Information flow
security and safety
in multiparty sessions

Ilaria Castellani
(INRIA Sophia Antipolis)

with Sara Capecchi and Mariangiola Dezani-Ciancaglini
(TORINO University)

BETTY Summer School Lovran, June 30 - July 4, 2014

General goal

Information flow confrol in multiparty sessions,
to preserve confidentiality of participants’ data

-

A finite lattice of security levels :

T
levels assigned to / //\ ,
variables and values \\//
1

Secure information flow (SIF): the input or output of a value o

4
should only depend on inputs of values ¢, with ¢ <¢

General goal

Information flow control in multiparty sessions,
to preserve confidentiality of participants’ data

-

A finite lattice of security levels :

/T

levels assigned to / /\

variables and values '\\//
1

Secure information flow (SIF): the input or output of a value ¢

4
should only depend on inputs of values ¢, with ¢ <¢

secure flows

0

4

General goal

Information flow control in multiparty sessions,
to preserve confidentiality of participants’ data

-

A finite lattice of security levels : information leaks

levels assigned to // \
variables and values \\ //

Secure information flow (SIF): the input or output of a value ¢

4
should only depend on inputs of values ¢, with ¢ <¢

4

Sessions

» Session: abstraction for "structured communication”

N

a particular activation of a service, with:

 fixed number of participants, with predefined roles
» fixed types for exchanged data
 fixed order for interactions (unless independent)

[Priva’re conversation following a specified protocol]

Security in sessions

Private conversation following a specified protocol

J

[Expectation: security should be easier to achieve! J

» Private session channels => no external leaks

> Disciplined behaviour => fewer internal leaks

Tracking information leaks

How to prevent / detect information leaks ?

-

> Typing (prevention): security-enhanced session types

> Safety (detection): induced by a monitored semantics

> Security (detection): behavioural property based on
observational equivalence / bisimulation

Tracking information leaks

How to prevent / detect information leaks ?

- J

> Typability (prevention): security-enhanced session types

J

> Safety (detection): induced by a monitored semantics

J

> Security (detection): behavioural property based on
observational equivalence / bisimulation

Tracking information leaks

How to prevent / detect information leaks ?

- J

> Typability (prevention): security-enhanced session types

| #

> Safety (detection): induced by a monitored semantics

| #

> Security (detection): behavioural property based on
observational equivalence / bisimulation

Tracking information leaks

How to prevent / detect information leaks ?

- J

> Typability (prevention): security-enhanced session types

| #

> Safety (detection): induced by a monitored semantics

| #

> Security (detection): behavioural property based on
observational equivalence / bisimulation

[3 increasingly precise ways to track information leaks]

Classical approach to SIF

How to prevent / detect information leaks ?

-

> Typability (prevention): security types
B

> Security (detection): behavioural property based on

observational equivalence / bisimulation

4)

Approach pioneered by Volpano, Smith, Irvine [VSI96]

- J

Overview

_

Part 1: A quick tour on secure information flow,
from imperative languages to process calculli

~N

J

Security session calculus

/

-

Part 2: security, types

> Security property
> Security type system
> typability => security

\

)

-

_

Part 3: safety

> monitored semantics
> safety property
> safety => security

{ Part 4: future directions J

Part 1
A quick tour on
secure information flow (SIF)

Secure information flow

Why does it matter?

Secure information flow
Why does it matter?

Techniques for data protection

> Encryption: secures data transmission on channels, but
not what happens with them on destination

> Access control: controls who may directly access data,
but not their further propagation

Secure information flow

Techniques for data protection

> Encryption: secures data fransmission on channels, but
not what happens with them on destination

> Access control: controls who may directly access data,
but not their further propagation

4)
> Secure information flow: controls data propagation

\’rhroughou’r the system

J

=> end-to-end protection of data confidentiality

Language based security

Use programming language techniques to specify and enforce
security properties of programs.

Language-based approach pioneered by Volpano, Smith and Irvine:

e Sequential imperative language:

[VSI96] D. Volpano, G. Smith and C. Irvine. A Sound Type
System for Secure Flow Analysis, J. of Computer Security, 1996.

e Multi-threaded imperative language:

[SV98] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language, POPL’98.

e A good survey:

[SMO03] A. Sabelfeld and A. Myers. Language-based information
flow security, IEEE J. Selected areas in communications, 2003.

SIF: imperative languages

Information: contained in “objects”, used by “subjects”.
Objects have security levels forming a lattice, for instance:
H= high = secret L = low = public
Secure information flow: no flow from high to low objects.
YL ‘= TH not secure
zg =z ; yr :=0 secure
Imperative languages:

- Subjects = programs. Objects = variables.

- Language techniques:

behavioural equivalence to formalise security property

type system to statically ensure it

SIF: imperative languages

Lattice model [Bell & LaPadula 73], [Denning 76] :

lattice (S, <) of security levels for variables.

T

/ T \
privatel private?2

N

SIF: imperative languages

Noninterference [Goguen & Meseguer 82| :

high-level variables do not interfere with low-level variables.

Meaning in a sequential imperative language:

The final value of a low variable y;, does not depend

on the initial value of any high variable x .

SIF: imperative languages

Leak-freedom would be a better name!

