LINEAR LOGIC AND
BEHAVIORAL TYPES (1)

Luis Caires

Universidade Nova de Lisboa
(based on joint work with Pfenning, Toninho, and Perez)

n NOVA Laboratory for
NOVALINGS Computer Science and Informatics

BETTY 2016 Limassol Cyprus

type systems for programming

¢ Types at the heart of common PLs (OCaml, Java, C#, Scala)
¢ Highly modular, based on a “lego” of canonical constructions
¢ Deep foundations in logic

¢ a type system is (should be) a specialised logic!
¢ Impact in mainstream technology

¢ “standard” types must be easy to use by any programmer

type systems for programming

¢ Huge impact on software quality:

¢ “Well-typed programs do not go wrong”
¢ Huge impact on programming (as a human activity):

¢ types “‘tame programmers’ to write reasonable code
¢ But what about types (specifically) for concurrency !

¢ “Adopted” type systems are purely structural, state
oblivious, unable to tackle the challenges of state dynamics,
concurrency, aliasing, etc (but, see e.g,, Rust).

¢ We expect behavioural types will lead to a new generation
of type systems for future programming languages

simply typed A-calculus [Church30]

I -M:A
I, x:AFxA
La¥in FM:D I'—M:A—B T'-N:A
I'- 2x:AM: A—B ' -MN B

Tapp(TLlam([x]d1).d2) — di1{d>/x}

simply typed A-calculus

1 =%]

I -M:A1T-N:B
I —<MN>:ANB

I -M:AANB ;
T fst(d) A Tfst(Tpair(di, d2)) — di

I'-M:ANANB
I' -snd(M) : B

Tsnd(Tpair(di, d2)) — d>

simply typed A-calculus

I'=M:A .
RTINS i | cose(T1nl(d), [x]ei, [x]c2) — ciid/x}

I'-M:B
I'-inr(M):AVB

Tcase(Tinr(d), [x]ci, [x]c2) — c2{d/x}

I'-N:AvB ©I''xA-M:C I, xBEN:C
I' - case N(inl(x)=>M | inr(x)=>N) : C

induction

I'nil: List[A]

I'M:A T BN:List[A]
I'- M::N: List[A]

I'EN:C TI,xA,f: List[A]l,z:C+—M:C
I' - rec(0=>N,(xtz)M): C

Basic Properties of Typing

¢ type preservation under evaluation / reduction

¢ think about rewriting the complete typing trees
¢ progress (stuck freedom)

¢ together with preservation this means “type safety”
& termination (sometimes)

¢ confluence (sometimes)

Typeful Programming [Cardelli85]

¢ Typeful programming ~ Special case of program specification
¢ Types ~ Specifications

¢ Type-Checking ~ Verification

¢ Useful to enforce correctness at “compilation” time

¢ View nicely fits with the Curry-Howard paradigm of

propositions as types, and proofs as programs

Propositions as Types

Intuitionistic Logic = Typed A-calculus

I'.x:A-M:B IT'-M:A—-B 1T -N:A
I'- Ax:A.M : A—B I'-MN:B

I, x:ArFxA

I -M:ANB I''-M:AANB 1T -HFM:AIT'-N:B

*.
"l Frsnd0n B TrfstM):A Tr<MN>:AAB

I'-M:A
I'Finl(M) :AVB T-N:AVB T, xAM:CT,xB+M:C
I'-M:B I'-case N(nl(x)=>M | inr(x)=>M) : C

I'kinr(M):AVB

Curry-Howard Correpondence

¢ Proofs = Programs and Types = Propositions

¢ Curry-Howard, Girard, VWadler

¢ A proof denotes a ““‘computational object”: program, process
¢ Program execution = Proof reduction (cut-elimination)

¢ Program equivalence = Proof conversion

¢ Proof reduction preserves proof equivalence

¢ Termination + Confluence = Consistency

Curry-Howard Design Space

¢ Different logics yield different typed languages
¢ Sequent calculus ~ explicit substitutions
¢ Higher order logic ~ polymorphism
¢ Classical logic ~ continuations, exceptions
¢ Modal logic ~ monads, security

¢ Linear Logic ~ resource control, behavioural types

s “Powerful insights arise from linking two fields of study previously thought
separate [... | as offered by the principle of Propositions as Types, which links
logic to computation. At first sight it appears to be a simple coincidence— almost
a pun—-but it turns out to be remarkably robust, inspiring the design of
automated proof assistants and programming languages’ [VVadler| 6]

Curry-Howard Design Space

¢ Different logics yield different typed languages
¢ Sequent calculus ~ explicit substitutions
¢ Higher order logic ~ polymorphism
¢ Classical logic ~ continuations, exceptions
¢ Modal logic ~ monads, security
¢ Linear Logic ~ resource control, behavioural types

¢ “One can also extrapolate this correspondence and turn it into a predictive tool:
if a concept is present in type theory but absent in programming, or vice versa, it
can be very fruitful to both areas to investigate and see what the corresponding
concept might be in the other context.’ [Cardelli89]

Types for Processes

the m-calculus [Milner92]

Pa= 00 (inaction)

PlO (composition)

(new x)P (restriction)

x(y).P (input)

x|y].P (free output)

Ix(y).P (replicated input)

x(y).P = (new y)x|[y].P (fresh output)

Semantics:

structural congruence (P = Q) [static identity |
reduction (P — Q) [dynamics |

the m-calculus [Milner92]

structural congruence (=)

Fio=P

PlQ =QIP
PI(QIR)= (PIQ)IR
(newx)0=0

(newx)(P1Q)=Pl(newx)Q [x ¢ fn(P)]

the m-calculus [Milner92]

reduction (—)

x().P | x[z]. Q0 — P{z/y} | O
x(»).P | x[z].O — !x(v).P|P{z/y} | O

P— Q implies PIR — QO|R
P— QO implies (newx)P — (newx)Q
(P=P and P"— QO and Q" = Q) implies P — QO

Types for Processes

simple types [Milner92,Gay93]

simple types [Milner92,Gay93]

U ::=Dbool (base type)
| [U] (send/receive of U)

I',x:[U - P PP LPd
I' - (new x)P I'-P|Q

I'-P I'a:[U]~=v:U I',a:[U], x:U~P
1'=1P I',a:lU] = a[v].P T,a:[U]+ a(x).P

I'=bbool 'EP T'HQ
I'-1f bthenPelseQ

I'=0

IO-types [PierceSangiorgi93]

IO-types [PierceSangiorgi93]

Typing and Subtyping
for Mobile Processes

Benjamin Pierce* Davide Sangiorgi’

May 10, 1994

Abstract

The w-calculus is a process algebra that supports process mobility by focusing on the communication of
channels. Milner’s presentation of the m-calculus includes a type system assigning arities to channels and
enforcing a corresponding discipline in their use. We extend Milner’s language of types by distinguishing
between the ability to read from a channel, the ability to write to a channel, and the ability both to read
and to write. This refinement gives rise to a natural subtype relation similar to those studied in typed

A-calculi.

IO-types [PierceSangiorgi93]

U ::=Dbool (base type) I,a?B,xB+-P
[U] (receive/send of U) I',a:?B F a(x).P
WU (receive of U) I a'B-v:B

'U (send of U) I',a:'B+ a[v].P

Linear Types [KobayashiPierceTurner96]

Linear Types [KobayashiPierceTurner96] |

Linearity and the Pi-Calculus

NAOKI KOBAYASHI
University of Tokyo
BENJAMIN C. PIERCE
University of Pennsylvania

and
DAVID N. TURNER

An Teallach Limited

The economy and flexibility of the pi-calculus make it an attractive object of theoretical study
and a clean basis for concurrent language design and implementation. However, such generality
has a cost: encoding higher-level features like functional computation in pi-calculus throws away
potentially useful information. We show how a linear type system can be used to recover important
static information about a process’s behavior. In particular, we can guarantee that two processes
communicating over a linear channel cannot interfere with other communicating processes. After

Linear Types [KobayashiPierceTurner96]

U ::=Dbool (base type) ¢ A linear typing context (multiset)
U (input of U) ; :
U (output of U) ¢ | cartesian typing context (set)
WU (input of U) :
*1U (output of U) AP T;MFQ

F2U (outputof U) I3-F 0 =

Ax U xi U = A x:!17U

Linear Types [KobayashiPierceTurner96]

U ::=Dbool (base type) AP T;AFQ
72U (input of U) 15:F0 ,I“' Al AzI—,P|Q
'U (output of U) i

17U (1/o of U)
*U (shared)

1A, xUKP

EEEETE U I'; A+ (newx)P
BAIFEXIU 1Moo yU 1Y EE R AU P
I'; A1, Az, As = x[y].P A x:?7U0 = x(y).P
I, xU; -+ x*U AL Il e i

