
Information flow
security and safety

in multiparty sessions

 Ilaria Castellani
(INRIA Sophia Antipolis)

with Sara Capecchi and Mariangiola Dezani-Ciancaglini
(TORINO University)

BETTY Summer School Lovran, June 30 - July 4, 2014

General goal

A finite lattice of security levels :

T

⊥

l l’
...

...
levels assigned to

variables and values

Information flow control in multiparty sessions,
to preserve confidentiality of participants’ data

1

0
 should only depend on inputs of values with l ≤ l vl0

0

lvSecure information flow (SIF): the input or output of a value

General goal

A finite lattice of security levels :

T

⊥

l l’
...

...
levels assigned to

variables and values

Information flow control in multiparty sessions,
to preserve confidentiality of participants’ data

secure flows

1

0
 should only depend on inputs of values with l ≤ l vl0

0

lvSecure information flow (SIF): the input or output of a value

General goal

A finite lattice of security levels :

T

⊥

l l’
...

...
levels assigned to

variables and values

Information flow control in multiparty sessions,
to preserve confidentiality of participants’ data

information leaks

1

0
 should only depend on inputs of values with l ≤ l vl0

0

lvSecure information flow (SIF): the input or output of a value

Sessions

Private conversation following a specified protocol

• fixed number of participants, with predefined roles
• fixed types for exchanged data
• fixed order for interactions (unless independent)

‣ Session: abstraction for “structured communication”

 a particular activation of a service, with:

2

Security in sessions

‣ Private session channels => no external leaks
‣ Disciplined behaviour => fewer internal leaks

Private conversation following a specified protocol

Expectation: security should be easier to achieve!

⇓

3

‣ Security (detection): behavioural property based on

‣ Typing (prevention): security-enhanced session types

 observational equivalence / bisimulation

‣ Safety (detection): induced by a monitored semantics

How to prevent / detect information leaks ?

Tracking information leaks 4

‣ Security (detection): behavioural property based on

‣ Typability (prevention): security-enhanced session types

 observational equivalence / bisimulation

‣ Safety (detection): induced by a monitored semantics

How to prevent / detect information leaks ?

Tracking information leaks

⇓

⇓

4

‣ Security (detection): behavioural property based on

‣ Typability (prevention): security-enhanced session types

 observational equivalence / bisimulation

‣ Safety (detection): induced by a monitored semantics

How to prevent / detect information leaks ?

Tracking information leaks

⇓

⇓ ⇑

⇑

4

‣ Security (detection): behavioural property based on

‣ Typability (prevention): security-enhanced session types

 observational equivalence / bisimulation

‣ Safety (detection): induced by a monitored semantics

How to prevent / detect information leaks ?

Tracking information leaks

⇓

⇓ ⇑

⇑

4

 3 increasingly precise ways to track information leaks

‣ Security (detection): behavioural property based on

‣ Typability (prevention): security types

 observational equivalence / bisimulation

How to prevent / detect information leaks ?

Classical approach to SIF

⇓ ⇑

Approach pioneered by Volpano, Smith, Irvine [VSI96]

5

Overview
Part 1: A quick tour on secure information flow,

from imperative languages to process calculi

Security session calculus

‣ security property‣ security type system‣ typability => security

Part 2: security, types

‣ monitored semantics
‣ safety property‣ safety => security

Part 3: safety

Part 4: future directions

6

Part 1
A quick tour on

secure information flow (SIF)

Secure information flow
Why does it matter?

7

Secure information flow
Why does it matter?

‣ Access control: controls who may directly access data,
but not their further propagation

‣ Encryption: secures data transmission on channels, but
not what happens with them on destination

Techniques for data protection

7

Secure information flow

=> end-to-end protection of data confidentiality

‣ Access control: controls who may directly access data,
but not their further propagation

‣ Encryption: secures data transmission on channels, but
not what happens with them on destination

Techniques for data protection

 ‣ Secure information flow: controls data propagation
throughout the system

7

Language based security 7.1

SIF: imperative languages 7.2

SIF: imperative languages 7.3

T

⊥

private1 private2

T

⊥

SIF: imperative languages 7.4

SIF: imperative languages

Public outputs should not depend on private inputs

7.5

Leak-freedom would be a better name!