N

Noninterference [Goguen & Meseguer 82| :

high-level variables do not interfere with low-level variables.

Meaning in a sequential imperative language:

The final value of a low variable y;, does not depend

on the initial value of any high variable x .

[Public outputs should not depend on private inputs]

SIF: imperative languages

m Explicit flow : y; := zg

m Implicit flow :
if ry then y; = tt else yr = [f

The value of x g is copied into y,.

SIF: imperative languages

m Explicit flow : y; :

m Implicit flow :

if xy then yp := it else yr = [f

Types lower bound for writes
/
/
I'=P : 7

Ex:Tk(zyg =yr):H T'F{(2yg :=vyr);(yr = 21)):L

(

SIF: imperative languages

m Explicit flow : y; :

m Implicit flow :

if xy then yp := (t else yr := [f

Types lower bound for writes

-
I'=P : 7

Ex:Tk(zyg =yr):H T'F{(2yg :=vyr);(yr = 21)):L

-
;

Rule for conditional: level of condition < levels of branches

_

SIF: imperative languages

Termination leaks

-

while zyg do nil ; yr := ff

if xy then nil else loop ; yr = [f

_

In both programs: depending on the value of g
the 1st component will either terminate or loop.
In the latter case yr, will never be updated.

[Leaks due fo different termination behaviours after a high fest]

SIF: imperative languages

Termination leaks

-

while zyg do nil ; yr := ff

if xy then nil else loop ; yr = [ff

_

-> may be ignored in sequential case, using
termination-insensitive noninterference

-> cannot be ignored in concurrent case!

Example on next slide

SIF: parallel imp. languages

P=al 8| ~, where:

A -

y: if PIN =0 then t, := 1t else tz:=tl
«: while ¢, = ff do nil; r:=1

; lg =1
3#: while tg = ff do nil; r:=0

b, =1

I' = PIN,ty,tg : Hy, 7 :L
I'-v:H, T'Fa,8:L

SIF: parallel imp. languages

P=al 8| ~, where:

y: if PIN =0 then {, (=1t else lg:= 1l

«: while t, = ff do nil; r:=1

; g =1t
3

while tg=ff do nil; r:=0 ; t,:=1tt

I' = PIN,ty,tg : Hy, 7 :L
I'-v:H, T'Fa,8:L each thread is typable
Problem: if t, =t3=ff, PIN is copied into r |

= P well-typed but not interference-free.

SIF: parallel imp. languages

P=al 8| ~, where:

A -

y: if PIN =0 then {, (=1t else lg:= 1l

«: while t, = ff do nil; r:=1

; g =1t
3

while tg=ff do nil; r:=0 ; t,:=1tt

termination leaks
I' = PINty,tg : H, 7 :L cannot be ignored

I'~v:H, T'Fa,B:L anymore

Problem: if t, =t3=ff, PIN is copied into r |

= P well-typed but not interference-free.

-

SIF: parallel imp. languages

P=al 8| ~, where:

A -

y: if PIN =0 then t, := 1t else tz:=tl
« : while ¢, = ff do nil; r:=1

, lg =1t
3 : while i3 = ff do nil; r:=0

oty =1

termination leaks
I' = PIN,t,,tg : H, r:L cannot be ignored

I'-~v:H, T'Fa,B:L anymeore

_

~N

NB Program P terminates, but depending on the value of PIN
it executes r:=1 and r := 0 in a different order.

-

SIF: parallel imp. languages

P=ca| B | ~, where:

A -

y: if PIN =0 then t, := 1t else tz:=tl
« : while ¢, = ff do nil; r:=1

, lg =1t
3 : while i3 = ff do nil; r:=0

;Lo =t

termination leaks
I' = PIN,t,,tg : H, r:L cannot be ignored

I'-~v:H, T'Fa,B:L anymeore

_

~N

The termination behaviour of one thread may be modified
by another thread running in parallel.

SIF: double types

Solution to deal with termination leaks

-

while zyg do nil ; yr := ff

if xy then nil else loop ; yr = [f

- J

Proposal by Boudol and C. [BCO1], Smith [SmiOl]: use double types
I'EP:(r,0)

O\

lower bound for writes upper bound for reads

[Rule for (P1; P2): read level of P < write level of P J

Bisimulation for PARIMP

Standard small-step semantics for PARIMP:
(P, sy — (P, s")

Bisimulation on programs: symmetric relation & such that Py #Z P,
implies, for any state s:

If<P,s>—<P],s >,then there exist P, such that

<Py,s>—"<P),s > and P ZP,

Bisimilarity: P ~ P, if Pj % P, for some bisimulation #

Security for PARIMP

Standard small-step semantics for PARIMP:

(P, s) — (P',s")

Security (noninterference) is based on Low-bisimulation,
an adaptation of bisimulation where instead of assuming
a single observer one assumes a set of [-observers,

one for each downward-closed set L of security levels.

Examples: L = {1}, L = {L,private;,privates}

'L -observation

Lattice of security levels : (S, <) L CS downward-closed

Type environment : I':Var — §

['L-observer : sees only variables of level in L

State : s : Var — Val

-

['L -equality of states (indistinguishability of states by I'[-observer):

s1 =% 89 if VxeVar (T(z)€ L = si(x)=s2(x))

~

NB If L =S, then :E reduces fo state equality.