;A x*U P I,xA; - !x(y).P

Linear Types [KobayashiPierceTurner96]

U ::=Dbool (base type) AP T;AFQ
72U (input of U) 15:F0 ,I“' Al AzI—,P|Q
'U (output of U) i

17U (1/o of U)
*U (shared)

A, x'U,x: 27U P

EEEETE U I'; A+~ (newx)P
BAIFEXIU 1Moo yU 1Y EE R AU P
I'; A1, Az, As = x[y].P A x:?7U0 = x(y).P
I, xU; -+ x*U AL Il e i

;A x*U P I,xA; - !x(y).P

Session Types [Honda93,HKV98,GH05]

Session Types [Honda93,HKV98,GHO5]

Types for Dyadic Interaction®

Kohei Honda

kohei@int.cs.keto.ac.jp

Department of Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote frecly composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed B-equality has a clean embedding in the bisimilarity. Namme reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

Session Types [Honda93,HKV98,GHO5]

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR
STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA*, VASCO T. VASCONCELOS, AND MAKOTO KUBO#

ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous 7-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline a la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

Session Types [Honda93,HKV98,GHO5]

"\- bl o iAW

Subtyping for Session Types in the Pi
Calculus

Simon Gay!, Malcolm Hole?*

! Department of Computing Science, University of Glasgow, UK
2 Department of Computer Science, Royal Holloway, University of London, UK

Received: date / Revised version: date

Abstract. Extending the pi calculus with the session types proposed
by Honda et al. allows high-level specifications of structured patterns
of communication, such as client-server protocols, to be expressed as
types and verified by static typechecking. We define a notion of sub-
typing for session types, which allows protocol specifications to be
extended in order to describe richer behaviour; for example, an im-
plemented server can be refined without invalidating type-correctness
of an overall system. We formalize the syntax, operational semantics
and typing rules of an extended pi calculus, prove that typability
guarantees absence of run-time communication errors, and show that
the typing rules can be transformed into a practical typechecking
algorithm.

Session Types [GHO5]

T ::=*T (shared channel) S ::=end (base type)
| S (session type) | 'T.S (output)
| 7T.S (input)

;A -P ThA-Q THA x2S, x:SHP [; P
;AL AP Q [; A+ (new x)P [P

YasrEnt i P 1. LAY
I A, 2 ' TS, o= xe[y]l.P 15 A, x*T = P

I'end -0

Vi xUF 8t
Iy .S,y TP ILxT,A-P :
[; x:7T.S + x2(y).P ['; A - (new x)P L x:U; il

Curry Howard for Process Types?

35

Computational Interpretations of LL

=

On the W—Calculus and Linear Logic

3. Bellin * P. J. Scott |
July 20, 1994

Abstract

We detail Abramsky’s “proofs-as-processes” paradigm for inter-
preting classical linear logic (CLL) [13] into a “synchronous” version
of the m-calculus recently proposed by Milner [27, 28]. The trans-
lation is given at the abstract level of proof structures. We give a
detailed treatment of information flow in proof-nets and show how
to mirror various evaluation strategies for proof normalization. We
also give Soundness and Completeness results for the process-calculus
translations of various fragments of CLL. The paper also gives a self-
contained introduction to some of the deeper proof-theory of CLL,
and its process interpretation.

Computational Interpretations

An exact correspondence between a typed
pi-calculus and polarised proof-nets

Kohei Honda
Department of Computer Science
Queen Mary, University of London

Olivier Laurent®

Preuves Programmes Systemes
CNRS — Universtité Paris 7

September 30, 2009

Abstract

This paper presents an exact correspondence in typing and dynamics be-
tween polarised linear logic and a typed m-calculus based on IO-typing.
The respective incremental constraints, one on geometric structures of
proof-nets and one based on types, precisely correspond to each other,
leading to the exact correspondence of the respective formalisms as they
appear in [Lau03] (for proof-nets) and [HYBO04]| (for the m-calculus).

Session Types [Honda93]

Types for Dyadic Interaction®

Kohei Honda

kohei@int.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote frecly composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed B-equality has a clean embedding in the bisimilarity. Namme reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

Other related work includes Abramsky’s process interpretation of Linear Logic [1], from which we
got essential suggestions regarding compositional type structure for interaction and its materialization

Session Types

[CairesPfenning| 0, ToninhoCP1 | -16]

Session Types as Intuitionistic Linear Propositions

Luis Caires' and Frank Pfenning?

1 CITI and Departamento de Informatica, FCT, Universidade Nova de Lisboa
2 Department of Computer Science, Carnegie Mellon University

Several type disciplines for 7-calculi have been proposed in which linearity plays a key
role, even if their precise relationship with pure linear logic is still not well understood.
In this paper, we introduce a type system for the 7-calculus that exactly corresponds
to the standard sequent calculus proof system for dual intuitionistic linear logic. Our
type system is based on a new interpretation of linear propositions as session types, and
provides the first purely logical account of all (both shared and linear) features of session
types. We show that our type discipline is useful from a programming perspective, and
ensures session fidelity, absence of deadlocks, and a tight operational correspondence
between m-calculus reductions and cut elimination steps.

Session Types as Linear Propositions

S.U ::

U—-S (input)
U®S (output)
SHS (choice)
S&S (offer)
U (shared)
1 (end)

Duality on session types, the key insight of [H93], captured by
duality at the logical level.

40

Linear Sequent Calculus [Andreolli92]

¢ A linear context (multiset)

I;A-A
: o I’ cartesian context (set)
. I AHFA T A, A-C
7 AR T AL A C
I;AiHA 1A, BEC I;A,A+B Yo
[; A1, A2, A~B - C [A- A—B g
I’ AiHA ©T;A-B I;A,A,B-C I;A-C
I'; Ai, A>FAR®B I''A,AQB + C IVA, 1+ C

Sequent calculus presentation of DILL [BarberPlotkin9 1]

Linear Propositions as Session Types,

I''AMi=Q ix:A A, x AP C
I'; A, Ao = (newx)(Q | P) :: C

I'; x:A - [xoy] D y:A

I5AR P C
0,01 - PSC

M0 ny:A L PaxiB LN A BB ED L
I'; A1, A2 =%(»).(Q | P) :: x:AQB I A, xAQB x(z).P :: C

I-0::y:1

e QA 10, 2BF FPC I;A,zzZA+ P ::x:B
I'; A1, Ag, x:A—B - X(1).(Q | P) :: C I'; A x(2).P :: x:A—B

Linear Propositions as Session Types,

¢ Typing judgement 4 v
Xt:A1, ..., Xn:An = Py C

¢ Intuition: judgement states a rely-guarantee property:

whenever composed with any processes offering a session of
type Ai at xn, process P will offer a session of type C at y

I''AMi=Q ix:A Ao, x AP C
I'; Ail, A= (newx)(Q | P) :: C

typing ensures fidelity and global progress (cut-elimination)

Admissible Rules (in DILL)

APl T M0 :C cf. the so-called mix rule

AP0 C (independent composition)
cf. empty
5101 (replacing TIR and T1L)
Exactly as in [GHOS5] Tend
I’>A-P::x:B
I y:A, Ax[y].P :: x:AQB cf. internal mobility

x[V].P 2 %(z).([zy]|P) translation [Boreale98]

Movie Server Session

SrvBody(s) £ s.case(s(title).s(card).s(movie).0;
s(title).s(trailer).0)

Alice(s) 2 s.inr;s(“solaris’).s(preview).0

System = (new s)(SrvBody(s) | Alice(s))

ServerProto £ (Name — CardN — (MP4®1))&(Name — (MP4®1)
- ; - = SrvBody(s) :: s:ServerProto

- ; s:ServerProto — BClintBody(s) :: -:1

- ;- = System :: -:1

Shared Movie Server

Movies(srv) = lsrv(s). rvBody(S)
SAlice(s) 2 srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) £ srv(s).s.1nl;s(“inception’).s(“8888”).s(movie).0
SSystem = (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))
- ; - = Movies(srv) :: srv:\ServerProto

srv.ServerProto ; - = SAlice(srv) :: -:1

srv.ServerProto ; - = SBob(srv) ::-:1

-5 - = SSystem :: -:1

Send and Receive

INAMi-Qiy:A ;AP xB 1: 0, ZAXBFEK:C
I'; A1, Ao =X(»).(Q | P) :: x:AQB I'; A3, x:AQB - x(2).R :: C
I'; A1, Az, As=(new x)(X(»).(Q | P) | x(2).R):: C