SIF: imperative languages 7.6

SIF: imperative languages

Types

7.7

Γ ! P : τ

lower bound for writes

SIF: imperative languages

Types

7.7

lower bound for writes

Γ ! P : τ

Rule for conditional: level of condition ≤ levels of branches

Termination leaks

SIF: imperative languages 7.8

xHIn both programs: depending on the value of
the 1st component will either terminate or loop.
In the latter case will never be updated.yL

Leaks due to different termination behaviours after a high test

Termination leaks

-> may be ignored in sequential case, using
 termination-insensitive noninterference

-> cannot be ignored in concurrent case!

SIF: imperative languages 7.9

Example on next slide

SIF: parallel imp. languages 7.10

SIF: parallel imp. languages 7.10

each thread is typable

SIF: parallel imp. languages 7.10

termination leaks
cannot be ignored

anymore

SIF: parallel imp. languages 7.10

termination leaks
cannot be ignored

anymore

NB Program terminates, but depending on the value of
it executes and in a different order.

P PIN
r := 0r := 1

SIF: parallel imp. languages 7.10

termination leaks
cannot be ignored

anymore

The termination behaviour of one thread may be modified
by another thread running in parallel.

Solution to deal with termination leaks

SIF: double types 7.11

 Proposal by Boudol and C. [BC01], Smith [Smi01]: use double types

lower bound for writes upper bound for reads

Γ ! P : (τ ,σ)

Rule for : read level of ≤ write level of (P1;P2) P1 P2

Bisimulation for PARIMP

Standard small-step semantics for PARIMP:

7.12

〈P, s〉 → 〈P ′, s′〉

Associated weak bisimilarity :!

Security for PARIMP

Standard small-step semantics for PARIMP:

7.13

〈P, s〉 → 〈P ′, s′〉

Security (noninterference) is based on Low-bisimulation,
an adaptation of bisimulation where instead of assuming
a single observer one assumes a set of -observers,
one for each downward-closed set of security levels. L

L

Examples: , L = {⊥} L = {⊥, private1, private2}

-observationΓL

Lattice of security levels : (S,≤) L ⊆ S downward-closed

7.14

Type environment : Γ : V ar → S

State : s : V ar → V al

L

=Γ
L

-observer : L sees only variables of level in LΓ

NB If , then reduces to state equality.L = S =Γ
L

 s1 =Γ
L s2 if ∀x ∈ V ar (Γ(x) ∈ L ⇒)s1(x) = s2(x)

-equality of states (indistinguishability of states by -observer): ΓL ΓL

=Γ
L

Noninterference for PARIMP 7.15

NB If , then reduces to ordinary bisimilarity L = S !Γ
L !

 : indistinguishability of programs by -observerΓL!Γ
L

7.15

A program is secure for the -observer if no variation
in variables outside has an effect on variables inside

ΓL
L L

Noninterference for PARIMP

7.15Noninterference for PARIMP

If , then is -secure but not -secure

Example (need for considering all sets)L

7.15Noninterference for PARIMP

A program is -secure if it is -secure for every ΓLΓ L

NB In the following will be generally omitted.Γ

SIF: process calculi 8.1

8.2CCS with security

8.2CCS with security

 occurrence of
depends on high
environment

2 sources of insecurity: in occurrence of enables
 in occurrence of discards

CCS with security

‣ “Venice school”: Focardi and Gorrieri [FG01], Focardi and
Rossi [FR02], Bossi, Focardi, Piazza and Rossi [BFPR04],
Focardi, Rossi and Sabelfeld [FRS05], ...