Noninterference for PARIMP

[.Z-bisimulation on programs: symmetric relation & such that P, #Z P,
implies, for any pair of states s1,s, such that s, :}5; §7:

If <P, sy >— <P, s]>,then there exist P, s, such that

<P, s5>—*<P), s>, wheres| = s, and P| ZP,

[".Z-bisimilarity: P :}; P, if P % P, for some I'.#-bisimulation %

—/; . indistinguishability of programs by I'L-observer

_ J

NB If £ =35, then ~ reduces to ordinary bisimilarity ~

Noninterference for PARIMP

[".Z-bisimulation on programs: symmetric relation & such that Py #Z P,
implies, for any pair of states s1,s, such that s, :}5; §7:

If<P,s; >—<P{,s]>,then there exist P;,s, such that

<P, s5>—*<P), s>, wheres| = s, and P| ZP,

[".Z-bisimilarity: P :}; P, if P % P, for some I'.#-bisimulation %

[.%-security: P is [.Z-secure if P ~, P

-

A program is secure for the I'L-observer if no variation
in variables outside L has an effect on variables inside L

Noninterference for PARIMP

[".Z-bisimulation on programs: symmetric relation & such that Py #Z P,
implies, for any pair of states s1,s, such that s, :}5; §7:

If<P,s; >—<P{,s]>,then there exist P;,s, such that

<P, s5>—*<P), s>, wheres| = s, and P| ZP,

[".Z-bisimilarity: P :}; P, if P % P, for some I'.#-bisimulation %
[.%-security: P is [.Z-secure if P ~, P

Example (need for considering all sets L)

If L<4<T ,bthen Yp¢: =TT is {L}-secure but not {L,2}-secure

Noninterference for PARIMP

[".Z-bisimulation on programs: symmetric relation & such that Py #Z P,
implies, for any pair of states s1,s, such that s, :‘; 57

If<P,s; >—<P|,s]>,then there exist P,,s, such that

<P, s5>—*<P), s>, wheres| = s, and P| ZP,

[".Z-bisimilarity: P 2‘; P, if P % P, for some I'.#-bisimulation %

[.%-security: P is [.Z-secure if P ~, P

[A program is ['-secure if it is 'L -secure for every []

NB In the following 1" will be generally omitted.

SIF: process calculi

e Subjects = processes. Objects = channels a,b,c...

ag(x).br{x) not secure

e Data flow and control flow are closely intertwined:

ag.br{v) secure?

Warning ! Can be used to implement indirect insecure flows:

(af(z).if x then ¢x else dy | (cg.br{0) + dm.br (1)) \{cw,dx}

CCS with security

Simple security (BNDC) [Focardi-Gorrieri’01]

Channels are partitioned into high channels H and low channels L.

Prit: set of syntactically high processes, with all channels in H.

syn

Bisimulation-based Non Deducibility on Compositions (BNDC)
P is secure with respect to ‘H, P € BNDCy, if for every II € Prit .

syn

(vH)(P | TT) ~ (VH)P

Examples.

ag . by ag + by not secure

ay | by, ag .br + by, secure

Choosing IT = ag for the first two, we get (vH)(P | II) % (vH)P.

CCS with security

Simple security (BNDC) [Focardi-Gorrieri’01]

Channels are partitioned into high channels H and low channels L.

Pr't: set of syntactically high processes, with all channels in H.

syn

Bisimulation-based Non Deducibility on Compositions (BNDC)
P is secure with respect to H, P € BNDCy, if for every II € Pr't :

syn

(vH)(P | II) =~ (vH)P
Examples. occurrence of Qg

depends on high
ag . by ag + by, not secure environment

ag | br ag .br + br secure
Choosing II = ag for the first two, we get (vH)(P | II) % (vH)P.

2 sources of insecurity: in ag . by, occurrence of ag enables by,
in ag + by, occurrence of ag discards by,

CCS with security

Several other NI properties (mostly surveyed in FGO5)

> “Venice school”: Focardi and Gorrieri [FGOL1], Focardi and

Rossi [FRO2], Bossi, Focardi, Piazza and Rossi [BFPR0O4],
Focardi, Rossi and Sabelfeld [FRS05], ...

> Castellani [Cas0O7]

NB All references are given at the end of the talk

pi-calculus with security

A variety of approaches:

> Honda, Vasconcelos, Yoshida [HVYO0O0], Honda and Yoshida
[HYO2], [HYO7]

> Pottier [Pot02]

> Hennessy and Riely [HRO2], Hennessy [Hen04]

» Crafa and Rossi [CRO5]

> Kobayashi [KobO5]

-

Mostly for pi-calculus with synchronous communication

_

Part 2
Security and Types

Back to sessions

Our approach: mix of classical LBS approach
and process calculi approaches

Sessions with asynchronous communication
=> messages stored in queues

Bisimulation equivalence: queues are the “observables”
-> play the role of memories in classical LBS approach

Tracking information leaks

Ist kind of leak: high input followed by low action

-

s[112(2, 27).s[1]1(3, true

7 N

in some initiated session s, then participant 1 sends a bottom
participant 1 waits for a top level value to participant 3
level value from participant 2