—>

Send and Receive

INAIEQ iy A T';A2 P x:B I Az, yVA,Lx B-R:: C
I'; A1, Ao =X(»).(Q | P) :: x:AQB I'; A5, x AQB - x(y).R :: C
I'; A1, Aa, As =(new x)(X(»).(Q | P) | x(»).R):: C

—>

Send and Receive

INAIEQ iy A T';A2 P x:B I Az, yVA,Lx B-R:: C
I'; A1, Ao =X(»).(Q | P) :: x:AQB I'; A5, x AQB - x(y).R :: C
I'; A1, Aa, As =(new x)(X(»).(Q | P) | x(»).R):: C

INAMFQ iy A T A5,y A, xBFR::C
I'’A2 =P x:B I'; A, A3, x: B =(newy)(Q | R) :: C

I'; A1, Az, As- (new x)(P | (new y)(Q | R)):: C

Tcut[x](TRR[y](di, d2), TLR[y](d3)) — Tcutx](d2, Tcut[yl(d:, d3))

Send and Receive

1, A1, yAHP:: xB 1, QLyA 1 MxXBFREC
I At x(p).Pi:x:A—-=B T, Az, A3, x:A—B - X(»).(QO | R) :: C
I'; A1, A2, As =(new x)(x().P | %(»).(Q | R)):: C

—>

Send and Receive

I'; A1, y:A-P::x:B INAFQ: iy A 1A, xBFR::C
I At x(p).Pi:x:A—-=B T, Az, A3, x:A—B - X(»).(QO | R) :: C
I'; A1, Az, As=(new x)(x(»).P | X(»).(Q | R)):: C
I A= QO i y:A I'; A1,y A-P::x:B
I'; Ao, Ai,x BH(newy) Q| P)::xB T1;A3,xBFR:C
I'; A1, Az, As=(new x)((new y)(Q | P) | R):: C

Tcut[x](TR—[y](d:), TL—o[y](d>2, d3)) — Tcut[x](Tcutlyl(dz, d:), d3)

Replication and Sharing

KPPy A
I Ix().P:x: 1A

oA DTVAFE LG
I, xA; A-X(y).P:: C

I,xA; AP ::C
I; A, x!A-P::C

Replication and Sharing

| B o s I, xA; A,y A Q::C
I'; = Ix(y).P :: x:!A I, xA;A+-X(y).0: C
I'; A (new x)(Ix(»).P | X(»).Q) :: C

1 Py A L, xA; A yARQ::C
| Sl o R I A, yv:A = (newx)(!Ix(y).P| Q) :: C
I'; A(new y)(P | (new x)(!x(»).P | Q)):: C

Tcut[x](TR![y]l(d1), TL![z](d2)) — Tcut[x](d:, Tcut![xyl(d:, d2))

Choice and Offer

INAFQ:xA 1;A+P::xB ;A xAFR::C
I'; Ax.case(O,P) :: x:A&B I') A, x:A&B + x.1nl:R :: C

1;AP: xB 1A, xBEFR:C
I'' Abx.inr;P :: x:A®B I'; A, x:A&B + x.1inr:R :: C
I;ARP:x:A L AEARD U, AEDBEN.C

I AFx.inl;P:: x:ADB I'; A, xA®B x.case(Q,P) :: C

Choice and Offer

INAiFQax:A 1AM -P::x:B I; A, x:A-R::C
I'; Ajx.case(Q,P) :: x:A&B I'; A2, x:A&B + x.1nl;R:: C
I'; A1, Ao = (new x)(x.case(Q,P) | x.1nL;R):: C

—

A= Qi xA I'; Ao, xAFR::C
I'; A1, A= (newx)(Q | R):: C

Tcut[x](TR&(d1, d2), TL1&(d3)) — Tcut[x](d:, ds)

Tcut[x](TR&(d1, d2), TL2&(d3)) — Tcut[x](d>z, d3)

Admissible Rules (DILL)

I'; AP x:Ai A, xAi-Q :: C
I'; Abx.case(li:Pi) i x:&{li:Ai} 1 A, x:&{li:Ai} Fx.1i;Q:: C

I'; A HP:: x:Aj 1A X AP C
I AFx 1P x:@{1i: Ay T A, x:d{li:Ai} —x.case(li:P;) :: C

&{Li:Ai} #A1& A2 &... & Ax
D{li:Ai} 2AIQAD .. An

Copycat Forwarder

I'; xAF [xop]:: y:A I A,y: AP . C
I'; A, x:A=(new x)([x—y] | P):: C

—>

I A, x:A=Pixly}:: C

Tcut[x](TA[xy], d)) = d{xly}

The axiom forwarder already appears in [AbramskyO], but used very differently.

S:=1 | US| U-=S | S&S | S&S

U®S

Theorem. ; A+ P :: x:U ifand only if T; A, x:U - P :: -:1

Duality on session types captured by left-right symmetry

Duality in DILL

Proofs = Processes

Pi=0 (1naction)
[x—y] (linear forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)
x(y).P (output)
x(y).P (replicated server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.i1nr;Q (choose right)

Proof Conversions = Process ldentities

Structural Conversions (=)

|dentify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (=)

(newx)(0|P) = P
(new x)(P | (new y)(Q | R)) = (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) = (new y)(Q | (new x)(P | R))

Proof Reductions = Process Reductions

Computational Conversions (—)
Reduce proofs into simpler ones (e.g, decreases types)

Correspond to standard process reductions (—)

(new x)(x(y).P | X(y).(Q [R)) — (new x)(P | (new y)(Q | R))
(new x)(x.case(Q,P) | x.1nlL;R) — (new x)(Q | R)

(new x)(1x(y).P | X(»).Q) — (new y)(P | (new x)(!x(y).P | O))

Proof Conversions = Process ldentities

¢ Structural Conversions (=)
Correspond to well known typed strong bisimilarities (=)

(new x)(!x(y).P | (new z)(Q | R)) =
(new z)((new x)(!x(»).P 1 Q) | (new x)(!x(»).P | R))

(new x)(!x(y).P | (new z)(!1z(u).Q | R)) =
(new z2)(!z(u).(new x)(!x(»).P 1 Q) | (new x)(!x(y).P | R))
(new x)(Ix(y).P 1 Q) = 0 [x & fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVWalkerO|l]

¢ Yet another remarkable bridge surfacing here

Proof Conversions = Process ldentities

¢ Structural Conversions (=)

(=) matched by & structural congruence (=)
¢ Computational Conversions (—)
(—) matched by & reduction (—)
e Structural Conversions (=)
(=) matched by typed & observational equivalence (=)

¢ All Conversions (=)

Curry-Howard Correspondence

Theorem (processes as proofs) [CairesPfenning10,CPT*]
IfI;A-P::Cand P=—=Q then | ;A-P=—-=0::C
Theorem (proofs as processes) [CairesPtenning10,CPT*]

If I5A-P—=Q::CthenP— (0

If I AP =0Q::CthenP=0Q

If ;AP ~Q::CthenP=Q

Curry-Howard Correspondence

Theorem (progress) [CairesPfenning10,CPT*]
live(P)2 P#0

If -;-+ P::-:1 and live(P) then P — Q

LINEAR LOGIC AND
BEHAVIORAL TYPES (2)

Luis Caires

Universidade Nova de Lisboa
(based on joint work with Pfenning, Toninho, and Perez)

NOVA Laboratory for
Computer Science and Informatics

BETTY 2016 Limassol Cyprus

Session Types as Linear Propositions

S,U::=

U®S (output)
U—-~S (input)
SHS (choice)
S&S (offer)
U (shared)
1 (end)

Proofs = Processes

0 (1naction)

[x—y] (forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)
x(y).P (output)

x(y).P (replicated server)
x.case(P,0) (offer)
x.1nl;0 (choose left)

x.i1nr;Q (choose right)

Linear Propositions as Session Types,

I''’AMt-Q i x:A Ao, x A= P C
I'; Ai, A= (newx)(Q | P) :: C

I'; x:A - [xoy] D y:A

I5AR P C
0,01 - PSC

M0 ny:A L PaxiB LN A BB ED L
I'; A1, A2 =%(»).(Q | P) :: x:AQB I A, xAQB x(z).P :: C

I-0::y:1

e QA 10, 2BF FPC I;A,zzZA+ P ::x:B
I'; A1, Ag, x:A—B - X(1).(Q | P) :: C I'; A x(2).P :: x:A—B

Curry-Howard Correspondence

Theorem (processes as proofs)

IfI;A-P::Cand P=—=Q then | ;A-P=—-=0::C
Theorem (proofs as processes)
IfI;A-rP—=Q:CthenP — QO