‣ Castellani [Cas07]

Several other NI properties (mostly surveyed in FG05)

8.3

 NB All references are given at the end of the talk

pi-calculus with security

‣ Honda, Vasconcelos, Yoshida [HVY00], Honda and Yoshida
[HY02], [HY07]

‣ Pottier [Pot02]
‣ Hennessy and Riely [HR02], Hennessy [Hen04]

‣ Crafa and Rossi [CR05]

‣ Kobayashi [Kob05]

A variety of approaches:

8.4

Mostly for pi-calculus with synchronous communication

Part 2

Security and Types

Back to sessions

Our approach: mix of classical LBS approach
 and process calculi approaches

Sessions with asynchronous communication
=> messages stored in queues

Bisimulation equivalence: queues are the “observables”

-> play the role of memories in classical LBS approach

9

1st kind of leak: high input followed by low action

Tracking information leaks 10

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

in some initiated session s,
participant 1 waits for a top
level value from participant 2

then participant 1 sends a bottom
level value to participant 3

Security levels for variables and values, not for session channels
(more on this later)

1st kind of leak: high input followed by low action

Tracking information leaks

Insecure because:

- otherwise, the process is blocked and the
 low observer sees the empty behaviour

- if the high environment provides a value for ,
 then the low observer sees

10

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

1st kind of leak: high input followed by low action

Tracking information leaks 10

Lock (blocked input) => new kind of termination leak

cf Dezani’s lecture

occurrence of input depends on high environment

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

3 ways to track leaks

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

detectable by observing the overall process, is bad

✘

✘

✘

1st kind of leak: high input followed by low action

11

Rejected by all analyses, both static and semantic

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Syntactic vs semantic leaks

What if the execution never reaches the leak ?

12

ν(a)(a[1](α).)T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Syntactic vs semantic leaks

‣ Typability (prevention): no syntactic leak

What if the execution never reaches the leak ?

✘

12

ν(a)(a[1](α).)T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Syntactic vs semantic leaks

‣ Safety (local detection): no local semantic leak

‣ Security (global detection): no global semantic leak

‣ Typability (prevention): no syntactic leak

What if the execution never reaches the leak ?

✘

✔

✔

12

ν(a)(a[1](α).)T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Syntactic vs semantic leaks

‣ Safety (local detection): no local semantic leak

‣ Security (global detection): no global semantic leak

‣ Typability (prevention): no syntactic leak

What if the execution never reaches the leak ?

✘

✔

✔

12

Level drop in dead code does not appear at semantic level

ν(a)(a[1](α).)T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Local vs global semantic leaks

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[

2nd kind of leak: high conditional with low branches≠

T ⊥⊥

13

T

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

T ⊥⊥

13

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether is true or false, the
low observer will see two different values.

T

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

13

Classical example of implicit information flow in conditionals

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether is true or false, the
low observer will see two different values.

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥T

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

13

Warning: this example holds for synchronous communication.
More care has to be taken for asynchronous communication.

Since participant 2 sends a value to participant 1,
the input on s[1] is guaranteed to occur.

Depending on whether is true or false, the
low observer will see two different values.

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥T

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

13

“high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

T

asynchronous communication
=> messages stored in queues

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥T

=> the input on s[1] is actually not guaranteed. In asynchronous case,
even this seemingly well-behaved process is insecure:

T ⊥s[1]?(2, x).s[1]!〈3, true 〉 | s[2]!〈1, v!〉

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

13

“high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

T

asynchronous communication
=> messages stored in queues

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥T

=> the input on s[1] is actually not guaranteed. In asynchronous case,
even this seemingly well-behaved process is insecure:

T ⊥s[1]?(2, x).s[1]!〈3, true 〉 | s[2]!〈1, v!〉
needs to be
persistent

Local vs global semantic leaks

2nd kind of leak: high conditional with low branches≠

13

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥

∞

∞

 : a new copy of is grafted at the end of each branch

Notation

PP∞

“high part” of the queue may be changed/increased/decreased
between send and receive (=> message of 2 may be withdrawn!)

T

asynchronous communication
=> messages stored in queues persistent output

Since 2 is persistently sending a message to 1, the
input on s[1] is guaranteed to occur.

Since high messages may be changed/added/subtracted
in the queue, 1 can input different values for and the
low observer will see two different values.