Security levels for variables and values, not for session channels
(more on this later)

Tracking information leaks

Ist kind of leak: high input followed by low action

s[112(2, 27).s[1]1(3, true

Insecure because:

- if the high environment provides a value for I

then the low observer sees

- otherwise, the process is b
low observer sees the emp

-

T

true'L

ocked and the

'y behaviour

Tracking information leaks

Ist kind of leak: high input followed by low action

s[1]2(2, 27).s[1]1(3, true™)

occurrence of input depends on high environment

-

_

Lock (blocked input) => new kind of termination leak

~

J

\

cf Dezanis lecture

3 ways to track leaks

Ist kind of leak: high input followed by low action

s[1]2(2, 27).s[1]1(3, true™)

> Typability (prevention): any “syntactic leak” is bad X

» Safety (local detection): any “semantic leak” is bad X

> Security (global detection): any “global semantic leak”,
detectable by observing the overall process, is bad X

[Rejec’red by all analyses, both static and semantic J

Syntactic vs semanftic leaks

What if the execution never reaches the leak ?

v(a)(all](e). s[12(2,27).s[1]1(3, true™))

Syntactic vs semanftic leaks

What if the execution never reaches the leak ?

v(a)(all](e). s[12(2,27).s[1]1(3, true™))

> Typability (prevention): no syntactic leak

Syntactic vs semantic leaks

What if the execution never reaches the leak ?

v(a)(all](e). s[1]2(2,27).s[1]1(3, true™"))

> Typability (prevention): no syntactic leak

» Safety (local detection): no local semantic leak

> Security (global detection): no global semantic leak

Syntactic vs semantic leaks

What if the execution never reaches the leak ?

v(a)(all](e). s[1]2(2,27).s[1]1(3, true™"))

> Typability (prevention): no syntactic leak

» Safety (local detection): no local semantic leak

> Security (global detection): no global semantic leak

[Level drop in dead code does not appear at semantic level J

Local vs global semantic leaks

2nd kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'>]

[[s[2]K1,0)]

Local vs global semantic leaks

2nd kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'>]
| [s2]1,07)]

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether zT is true or false, the
low observer will see two different values.

Local vs global semantic leaks

2nd kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'>]
| [s[2]1(1,07)]

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether zT is true or false, the
low observer will see two different values.

[Classical example of implicit information flow in conditionals J

Local vs global semantic leaks

2nd kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'>]
| [s[2]1(1,07)]

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether zT is true or false, the
low observer will see two different values.

(")
Warning: this example holds for synchronous communication.

More care has to be taken for asynchronous communication.
g J

Local vs global semantic leaks

2nd Kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'H

‘ [3[2]!<1>UT>] i asynchronous communication)

=> messages stored in queues
_ J

"high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

=> the input on s[1] is actually not guaranteed. In asynchronous case,
even this seemingly well-behaved process is insecure:

s[1]2(2, 2T).s[1]1(3, true™) | s[2]1(1,v ")

Local vs global semantic leaks

2nd Kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'H

‘ [3[2]!<1>UT>] i asynchronous communication)

=> messages stored in queues
_ J

"high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

=> the input on s[1] is actually not guaranteed. In asynchronous case,
even this seemingly well-behaved process is insecure:

s[17(2,2T).s[1]1(3, true™) | s[2]1(1,0")
needs fo be
persistent

Local vs global semantic leaks

2nd Kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'Hoo

[s[2]N(1,0 ")]9 i asynchronous communication)

persistent output => messages stored in queues
- J/

"high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

Notation

[Poo: a new copy of P is grafted at the end of each branch J

Local vs global semantic leaks

2nd Kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]1(3, truel) else s[l]!(S,faIseJ'>]°°

[s[2]N(1,0 ")]9 i asynchronous communication)

=> messages stored in queues
_ J

Since 2 is persistently sending a message to 1, the
input on s[1] is guaranteed to occur

Since high messages may be changed/added/subtracted
In the queue, 1 can input different values for 2T and the
low observer will see two different values.

Local vs global semantic leaks

2nd kind of leak: high conditional with # low branches

[s[1]2(2,2T). if 2T then s[1]!1(3, truel) else s[1]!(3, false™)]%®
| [s2]i(1,v7)]

> Typability (prevention): no syntactic leak

> Safety (local detection): no semantic leak

> Security (global detection): no global semantic leak

Local vs global semantic leaks

What if the high conditional has equal low branches?
[s[1]7(2,2zT). if 2T then s[1]1(3, truel) else s[1]1(3, trueL)]

| [s[2]i(L,0)]

> Typability (prevention): no syntactic leak X

» Safety (local detection): no local semantic leak X

> Security (global detection): no global semantic leak

[The L-observer sees no difference between the branches]

Multiparty sessions

[Honda, Yoshida, Carbone POPL08]

Multiparty session: activation of an n-ary service G

initiator @|n/|: starts a new session on service @
when there are n suitable participants

Multiparty sessions

[Honda, Yoshida, Carbone POPL08]

Multiparty session: activation of an n-ary service G

aln| | a[l](ar).Py | -+ | aln](an).Py —

(vs) < Pi{s|l]|/ai} | ... | Pu{s|n|/an}, s:e>

initiator @|n/|: starts a new session on service @
when there are n suitable participants

