
Introduction to Session Types

Ornela Dardha1

School of Computing Science
University of Glasgow, UK

BETTY Summer School 2016

1UK EPSRC project From Data Types to Session Types: A Basis for
Concurrency and Distribution (EP/K034413/1)

Session Types in One Slide

• In complex distributed systems communicating participants
agree on a protocol to follow, specifying type and direction of
data exchanged.

• Session types are a type formalism used to model structured
communication-based programming.

• Guarantee privacy, communication safety and session fidelity.

• Designed for
• π- calculus
• functional languages
• object-oriented languages
• binary or multiparty communication
• ...

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Session Types2

• Session types were born more than 20 years ago.

• The π- calculus is the original and most used framework.

• The seminal works:

• Honda, “Types for Dyadic Interaction”, CONCUR 1993.

• Takeuchi, Honda & Kubo, “An Interaction-Based Language
and its Typing System”, PARLE 1994.

• Honda, Vasconcelos & Kubo, “Language Primitives and Type
Discipline for Structured Communication-Based
Programming”, ESOP 1998.

2I thank Simon J. Gay for borrowing some of his slides

Session Types

• Since their appearance, session types have developed into a
significant theme in programming languages.

• Computing has moved from the era of data processing to the
era of communication.

• Data types codify the structure of data and make it available
to programming tools.

• Session types codify the structure of communication and
make it available to programming tools.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

The Maths Server and Client: Types /
Protocols

• The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

• The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types /
Protocols

• The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

• The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types /
Protocols

• The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

• The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types /
Protocols

Legend

• &: branch/offer/external choice;

• ⊕: select/internal choice;

• ?Int.T : input Int, continue as T ;

• !Int.T : output Int, continue as T ;

• “·” indicates sequencing;

• add, neg, quit: choice labels, all different;

• end marks the end of the protocol.

The Maths Server: Program and Type

A server srv, parametrised in its channel endpoint x of type S :

srv(x : S) = x . {add : x?(a : Int).x?(b : Int).x!〈a + b〉.srv(x),
neg : x?(a : Int).x!〈−a〉.srv(x)
quit : 0 }

S = & { add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

The Maths Client: Program and Type

A client clt, parametrised in its channel endpoint x of type C :

clt(x : C) = x /neg .x!〈2〉.x?(a : Int).x / quit.P(a)

C = ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))

↓
(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))

↓
(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))

↓
(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))
↓

(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))
↓

(νc : end)(0 | P(−2))
≡

P(−2)

Establishing a Connection

• The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

• The global declaration a :]S advertises the server and its
protocol.

• The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

• After one step, execution proceeds as before.

Establishing a Connection

• The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

• The global declaration a :]S advertises the server and its
protocol.

• The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

• After one step, execution proceeds as before.

Establishing a Connection

• The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

• The global declaration a :]S advertises the server and its
protocol.

• The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

• After one step, execution proceeds as before.

Establishing a Connection

• The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

• The global declaration a :]S advertises the server and its
protocol.

• The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

• After one step, execution proceeds as before.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.

Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.

Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.

Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.

Session Types: Key Features

• Duality: the relationship between the types of opposite
endpoints of a session channel.

• Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

• The structure of session types matches the structure of
communication.

• Session types change as communication occurs.

• Connection is established among participants.

Properties of Session Types

• Communication Safety: the exchanged data has the expected
type.

• Session Fidelity: the session channel has the expected
structure.

• Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

• Communication Safety: the exchanged data has the expected
type.

• Session Fidelity: the session channel has the expected
structure.

• Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

• Communication Safety: the exchanged data has the expected
type.

• Session Fidelity: the session channel has the expected
structure.

• Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

• Communication Safety: the exchanged data has the expected
type.

• Session Fidelity: the session channel has the expected
structure.

• Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

The Calculus and Typing Rules

The Calculus: Types

S ::= end termination
!T .S send
?T .S receive
⊕{li : Si}i∈I select
&{li : Si}i∈I branch

T ::= S session type
Bool boolean type
]T standard channel type
. . . other type constructs

The Calculus: Terms

P,Q ::= 0 inaction
P | Q composition
(νx)P restriction
xp!〈vq〉.P output
xp?(y).P input
xp / lj .P selection
xp . {li : Pi}i∈I branching

v ::= x , y channel
true | false boolean values
. . . other values

p, q are optional polarities for channels, being + or −

Typing Rules

(T-Par)

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P | Q

(T-Res)

Γ, x+ : S , x− : S ` P

Γ ` (νx)P

(T-In)

Γ, xp : S , y : T ` P

Γ, xp : ?T .S ` xp?(y).P

(T-Out)

Γ1, x
p : S ` P Γ2 ` vq : T

(Γ1, x
p : !T .S) + Γ2 ` xp!〈vq〉.P

(T-Brch)

Γ, xp : Si ` Pi ∀i ∈ I

Γ, xp : &{li : Si}i∈I ` xp . {li : Pi}i∈I

(T-Sel)

Γ, xp : Sj ` P j ∈ I

Γ, xp : ⊕{li : Si}i∈I ` xp / lj .P

Gay & Hole, “Subtyping for Session Types in the Pi Calculus”.
ESOP 1999, Acta Informatica 2005.