T ⊥ ⊥

asynchronous communication
=> messages stored in queues

Local vs global semantic leaks 13

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[

2nd kind of leak: high conditional with low branches≠

∞

∞T

Local vs global semantic leaks

‣ Safety (local detection): no semantic leak

‣ Security (global detection): no global semantic leak

‣ Typability (prevention): no syntactic leak ✘

✘

✘

13

2nd kind of leak: high conditional with low branches≠

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[T ⊥⊥

∞

∞T

What if the high conditional has equal low branches?

Local vs global semantic leaks

✘

✘

✔

‣ Safety (local detection): no local semantic leak

‣ Security (global detection): no global semantic leak

‣ Typability (prevention): no syntactic leak

14

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞[if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, true⊥〉⊥ ⊥T

∞

∞T

The -observer sees no difference between the branches⊥

Multiparty sessions

a

ā[n]

Multiparty session: activation of an n-ary service

arity roles

| a[1](α1).P1 | · · · | a[n](αn).Pn

 [Honda, Yoshida, Carbone POPL’08]

initiator : starts a new session on service
 when there are n suitable participants

ā[n] a

15

Multiparty sessions

a

ā[n]

Multiparty session: activation of an n-ary service

| a[1](α1).P1 | · · · | a[n](αn).Pn

 [Honda, Yoshida, Carbone POPL’08]

15

initiator : starts a new session on service
 when there are n suitable participants

ā[n] a

(νs) < P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε >

Security session calculus
16

Security session calculus
16

Security levels for variables and values, not for session channels
(because participants use the same channel for all interactions)

Syntax: processes
17

Syntax: processes
17

Security levels on services (shared channels) and choice operators
are needed to deal with indirect leaks (see examples later on)

Syntax: processes
17

Security and types are studied in [CCD14a] for a more
general calculus, with delegation and declassification.

Runtime syntax: queues
18

Semantics: configurations
19

Semantics: computational rules
20

Semantics: choice
21

Security
22

Security of processes
23

24

High input followed by low action

(*) Assuming input on s[2] to be guaranteed by persistent output on s[1].
Same hypothesis in the following series of examples.

(*)

Examples of information leaks

24

High input followed by low action

Examples of information leaks

not session typable!

Session types => same interactive behaviour in the two branches

1st thread

24

High input followed by low action
not session typable!

Session types => same interactive behaviour in the two branches

=> Session types help preventing indirect leaks

1st thread

Examples of information leaks

24b

High input followed by low action

Examples of information leaks

P∞

 : some infinite sequential behaviourP∞

24b

High input followed by low action

Examples of information leaks

P∞
not session typable

1st thread

 : some infinite sequential behaviourP∞

24b

High input followed by low action

Examples of information leaks

P∞

Session types help uniformising termination behaviours of branches
=> they help preventing classical termination leaks

not session typable
1st thread

 : some infinite sequential behaviourP∞

25

session typable

Session types: not enough to prevent all termination leaks =>
need to strengthen them with constraints for deadlock-freedom

Examples of information leaks

High input followed by low action

NB This example shows that, unless we have deadlock freedom,
we cannot avoid the security requirement in the rule for input

deadlock!

26

Need for levels on services

26

Need for levels on services

Adding levels on services rules out this kind of indirect leak

27

Need for levels on choice/labels

Adding levels on choice and labels
rules out this kind of indirect leak

Type system
28

Type system
29

Typing rules for processes
30

Some typing rules
31

usual subtyping
for security

Typing rule for I/O
32

real constraint, since
type of is invariantx!
real constraint, since
type of is invariantx!

not a constraint, since
one can take !′ = ⊥

Analogies with PARIMP 32b

Rule for sequential composition

 read level of ≤ write level of P1 P2

input prefix level ≤ communication level of

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Rule for input prefix

T ⊥ ✘

✘

Analogies with PARIMP 32b

Rule for sequential composition

 read level of ≤ write level of P1 P2

input prefix level ≤ communication level of

T ⊥s[1]?(2, x).s[1]!〈3, true 〉

Rule for input prefix

T ⊥ ✘

✘
termination leak

termination leak

Typing rule for conditional
33

Typing rule for conditional
33

In combination with [Rcv], this rule can be relaxed,
by allowing any level for the tested expression.!′

Typing rule for conditional
33

In combination with [Rcv], this rule can be relaxed,
by allowing any level for the tested expression.!′

