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Session Types in One Slide

• In complex distributed systems communicating participants
agree on a protocol to follow, specifying type and direction of
data exchanged.

• Session types are a type formalism used to model structured
communication-based programming.

• Guarantee privacy, communication safety and session fidelity.

• Designed for
• π- calculus
• functional languages
• object-oriented languages
• binary or multiparty communication
• ...
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Session Types2

• Session types were born more than 20 years ago.

• The π- calculus is the original and most used framework.

• The seminal works:

• Honda, “Types for Dyadic Interaction”, CONCUR 1993.

• Takeuchi, Honda & Kubo, “An Interaction-Based Language
and its Typing System”, PARLE 1994.

• Honda, Vasconcelos & Kubo, “Language Primitives and Type
Discipline for Structured Communication-Based
Programming”, ESOP 1998.

2I thank Simon J. Gay for borrowing some of his slides



Session Types

• Since their appearance, session types have developed into a
significant theme in programming languages.

• Computing has moved from the era of data processing to the
era of communication.

• Data types codify the structure of data and make it available
to programming tools.

• Session types codify the structure of communication and
make it available to programming tools.
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The Maths Server and Client: Types /
Protocols

• The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

• The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C
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The Maths Server and Client: Types /
Protocols

Legend

• &: branch/offer/external choice;

• ⊕: select/internal choice;

• ?Int.T : input Int, continue as T ;

• !Int.T : output Int, continue as T ;

• “·” indicates sequencing;

• add, neg, quit: choice labels, all different;

• end marks the end of the protocol.



The Maths Server: Program and Type

A server srv, parametrised in its channel endpoint x of type S :

srv(x : S) = x . {add : x?(a : Int).x?(b : Int).x!〈a + b〉.srv(x),
neg : x?(a : Int).x!〈−a〉.srv(x)
quit : 0 }

S = & { add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }



The Maths Client: Program and Type

A client clt, parametrised in its channel endpoint x of type C :

clt(x : C ) = x /neg .x!〈2〉.x?(a : Int).x / quit.P(a)

C = ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }



Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))

↓
(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))

↓
(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)
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Establishing a Connection

• The server listens on a standard channel a of type ]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

• The global declaration a : ]S advertises the server and its
protocol.

• The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

• After one step, execution proceeds as before.
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Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.
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Properties of Session Types

• Communication Safety: the exchanged data has the expected
type.

• Session Fidelity: the session channel has the expected
structure.

• Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.
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The Calculus and Typing Rules



The Calculus: Types

S ::= end termination
!T .S send
?T .S receive
⊕{li : Si}i∈I select
&{li : Si}i∈I branch

T ::= S session type
Bool boolean type
]T standard channel type
. . . other type constructs



The Calculus: Terms

P,Q ::= 0 inaction
P | Q composition
(νx)P restriction
xp!〈vq〉.P output
xp?(y).P input
xp / lj .P selection
xp . {li : Pi}i∈I branching

v ::= x , y channel
true | false boolean values
. . . other values

p, q are optional polarities for channels, being + or −



Typing Rules

(T-Par)

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P | Q

(T-Res)

Γ, x+ : S , x− : S ` P

Γ ` (νx)P

(T-In)

Γ, xp : S , y : T ` P

Γ, xp : ?T .S ` xp?(y).P

(T-Out)

Γ1, x
p : S ` P Γ2 ` vq : T

(Γ1, x
p : !T .S) + Γ2 ` xp!〈vq〉.P

(T-Brch)

Γ, xp : Si ` Pi ∀i ∈ I

Γ, xp : &{li : Si}i∈I ` xp . {li : Pi}i∈I

(T-Sel)

Γ, xp : Sj ` P j ∈ I

Γ, xp : ⊕{li : Si}i∈I ` xp / lj .P

Gay & Hole, “Subtyping for Session Types in the Pi Calculus”.
ESOP 1999, Acta Informatica 2005.
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Combination of Typing Contexts

Γ + x+ : S = Γ, x+ : S if x , x+ /∈ dom(Γ)

Γ + x− : S = Γ, x− : S if x , x− /∈ dom(Γ)

Γ + x : T = Γ, x : T if x , x+, x− /∈ dom(Γ)