Typing Rules

(T-Par)

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P | Q

(T-Res)

Γ, x+ : S , x− : S ` P

Γ ` (νx)P

(T-In)

Γ, xp : S , y : T ` P

Γ, xp : ?T .S ` xp?(y).P

(T-Out)

Γ1, x
p : S ` P Γ2 ` vq : T

(Γ1, x
p : !T .S) + Γ2 ` xp!〈vq〉.P

(T-Brch)

Γ, xp : Si ` Pi ∀i ∈ I

Γ, xp : &{li : Si}i∈I ` xp . {li : Pi}i∈I

(T-Sel)

Γ, xp : Sj ` P j ∈ I

Γ, xp : ⊕{li : Si}i∈I ` xp / lj .P

Gay & Hole, “Subtyping for Session Types in the Pi Calculus”.
ESOP 1999, Acta Informatica 2005.

Combination of Typing Contexts

Γ + x+ : S = Γ, x+ : S if x , x+ /∈ dom(Γ)

Γ + x− : S = Γ, x− : S if x , x− /∈ dom(Γ)

Γ + x : T = Γ, x : T if x , x+, x− /∈ dom(Γ)

(Γ, x : T) + x : T = Γ, x : T if T is not a session type

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0)

X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0)

×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0)

×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0)

X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0)

X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0)

×

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) X

(νx)(x+!〈t〉.0 | x−!〈true〉.0) ×

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) ×

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) X

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) ×

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Research Timeline

Milner, Parrow, Walker 1989/1992

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS93]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangio98]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS93]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangio98]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS93]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangio98]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS93]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangio98]

Key words for standard π- types

For session-typed π- calculus:

1 Structure

2 Duality

3 Restriction

4 Branch/Select

1 Linearity forces a π channel to be used exactly once.

2 Capability of input/output of the same π channel split
between two partners.

3 Restriction construct permits the creation of fresh private π
channels.

4 Variant type permits choice.

Key words for standard π- types

For session-typed π- calculus:

1 Structure

2 Duality

3 Restriction

4 Branch/Select

1 Linearity forces a π channel to be used exactly once.

2 Capability of input/output of the same π channel split
between two partners.

3 Restriction construct permits the creation of fresh private π
channels.

4 Variant type permits choice.

Bridging the two worlds

To which extent session constructs are more complex and more
expressive than the standard π- calculus constructs?

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Gay, Gesbert, Ravara 2008

Demangeon, Honda 2011

Dardha, Giachino, Sangiorgi 2012

Dardha 2014

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Dardha, Giachino, Sangiorgi 2012

Dardha 2014

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Sangiorgi 1998

Kobayashi, Pierce, Turner 1996

Milner, Parrow and Walker 1989/1992
A calculus of mobile processes

Kobayashi 2007
Type systems for concurrent programs

Gay, Gesbert and Ravara 2008
Session types as generic process types

Demangeon and Honda 2011
Full abstraction in a subtyped pi-calculus

with linear types

Dardha, Giachino and Sangiorgi 2012
Session types revisited

Dardha 2014
Recursive session types revisited

Honda 1993
Types for dyadic interaction

Takeuchi, Honda and Kubo 1994
An interaction based language and its typing system

Honda, Vasconcelos and Kubo 1998
Language primitives and type discipline for

structured communication-based programming

To be continued...

Milner 1993
The polyadic pi-calculus: a tutorial

Pierce and Sangiorgi 1993
Typing and subtyping for mobile processes

Sangiorgi 1998
An interpretation of typed objects

into typed pi-calculus

Kobayashi, Pierce and Turner 1996
Linearity and the pi-calculus

Key idea of the encoding

Encoding is based on:

1 Linearity of π- calculus channel types;

2 Input/Output channel capabilities;

3 Continuation-Passing principle.

4 Variant types for the π- calculus.

Intuition of the encoding

• Session types are encoded as linear channel types.

• ? and ! are encoded as `i and `o .

• &{li : Si}i∈I and ⊕{li : Si}i∈I are encoded using variant
types.

• Continuation of a session type becomes carried type.

• Dual operations in continuation become equal when carried.

Why is this interesting?