Security session calculus

e Security levels /£, /', forming a finite lattice (., <).
e Services &, b*, with an arity n and a security level /.
e Sessions s,s’ (activations of services). At n-ary session initiation,

creation of private name s and channels with role s[p|, p € {1,...,n}.

value v = true | false | ...

expression e = x° note|eandé | ...

channel c = o |slp

Security session calculus

e Security levels /£, /', forming a finite lattice (., <).
e Services &, b*, with an arity n and a security level /.
e Sessions s,s’ (activations of services). At n-ary session initiation,

creation of private name s and channels with role s[p|, p € {1,...,n}.

value v = true | false | ...

expression e = x’|v'|note|eandée | ...

channel c = o |slp

-

-

Security levels for variables and values, not for session channels
(because participants use the same channel for all interactions)

~

Syntax: processes

n n-ary session initiator

pl(a).P p-th session participant
c!(Il,e).P value send
c?(p,x*).P value recv
c® (IL,A).P selection
c& (p,{Ai: B},p) branching
if e then P else QO conditional
o| PlQo | (védp | ... 7-calculus ops

Syntax: processes

n n-ary session initiator

pl(a).P p-th session participant
c!(Il,e).P value send
c?(p,x*).P value recv
c® (T, A).P selection
c& (p,{Ai: P}icp) branching
if e then P else O conditional
0| P|Q | (vag)P | ... m-calculus ops

r \
Security levels on services (shared channels) and choice operators

are needed to deal with indirect leaks (see examples later on)

Syntax: processes

n n-ary session initiator

pl(a).P p-th session participant
c!(Il,e).P value send
c?(p,x*).P value recv
c® (T, A).P selection
c& (p,{Ai: P}icp) branching
if e then P else O conditional
0| P|Q | (vag)P | ... m-calculus ops

4)

Security and types are studied in [CCD14a] for a more

general calculus, with delegation and declassification.
- J

Runtime syntax: queues

Asynchronous communication: messages stored in queues

H == HU{s:h} |0 Q-set
m-h |€ queue
(p,I1,9) message in transit

vE | Af message content

Independent message commutation:
(Pana 19) ' (plsnla 19/) h = (P,,H,, 19,) ' (P,H, 19) +h

if p#£p or IINIT =0

Semantics: configurations

In the semantics, Q-sets will be the observable part of process behaviour

= need to be separated from the rest of the process.

Configurations C ==<P,H> | (vfF)<P,H> | C||C

Reduction semantics:

transitions of the form < P, H > — (Vi) <P, H >

Semantics: computational rules

Session 1nitiation:

a‘[1](cr).Py | ... | @' [n](o4).P, | @*[n] —

(vs) <Pi{s{l]/oa} | ... | Puisln]/o}, s8>

Value exchange:

<sp|!{Il,e).P,s:h>—<P,s:h-(p,JIVv)> (elv") [Send]

<s[q)?(p,x°).P, s: (p,q,V") -h > —< PV /x*}, s:h > [Rec]

Semantics: choice

Selection / branching:

<s[p|@* ML, 4).P,s:h>—<P,s:h-(p,IL ") > [Label]

<s[q)& (p,{Ai: P}iey) , s (Pyay MiY) A >—<PB,s:h> (k€l) [Branch]

Security

Observation defined as usual wrt a downward-closed set of levels .Z.

What is .#-observable in (vF) < P, H >? Messages of level £ € .Z in H.

—> session queues play the role of memories in imperative languages

Z-projection of Q-sets

(p,II,8) iflev(¥) e ¥

£ otherwise

extended pointwise to named queues and Q-sets (NB: s : € not observed)

Z-equality of Q-sets: H=¢K if H| =K | %

Security of processes

#-bisimulation on processes: symmetric relation & such that P} #Z P,
implies, for any pair of monotone Hy,H, such that H;= ¢ H, and each
< P, H; > 1s saturated:

If <P, H >— (Vi) < P, H] >, then there exist P5, H) such that

<Py, Hy>—*= (VF) <Py, Hy>,where H{=¢ H), and P{Z P,

Z-equivalence: Py~ P, if Pi % P, for some .Z-bisimulation %
Z-security: P is .£-secure if P ~ ¢ P

Security: P is secure if it is £ -secure for any &

Examples of information leaks

[High input followed by low action)

s[2]2(1,x").if x" then s[2]!(3,true’).0 else 0
| s[3]2(2,z").s[3]!(4,true").0 | s[4]?(3,y").0

Insecure process: low level value exchange depending on high test

(*) Assuming input on s[2] to be guaranteed by persistent output on s[1].
Same hypothesis in the following series of examples.

