), Gale (1984), and Svensson (1984).
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= House allocation problem without money solved by Gale’s Top
Trading Cycle algorithm.

= Housing market with quasilinear utilities (in money) solved,
e.g., by Hungarian algorithm.

For high-value items (e.g., houses):

= agents experience income effects,
= willingness to pay depends on level of wealth.

Nothing known about computational complexity of ‘more realistic
assumptions, e.g. ‘soft’ budget constraints or costs of borrowing.

Gale's Housing Market

= Agents {1,...,n} and houses {1,...,n}.

= Agent ¢ has preference sets F, Pf, ..., P! covering R". |

= Demands house j at prices p € P]Z-, and nothing a.t p € 1.

= |ndifferent between houses j and k if p € P]Z. NPy
competitive equilibrium: Prices p € R" and envy-free allocation
7 : |n] — |n] of houses to agents: p € P;@.).
e-approximate competitive equilibrium: Prices p € R" and allo-
cation 7 : [n| — [n] of houses to agents s.t. p is e-close to Pfrw.

Gale’s assumptions

(i) P} are closed.
(ii) qu each house jipé P]Z- ifp; > 1.
(i) P{,..., P} cover lower faces of n-dimensional unit cube.

Theorem: (Gale, 1984) Competitive equilibrium exists if agents
satisfy Gale's assumptions.

Theorem: e-approximate competitive equilibrium exists if agents
satisfy Gale’s assumptions (i) and (iii).

Computational Questions

How hard is it to compute (approximate) competitive equilibria?

Housing: Given agent preferences that satisfy Gale's assump
tions, compute equilibrium (p, 7).

e-Housing: Given e > 0 and agent preferences that satisfy Gale’s
assumptions (i) and (iii), compute e-equilibrium (p, 7).

Computational representation of preference sets: Fy, P, ..., P,
Arithmetic circuits
= Input: prices p € R". ®/ \@/

* Output: o € R""! with \\\:

Oj:OiﬂEPEPj. : :

= Base {+, —, X, +, min, max}, ol ol ol
rational constants. 1 2 3

26 vy function

Polynomial-time algorithms R Tenction unit denan

28 ¥ = Set{Int}()
29y for w € intersect(keys(p), trades)

= Input: prices p € R". s J = utilp, Set(u))

31w if u > max_utility

(2 sEileiliiniz, i)

= Qutput: Houses demanded at p. ECU o o

= Polynomial runtime guarantees. —

Function oracles fy, ..., fn.
= |nput: prices p € R".
= Qutput: f](p) =1iffp € Pj.

= Similar to demand queries
In auctions
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ILlustration with Two Houses

Two agents with identical preferences
Py=R"
P={peR" Oéméﬁ}.

P={peR" p12%aﬂdp2:0}-

Unique equilibrium prices at p = (==, 0)
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Results

How hard is it to find a competitive equilibrium?

Theorem 1: Finding an exact competitive equilibrium in the circuit
model is FIXP-complete.

Theorem 2: Finding an approximate equilibrium in the algorithm
or query model takes a polynomial number of queries / steps if
the market consists of two agents.

Theorem 3: Finding an approximate equilibrium in the algorithm
model is PPAD-complete, even if we restrict the market to three
identical agents.

Theorem 4: Finding an approximate equilibrium in the query
model takes exponentially many query in the approximation pa-
rameter for four or more agents.

Implication: We can’t find competitive equilibria efficiently.

Complexity Classes

PPAD: approximate Nash equilibrium, approximate market
equilibria in Arrow-Debreu and Fisher markets, cake
cutting, Sperner, End-of-the-Line.

FIXP: (Exact) Nash equilibrium, KKM, Rainbow-KKM, etc.

Proof Overview

PPAD-complete [Pap94]
O(poly(%)) query complexity [DQSZ11]

Sperner

— -
<Housing> @parseRKKl\/D RKKM
P~ N “—__

FIXP-complete [FRHHH23]

CakeCutting

3-SparseKKM | «——| 2-Sperner

Q(poly(1)) query complexity [HR23] PPAD-complete [CDO9]

(Rainbow-)KKM

Standard simplex A,,_1 = conv{e’ | j € [n]}.
Fqis the face of A,,_1 spanned by vertices {e’ | j € S}.
KKM covering: Cq,...,Cy C Ap_15.t. Fg C U]-Es C;forall S C |n].

Sparse KKM covering: For every j € |n], € C; implies z; > 0.
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(Approximate) KKM Lemma (cf. Knaster et al., 1929):

= For any KKM covering (1, ..
contained in every Cj.

., Oy, of closed sets, there exists x

= For any KKM covering (1, .
e-close to each Cj.

.., Cp and e > 0, there exists @
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(Approximate) Rainbow-KKM Lemma (cf. Gale, 1984):

= Any collection of n KKM coverings O{, e C,,?L with closed sets
admits a point & and permutation 7 of [n] so that z lies in
every de )

i
= Any collection of n KKM coverings C{, e C}QL, admits a point x

and permutation 7 of [n] so that « is e-close to every C;(Z.>.

The Equivalence of HOUSING and Sparse RKKM

Gale (1984) defines homeomorphism ¢.

Divide domain of housing market into n! simplices corresponding to
permutations 7 of |n].

Y =A{p € Xn | Pr(1) 2 Pr(2) =+ = Prfn) = 0}

L =Dr(1) | Pr(t) = Pr(2) | Pr(k—1) ~ Pr(k)
e? e!
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C
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The Reductions
| Housing SparseRKKM
Instance  (Pf,..., Py)icin) = (0(P)), ..., 0(F)))igln)
Solution o (), m = T, T

Lemma: ¢ is n-Lipschitz and ¢! is n?-Lipschitz, which gives reduc-
fions for approximation versions.

Two-Agent Markets

D2
1"1',' 7777777777777 Algorithm 1 Binary search
| Let p <+ (0,1)e P, q + (1,0)e P; and r < (0,0).
while ||p — q|| > e and r € P} U P} do
Update p < rif r € P} and q + r else.
| r <« 3(p+q).
° o D1 return s-equilibrium prices r.
T 1q

Outlook

We initiate the study of housing markets from the perspective of
computational complexity.

We hope these results will stimulate further examination of the com-
plexity of markets with income effects:

= What is the complexity of Housing with utility functions
instead of preference sets?

= Does hardness continue to hold under the natural assumptions

of monotonicity in money and no externalities as in (Quinzii,
1984: Svensson, 1984)7?

= How might CakeCutting with monotonic valuations (Deng et
al., 2012; Hollender & Rubinstein, 2023) map to assumptions
for Housing?
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