Benefits of the encoding:

1 Large reusability of standard typed π- calculus theory.

2 Derivation of properties for session π- calculus from the
standard typed π- calculus. (e.g. SR, TS)

3 Elimination of redundancy in the syntax of types and terms
and in the theory.

4 Encoding is robust (subtyping, polymorphism, higher-order).

5 Expressivity result for session types.

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = !Int.!Int.?Bool.end

Then
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Encoding of Session Types: Formally

JendK , ∅[]
J!T .SK , `o [JT K, JSK]

J?T .SK , `i [JT K, JSK]

J⊕{li : Si}i∈I K , `o [〈li : JSiK〉i∈I]
J&{li : Si}i∈I K , `i [〈li : JSiK〉i∈I]

Properties of the Encoding

Theorem
Encoding preserves typability of programs.

Theorem
Encoding preserves evaluation of programs.

Lemma
Encoding of dual session types gives dual linear π- types.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Propositions as Types3

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus
Quantification over propositions ↔ Polymorphism

Modal Logical ↔ Monads (state, exceptions)

3I thank Phil Wadler for these two slides!

Propositions as Types

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus
Quantification over propositions ↔ Polymorphism

Modal Logical ↔ Monads (state, exceptions)

??? ↔ Process Calculus

Session Types and Linear Logic (1)

• What is the Curry-Howard correspondence for concurrency?

• Caires & Pfenning (2010) established a correspondence
between intuitionistic linear logic and session typed π- calculus.

• Later on, Wadler (2012) established a correspondence
between classical linear logic and session typed π- calculus.

Session Types and Linear Logic (1)

• What is the Curry-Howard correspondence for concurrency?

• Caires & Pfenning (2010) established a correspondence
between intuitionistic linear logic and session typed π- calculus.

• Later on, Wadler (2012) established a correspondence
between classical linear logic and session typed π- calculus.

Session Types and Linear Logic (1)

• What is the Curry-Howard correspondence for concurrency?

• Caires & Pfenning (2010) established a correspondence
between intuitionistic linear logic and session typed π- calculus.

• Later on, Wadler (2012) established a correspondence
between classical linear logic and session typed π- calculus.

Session Types and Linear Logic (2)

propositions as session types
proofs as π- processes

cut reduction as communication

Session Types and Classical Linear Logic
(1)

• A O B is interpreted as “input A then behave like B” (?A.B)

• A⊗ B is interpreted as “output A then behave like B” (!A.B)

• & and ⊕ are interpreted as branch and select.

• The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic
(1)

• A O B is interpreted as “input A then behave like B” (?A.B)

• A⊗ B is interpreted as “output A then behave like B” (!A.B)

• & and ⊕ are interpreted as branch and select.

• The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic
(1)

• A O B is interpreted as “input A then behave like B” (?A.B)

• A⊗ B is interpreted as “output A then behave like B” (!A.B)

• & and ⊕ are interpreted as branch and select.

• The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic
(1)

• A O B is interpreted as “input A then behave like B” (?A.B)

• A⊗ B is interpreted as “output A then behave like B” (!A.B)

• & and ⊕ are interpreted as branch and select.

• The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic
(2)

Wadler 2012; Caires 2014 (@Luca Cardelli Fest)

(T-O)

P ` ∆, y :A, x :B

x?(y).P ` ∆, x :A O B

(T-⊗)
P ` ∆, y :A Q ` ∆′, x :B

x!(y).(P | Q) ` ∆,∆′, x :A⊗ B

(T-cut)

P ` ∆, x :A Q ` ∆′, x :A

(νx)(P | Q) ` ∆,∆′

(T-&)

Pi ` ∆, x :Ai ∀i ∈ I

x . {li : Pi}i∈I ` ∆, x :&{li : Ai}i∈I

(T-⊕)
P ` ∆, x :Aj j ∈ I

x / lj .P ` ∆, x :⊕{li : Ai}i∈I

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Defining subtyping 4

S ≤ T

• Safe Substitutability (cf Liskov & Wing 1994): “it is safe to
use a value of type S where a value of type T is expected”.

• ...Meaning: No violation of the runtime safety that the type
system guarantees.

• Set Inclusion: in semantic subtyping (cf Castagna et al.)

JSK ⊆ JT K

• Property Preservation: (cf Liskov & Wing 1994)

∀φ. (∀x : T . φ(x)) =⇒ (∀y : S . φ(y))

4I thank Luca Padovani for borrowing these two slides

Defining subtyping 4

S ≤ T

• Safe Substitutability (cf Liskov & Wing 1994): “it is safe to
use a value of type S where a value of type T is expected”.

• ...Meaning: No violation of the runtime safety that the type
system guarantees.

• Set Inclusion: in semantic subtyping (cf Castagna et al.)

JSK ⊆ JT K

• Property Preservation: (cf Liskov & Wing 1994)

∀φ. (∀x : T . φ(x)) =⇒ (∀y : S . φ(y))

4I thank Luca Padovani for borrowing these two slides

Defining subtyping 4

S ≤ T

• Safe Substitutability (cf Liskov & Wing 1994): “it is safe to
use a value of type S where a value of type T is expected”.

• ...Meaning: No violation of the runtime safety that the type
system guarantees.