Examples of information leaks

[High input followed by low action) Ist thread

not session typable!

s[2]2(1,x").if x" then s[2]!(3,true’).0 else 0
| s[3]2(2,z").s[3]1(4, true).0 | s[4]?(3,y1).0

Insecure process: low level value exchange depending on high test

[Session types => same interactive behaviour in the two branches J

Examples of information leaks

[High input followed by low action) Ist thread

not session typable!

s[2]2(1,x").if x" then s[2]!(3,true’).0 else 0
| s[3]2(2,z").s[3]1(4, true).0 | s[4]?(3,y1).0

Insecure process: low level value exchange depending on high test

[Session types => same interactive behaviour in the two branches J

[=> Session types help preventing indirect Ieaksj

Examples of information leaks

[High input followed by low action)

s[2]2(1,x").if x" then s[2]!(3,true").0 else PP
| s[3]2(2,2").5[3]1(4, true).0 | s[4]2(3,y1).0

Insecure process: low level value exchange depending on high test

[P : some infinite sequential behaviour J

Examples of information leaks

[High input followed by low action) Ist thread

not session typable

s[2]2(1,x").if x" then s[2]!(3,true").0 else PP
| s[3]2(2,2").5[3]1(4, true).0 | s[4]2(3,y1).0

Insecure process: low level value exchange depending on high test

[P : some infinite sequential behaviour J

Examples of information leaks

[High input followed by low action) Ist thread

not session typable

s[2]2(1,x").if x" then s[2]!(3,true").0 else P
| 5[3]2(2,2').s[3]!(4,true").0 | s[4]?(3,y).0

Insecure process: low level value exchange depending on high test

[P : some infinite sequential behaviour J

4)
Session types help uniformising termination behaviours of branches

=> they help preventing classical termination leaks

Examples of information leaks

[High input followed by low action)

session typable

s[2]2(1,x7).if xT then s[2]!(3,true).0 else (vb")b*[1](B).5[2]1(3,true’).0
| s[3]2(2,z').s[3]!(4,true").0 | s[4]?(3,y).0 \

deadlock!

Session types: not enough to prevent all termination leaks =>
need to strengthen them with constraints for deadlock-freedom

NB This example shows that, unless we have deadlock freedom,
we cannot avoid the security requirement in the rule for input

Need for levels on services

Service calls may induce (insecure) information flows

s[2]2(1,x").if x' then b[2] else 0
| B[1](B1)-BL!(2, truet).0 | b[2](B2).B22(1,y~).0

Insecure process: low level value exchange depending on high test

Need for levels on services

Service calls may induce (insecure) information flows

—=> necessary to add security levels on services

s[2]2(1,x").if x then b?[2] else 0
| B[1](B1)-B11(2, true™).0 | b7[2](B2)-B2?(1,y).0

No possible security level for b making this process typable.

[Adding levels on services rules out this kind of indirect leak]

Need for levels on choice/labels

Selections may induce (insecure) information flows

s[2]2(1,x").if x" then s[2] @ (3,1).0 else s[2] ® (3,A7).0
| s[3]&(2,{A : s[3]!(4,truet).0,A’ : s[3]!(4,false™).0})
| s[4]2(3,y7)-0

Insecure process: low level value exchange depending on high test

No possible security level for A, A’ that allows typing this process.

(")
Adding levels on choice and labels

rules out this kind of indirect leak

Type system

Service type: G, where
e (G 1s a global type, describing the whole protocol of the service

e /1is the meet of all security levels appearing in G

Global G := p—II:($).G
p—TII: {4 Gi}ig
ut.G |t |end

bool | ...

Type system

Session type: describes a participant’s contribution to the session.

T == NILSY):T 2(p,S8°);T
& (I, {A: : Ti}ier) &" (p, {Ai : T}ier)
ut. T t

end

Typing rules for processes

Typing judgments for processes:

'y P> A

e [(standard type environment) maps variables to sort types or service
types and services to service types

e A (process environment) maps session channels to session types

e security level Z is a lower bound for all levels in communications
(input/output or selection/branching) of P

Some typing rules

usual subtyping
Tt PoA / </ e for security

|SUBS |
ng/PDA

Cu:G'F,PoA00: Gl p
[,u:G"F;ulp)(a).PrA

IMAccC|

Typing rule for 1/0

not a constraint, since
/one can take ¢/ = |

Che:S* Ly PoAc: T U</
[ty c!l(Ie).P>A,c: (IT,S%);T

| SEND |

real constraint, since

‘/‘/ type of z' is invariant

l",x‘/Z . Sy PoA,c: T
[ty c?(p,x").P>A,c:2p,S);T

|[Rcv|

Analogies with PARIMP

Rule [Rcv| for input prefix

s[1]2(2,27).s[1]1(3, true™)

[input prefix level < communication level of P]

Rule for sequential composition

P Py = (while zTdo nil) ; yJ' ;= true

[read level of P =< write level of P J

Analogies with PARIMP

Rule [Rcv| for input prefix
termination leak

s[1]2(2, 2T).s[1]1(3, true™) X

[input prefix level < communication level of P]

Rule for sequential composition
termination leak

P Py = (while zTdo nil) ; yJ' ;= true X

[read level of P =< write level of P J

Typing rule for conditional

{ Usual session type requirement: equal session types for branches

Usual security requirement: equal security levels for test and branches

I'Fe:bool® T PsA T'H QbA
'y if e then P else Q> A

Typing rule for conditional

Usual security requirement: equal security levels for test and branches

{ Usual session type requirement: equal session types for branches

I'Fe:bool® T PsA T'H QbA
'y if e then P else Q> A

4)
In combination with [Rcv], this rule can be relaxed,

by allowing any level ¢’ for the tested expression.
-

|

Typing rule for conditional

Usual session type requirement: equal session types for branches

Usual security requirement: equal security levels for test and branches

I'Fe:bool® T PsA T'H QbA
'y if e then P else Q> A

-

_

N
In combination with [Rcv], this rule can be relaxed,

by allowing any level ¢’ for the tested expression.

s[1]2(2,27). if 2T then s[1]!(3, true™) else s[1]!(3, false™")

f

already excluded by Rule [Rcv]

Soundness

Soundness of the type system

If P is typable, then P ~ ¢ P for all downward-closed .Z.