If I AP =0Q::CthenP=0Q

If ;AP ~Q::CthenP=Q

Curry-Howard Correspondence

Theorem (progress)
live(P)2 P#0

If -;-+ P::-:1 and live(P) then P — Q

Coming up next

¢ Some Examples

¢ Sharing and Duality

¢ Systems based on Classical Linear Logic
Sharing, Locality and Receptiveness

¢ Behavioural Polymorphism

Logical Relations and Parametricity

From Theorems to Code

¢ Every provable sequent I'; A+ C “is” a process [; A= P :: C

¢ We may “automatically” produce interface adapters for every
linear logic theorem, e.g.,x:A + P :: y:B is a morphism A—B

¢ Examples (try to figure out what the process is)
XXX o VoY 69X
K X80 (Y&ZPE Y. (XeoY o ko r)
¢ Generally [ESOP’|2], an isomorphism A = B is process pair
(P, O) such that x:A+~ P::y:Band y:B+ Q :: x:A and
XA (new y)(P|Q{z/x}) = [xez]:: z2A
y:B = (new z)(QO|P{z/y}) = [yez]:: z:B

Movie Server Session

SrvBody(s) £ s.case(s(title).s(card).s(movie).0;
s(title).s(trailer).0)

Alice(s) 2 s.inr;s(“solaris’).s(preview).0

System = (new s)(SrvBody(s) | Alice(s))

ServerProto £ (Name — CardN — (MP4®1))&(Name — (MP4®1)
- ; - = SrvBody(s) :: s:ServerProto

- ; s:ServerProto — BClintBody(s) :: -:1

- ;- = System :: -:1

Movie Server Session

- ; - = (new s)(SrvBody(s) | Alice(s)) :: -:1

=2 [cut[s](TR&(d1, d2), TL2&(d3)) — Tcut[s](d;, d>)
- ; - = (new s)(s(title).s(trailer).0 | s(“solaris”).s(preview).0) :: -:1
s [cut[s](TR—(d;), TL—(d>, d3)) — Tcut[s](Tcut(dz, di), ds)
- ; - = (new s)(s(trailer).0 | s(preview).0) :: -:1

SN Teut[s(TR®(d1 d2), TLR(d3)) — Tcut[s](d;.Tcut(d, d3))
-;-F(news)(0]0)::-:1

Tcut[s](TR1, TL1(TR1)) = TR1
S e | |

Replication and Sharing

Eoip eyl
s Ix)r . x: A

I'; x A+ [xop] it y:A

| B, Y LBl
B o0 S0 T ol e B
I',xA; A= X(y).P:: C
I, xA; AP ::C L PR A AN DI
A NMIAETIEC I'A - (newx)(!x(»).P| Q) :: C

Key idea of DILL [BarberPlotkin91]: postponing of contraction and
weakening (“‘fat axioms”).

Replication and Sharing

| B o s I xA; A-Q:: C
I'; = Ix(y).P :: x:!A I'; x:!A,A- Q:: C
I A (newx)(!Ix(y).P | Q) :: C

Ey Py A LXATBE QS0
I'A - (newx)(!x(»).P| Q) :: C

Tcut[x](TR!(d), TLI[y](d2)) —= Tcut![xy](d:.d>2)

Replication and Sharing

I, xA; A,y A Q::C
| B o - I',xA;AFX(»).0 :: C
I'; A (new x)(Ix(y).P | X(»).Q) :: C
1 Py A L, xA; A yARQ::C
| Sl o R I A, yv:A = (newx)(!Ix(y).P| Q) :: C
I'; A(new y)(P | (new x)(!x(»).P | Q)):: C

Tcut![xyl(d;, Tcopylxyl(d2)) — Tcut[yl(d;, Tcut! [xyl(d:, d2))

Shared Movie Server

Movies(srv) = lsrv(s). rvBody(S)
SAlice(s) 2 srv(s).s.inr;s(“solaris”).s(preview).0

SBob(s) £ srv(s).s.1nl;s(“inception’).s(“8888”).s(movie).0
SSystem = (new srv)(Movies(srv)) | SAlice(srv) | SBob(srv))
- ; - = Movies(srv) :: srv:\ServerProto

srv.ServerProto ; - = SAlice(srv) :: -:1

srv.ServerProto ; - = SBob(srv) ::-:1

-5 - = SSystem :: -:1

Shared Movie Server

- ; - = (new srv)(Mov(srv) | SA(srv) | SB(srv))

12

sharpened replication lemma (distribution of ! over |)

- ; - = (new srv)(Mov(srv) | SA(srv)) | (new srv)(Mov(srv) | SB(srv))

S8 Tcut(TRLTL!) followed by Tcut / Tcut! assoc
soge e SO (new srv)(Mov(srv) | (new s)(SrvBody(s) | Bob(s))

- sharpened replication lemma (distribution of ! over |)

- ; - = (new srv)(Mov(srv) | SA(srv) | (new s)(SrvBody(s) | Bob(s))

D

- ; - = (new srv)(Mov(srv) | 0) = 0

DILL and Locality

L Pege sy : A
I x().P:x: 1A
I,xA; AP ::C A YARE GO
I; A, x:!A-P:: C I',x:A; A= X(y).P:: C

¢ 1A type always offered at positive polarity for server offer

¢ !A type always used at negative polarity for server invocation
® So a process such as a(x)!x(y).P is not typable in DILL
¢ DILL enforces locality on shared receptive names

(Of course, linear sessions may still output receptive names)

Dual Shared Types: !A and A

o 1A

Type for a shared channel server name that can persistently
accept requests for a fresh session of type A.

s 1A

Type for a channel name that can request creation of a fresh
session of type A by communicating to a channel of type !A.

¢ In [GHOS5] such (shared) names can be freely aliased at output
(invocation) and input (acceptance) modes.

However, this is not allowed in logical based disciplines.

Dual Shared Types: !A and A

¢ Type for session that receives a channel to which server
invocations of type A can be sent, and continues as B:

IA—B

¢ Type for session that receives a channel from which server
invocations of type A can be received, and continues as B:

A —- B (not expressible in DILL)

¢ In traditional session types [GHO5], types !A and ?A get
amalgamated into a unique, unpolarised, shared type [A]

¢ [GHO5] does not enforce locality or uniform receptiveness, in
the sense of [Sangiorgi97] (no non-deterministic behaviour)

uniform receptiveness [Sangiorgi97]

The name discipline of uniform receptiveness

Davide Sangiorgi
INRIA Sophia-Antipolis, France.

October 20, 1997

Abstract

In a process calculus, we say that a name x is uniformly receptive for a
process P if: (1) at any time P is ready to accept an input at z, at least as long
as there are processes that could send messages at z; (2) the input offer at x
is functional, that is, all messages received by P at z are applied to the same
continuation. In the mw-calculus this discipline is employed, for instance, when
modeling functions, objects, higher-order communications, remote-procedure
calls. We formulate the discipline of uniform receptiveness by means of a
type system, and then we study its impact on behavioural equivalences and
process reasoning. We develop some theory and proof techniques for uniform
receptiveness, and illustrate their usefulness on some non-trivial examples.

uniform receptiveness [Sangiorgi97]

¢ The continuation behaviour for each shared name is uniform
¢ Corresponds to the unique definition of shared servers
¢ Uniform receptivness [Sangiorgi97] relies on locality:
Only the output capability of shared names is passed around
Processes forbidden to receive on shared received names

¢ Allows “efficient” distributed implementations of name passing
and routing since no “impersonation” of addresses is possible.

¢ the locality property was studied in [MerroSangiorgiO4]

Locality [MerroSangiorgi04]

On asynchrony in name-passing calculi

Massimo Merro* Davide Sangiorgi**

INRIA Sophia-Antipolis, France

Abstract. The asynchronous m-calculus is considered the basis of exper-
imental programming languages (or proposal of programming languages)
like Pict, Join, and Blue calculus. However, at a closer inspection, these
languages are based on an even simpler calculus, called Local © (L),
where: (a) only the output capability of names may be transmitted; (b)
there is no matching or similar constructs for testing equality between
names.

We study the basic operational and algebraic theory of Lw. We focus on
bisimulation-based behavioural equivalences, precisely on barbed congru-
ence. We prove two coinductive characterisations of barbed congruence
in L7, and some basic algebraic laws. We then show applications of this
theory, including: the derivability of delayed input; the correctness of an
optimisation of the encoding of call-by-name A-calculus; the validity of
some laws for Join.