(Γ, x : T ) + x : T = Γ, x : T if T is not a session type



Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0)

X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×
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Research Timeline

Milner, Parrow, Walker 1989/1992

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998



On standard types for π- calculus

• ]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS93]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangio98]
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For session-typed π- calculus:

1 Structure
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4 Branch/Select

1 Linearity forces a π channel to be used exactly once.

2 Capability of input/output of the same π channel split
between two partners.

3 Restriction construct permits the creation of fresh private π
channels.

4 Variant type permits choice.
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Bridging the two worlds

To which extent session constructs are more complex and more
expressive than the standard π- calculus constructs?
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Key idea of the encoding

Encoding is based on:

1 Linearity of π- calculus channel types;

2 Input/Output channel capabilities;

3 Continuation-Passing principle.

4 Variant types for the π- calculus.



Intuition of the encoding

• Session types are encoded as linear channel types.

• ? and ! are encoded as `i and `o .

• &{li : Si}i∈I and ⊕{li : Si}i∈I are encoded using variant
types.

• Continuation of a session type becomes carried type.

• Dual operations in continuation become equal when carried.



Why is this interesting?

Benefits of the encoding:

1 Large reusability of standard typed π- calculus theory.

2 Derivation of properties for session π- calculus from the
standard typed π- calculus. (e.g. SR, TS)

3 Elimination of redundancy in the syntax of types and terms
and in the theory.

4 Encoding is robust (subtyping, polymorphism, higher-order).

5 Expressivity result for session types.



Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]
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Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!
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Encoding of Session Types: Formally

JendK , ∅[]
J!T .SK , `o [JT K, JSK]

J?T .SK , `i [JT K, JSK]

J⊕{li : Si}i∈I K , `o [〈li : JSiK〉i∈I ]
J&{li : Si}i∈I K , `i [〈li : JSiK〉i∈I ]



Properties of the Encoding

Theorem
Encoding preserves typability of programs.

Theorem
Encoding preserves evaluation of programs.

Lemma
Encoding of dual session types gives dual linear π- types.
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Propositions as Types3

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus
Quantification over propositions ↔ Polymorphism

Modal Logical ↔ Monads (state, exceptions)

3I thank Phil Wadler for these two slides!
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Session Types and Linear Logic (1)

• What is the Curry-Howard correspondence for concurrency?

• Caires & Pfenning (2010) established a correspondence
between intuitionistic linear logic and session typed π- calculus.

• Later on, Wadler (2012) established a correspondence
between classical linear logic and session typed π- calculus.
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Session Types and Linear Logic (2)

propositions as session types
proofs as π- processes

cut reduction as communication



Session Types and Classical Linear Logic
(1)

• A O B is interpreted as “input A then behave like B” (?A.B)

• A⊗ B is interpreted as “output A then behave like B” (!A.B)

• & and ⊕ are interpreted as branch and select.

• The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.
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Session Types and Classical Linear Logic
(2)

Wadler 2012; Caires 2014 (@Luca Cardelli Fest)

(T-O)

P ` ∆, y :A, x :B

x?(y).P ` ∆, x :A O B

(T-⊗)
P ` ∆, y :A Q ` ∆′, x :B

x!(y).(P | Q) ` ∆,∆′, x :A⊗ B

(T-cut)

P ` ∆, x :A Q ` ∆′, x :A

(νx)(P | Q) ` ∆,∆′

(T-&)

Pi ` ∆, x :Ai ∀i ∈ I

x . {li : Pi}i∈I ` ∆, x :&{li : Ai}i∈I

(T-⊕)
P ` ∆, x :Aj j ∈ I

x / lj .P ` ∆, x :⊕{li : Ai}i∈I
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Defining subtyping 4

S ≤ T

• Safe Substitutability (cf Liskov & Wing 1994): “it is safe to
use a value of type S where a value of type T is expected”.

• ...Meaning: No violation of the runtime safety that the type
system guarantees.

• Set Inclusion: in semantic subtyping (cf Castagna et al.)