• Set Inclusion: in semantic subtyping (cf Castagna et al.)

JSK ⊆ JT K

• Property Preservation: (cf Liskov & Wing 1994)

∀φ. (∀x : T . φ(x)) =⇒ (∀y : S . φ(y))

4I thank Luca Padovani for borrowing these two slides

Defining subtyping 4

S ≤ T

• Safe Substitutability (cf Liskov & Wing 1994): “it is safe to
use a value of type S where a value of type T is expected”.

• ...Meaning: No violation of the runtime safety that the type
system guarantees.

• Set Inclusion: in semantic subtyping (cf Castagna et al.)

JSK ⊆ JT K

• Property Preservation: (cf Liskov & Wing 1994)

∀φ. (∀x : T . φ(x)) =⇒ (∀y : S . φ(y))

4I thank Luca Padovani for borrowing these two slides

Examples

• Set Inclusion:

Even ≤ Int if and only if JEvenK ≤ JIntK

• Property Preservation:

{x : Int, y : Int, c : Color} ≤ {x : Int, y : Int}

• φ(Point) = “Point has an x field”.
• φ(Point) = “Point has an y field”.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

The *Old* Maths Server and Client

• The session type of the server’s channel endpoint:

Sold , &{ add : ?Int.?Int.!Int.Sold ,
neg : ?Int.!Int.Sold

quit : end }

• The session type of the client’s channel endpoint:

Cold , ⊕{ add : !Int.!Int.?Int.Cold ,
neg : !Int.?Int.Cold

quit : end }

The *New* Maths Server and Client

• The session type of the server’s channel endpoint:

Snew , &{ mul : ?Int.?Int.!Int.Snew ,
add : ?Int.?Int.!Int.Snew ,
neg : ?Int.!Int.Snew

quit : end }

• The session type of the client’s channel endpoint:

Cnew , ⊕{ add : !Int.!Int.?Int.Cnew ,
quit : end }

The *New* Maths Server and Client

• The session type of the server’s channel endpoint:

Snew , &{ mul : ?Int.?Int.!Int.Snew ,
add : ?Int.?Int.!Int.Snew ,
neg : ?Int.!Int.Snew

quit : end }

• The session type of the client’s channel endpoint:

Cnew , ⊕{ add : !Int.!Int.?Int.Cnew ,
quit : end }

Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i)

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)

Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i)

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)

Subtyping: Channel Substitutability
• Gay & Hole, “Subtyping for Session Types in the Pi

Calculus”. ESOP 1999, Acta Informatica 2005.

• Allow interaction when the client does not know about all of
the server’s services.

I ⊆ J ∀i ∈ I . (Si <: S ′i)

&{li : Si}i∈I <: &{lj : S ′j}j∈J

• Subtyping relation between Sold and Snew :

Sold = &{add , neg , quit}
Snew = &{mul , add , neg , quit}
Sold <: Snew

• Then the following holds:

From x : Snew ` srv(x)
we can conclude x : Sold ` srv(x)

Subtyping: Channel Substitutability

• Allow interaction when the client can choose from a smaller
set choices than the ones offered by the server.

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

• Subtyping relation between Cold and Cnew :

Cold = ⊕{add , neg , quit}
Cnew = ⊕{add , quit}
Cold <: Cnew

• Then the following holds:

From x : Cnew ` clt(x)
we can conclude x : Cold ` clt(x)

Subtyping: Channel Substitutability

• Allow interaction when the client can choose from a smaller
set choices than the ones offered by the server.

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

• Subtyping relation between Cold and Cnew :

Cold = ⊕{add , neg , quit}
Cnew = ⊕{add , quit}
Cold <: Cnew

• Then the following holds:

From x : Cnew ` clt(x)
we can conclude x : Cold ` clt(x)

Subtyping: Channel Substitutability

• Allow interaction when the client can choose from a smaller
set choices than the ones offered by the server.

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

• Subtyping relation between Cold and Cnew :

Cold = ⊕{add , neg , quit}
Cnew = ⊕{add , quit}
Cold <: Cnew

• Then the following holds:

From x : Cnew ` clt(x)
we can conclude x : Cold ` clt(x)

Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .

Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .

Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .

Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .

Subtyping: Channel Substitutability

• Suppose that Sold has been published.

• To use the server, a client creates a session channel c.

• The client sends c+ : Sold to the server, and keeps c− : Sold .

• The client is not aware that the server expects x : Snew .

• Safe substitutability of channels: Sold <: Snew and it is
(semantically) safe for the server to be given c+ : Sold .