Duality for All Session Types

S:=1 | US| UBS | SBS | S&S I !S|?S

U—S
U®S
S&S

S®S

o D
N

U=nS

S

S

Session Types as CLL Propositions

S:=1 | US| UBS | SBS | S&S I !S|?S

URS = U—S = U®BS
S

URS = U® _

S®S = S&S S=S
S&S = S&S

1 = 1 S=S8¢

1S = 9 U

URS

ZIN%1
--
b
7
[l

?S = |

Session Types as CLL Propositions

2

Propositions as sessions™

PHILIP WADLER

University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK
(e-mail: wadler@inf.ed.ac.uk)

Abstract

Continuing a line of work by Abramsky (1994), Bellin and Scott (1994), and Caires and Pfenning
(2010), among others, this paper presents CP, a calculus, in which propositions of classical linear
logic correspond to session types. Continuing a line of work by Honda (1993), Honda et al. (1998),
and Gay & Vasconcelos (2010), among others, this paper presents GV, a linear functional language
with session types, and a translation from GV into CP. The translation formalises for the first time
a connection between a standard presentation of session types and linear logic, and shows how a
modification to the standard presentation yields a language free from races and deadlock, where race
and deadlock freedom follows from the correspondence to linear logic.

Linear Logic Propositions as Session Types

Luis Caires!, Frank Pfenning? and Bernardo Toninho!:2
! Faculdade de Ciéncias e Tecnologia and CITI, Universidade Nova de Lisboa, Lisboa, Portugal

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Throughout the years, several typing disciplines for the m-calculus have been proposed.
Arguably, the most widespread of these typing disciplines consists of session types.
Session types describe the input/output behavior of processes and traditionally provide
strong guarantees about this behavior (i.e., deadlock freedom and fidelity). While these
systems exploit a fundamental notion of linearity, the precise connection between linear
logic and session types has not been well understood.

This paper proposes a type system for the m-calculus that corresponds to a standard
sequent calculus presentation of intuitionistic linear logic, interpreting linear propositions
as session types and thus providing a purely logical account of all key features and
properties of session types. We show the deep correspondence between linear logic and
session types by exhibiting a tight operational correspondence between cut elimination
steps and process reductions. We also discuss an alternative presentation of linear session
types based on classical linear logic, and compare our development with other more
traditional session type systems.

Classical Linear Logic [Andreolli’90]

¢ A linear context (multiset)
—A; © :
® O cartesian context (set)

2 A, A;O FA,A;© —A1;© A O

~A,A; ©
A, Az, © - A1, Az, ©
—A;©
~1;06 :
: A, L;©
I'—AI,A,G I_AZ,B,e I_AaAaB;e
— A1, A A®B; 6 ~A,ABB;©

NB. This system corresponds to a classical version of DILL

Classical Session Types [CPT’12-14,C14]

[xy] - x:A,y:A; © 0+;0

QI—x:K,Age PrEx:A, A, O OFA;;© PHA2 O
(new x)(Q | P) - A1, A2; © O|PFA,LA;©O

PHA;©
close;PHA,1;0

closetr 1; 0

OFALYyA;© P+ A,xB;0 P+ A,y:A,x:B; ©
x). (0| P)+ A1, A2, x:A®B; © x(y).P+ A, x:A%®B; ©

Classical Linear Logic [TCP'12-14]

P+ A,x:A;©
x.inl;P+ A, x:A®B; 6

P+ A,xB:;©
x.inr; P+ A, x:ADB; ©

OFA,xB;© PHA,xB;©
x.case(Q,P) + A, x:A&B; ©

Classical Linear Logic [TCP'12-14]

PryA;© PHA:x:A,©B
x(y).P+ x:'A; © P+ A,x?A; ©
PrA,y:A;x:A,© OFyA;0 PHA;x:AB

xX(»).P+-A;xA,© (new x)(!Ix(»).O|P)+-A; ©

Replication Reduction

OF A,y:A;x:A,©

PryA;© X(»).0 - A;x:A,©
(new x)(Ix(»).P | X(z).0) - A; ©
P+yA;B OF A,y:A;x:A,©
P+yA;O T; A, v:A + (newx)(!x(»).P| Q) :: C

I'; A(new y)(P | (new x)(!x(»).P | Q)):: C

Proofs = Processes

P:= U (Inaction)
[x—y] (forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)

x(y).P (output)
Ix(v).P (shared server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.inr;Q (choose right)
x.close;0 (wait)
x.close (close)

Proof Conversions = Process ldentities

¢ Structural Conversions (=)

(=) matched by & structural congruence (=)
¢ Computational Conversions (—)
(—) matched by & reduction (—)
e Structural Conversions (=)
(=) matched by typed & observational equivalence (=)

¢ All Conversions (=)

Proof Conversions = Process ldentities

Structural Conversions (=)

|dentify structurally identical proofs (e.g, commute cuts,
expose redexes)

Correspond to standard structural congruences (=)

0P =P

(new x)(P | (new y)(Q | R)) = (new y)((new x)(P | Q) | R)
(new x)(P | (new y)(Q | R)) = (new y)(Q | (new x)(P | R))

(newx)(P1(QIR))= QI (newx)(PIR)

Proof Reductions = Process Reductions

Computational Conversions (—)
Reduce proofs into simpler ones (e.g, decreases types)

correspond to standard process reductions (—)

(new x)(x.close | x.close.P) —= P

(new x)(x(»).(P|Q) | x(»).R) — (new y)(P | (new x)(Q | R))
(new x)(x.case(O,P) | x.1nL;R) — (new x)(O | R)

(new x)(1x(y).P | %(y).Q) — (new y)(P | (new x)(!x(y).P | Q))

Proof Conversions = Process ldentities

e Structural Conversions (=)

Correspond to well known typed strong bisimilarities (=)

(new x)(!x(y).P | (new z)(Q | R)) =

(new z)((new x)(!x(»).P 1 Q) | (new x)(!x(»).P | R))
(new x)(!x(y).P | (new z)(1z(u).Q | R)) =

(new z)(!z(u).(new x)(!x(»).P 1 Q) | (new x)(!x(y).P | R))
(new x)(1x(y).P 1 Q) = 0 [x & fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVWalkerO1I].

Proof Conversions = Process ldentities

¢ Structural Conversions (=)

Correspond to well known typed strong bisimilarities (=)

(new x)(!x(y).Pl QI R) =

(new x)(!x(»).P | Q) | (new x)(!x(»).P | R)
(new x)(!x(y).P | (new z)(1z(u).Q | R)) =

(new z)(!z(u).(new x)(!x(»).P 1 Q) | (new x)(!x(y).P | R))
(new x)(1x(y).P 1 Q) = 0 [x & fn(Q)]

¢ The sharpened replication lemmas of [SangiorgiVWalkerO|l].

CLL is free from locality

a(q). @320 0)
System = (new a)(SendBroad(a) | a(x).!x(s).P))

SendBroad(a) £

a(x).!x(s).P = a: ?2A—?B ; -
q(v1).q(v2).0 | g(v3).0 = g: ?A ; - O+ a:'B
SendBroad(a) - a: 7A & B - System + - ; -

¢ Unlike DILL, CLL allows us to express full duality on shared
sessions, by dropping the too strict locality property.

¢ Remarkably, the classical type structure still ensures uniform
receptiveness on shared names (thus confluence, no surprise)

CLL ensures uniform w-receptiveness

a(g). (q(v)-plql.Q | P)
— SendBroadW(a) :: a:?AQ®B, p:'A®1; ©
~g(v).p[q].0 :: q: ?A, p-1A®1L; ©

- 2[q].0 :: v:A, p:!ARL; ¢:A,0
—p(h).\h(2).q(k).[k—z] :: pIA ; ¢:A,B

SendBroadW(a) =

¢ Typing allows the receptive endpoint g~ to be sent (on a) at
type ?A, linearly (exactly once), leading to the “single server”.