JSK ⊆ JT K

• Property Preservation: (cf Liskov & Wing 1994)

∀φ. (∀x : T . φ(x)) =⇒ (∀y : S . φ(y))

4I thank Luca Padovani for borrowing these two slides
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Examples

• Set Inclusion:

Even ≤ Int if and only if JEvenK ≤ JIntK

• Property Preservation:

{x : Int, y : Int, c : Color} ≤ {x : Int, y : Int}

• φ(Point) = “Point has an x field”.
• φ(Point) = “Point has an y field”.
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The *Old* Maths Server and Client

• The session type of the server’s channel endpoint:

Sold , &{ add : ?Int.?Int.!Int.Sold ,
neg : ?Int.!Int.Sold

quit : end }

• The session type of the client’s channel endpoint:

Cold , ⊕{ add : !Int.!Int.?Int.Cold ,
neg : !Int.?Int.Cold

quit : end }
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Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i )

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)



Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i )

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)



Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i )

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)



Subtyping: Channel Substitutability

• Allow interaction when the client can choose from a smaller
set choices than the ones offered by the server.
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Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .
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Subtyping Rules for Session Types [GH05]

I ⊆ J ∀i ∈ I . Si <: S ′i

&{li : Si}i∈I <: &{lj : S ′j}j∈J

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

end <: end

T <: T ′ S <: S ′

?T .S <: ?T ′.S ′

T ′ <: T S <: S ′

!T .S <: !T ′.S ′

?,& are covariant
!,⊕ are contravariant
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Exercise: Which is subtype of which?

![Even].end

:>

![Int].end

![![Even].end].end

<:

![![Int].end].end

?[![Even].end].end

:>

?[![Int].end].end

⊕ {add : end, quit : end}

:>

⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}
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Subtyping: Process Substitutability

• Carbone, Honda & Yoshida (ESOP 2007);
Demangeon & Honda (CONCUR 2011) define subtyping in
the opposite direction: Snew <: Sold .

• They consider a session environment to be the type of a
process:

x : Snew ` srv(x)

• They want safe substitutability of processes: the new server
can be used in any context where an old server was expected.

• Subsumption gives

x : Sold ` srv(x)
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On the Subsumption Rule (1)

• Substitutability of channels:

Γ ` P Γ′ <: Γ

Γ′ ` P

• Example:

x : Snew ` srv(x) x : Sold <: x : Snew

x : Sold ` srv(x)



On the Subsumption Rule (2)

• Substitutability of processes:

Γ ` P Γ <: Γ′

Γ′ ` P

• Example:

x : Snew ` srv(x) x : Snew <: x : Sold

x : Sold ` srv(x)

Simon J. Gay. “Subtyping Supports Safe Session Substitution”.
WadlerFest 2016
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Subtyping Rules for Standard π- Types

(Sπ- Refl)
T ≤ T

T ≤ T ′ T ′ ≤ T ′′

(Sπ- Trans)
T ≤ T ′′

T̃ ≤ T̃ ′
(Sπ- ii)

`i [T̃ ] ≤ `i [T̃ ′]

T̃ ′ ≤ T̃
(Sπ- oo)

`o [T̃ ] ≤ `o [T̃ ′]

I ⊆ J Ti ≤ T ′j ∀i ∈ I
(Sπ- Variant)

〈li : Ti 〉i∈I ≤ 〈lj : T ′j 〉j∈J



Subtyping

Theorem
For all session types S , S ′. S <: S ′ if and only if JSK ≤ JS ′K.

Derived from the encoding:

• Reflexivity and Transitivity of Subtyping.

• Lemmas (e.g., Substitution...) from the corresponding ones in
the π- calculus. derived for free.
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More on Subtyping

• Mostrous (2010) extended subtyping to allow some reordering
of messages, when communication is asynchronous.

• Padovani (2011, 2013) has considered another form of
subtyping, called fair subtyping.

• Chen, Dezani & Yoshida (2014) have studied the preciseness
of subtyping: the subtyping relation is sound and complete for
safe substitutability.
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Categorising language-based
implementations of session types

• Binary vs. Multiparty

• Primitive vs. Library vs. External Tool

• Static vs. Dynamic vs. Hybrid checking



Programming Languages with Native
BST: Static Typechecking

Sill:

• Functional programming language that supports session typed
message passing concurrency.

• Based on the Curry-Howard correspondence of session types
and intuitionistic linear logic (Caires & Pfenning 2010).