Subtyping Rules for Session Types [GH05]

I ⊆ J ∀i ∈ I . Si <: S ′i

&{li : Si}i∈I <: &{lj : S ′j}j∈J

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

end <: end

T <: T ′ S <: S ′

?T .S <: ?T ′.S ′

T ′ <: T S <: S ′

!T .S <: !T ′.S ′

?,& are covariant
!,⊕ are contravariant

Subtyping Rules for Session Types [GH05]

I ⊆ J ∀i ∈ I . Si <: S ′i

&{li : Si}i∈I <: &{lj : S ′j}j∈J

I ⊇ J ∀j ∈ J. Sj <: S ′j

⊕{li : Si}i∈I <: ⊕{lj : S ′j}j∈J

end <: end

T <: T ′ S <: S ′

?T .S <: ?T ′.S ′

T ′ <: T S <: S ′

!T .S <: !T ′.S ′

?,& are covariant
!,⊕ are contravariant

Exercise: Which is subtype of which?

![Even].end

:>

![Int].end

![![Even].end].end

<:

![![Int].end].end

?[![Even].end].end

:>

?[![Int].end].end

⊕ {add : end, quit : end}

:>

⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end

<:

![![Int].end].end

?[![Even].end].end

:>

?[![Int].end].end

⊕ {add : end, quit : end}

:>

⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end <: ![![Int].end].end

?[![Even].end].end

:>

?[![Int].end].end

⊕ {add : end, quit : end}

:>

⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end <: ![![Int].end].end

?[![Even].end].end :> ?[![Int].end].end

⊕ {add : end, quit : end}

:>

⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end <: ![![Int].end].end

?[![Even].end].end :> ?[![Int].end].end

⊕ {add : end, quit : end} :> ⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}]

<:

![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end <: ![![Int].end].end

?[![Even].end].end :> ?[![Int].end].end

⊕ {add : end, quit : end} :> ⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}] <: ![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int}

×

&{add : Int, neg : Real}

Exercise: Which is subtype of which?

![Even].end :> ![Int].end

![![Even].end].end <: ![![Int].end].end

?[![Even].end].end :> ?[![Int].end].end

⊕ {add : end, quit : end} :> ⊕{add : end, neg : end, quit : end}

![⊕{add : end, quit : end}] <: ![⊕{add : end, neg : end, quit : end}]

&{add : Real, neg : Int} × &{add : Int, neg : Real}

Subtyping: Process Substitutability

• Carbone, Honda & Yoshida (ESOP 2007);
Demangeon & Honda (CONCUR 2011) define subtyping in
the opposite direction: Snew <: Sold .

• They consider a session environment to be the type of a
process:

x : Snew ` srv(x)

• They want safe substitutability of processes: the new server
can be used in any context where an old server was expected.

• Subsumption gives

x : Sold ` srv(x)

Subtyping: Process Substitutability

• Carbone, Honda & Yoshida (ESOP 2007);
Demangeon & Honda (CONCUR 2011) define subtyping in
the opposite direction: Snew <: Sold .

• They consider a session environment to be the type of a
process:

x : Snew ` srv(x)

• They want safe substitutability of processes: the new server
can be used in any context where an old server was expected.

• Subsumption gives

x : Sold ` srv(x)

Subtyping: Process Substitutability

• Carbone, Honda & Yoshida (ESOP 2007);
Demangeon & Honda (CONCUR 2011) define subtyping in
the opposite direction: Snew <: Sold .

• They consider a session environment to be the type of a
process:

x : Snew ` srv(x)

• They want safe substitutability of processes: the new server
can be used in any context where an old server was expected.

• Subsumption gives

x : Sold ` srv(x)

Subtyping: Process Substitutability

• Carbone, Honda & Yoshida (ESOP 2007);
Demangeon & Honda (CONCUR 2011) define subtyping in
the opposite direction: Snew <: Sold .

• They consider a session environment to be the type of a
process:

x : Snew ` srv(x)

• They want safe substitutability of processes: the new server
can be used in any context where an old server was expected.

• Subsumption gives

x : Sold ` srv(x)

On the Subsumption Rule (1)

• Substitutability of channels:

Γ ` P Γ′ <: Γ

Γ′ ` P

• Example:

x : Snew ` srv(x) x : Sold <: x : Snew

x : Sold ` srv(x)

On the Subsumption Rule (2)

• Substitutability of processes:

Γ ` P Γ <: Γ′

Γ′ ` P

• Example:

x : Snew ` srv(x) x : Snew <: x : Sold

x : Sold ` srv(x)

Simon J. Gay. “Subtyping Supports Safe Session Substitution”.
WadlerFest 2016

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Subtyping Rules for Standard π- Types

(Sπ- Refl)
T ≤ T

T ≤ T ′ T ′ ≤ T ′′

(Sπ- Trans)
T ≤ T ′′

T̃ ≤ T̃ ′
(Sπ- ii)

`i [T̃] ≤ `i [T̃ ′]

T̃ ′ ≤ T̃
(Sπ- oo)

`o [T̃] ≤ `o [T̃ ′]

I ⊆ J Ti ≤ T ′j ∀i ∈ I
(Sπ- Variant)

〈li : Ti 〉i∈I ≤ 〈lj : T ′j 〉j∈J

Subtyping

Theorem
For all session types S , S ′. S <: S ′ if and only if JSK ≤ JS ′K.