¢ Typing enforces all positive uses of g (¢g") to be sent only at
type !A, mediated by a proxy (via 'R)

Behavioral Polymorphism

¢ Polymorphism (aka “generics”) is an indispensable feature in
everyday programming, say Java

class LinkedList<T>

T is a type parameter than can be instantiated (at compile
time) by a given type (say, class or interface)

¢ Parametric polymorphism was introduced in PL by Reynolds
and is linked by the Curry-Howard correspondence to
quantification in second-order logic by Girard

¢ Repeating the exercise on logical session types we discover a
powerful notion of behavioural polymorphism, just too
hard to tackle by extant techniques [Turner,PierceSangiorgi]

simply typed A-calculus [Church30]

I, x:AFx:A

B et A [-M:A>B THEN:A
I'- Ax:AM: A—B ' -MN : B

Tapp(Tlam([x]d1).d2) — di1{d2/x}

PO|)'mOI”phiC A-calculus [Girard-Reynolds,

Q +M ty Q; T -M:A
0X;1'-M: B Q;TFM:VXB QHSty
QI'=AXM:VX.B Q; T —MS : B{S/X}

TTapp(TTLam([X]d1),S) — di{X/S}

PO|)'mOI”phiC A-calculus [Girard-Reynolds,

Q.1 =M: B{S/X} QFSty QI =M:3X.B Q.X;, x: X -N:A
O:1 -<S,M>:3X.B QI let <X, x>=M 1n N:A

TTopen(TThide[X](d1,S).d2) — d2{X/S,x/d1}

Linear Propositions as Session Types,

¢ Typing judgement e :
SISA - Py

¢ Intuition: judgement states a rely-guarantee property:

for all session types (), whenever composed with processes
offering a session A; at xn, P offers a session of type C at y

L MFQ x:A Q1;A,x AP C
1 A, o= (newx)(Q | P) :: C

typing ensures fidelity and global progress (cut-elimination)

Proofs = Processes

Pi=0 (1naction)
[x—y] (linear forwarder)
(newx)(P1 Q) (composition)
x(y).P (input)

x(y).P (output)
x(y).P (shared server)
x.case(P,0) (offer)
x.1nl;0 (choose left)
x.i1nr;Q (choose right)
x|S].P (type output)
x(X).0 (type input)

Linear Propositions as Session Types

OFSty QI A P x:B{S/X} SN A XD C
;,1; A=x[S].P:: x:3X.B 1A, x:3X.B - x(X).P::. C

O Sty I A, x:B{S/X} P ::C QXA P x:B
I'; A, x:VX.B - x[S].P::C OLGIAF x(X).P o x:VX.B

Type Send and Receive

OX; ;A= Px:B QFSty I; A2, xB{S/ X} -QO::C
Q1 A= x(X).P . x:VX.B (; I; Ay, x:VX.B — x[S].O :: C
Q; I'; A1, A2 =(new x)(x(X).P | x[S].Q):: C

—>

O, I'; A1 = P{S/X} :: x:B{S/X} QI'; Ay, x:B{S/X} -0 ::C
O, 1; A1, A =(newx)(P{S/X} | Q) :: C

Tcut[x](TRV[X](d)), TLY(S, d2)) — Tcut[x](d;{S/X}, d2)

Type Send and Receive

OFSty 1AM FPax:B{S/ X} QXI;A,xB-Q::C
; I'; A1 =x[S].P :: x:3X.B ;1 Az, x:3AX.B - x(X).0 :: C
(; I'; A1, Aa=(new x)(x[S].P | x(X).0):: C

—>

;1; A1 = P:: x:B{S/X} (I A2, x:B{S/X} - O{S/X} :: C
O, 1; Ai, A2 —=(new x)(P | O{S/X}) :: C

Tcut[x](TRA(S, d;), TLA[X](d2)) — Tcut[x](dr, d2{S/X})

Classical Typing Rules

PrHA xA;0;Q0,X
x(X).PH A, x:VX.A; ©;

QFSty P A, x:B{S/X}; ©; Q
x[S].P+ A, x:3X.B; ©; Q)

A Cloud Computing Server

The Generic Cloud Service

API £ 1&{ rmov:(Name — MP4®1), wmov:(Name — MP4 — 1))
CloudServer = VX.!(API — X) — IX

CS(a) £ a(Y).a(?).'a(w).t(s).s(ap).([ap—api] | [sw])
- ; api: APl = CS(a) :: a:CloudServer

- ;- = MDB(api) :: api:API

- ; - = (new api)(MDB(api) | CS(a)) :: a:CloudServer

Uploading to the Cloud

API 2 1&{ rmov:(Name — MP4®1), wmov:(Name — MP4 — 1))

MCode(s,api) 2 s(title).api(h).h.rmov;h(title).h(mfile).s(mfile).0;
UserProto = Name — MP4®1

- ; - = s(api).SCode(s) :: s: AP1 — UserProto

ToUpload(t) = '1(s).s(api).MCode(s,api)

- ;- = ToUpload(t) :: t: |(API — UserProto)

Creating a Custom Service

- ; - = (new api)(MDB(api) | CS(a)) :: a:CloudServer
FreeViewProto(n) £ a|UserProto].a(t).(IoUpload(t) | [a<>n])
- ; a:CloudServer + FreeViewProto(n) :: n:UserProto

FreeOnCloud = (new a)(CloudServer | FreeViewProto(n))

- - FreeOnCloud:: n:'UserProto

Creating a Custom Service

- ;- (new api)(MD(api) | CS(a)) :: :'CloudServer
FreeViewProto(n) £ a|UserProto].a(t).(IoUpload(t) | [a<>n])
- ; a:CloudServer +— FreeViewProto(n) :: n:!UserProto
FreeOnCloud = (new a)(CloudServer | FreeViewProto(n))

- - FreeOnCloud:: n:'UserProto
Isabel(n) ¢ n(a).a(“interstellar’).a(file).Fun
- ; n:\UserProto + Isabel(n) :: p:Fun

- ;- = (hew n)(FreeOnCloud | Isabel(n))) :: p:Fun

Logical Relations and Parametricity

¢ Being based on logic, our systems are amenable to well-
known reasoning techniques that can be used to establish
Important meta properties.

¢ We have developed (linear) logical relations and associated
proof techniques for our session type systems [ESOPI2,
ESOPI|3,TGCI4,BT 5], addressing strong normalisation,

observational equivalences, parametricity.

¢ N.B: Logical relations have been originally introduced by
[Tait58], but are currently a basic tool for studying general
semantic properties enforced by type systems [see Al 3].

F'"(D
PeTy

F'"(D
Pe Ty

r'"w
Pe Ty

A Logical Predicate T*[z:A]

[2:X] 2 Pe nX)()

[z1] e VO.(P=0A0—=)D20=0
[z:A—B] £ VQ.(P Q)Q) D

VR € T?[y:Al. (new YR | 0) € Ty® [z:B]
Pe Tz AQB] ¢ VO.(P iy)Q) =

AP1,P>. P =1 (P1| P2)) AP1€ Ty® [y:A] A Poe Ty [2:B]

Pely®
PeTy®

[2:VX.A] 2 VS,P’,R]

[2:AX.A] 2 3S,P’.R[

:S]. (P=0) 2 Q € Tn/rs)®*/Sz:Al

S

z(S)

S
1. (PE'0) 5 0 € Tupyresy ™SIz Al

Logical Candidate

¢ A logical candidate R[z:A] is a set of processes such that:

PeR
PeR
PeR
PeR
PeR

[7:A]
[7:A]
[z:A]
[2:A]

[z:A]

implies -;-;- = P i z.A

implies P strongly terminates under —

and P = O implies Q € R[z:A]

and P = O implies) € R[z:A]

if for all O such that P = O we have O € R[z:A]

¢ The defined notion of candidate [Girard] captures the
intended semantic property here, in this case termination.

Strong Termination

Theorem.

For all w:Q) n:Q), T*[z:A] 1s a logical candidate R[z: w(A)]
Theorem.

If Q;I';A =P:: y:C and w:(), n:Q) then w(P) € Tyl Q; 1A P:: y:CJ
Theorem.

If Q;I;A =P:: y:C and w:() then w(P) strongly terminates under —

Logical Relations and Parametricity

¢ Parametricity states that polymorphic code operates in a
completely uniform way across all type instantiations

¢ Traditionally, parametricity is important to establish e.g.,
representation independence or security properties of ADTs.

¢ In [PCPT’13-ESOP] we have developed a powerful theory of
parametricity for polymorphic session types.

¢ We show e.g., how observational equivalence of two
restaurant finding apps relying on completely different map
services (with very different interaction protocols).

¢ Simple type based analysis technique shows that no client can
tell which map service is being used “under the hood”.

LINEAR LOGIC AND
BEHAVIORAL TYPES (3)

Luis Caires

Universidade Nova de Lisboa
(based on joint work with Toninho, Perez and Pfenning)

n NOVA Laboratory for
NOVALINGS Computer Science and Informatics

BETTY 2016 Limassol Cyprus

Representing Data Types

&

S

Typeful Encodings of Data

In Milner-style encodings of data as processes [Milner89] a
valueV is represented by a process [V], located at name #.

[VIn accessed “by reference” through the unique “address” n

‘Milner91] showed how to embed the A-calculus in the 7-
calculus just by using name passing

usage of n n may be linear (e.g.,V is resource, e.g.,a lock or a
continuation) or shared (V is a value, e.g., a function, a bool)

Curry-Howard typing for sessions promotes “free” typeful

constructions of higher-order data types “as processes”, in
the style of constructive type theory.