• Type preservation; deadlock and race freedom; support of
subtyping, polymorphism and recursive types.

• Contributors: F. Pfenning, D. Griffith et al.



Programming Languages with Native
BST: Static Typechecking

SePi:

• Concurrent, message-passing programming language based on
the π- calculus.

• Based on synchronous, bidirectional channel based
communication.

• Primitives for send/receive as well as offer/select choices.

• Contributors: J. Franco, V.Vasconcelos, D.Mostrous.



Programming Languages with Native
BST: Static Typechecking5

Links:

• Programming language for web applications.

• Binary session types added as language primitives and
statically typechecked.

• Developed at the University of Edinburgh.

5The following list of programming languages is taken from
http://simonjf.com/2016/05/28/session-type-implementations.html



Mainstream Programming Languages with
Binary Session Types

Haskell:

• effect-sessions: implementation in Concurrent Haskell; static
typechecking. Orchard & Yoshida (POPL 2016)

• simple-session: la ibrary implementation of Haskell session
types. Pucella & Tov (Haskell 2008)

• sessions: yet another embedding of session types in Haskell.
Sackman & Eisenbach (TR 2008)



Mainstream Programming Languages with
Binary Session Types

Java:

• CO2 Middleware: for Java applications, based on timed
session types; dynamic monitoring for conformance of timing
constraints.
Bartoletti et al. (FACS 2015, FORTE 2015)

• (Eventful) Session Java: front-end and runtime library for
Java; supports event-driven programming.
Hu, Yoshida & Honda (ECOOP 2008);
Hu et al. (ECOOP 2010)



Mainstream Programming Languages with
Binary Session Types

Scala

• Based on the continuation-passing approach of
Kobayashi 2007, and Dardha et al. 2012

• Message ordering is checked statically

• Linearity is checked dynamically.

• Scalas & Yoshida (ECOOP 2016)



Mainstream Programming Languages with
Binary Session Types

OCaml: FuSe

• Lightweight implementation of BST in OCaml

• static check of message ordering and dynamic linearity check.
Padovani 2015

Rust:

• Implementation of BST in Mozilla’s Rust; use of Rust’s affine
type system. Jespersen, Munksgaard & Larsen (WGP 2015)
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Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.
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Multiparty Session Types (2)

A buyer-seller example from Honda et al:

Buyer1 Seller Buyer2

[Link] [Link]

title

quotequote

quote div 2

ok

quit

address

date }branch



Multiparty Session Types (3)

The global type describes the whole protocol:

1. B1→ S : title.

2. S→ B1 : quote.

3. S→ B2 : quote.

4. B1→ B2 : quote.

5. B2→ S :


ok : B2→ S : address.

S→ B2 : date.end,
quit : end





Multiparty Session Types (4)

• Projection gives a local type for B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

• Local type checking is similar to binary session types.

• Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.
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Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org
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Scribble by example: The Bookstore
Global Protocol

global protocol Bookstore(role Buyer1 , role Buyer2 ,

role Seller) {

book(title) from Buyer1 to Seller;

book(quote) from Seller to Buyer1 , Buyer2;

contribution(quote) from Buyer1 to Buyer2;

choice at Buyer2 {

ok from Buyer2 to Seller;

deliver(address) from Buyer2 to Seller;

deliver(date) from Seller to Buyer2;

} or {

quit from Buyer2 to Seller;

}

}



The Bookstore Protocol: Buyer1

local protocol Bookstore_Buyer1(self Buyer1 , role

Buyer2 , role Seller) {

book(title) to Seller;

book(quote) from Seller;

contribution(quote) to Buyer2;

}



The Bookstore Protocol: Buyer2

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}
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Mungo

• Mungo is a Java front-end tool that statically checks the
order of method calls.

• Based on the notions of session types and typestate,
describing non-uniform objects.

• A Java class is annotated with a typestate. Mungo checks
that method calls follow the declared typestate of an object.

• Contributors: ABCD Glasgow team.
Based on Gay et al (POPL 2010);
Kouzapas et al. (PPDP 2016)
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The FileProtocol Example

typestate FileProtocol {

Init = {

Status open (): <OK: Open , ERROR: end >

}

Open = {

BooleanEnum hasNext (): <TRUE: Read , FALSE: Close >,

void close (): end

}

Read = {

void read (): Open

}

Close = {

void close (): end

}

}
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StMungo

• StMungo is a Java-based tool used to translate Scribble local
protocols into typestate.