Soundness

Soundness of the type system

If P is typable, then P ~ & P for all downward-closed .Z.

Secure but not typable processes:

[s[1]2(2,2 7). s[1]1(2, true)] | [s[2]1{1,v"). s[2]?2(1,yT)]>®°

/

A local insecurity may be sanitised by its context

Soundness

Soundness of the type system

If P is typable, then P ~ & P for all downward-closed .Z.

Secure but not typable processes:

[s[1]2(2,2 7). s[1]1(2, true)] | [s[2]1{1,v"). s[2]?2(1,yT)]>®°

/

A local insecurity may be sanitised by its context

via)(a[l](e). s[1]?(2,2") . s[1]1{2, trueT)) deadlock
[s[1]?7(2,27). if 27 then s[1]1(3, truel) else s[1]!(3, truet)]

| [s[2]1(1, 0T)] secure high conditional

Compositionality issues

Security is not decompositional:

secure but not typable:

[s[1]7(2,z ") . s[1]1{2, true-)] | [s[2]!{1,v"). s[2]?(1,y*)]>®

/

A local insecurity may be sanitised by its context

Security is not compositional:

another example of deadlock, secure but not typable:

aL[2] | at[1](ar). bE[1)(By) . s[1]2(2, 2T) . s[1]U2, truet)

| b [2] | b [2] (/82) .a+ [2] (0‘2) .0 (solvable) deadlock due
to inverse service calls

Compositionality issues

Security is not decompositional:

secure but not typable:

[s[1]7(2,z ") . s[1]1{2, true-)] | [s[2]!{1,v"). s[2]?(1,y*)]>®

/

A local insecurity may be sanitised by its context

Security is not compositional:

another example of deadlock, secure but not typable:

aL[2] | at[1](ar). bE[1)(By) . s[1]2(2, 2T) . s[1]U2, truet)

| b~ [2] 2

2

((]{2) . bJ'

2

[(B2) - a™[2
2

(). 0 deadlock solved by
adding a component

=> insecurity appears

Part 3
Information Flow
Safety

Monitored semantics

4)
Idea: lift to the semantic level the requirements

\oF the security type system.

-

_

Technique: each parallel component is controlled
by a monitor, which records the level of inputs
along the components computation and checks
ITs subsequent communications against this level.

=> blocks execution when a local leak is detected.

J

Monitored semantics

Monitored processes (where i € .¥):

M:=P* | M|M| (vi)M | def Din M

Monitored transitions Error predicate

<M,H>—o—(vV§)<M ,H > <M, ,H>t

New structural rules:

(P | B)I* = P* | P

Monitored semantics rules

Conditional:

if e then P else Q/* —— PIH if e | truet

if e then P else Q'* —o— QI ife | false®

Value 1nput:

if p <2 then <s[q)?2(p,x*).P'*, s:(p,q,V")-h >——<P{v/x}* s:h>
else < s[q]?(p,x!).P'* , s: (p,q,v%)-h > 1

()
Security requirements of typing rules lifted to semantic rules

=> only checked in reachable states of processes.

_

Monitored semantics rules (ctd)

Session 1nitiation:
a’[1](ar). P | ... | d'n)(ow).Ba*" | @ [n] 1P+t —os
(vs) < Pi{s[1]/aa V1 | ... | BAs[n] /o } V¥, s >

if | icqr.nry i <4
s[2]2(1,x").if x" then b*[2] else 0
| B*[1](B1)-B1!(2,truet).0 | b°[2](B2).B22(1,™).0

Execution blocks at session initiation if T £ £, otherwise it blocks
before the exchange of the low value.

Safety

Let [M| be the process obtained by erasing all monitoring levels in M.

Monitored process safety:

M is safe if for any monotone H such that < |M|, H > is saturated:

If<|M|,H>— (VF)<P,H >

then <M, H >—— (VF) <M’ , H >, where |[M'| = P and M’ is safe.

Process safety: A process P is safe if P+ is safe.

Main results

Safety implies absence of run-time errors

If P 1s safe, then every monitored computation:

<PH,0>=<My, Hy>—o— - —o— (Vir) < My, Hy >

1s such that - < M , H, > 7.

Safety implies security

If P is safe, then P is .¥’-secure for any down-closed set of levels .Z.