Typeful Encodings of Data

LinearBool £ 101

LinearTrue(s) £ s.1nr,0 LinearFalse(s) £ s.1nl;0
Bool # !LinearBool

True(s) = b(s)LinearTrue(s) False(s) = b(s)LinearFalse(s)
if(b, P, O) 2 b(c).c.case(P, O)

LA P ¢

| a0 = el ©

I'; b:Bool, A1, A= 1f(b, P, Q) :: C

Linear Pairs

Ty e

A TN -z

[<V1, V2> Ts 25(x).(IVilx | S().(TV2],] 0))

I A, Ao = [<V1, V2> I i s:LPair(A1,42)

[let (x)=Viin P Is 2 (newp)([Vil, | p(x).p(»). [V2l)

Pure Pairs

Pair(AnLAs) & 1(1A1®As®1) TVl
I A= [Vailz iz 1A

[<V1, V2> s £ ls(p).s(x).([V1]x | 500).(IV21y| 0))
T; AL, Ao [<V1, V2> Ty o2 s:Pair(AL,As)

[fst(V) Ik = (new s)([VIs| 5(p).p(x).p(y).[x—k])
[snd(V) Ik # (new s)([VIs| 3(p).p(x).p(v).Ly—k])

Linear A-calculus [BarberPlotkin96]

¢ A linear context (multiset)

ITAFA '
¢ ' exponential context (set)

')A, xA+- M:B I'; A\ M:A—-B 1'; Ao N:A
I'; A Ax:AM:A—B I'; Ar, A2 = MN:B

I; x:A+ x:A

ITAlEMA T5Ao=NB T A= M:AQB T Ay, x:A,y:B =N :C
['; A1, Ao = <M,N>:AQB I; A, Az - let <xy>=Min N:C

I;-+~ M:A I A= MIA T, x:A; Ao =N :C
I;-- M:IA DAL AE Llet Ix=M1in N :C

Linear A-calculus [TCPI2]

[1; x:S = x:S1: 2 [1; x:[S] H[xez] :: z:[S]

[I',a:S; A = a:!S]: £ [I', a:S]; [A] Fa(x).[x<z] :: z:![S]

[T; A - X AM:S—U]L: 2 [T']; [A] Fz(x)[M]; :: z:[ST—-~[U]
M1 A, Ay (M]V)ZU]]Z =

[I'T; [A1, A2l = (new s)(TM1s | s(h).(INIn | [se>z]) :: z:[U]
[T; - = IM:!IST; 2 [T; - —1z(x).IM]; :: z:![S]

[T; -+ let 'x=M in N:S]. 2 [T; - -~ (new x)(IM1: | [N].):: z:[S]

Composing Translations [TCPI2]

¢ Building on the translation of the A-calculus into the session
calculus, we mechanically extract translations of the pure A-
calculus into our session calculus

® The “canonical’ translation

[S —=UI 2 ![S]—[U]

[E] =t
¢ The “boring” (fo

[S =UI £ I([S]

[t] 2 !t

One obtains Milner’'s CBN encoding

lowing Girard) translation

o IMVB One obtains sharing evaluation,
cf.“futures” of Multilisp or Scala

Interface Contracts and Assertions

¢ Session types just talk about the abstract communication
behaviour, but richer behavioural specifications will definitely
need to talk about properties of exchanged data as well

¢ Traditionally, this involves considering notions of “contracts”
or “assertions’, in the spirit of axiomatic semantics [Hoare].

¢ Along this lines [BHTY |0] studied one possible combination
of multiparty session types with FOL pre / post conditions.

Interface Contracts and Assertions

¢ Following our Curry-Howard mindset we may naturally
integrate session types (propositional linear logic) towards a
dependent type theory (intuitionistic first-order logic).

¢ N.B. while basic values can be encoded as processes, we have
no perspective on how to define a consolidated type theory
for processes both as behaviours and as values that would
support a proper dependent type theory.

Mixed linear-non-linear Logic [Benton]

¢ A linear channel context (multiset
TM:A ()
VAP 2SS ¢ I cartesian channel context (set)

® W cartesian value context (set)

A ::=int| bool | nat |string | ... §

= US| U-oS
A—B S®S | S&S
AAB w11
AV B $A
128§ Vx:A.S
Vx:A.B Jx:A.B
dx:A.B

Mixed linear-non-linear Logic [Benton]

¢ A linear channel context (multiset)

I -M:A
WA P 28 ¢ I' cartesian channel context (set)
¢ Y cartesian value context (set)
VYEM:A V,zZ2A; 1, AP . C
VY:.I;AH[ze M]::z:$A VI, AzS5AFP:C

V:Ii1;,-P: zS TS M Sy Wl N 2 (F O
Yoakis <=1y . {12:5] Y:I;AFspawn. z(M| Q): C

Certifying Session Interfaces

“Standard” Session Type (talks about behaviour)

BankST £&{ with: nat ® nat — &{ ok;1,ko;1},
deposit: nat ® &{ ok;1, ko;l} }

Dependent Session Type (talks about behaviour + data exchanged)

BankCI £&{ with: 3b:nat. Vv:nat.Vp: [v < b]. &{ ok;1,ko;1},
deposit:Vv:nat. Vp: [0 <v]. &{ ok;1,ko;1}}

Dependent Session Types

YWEMIA Wi ARy StMix
Y. I'; A=x[M].P :: x: x:A.S

Wy ALAKF P2xS
YIAE x(v).P i x: Vy:AS

Certifying Session Interfaces

BankCI £&{ with: 3b:nat. Vv:nat.Vp: [v < b]. &{ ok;1,ko;1},
deposit:Vv:nat. Vp: [0 <v]. &{ ok;1,ko;1}}

Client(b) £ b.with.s(bv).s(bv/2).s[ltehalf(hv)].ok;1

Y I'; b: BankCI + Client(b) ::-1

Y contains a binding for ltehalf: Vb:nat. b/2 <b

Mixed linear-non-linear Logic [Benton]

I'=M:A ¢ A linear channel context (multiset)
¢ I cartesian channel context (set)

Wk s P LS ® W cartesian value context (set)

h ool B o sl TS Wl =M {2 YD ZSHO T
b gl Bl 2o ¥ o Sl b0 VY;IAFspawnz. (M| Q): C

App Store

AppStore £&{ game: { g: AP] — Game},
maps: { g: APl — GPS — Maps }
cam: { g: APl — CAM — Cam} }

Cam %= ... some session type describing the camera App behaviour

) toy App Store

AppStore =& { game: {g APl —o Game}
maps: { g: APl — GPS — Maps }
cam: { g: APl — CAM — Cam} }

Cam %= ... some session type describing the camera App behaviour

Betty(as,gps) =
as.maps.as(code).spawn g. (code | g(api).g(gps).[g<>c]): c:Maps

as: AppStore, api: GPS + Betty(as,api) :: c: Maps

The Cloud Server Type (redux)

API £ '&{ rmov: (Name — MP4® 1)
wmov:(Name —o MP4 — 1)}
CloudServer = VX.{c:API — X} — IX

Adding Recursion

¢ Both induction and replication allow for unbounded
computation, but have quite different expressive power.

¢ E.g., we need both !A and vX.A in session types.

¢ Introducing general recursion in a logical system is
challenging because we really require strong normalisation

Adding Recursion

Corecursion and Non-Divergence in Session Types

Bernardo Toninho'2, Luis Caires®, and Frank Pfenning?

1 Universidade Nova de Lisboa, Portugal
2 Carnegie Mellon University, USA

Abstract. Session types are widely accepted as an expressive discipline for structuring
communications in concurrent and distributed systems. In order to express infinitely un-
bounded sessions, session typed languages often include general recursion which may
introduce undesirable divergence, e.g., infinite unobservable reduction sequences. In
this paper we address, by means of typing, the challenge of ensuring non-divergence in
a session-typed m-calculus with general (co)recursion, while still allowing interesting
infinite behaviors to be definable. Our approach builds on a Curry-Howard correspon-
dence between our type system and linear logic extended with co-inductive types, for
which our non-divergence property implies consistency. We prove type safety for our
framework, implying protocol compliance and global progress of well-typed processes.
We also establish, using a logical relation argument, that well-typed processes are com-
positionally non-divergent, that is, that no well-typed composition of processes, includ-
ing those dynamically assembled via name passing, can result in divergent behavior.

Coinductive Session Types

¢ Typing judgement
;AR Piy.C

-;-;- - (rec X.y.case(0, y(-).X):: x: vY.1&(1®Y)

¢ Key ideas: guardedness to enforce productivity, and co-
regular recursion (other subtle conditions involved [CT [4]).