Derived from the encoding:

• Reflexivity and Transitivity of Subtyping.

• Lemmas (e.g., Substitution...) from the corresponding ones in
the π- calculus. derived for free.

Subtyping

Theorem
For all session types S , S ′. S <: S ′ if and only if JSK ≤ JS ′K.

Derived from the encoding:

• Reflexivity and Transitivity of Subtyping.

• Lemmas (e.g., Substitution...) from the corresponding ones in
the π- calculus. derived for free.

More on Subtyping

• Mostrous (2010) extended subtyping to allow some reordering
of messages, when communication is asynchronous.

• Padovani (2011, 2013) has considered another form of
subtyping, called fair subtyping.

• Chen, Dezani & Yoshida (2014) have studied the preciseness
of subtyping: the subtyping relation is sound and complete for
safe substitutability.

More on Subtyping

• Mostrous (2010) extended subtyping to allow some reordering
of messages, when communication is asynchronous.

• Padovani (2011, 2013) has considered another form of
subtyping, called fair subtyping.

• Chen, Dezani & Yoshida (2014) have studied the preciseness
of subtyping: the subtyping relation is sound and complete for
safe substitutability.

More on Subtyping

• Mostrous (2010) extended subtyping to allow some reordering
of messages, when communication is asynchronous.

• Padovani (2011, 2013) has considered another form of
subtyping, called fair subtyping.

• Chen, Dezani & Yoshida (2014) have studied the preciseness
of subtyping: the subtyping relation is sound and complete for
safe substitutability.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Categorising language-based
implementations of session types

• Binary vs. Multiparty

• Primitive vs. Library vs. External Tool

• Static vs. Dynamic vs. Hybrid checking

Programming Languages with Native
BST: Static Typechecking

Sill:

• Functional programming language that supports session typed
message passing concurrency.

• Based on the Curry-Howard correspondence of session types
and intuitionistic linear logic (Caires & Pfenning 2010).

• Type preservation; deadlock and race freedom; support of
subtyping, polymorphism and recursive types.

• Contributors: F. Pfenning, D. Griffith et al.

Programming Languages with Native
BST: Static Typechecking

SePi:

• Concurrent, message-passing programming language based on
the π- calculus.

• Based on synchronous, bidirectional channel based
communication.

• Primitives for send/receive as well as offer/select choices.

• Contributors: J. Franco, V.Vasconcelos, D.Mostrous.

Programming Languages with Native
BST: Static Typechecking5

Links:

• Programming language for web applications.

• Binary session types added as language primitives and
statically typechecked.

• Developed at the University of Edinburgh.

5The following list of programming languages is taken from
http://simonjf.com/2016/05/28/session-type-implementations.html

Mainstream Programming Languages with
Binary Session Types

Haskell:

• effect-sessions: implementation in Concurrent Haskell; static
typechecking. Orchard & Yoshida (POPL 2016)

• simple-session: la ibrary implementation of Haskell session
types. Pucella & Tov (Haskell 2008)

• sessions: yet another embedding of session types in Haskell.
Sackman & Eisenbach (TR 2008)

Mainstream Programming Languages with
Binary Session Types

Java:

• CO2 Middleware: for Java applications, based on timed
session types; dynamic monitoring for conformance of timing
constraints.
Bartoletti et al. (FACS 2015, FORTE 2015)

• (Eventful) Session Java: front-end and runtime library for
Java; supports event-driven programming.
Hu, Yoshida & Honda (ECOOP 2008);
Hu et al. (ECOOP 2010)

Mainstream Programming Languages with
Binary Session Types

Scala

• Based on the continuation-passing approach of
Kobayashi 2007, and Dardha et al. 2012

• Message ordering is checked statically

• Linearity is checked dynamically.

• Scalas & Yoshida (ECOOP 2016)

Mainstream Programming Languages with
Binary Session Types

OCaml: FuSe

• Lightweight implementation of BST in OCaml

• static check of message ordering and dynamic linearity check.
Padovani 2015

Rust:

• Implementation of BST in Mozilla’s Rust; use of Rust’s affine
type system. Jespersen, Munksgaard & Larsen (WGP 2015)

Mainstream Programming Languages with
Binary Session Types

OCaml: FuSe

• Lightweight implementation of BST in OCaml

• static check of message ordering and dynamic linearity check.
Padovani 2015

Rust:

• Implementation of BST in Mozilla’s Rust; use of Rust’s affine
type system. Jespersen, Munksgaard & Larsen (WGP 2015)

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (1)

• Binary session types can describe systems with multiple
participants, but all protocols are pairwise and independent.

• Binary session types cannot constrain the order of two
messages in different protocols.

• Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.

• A global type specifies a multi-party protocol.