Main results (ctd)

Absence of run-time errors does not imply safety

Not safe

= a'[l][a'[1](on).P1 | a’[2](a2).P>
= o!{(2,true’).y ?2(2,x").0

= ?(1,z").if z" then ap!(1,false ').0 else o !(1,truet).0
Security does not imply safety

Not safe
[s[1]2(2,2"). if =T then s[1]1(3, true™) else s[1]!(3, true ™) |*°

| [s[2]K1,0 ")]

Part 4
Conclusion and
future directions

Summary of results

A 2 main Kinds of information leaks:
T

77\

1) receive X ; send vt

(«<—F—/('
\\// 2) if e' then send VlJ' else send v;'
N - Y

[3 increasingly precise ways to track information leaks j

Type system (prevention): rejects any syntactic leak in the program

| #

Safety (local detection): blocks computation when reaching a leak

| #

Security (global detection): rejects globally detectable leaks only

Summary of results (ctd)

~
Interplay between session types and security types,

and between lock freedom and leak freedom (*)

Session types help preventing indirect leaks and fermination leaks
Input rule => security requirement in conditional rule may be lifted

Lock freedom => security requirement in input rule could be lifted
(keeping the usual requirement in conditional rule)

(*) Already noted by Kobayashi [KobOS5] for pi-calculus + usage types

Future directions

p
-> Towards secure data manipulation in web services

-> Towards flexible, adaptable, communication protocols
- J

P Monitored semantics with labelled transitions, returning
informative error messages fo the programmer

P Security session calculi with reconfiguration/adaptation
mechanisms, in reaction to security violations

P Security session calculi with reputations for principals, based
on their security-abiding behaviour

References

This lecture

[CCD14d]

Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini,
Tamara Rezk. Session types for access and information flow control,
CONCUR'10, LNCS 6269, 2010. Full version to appear in Inf. and Comp.

[CCD14b]

Sara Capecchi, Ilaria Castellani and Mariangiola Dezani-

Ciancaglini. Information Flow Safety in Multiparty Sessions,
EXPRESS'1L, EPTCS, 16-30, vol. 64, 2011. Full version to appear in MSCS.

http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10_1.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10_1.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10.pdf

References

Related work: SIF in imperative languages

[VSI96] D. Volpano, G. Smith and C. Irvine. A Sound Type System for Secure Flow Analysis.

Journal of Computer Security 4(3):167-187, 1996.

[VS98] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative lan-

[SSO0]

guage. Proceedings of POPL 98, ACM Press, pages 355-364, 1998.

A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs.
In Proceedings of the 13th IEEE Computer Security Foundations Workshop, pages 200-

214, 2000.

[BCO1] G. Boudol and I. Castellani. Noninterference for Concurrent Programs. In Proceedings

[SmiO1]
[BCO2]

[SMO3]

of ICALP’01, volume 2076 of LNCS, pages 382-395, Springer-Verlag, 2001.

G. Smith. A new type system for secure information flow. In Proceedings of the 14th
IEEE Computer Security Foundations Workshop, pages 115-125, 2001.

G. Boudol and I. Castellani. Noninterference for Concurrent Programs and Thread
Systems. Theoretical Computer Science 281(1): 109-130, 2002.

A. Sabelfeld and A. C. Myers, Language-based information-flow security. JEEE Journal
on Selected Areas in Communications 211:5-19, 2003.

References

Related work: SIF on CCS

[FGO1] R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information

Flow). In Foundations of Security Analysis and Design - Tutorial Lectures (R. Focardi
and R. Gorrieri, Eds.), volume 2171 of LNCS, Springer, 2001.

[FRO2] R. Focardi and S. Rossi. Information flow security in dynamic contexts. In Proceedings
of the 15th IEEE Computer Security Foundations Workshop, 2002.

[BFPRO4] A. Bossi, R. Focardi, C. Piazza and S. Rossi. Verifying persistent security properties.
Computer Languages, Systems and Structures 30(3-4): 231-258, 2004.

[FRSO5] R. Focardi, S. Rossi and A. Sabelfeld. Bridging Language-Based and Process Calculi
Security. In Proceedings of FoSSaCs’05, volume 3441 of LNCS, Springer-Verlag, 2005.

[CasO7] 1. Castellani. State-oriented Noninterference for CCS. Electr. Notes Theor. Comput.
Sci. 194(1): 39-60, 2007.

References

Related work: SIF on pi-calculus

[HVYOO] K. Honda, V. Vasconcelos and N. Yoshida. Secure information flow as typed process
behavior. In Proceedings of ESOP’00, volume 1782 of LNCS, pages 180-199, Springer-

Verlag, 2000.

[HYO2] K. Honda and N. Yoshida. A uniform type structure for secure information flow. To
appear in ACM TOPLAS. Extended abstract in Proceedings of POPL’02, pages 81-92,

January, 2002.

[Pot02] F. Pottier. A Simple View of Type-Secure Information Flow in the m-Calculus. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages 320-

330, 2002.

[HRO2] M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous
pi-calculus. ACM TOPLAS 24(5): 566-591, 2002.

[HenO4] M. Hennessy. The security m-calculus and noninterference. Journal of Logic and Alge-
braic Programming 63(1): 3-34, 2004.

[CRO5] S. Crafa and S. Rossi. A theory of noninterference for the m-calculus. In Proceedings
of Symp. on Trustworthy Global Computing TGC’05, volume 3705 of LNCS, Springer-
Verlag, 2005.

[Kob0O5] N. Kobayashi. Type-based Information Flow Analysis for the Pi-Calculus. Acta Infor-
matica 42(4-5): 291-347, 2005.

Thank youl!