¢ The assignment 1 keeps track of co-inductive assumptions
associated to process variables

nXz))=I;A+P:xY

A Twitter Service

TrendService = (Filter—Trends)

Filter £ |(Tweets— Trends)

Tweets = vX.(tweet®X)

Trends £ vX.(trend®X)

Client(ts) = ts(x).x(f).(AN¢ | (rec X.x(f).print(t).X)

- ; ts:TrendService + Client(ts) :: print : Trends

Logical Coinduction in Session Types,

nN:ARP 2 x:A n=n[X(y)/ ;AP x:Y]
n; I'; A+ (rec X(»).P{y/z}) z:: x:vY.A

n; I'; A, x:A{X/VXA} =P ::C
;A xvX AR P C

nX(z)=I'"A+P:xY
;A X(z) ::x:Y

Logical Coinduction in Session Types,

nN:ARP i x:A n'=n[X(y)/T;A P x:Y]
n; I'; A+ (rec X(»).P{y/z}) z:: x:vY.A

nN:ARP i x:A n'=n[X(y)/I;A P x:Y]
n; I'; A-P{(rec X(»).P{y/z})/X):: x:A{vY.AY}

Logical Coinduction in Session Types,

n'=nl|X(y)/1;A -P:: x:Y]
nGA P x A ;A x A{XNVX A QO :: C
n:1;A - (rec X(p).P{y/z}) z:: x:vY.A ;A xvXARQO:: C

;1A - (new x)((rec X(p).P{y/z})z | O)::C

—

A = P{(rec X(»).P{y/z})/X):: x:vY. A ;A x: A{XIVX. A} - Q::.C
n; 1A = (new x)(P{(rec X().P{y/z})/X) | Q)::C

Key Result

Theorem
Letn;1;A = P :: y:C be typable.
Then P 1s non-divergent (no infinite reduction).

Representing MultiParty Systems

Representing MultiParty Systems

¢ The linear logic typing discipline composes systems in pairs,
through the duality matching expressed by the cut rule.

¢ Multiparty session types build on a notions of global types
and projectability of global types into several local types,
which are plain binary session types.

¢ Such projectability conditions typically ensure fidelity and
(sometimes) progress (stuck freedom) of composed systems

¢ Linear logic gives an independent, yet equivalent,
characterisation of the conditions isolated in [DenYos| 3] in
their theory based on communicating automata.

Representing Multiparty Systems [cpi4,i¢]

Multiparty Session Types
Within A Canonical Binary Theory, and Beyond

Lufs Caires' and Jorge A. Pérez?

! NOVA LINCS - Universidade NOVA de Lisboa, Portugal
2 University of Groningen, The Netherlands

Abstract. A widespread approach to software service analysis uses session types.
Very different type theories for binary and multiparty protocols have been devel-
oped; establishing precise connections between them remains an open problem.
We present the first formal relation between two existing theories of binary and
multiparty session types: a binary system rooted in linear logic, and a multiparty
system based on automata theory. Our results enable the analysis of multiparty
protocols using a (much simpler) type theory for binary protocols, ensuring pro-
tocol fidelity and deadlock-freedom. As an application, we offer the first theory
of multiparty session types with behavioral genericity. This theory is natural and
powerful; its analysis techniques reuse results for binary session types.

Key insight: Global Types as Medium Processes

global

type G \

local local local
type type

I%HHHI I%HHHI IHHHHI IHHHHI

type

Key insight: Global Types as Medium Processes

global

type G \

local d local B local local
X2 X3 -
type type type

I%HHHI I%HHHI IHHHHI IHHHHI

X1 .

type

Key insight: Global Types as Medium Processes

global

type G \

X3 .

X1 . X4 .

Key insight: Global Types as Medium Processes

global

type G \

X3 .

X1 . X4 .

I_ -:1

Key insight: Global Types as Medium Processes

global

type G \

X3 .

X1 . X4 .

Pi::x1:{Glxp) Pa::x4:{Glx 1y

I_ -:1

Key insight: Global Types as Medium Processes

(new x;4)(P1|P2| P3| P4|M[G])

global
type G \
X1 X3 Xs: == M[G] B2

Pi::x1:{Glxp) Pa::x4:{Glx 1y

Projectability and Medium for Global Type

We consider a standard definition of projection [DY | 3] (ICALP)
G lp» =... gives a standard session type
N.B. A global type G is well-formed if projectable in all parties

KT» = ... gives the linear logic session type corresponding to T

Medium for G:

[p—q:{Li[U:].Gi}ier G] # p.case(...1;: p(u). q.1;; q[u]. [Gi]...)
[G1|G2]121GiIT|TG21]

[end] =1

Characterization Results

Theorem (global type&as m.eiu)
If G 1s a wi global type with part(G)={x;... x,} then
I x: AGlx1) , ..., xn: {Glxn) = M[G] is typable

Theorem (mediums as global types)
I'; xi:Aq, ..., x0:An = M[G] 1s typable then there are local types

Ti...Tx such than <T;) = Aiand {Glx;) E T;

Theorem (operational correspondence)
Let S = (new x;.,)(Pi| ... |P.|M[G])be a system realizing G. Then
the moves of S and G strongly agree.

Recent work by [CarLinMonSchWad | 6] build on our medium idea to relate
several linear type systems for MPST based on a notion of multicut.

Summary

¢ Linearity plays a key role in logical and type systems for
analysing the fine grained structure of proofs

¢ Linear logic offers a complete Curry-Howard type theory
for name passing processes based on session types

¢ Strong properties obtained for free (e.g. global progress)

¢ This framework provides a sound basis for extensions, which
often just come out quite naturally and harmoniously

¢ Many extensions, consequences and results have already
been extracted from the basic framework.

¢ Many open questions around the corner !

Core References

Caires, fenning: Session Types as I'nuitiohi;ti’c Linear Proposiibns. CONCUR 10
Toninho, Caires, Pfenning: Dependent session types via intuitionistic linear type theory. PPDP | |
Caires, Pfenning, Toninho: Towards concurrent type theory. TLDI 12

Toninho, Caires, Pfenning: Functions as Session-Typed Processes. FOSSaCS 12

Pérez, Caires, Pfenning, Toninho: Linear Logical Relations for Session-Based Concurrency. ESOP 12

DeYoung, Caires, Pfenning, Toninho: Cut Reduction in Linear Logic as Asynchronous Session-Typed
Communication. CSL 12

Wadler: Propositions as sessions. ICFP 12 (also JFP 14)

Toninho, Caires, Pfenning: Higher-Order Processes, Functions, and Sessions: A Monadic Integration.
ESOP 13

Caires, Pérez, Pfenning, Toninho: Behavioral Polymorphism and Parametricity in Session-Based
Communication. ESOP 13

Toninho, Caires, Pfenning: Corecursion and Non-divergence in Session-Typed Processes. TGC 14
Caires, Pfenning:;, Toninho, Linear Logic Propositions as Session Types. MSCS 16
Caires, Pérez: Multiparty Session Types Within a Canonical Binary Theory, and Beyond. FORTE 16

Background

. AN . » + . 3
AR Tl tae

Wadler: Propositions as types. Commun.ACM 58(12) (2015)

Cardelli: Typeful Programming, IFIP State-of-the-Art Reports (1989)

Milner, Parrow, Walker: A Calculus of Mobile Processes, . Inf. Comput. 100(1): 1-40 (1992)
Milner: Functions as Processes. Mathematical Structures in Computer Science 2(2): (1992)
Gay:A Sort Inference Algorithm for the Polyadic Pi-Calculus. POPL 1993

Pierce, Sangiorgi: Behavioral equivalence in the polymorphic pi-calculus.]. ACM 47(3): (2000)

Pierce, Sangiorgi: Typing and Subtyping for Mobile Processes. Mathematical Structures in Computer
Science 6(5) (1996)

Merro, Sangiorgi: On Asynchrony in Name-Passing Calculi. ICALP 1998

Sangiorgi: The Name Discipline of Uniform Receptiveness. ICALP 1997

Kobayashi, Pierce, Turner: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5): 7 (1999)
Honda: Types for Dyadic Interaction. CONCUR 1993

Honda,Vasconcelos, Kubo: Language Primitives and Type Discipline for Structured Communication-
Based Programming. ESOP 1998

Gay, Hole: Subtyping for session types in the pi calculus.Acta Inf. 42(2-3) (2005)
Giunti,Vasconcelos: A Linear Account of Session Types in the Pi Calculus. CONCUR 2010

Background

Honda, Laurent: An exact correspodence between a typed p-éalculus and polarised proof-nets.
Theor. Comput. Sci. 41 1(22-24): (2010)

Bellin, Scott: On the pi-Calculus and Linear Logic. Theor. Comput. Sci. 135(1): (1994)
Abramsky: Computational Interpretations of Linear Logic. Theor. Comput. Sci. | | | (1&2): (1993)

Andreoli: Logic Programming with Focusing Proofs in Linear Logic.). Log. Comput. 2(3): 347 (1992)
Barber, Plotkin: Dual Intuitionistic Linear Logic, ECS-LFCS-96-347, 1996.

Benton: A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. CSL 1994

[list under construction]