• After the translation, Mungo is used to statically typecheck
the protocol.

• Contributors: ABCD Glasgow team.
Kouzapas et al. (PPDP 2016)
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protocols into typestate.

• After the translation, Mungo is used to statically typecheck
the protocol.

• Contributors: ABCD Glasgow team.
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The Bookstore Protocol: Buyer2

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}



The Buyer2 local protocol as Typestate

typestate Buyer2Protocol {

State0 = {

quote receive_quoteFromSeller (): State1

}

State1 = {

quote receive_quoteFromBuyer1 (): State2

}

State2 = {

void send_OKToSeller (): State3 ,

void send_QUITToSeller (): State5

}

State3 = {

void send_addressToSeller(address ): State4

}

State4 = {

date receive_dateFromSeller (): end

}

...

}
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The SMTP Protocol: A Demo

Link: http://www.dcs.gla.ac.uk/research/mungo/



Mainstream Programming Languages with
Multiparty Session Types6

Multiparty Session C:

• Static typechecking of MST in C

• Session communication happens via use of a library

• Ng, Yoshida & Honda (TOOLS 2012);
Ng et al (HEART 2012)

DinGo Hunter

• External tool to statically analyse Go programs

• Static detection of deadlocks: extracting CFSMs and
synthesising global graphs

• Ng & Yoshida (CC 2016)

6The following list of programming languages is taken from
http://simonjf.com/2016/05/28/session-type-implementations.html



Mainstream Programming Languages with
Multiparty Session Types

Session Actor

• A Python implementation for combining session types and the
actor model of programming.

• Each actor may be involved in multiple roles, in multiple
sessions.

• Communication is checked dynamically via compilation of
Scribble protocols into CFSMs. Neykova & Yoshida
(COORDINATION 2014)



Mainstream Programming Languages with
Multiparty Session Types

Python

• SPY: implementation of MST in Python using runtime
monitoring. Neykova (PLACES 2013); Neykova, Yoshida &
Hu (RV 2013); Hu et al (RV 2013)

Erlang

• Dynamic monitoring of communication (MST) for Erlang
applications

• Inspired by Session Actor. Simon Fowler (MSc thesis, 2015)
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Progress

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.
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Comparing Properties of Communication

• Deadlock Freedom: communications eventually succeed,
unless the whole process diverges. (Standard π)

• Lock Freedom: communications eventually succeed even if the
whole process diverges. (Standard π)

• Progress: In-session communications eventually succeed,
provided that a suitable context can be found. (Session π)



Deadlock Freedom vs. Lock Freedom

• Consider the process:

P = (νx)(νy)
(

x+?(z).y+!〈z〉 | y−?(w).x−!〈w〉
)

It is deadlocked and hence locked!

• Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!



Deadlock Freedom vs. Lock Freedom

• Consider the process:

P = (νx)(νy)
(

x+?(z).y+!〈z〉 | y−?(w).x−!〈w〉
)

It is deadlocked and hence locked!

• Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!



Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

• Lock freedom is a stronger property than deadlock freedom.

• Progress is a compositional form of lock freedom.
(Carbone, Dardha & Montesi 2014)
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More Advanced Topics in Sessions

Session types theories include notions and studies in the following.

• Notions of subtyping, polymorphism, higher-order.

• Study of liveness properties: deadlock freedom, lock freedom
and progress.

• Asynchrony and synchrony.

• Static typechecking and dynamic monitoring.

• Finite and recursive session types.

• Study of security (e.g., information flow).

• Exceptions, time-outs.

• Point-to-point and broadcasting

• And many more...



Conclusions

• Session Types are a very simple but powerful formalism to
model protocols in distributed systems.

• Developed for calculi as well as programming languages and
various paradigms.

• Many interesting features.

• Part of behavioural types, including also contracts,
typestates...



Audience!〈ThankYou〉.
rec X{ & {

more : Audience?(y : Question).Audience!〈Answer〉.X ,
quit : end}

}
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