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, false⊥〉[

 already excluded by Rule [Rcv]

Soundness 34

Soundness 34

Secure but not typable processes:

A local insecurity may be sanitised by its context

Soundness 34

Secure but not typable processes:

A local insecurity may be sanitised by its context

ν(a)(a[1](α).) deadlock

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞[if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, true⊥〉⊥T ⊥]previously
 discussed
examples

secure high conditional

Compositionality issues 34b

secure but not typable:

A local insecurity may be sanitised by its context

Security is not decompositional:

Security is not compositional:

(solvable) deadlock due
to inverse service calls

another example of deadlock, secure but not typable:

a secure program may have
insecure components

the composition of secure
programs may be insecure

Compositionality issues 34b

deadlock solved by
adding a component
=> insecurity appears

secure but not typable:

A local insecurity may be sanitised by its context

Security is not decompositional:

Security is not compositional:

another example of deadlock, secure but not typable:

Part 3

Information Flow
Safety

Monitored semantics

Technique: each parallel component is controlled
by a monitor, which records the level of inputs
along the component’s computation and checks
its subsequent communications against this level.

=> blocks execution when a local leak is detected.

Idea: lift to the semantic level the requirements
of the security type system.

Monitored semantics
35

Monitored semantics rules
36

Security requirements of typing rules lifted to semantic rules
=> only checked in reachable states of processes.

Monitored semantics rules (ctd)
37

Execution blocks at session initiation if , otherwise it blocks
before the exchange of the low value.

! "≤ !T !

Safety
38

Main results
39

Main results (ctd)

| [s[2]!〈1, v!〉]∞

s[1]?(2, x!).]∞[if x! then s[1]!〈3, true⊥〉 else s[1]!〈3, true⊥〉

40

Part 4

Conclusion and
future directions

T

⊥

l l’

 3 increasingly precise ways to track information leaks

2 main kinds of information leaks:

Type system (prevention): rejects any syntactic leak in the program

Safety (local detection): blocks computation when reaching a leak

Security (global detection): rejects globally detectable leaks only

⇓ ⇑

⇓ ⇑

1) receive ; send v⊥xT

eT 12) if then send else send 2v
⊥v⊥

Summary of results 41

Summary of results (ctd)

Interplay between session types and security types,

and between lock freedom and leak freedom (*)

Session types help preventing indirect leaks and termination leaks

Lock freedom => security requirement in input rule could be lifted
 (keeping the usual requirement in conditional rule)

Input rule => security requirement in conditional rule may be lifted

(*) Already noted by Kobayashi [Kob05] for pi-calculus + usage types

42

Future directions

‣ Security session calculi with reputations for principals, based
on their security-abiding behaviour

-> Towards secure data manipulation in web services

-> Towards flexible, adaptable, communication protocols

‣ Monitored semantics with labelled transitions, returning
informative error messages to the programmer

43

‣ Security session calculi with reconfiguration/adaptation
mechanisms, in reaction to security violations

References 44

[CCD14a]
Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini,
Tamara Rezk. Session types for access and information flow control,
CONCUR'10, LNCS 6269, 2010. Full version to appear in Inf. and Comp.

[CCD14b]
Sara Capecchi, Ilaria Castellani and Mariangiola Dezani-
Ciancaglini. Information Flow Safety in Multiparty Sessions,
EXPRESS'11, EPTCS, 16-30, vol. 64, 2011. Full version to appear in MSCS.

This lecture

Papers available on Lovran school web site

http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10_1.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10_1.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10.pdf
http://www-sop.inria.fr/indes/PARTOUT/Publications_&_Software_files/secure-sessions-concur10.pdf

References 45

Related work: SIF in imperative languages

[VSI96]

[VS98]

[BC01]

[SM03]

[Smi01]

[BC02]

[SS00]

References 46

Related work: SIF on CCS

[FG01]

[FR02]

[BFPR04]

[FRS05]

[Cas07]

References 47

Related work: SIF on pi-calculus

[HVY00]

[HY02]

[Pot02]

[Hen04]

[Kob05]

[HR02]

[CR05]

 Thank you!

