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Motivation

Trade of indivisible goods between unit-demand agents with money.

Introduced by Quinzii (1984), Gale (1984), and Svensson (1984).
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House allocation problem without money solved by Gale’s Top

Trading Cycle algorithm.

Housing market with quasilinear utilities (in money) solved,

e.g., by Hungarian algorithm.

For high-value items (e.g., houses):

agents experience income effects,

willingness to pay depends on level of wealth.

Nothing known about computational complexity of ‘more realistic’

assumptions, e.g. ‘soft’ budget constraints or costs of borrowing.

Gale’s Housing Market

Agents {1, . . . , n} and houses {1, . . . , n}.
Agent i has preference sets P i

0, P i
1, . . . , P i

n covering Rn.

Demands house j at prices p ∈ P i
j , and nothing at p ∈ P i

0.

Indifferent between houses j and k if p ∈ P i
j ∩ P i

k.

competitive equilibrium: Prices p ∈ Rn and envy-free allocation

π : [n]→ [n] of houses to agents: p ∈ P i
π(i).

ε-approximate competitive equilibrium: Prices p ∈ Rn and allo-

cation π : [n]→ [n] of houses to agents s.t. p is ε-close to P i
π(i).

Gale’s assumptions

(i) P i
j are closed.

(ii) For each house j: p /∈ P i
j if pj ≥ 1.

(iii) P i
1, . . . , P i

n cover lower faces of n-dimensional unit cube.

Theorem: (Gale, 1984) Competitive equilibrium exists if agents

satisfy Gale’s assumptions.

Theorem: ε-approximate competitive equilibrium exists if agents
satisfy Gale’s assumptions (ii) and (iii).

Computational Questions

How hard is it to compute (approximate) competitive equilibria?

Housing: Given agent preferences that satisfy Gale’s assump-

tions, compute equilibrium (p, π).

ε-Housing: Given ε > 0 and agent preferences that satisfy Gale’s
assumptions (ii) and (iii), compute ε-equilibrium (p, π).

Computational representation of preference sets: P0, P1, . . . , Pn

Arithmetic circuits

Input: prices p ∈ Rn.

Output: o ∈ Rn+1 with
oj = 0 iff p ∈ Pj.

Base {+,−,×,÷, min, max},
rational constants.

p1 p2 p3

× ÷
... ... ...

o1 o2 o3

Polynomial-time algorithms

Input: prices p ∈ Rn.

Output: Houses demanded at p.

Polynomial runtime guarantees.

Function oracles f1, . . . , fn.

Input: prices p ∈ Rn.

Output: fj(p) = 1 iff p ∈ Pj.

Similar to demand queries

in auctions

in out?
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Illustration with Two Houses

Two agents with identical preferences

P0 = Rn.

P1 = {p ∈ Rn | 0 ≤ p1 ≤ 1√
2}.

P2 = {p ∈ Rn | p1 ≥ 1√
2 and p2 = 0}.

Unique equilibrium prices at p = ( 1√
2, 0)

P1

P2
1√
2

1

1

p1

p2

Results

How hard is it to find a competitive equilibrium?

Theorem 1: Finding an exact competitive equilibrium in the circuit

model is FIXP-complete.

Theorem 2: Finding an approximate equilibrium in the algorithm

or query model takes a polynomial number of queries / steps if

the market consists of two agents.

Theorem 3: Finding an approximate equilibrium in the algorithm

model is PPAD-complete, even if we restrict the market to three

identical agents.

Theorem 4: Finding an approximate equilibrium in the query

model takes exponentially many query in the approximation pa-

rameter for four or more agents.

Implication: We can’t find competitive equilibria efficiently.

Complexity Classes

PPAD: approximate Nash equilibrium, approximate market

equilibria in Arrow-Debreu and Fisher markets, cake

cutting, Sperner, End-of-the-Line.

FIXP: (Exact) Nash equilibrium, KKM, Rainbow-KKM, etc.

Proof Overview

Housing SparseRKKM RKKM

FIXP-complete [FRHHH23]

Sperner
PPAD-complete [Pap94]

O(poly(1
ε)) query complexity [DQSZ11]

2-Sperner

PPAD-complete [CD09]

3-SparseKKMCakeCutting

Ω(poly(1
ε)) query complexity [HR23]

(Rainbow-)KKM

Standard simplex ∆n−1 := conv{ej | j ∈ [n]}.
FS is the face of ∆n−1 spanned by vertices {ej | j ∈ S}.
KKM covering: C1, . . . , Cn ⊆ ∆n−1 s.t. FS ⊆

⋃
j∈S Cj for all S ⊆ [n].

Sparse KKM covering: For every j ∈ [n], x ∈ Cj implies xj > 0.

e1 e2

e3

(Approximate) KKM Lemma (cf. Knaster et al., 1929):

For any KKM covering C1, . . . , Cn of closed sets, there exists x
contained in every Cj.

For any KKM covering C1, . . . , Cn and ε > 0, there exists x
ε-close to each Cj.

e1 e2

e3

e1 e2

e3

e1 e2

e3

(Approximate) Rainbow-KKM Lemma (cf. Gale, 1984):

Any collection of n KKM coverings Ci
1, . . . , Ci

n with closed sets

admits a point x and permutation π of [n] so that x lies in
every Ci

π(i).

Any collection of n KKM coverings Ci
1, . . . , Ci

n, admits a point x

and permutation π of [n] so that x is ε-close to every Ci
π(i).

The Equivalence of HOUSING and Sparse RKKM

Gale (1984) defines homeomorphism φ.

Divide domain of housing market into n! simplices corresponding to
permutations π of [n].

Σπ := {p ∈ Σn | pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(n) = 0}

φ(p)π(k) :=
1− pπ(1)

n
+

pπ(1) − pπ(2)
n− 1

+
pπ(k−1) − pπ(k)

n− k + 1
.
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The Reductions

Housing SparseRKKM

Instance (P i
1, . . . , P i

n)i∈[n] ⇒ (φ(P i
1), . . . , φ(P i

n))i∈[n]
Solution φ−1(x), π ⇐ x, π

Lemma: φ is n-Lipschitz and φ−1 is n2-Lipschitz, which gives reduc-
tions for approximation versions.

Two-Agent Markets

p

qr 1

1

p1

p2

Algorithm 1 Binary search
Let p← (0, 1)∈ P 1

1 , q ← (1, 0)∈ P 2
2 and r ← (0, 0).

while ‖p− q‖ > ε and r ∈ P 1
1 ∪ P 2

2 do

Update p← r if r ∈ P 1
1 and q ← r else.

r ← 1
2(p + q).

return ε-equilibrium prices r.

Outlook

We initiate the study of housing markets from the perspective of

computational complexity.

We hope these results will stimulate further examination of the com-

plexity of markets with income effects:

What is the complexity of Housing with utility functions

instead of preference sets?

Does hardness continue to hold under the natural assumptions

of monotonicity in money and no externalities as in (Quinzii,

1984; Svensson, 1984)?

How might CakeCutting with monotonic valuations (Deng et

al., 2012; Hollender & Rubinstein, 2023) map to assumptions

for Housing?
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