• A global type can be projected to local types, which specify
the communication behaviour of each participant.

• Local type checking guarantees communication safety.

Multiparty Session Types (2)

A buyer-seller example from Honda et al:

Buyer1 Seller Buyer2

[Link] [Link]

title

quotequote

quote div 2

ok

quit

address

date }branch

Multiparty Session Types (3)

The global type describes the whole protocol:

1. B1→ S : title.

2. S→ B1 : quote.

3. S→ B2 : quote.

4. B1→ B2 : quote.

5. B2→ S :


ok : B2→ S : address.

S→ B2 : date.end,
quit : end



Multiparty Session Types (4)

• Projection gives a local type for B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

• Local type checking is similar to binary session types.

• Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.

Multiparty Session Types (4)

• Projection gives a local type for B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

• Local type checking is similar to binary session types.

• Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.

Multiparty Session Types (4)

• Projection gives a local type for B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

• Local type checking is similar to binary session types.

• Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org

Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org

Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org

Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org

Scribble

• Scribble is a language used to describe application-level
protocols among communicating systems.

• It is based on multiparty session types.

• Allows:
• Specification of a protocol in the form of global session type;
• Validation of the protocol;
• Projection into the communicating participants, i.e., roles.

• Contributors: K.Honda, IC team (part of ABCD).

• Link: www.scribble.org

Scribble by example: The Bookstore
Global Protocol

global protocol Bookstore(role Buyer1 , role Buyer2 ,

role Seller) {

book(title) from Buyer1 to Seller;

book(quote) from Seller to Buyer1 , Buyer2;

contribution(quote) from Buyer1 to Buyer2;

choice at Buyer2 {

ok from Buyer2 to Seller;

deliver(address) from Buyer2 to Seller;

deliver(date) from Seller to Buyer2;

} or {

quit from Buyer2 to Seller;

}

}

The Bookstore Protocol: Buyer1

local protocol Bookstore_Buyer1(self Buyer1 , role

Buyer2 , role Seller) {

book(title) to Seller;

book(quote) from Seller;

contribution(quote) to Buyer2;

}

The Bookstore Protocol: Buyer2

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Mungo

• Mungo is a Java front-end tool that statically checks the
order of method calls.

• Based on the notions of session types and typestate,
describing non-uniform objects.

• A Java class is annotated with a typestate. Mungo checks
that method calls follow the declared typestate of an object.

• Contributors: ABCD Glasgow team.
Based on Gay et al (POPL 2010);
Kouzapas et al. (PPDP 2016)

Mungo

• Mungo is a Java front-end tool that statically checks the
order of method calls.

• Based on the notions of session types and typestate,
describing non-uniform objects.

• A Java class is annotated with a typestate. Mungo checks
that method calls follow the declared typestate of an object.

• Contributors: ABCD Glasgow team.
Based on Gay et al (POPL 2010);
Kouzapas et al. (PPDP 2016)

Mungo

• Mungo is a Java front-end tool that statically checks the
order of method calls.

• Based on the notions of session types and typestate,
describing non-uniform objects.

• A Java class is annotated with a typestate. Mungo checks
that method calls follow the declared typestate of an object.

• Contributors: ABCD Glasgow team.
Based on Gay et al (POPL 2010);
Kouzapas et al. (PPDP 2016)

Mungo

• Mungo is a Java front-end tool that statically checks the
order of method calls.

• Based on the notions of session types and typestate,
describing non-uniform objects.

• A Java class is annotated with a typestate. Mungo checks
that method calls follow the declared typestate of an object.

• Contributors: ABCD Glasgow team.
Based on Gay et al (POPL 2010);
Kouzapas et al. (PPDP 2016)

The FileProtocol Example

typestate FileProtocol {

Init = {

Status open (): <OK: Open , ERROR: end >

}

Open = {

BooleanEnum hasNext (): <TRUE: Read , FALSE: Close >,

void close (): end

}

Read = {

void read (): Open

}

Close = {

void close (): end

}

}

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

StMungo

• StMungo is a Java-based tool used to translate Scribble local
protocols into typestate.

• After the translation, Mungo is used to statically typecheck
the protocol.

• Contributors: ABCD Glasgow team.
Kouzapas et al. (PPDP 2016)

StMungo

• StMungo is a Java-based tool used to translate Scribble local
protocols into typestate.

• After the translation, Mungo is used to statically typecheck
the protocol.

• Contributors: ABCD Glasgow team.
Kouzapas et al. (PPDP 2016)

StMungo

• StMungo is a Java-based tool used to translate Scribble local
protocols into typestate.

• After the translation, Mungo is used to statically typecheck
the protocol.

• Contributors: ABCD Glasgow team.
Kouzapas et al. (PPDP 2016)

The Bookstore Protocol: Buyer2

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}

The Buyer2 local protocol as Typestate

typestate Buyer2Protocol {

State0 = {

quote receive_quoteFromSeller (): State1

}

State1 = {

quote receive_quoteFromBuyer1 (): State2

}

State2 = {

void send_OKToSeller (): State3 ,

void send_QUITToSeller (): State5

}

State3 = {

void send_addressToSeller(address): State4

}

State4 = {

date receive_dateFromSeller (): end

}

...

}

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

The SMTP Protocol: A Demo

Link: http://www.dcs.gla.ac.uk/research/mungo/

Mainstream Programming Languages with
Multiparty Session Types6

Multiparty Session C:

• Static typechecking of MST in C

• Session communication happens via use of a library

• Ng, Yoshida & Honda (TOOLS 2012);
Ng et al (HEART 2012)

DinGo Hunter

• External tool to statically analyse Go programs

• Static detection of deadlocks: extracting CFSMs and
synthesising global graphs

• Ng & Yoshida (CC 2016)

6The following list of programming languages is taken from
http://simonjf.com/2016/05/28/session-type-implementations.html

Mainstream Programming Languages with
Multiparty Session Types

Session Actor

• A Python implementation for combining session types and the
actor model of programming.

• Each actor may be involved in multiple roles, in multiple
sessions.

• Communication is checked dynamically via compilation of
Scribble protocols into CFSMs. Neykova & Yoshida
(COORDINATION 2014)

Mainstream Programming Languages with
Multiparty Session Types

Python

• SPY: implementation of MST in Python using runtime
monitoring. Neykova (PLACES 2013); Neykova, Yoshida &
Hu (RV 2013); Hu et al (RV 2013)

Erlang

• Dynamic monitoring of communication (MST) for Erlang
applications

• Inspired by Session Actor. Simon Fowler (MSc thesis, 2015)

Outline
1 Origin of Session Types

2 Session Types by Example

3 Session Types Formally

4 Foundation of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

5 Subtyping
Two Subtyping Relations for Sessions
Subtyping by Encoding

6 Session Types and Programming Languages (I)

7 Multiparty Session Types

8 Session Types and Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + Mungo + StMungo for typechecking SMTP

9 Advanced Topics

Progress

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Progress

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Comparing Properties of Communication

• Deadlock Freedom: communications eventually succeed,
unless the whole process diverges. (Standard π)

• Lock Freedom: communications eventually succeed even if the
whole process diverges. (Standard π)

• Progress: In-session communications eventually succeed,
provided that a suitable context can be found. (Session π)

Deadlock Freedom vs. Lock Freedom

• Consider the process:

P = (νx)(νy)
(

x+?(z).y+!〈z〉 | y−?(w).x−!〈w〉
)

It is deadlocked and hence locked!

• Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!

Deadlock Freedom vs. Lock Freedom

• Consider the process:

P = (νx)(νy)
(

x+?(z).y+!〈z〉 | y−?(w).x−!〈w〉
)

It is deadlocked and hence locked!

• Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!

Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

• Lock freedom is a stronger property than deadlock freedom.

• Progress is a compositional form of lock freedom.
(Carbone, Dardha & Montesi 2014)

Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

• Lock freedom is a stronger property than deadlock freedom.

• Progress is a compositional form of lock freedom.
(Carbone, Dardha & Montesi 2014)

Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

• Lock freedom is a stronger property than deadlock freedom.

• Progress is a compositional form of lock freedom.
(Carbone, Dardha & Montesi 2014)

More Advanced Topics in Sessions

Session types theories include notions and studies in the following.

• Notions of subtyping, polymorphism, higher-order.

• Study of liveness properties: deadlock freedom, lock freedom
and progress.

• Asynchrony and synchrony.

• Static typechecking and dynamic monitoring.

• Finite and recursive session types.

• Study of security (e.g., information flow).

• Exceptions, time-outs.

• Point-to-point and broadcasting

• And many more...

Conclusions

• Session Types are a very simple but powerful formalism to
model protocols in distributed systems.

• Developed for calculi as well as programming languages and
various paradigms.

• Many interesting features.

• Part of behavioural types, including also contracts,
typestates...

Audience!〈ThankYou〉.
rec X{ & {

more : Audience?(y : Question).Audience!〈Answer〉.X ,
quit : end}

}

References I

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De
Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
Global progress in dynamically interleaved multiparty sessions.
In CONCUR, pages 418–433, 2008.

Marco Carbone and Søren Debois.
A graphical approach to progress for structured
communication in web services.
In ICE, pages 13–27, 2010.

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko
Yoshida.
On the preciseness of subtyping in session types.
In PPDP. ACM, 2014.

References II

Marco Carbone, Ornela Dardha, and Fabrizio Montesi.
Progress as compositional lock-freedom.
In COORDINATION, volume 8459 of LNCS, pages 49–64.
Springer, 2014.

Lúıs Caires and Frank Pfenning.
Session types as intuitionistic linear propositions.
In CONCUR, pages 222–236, 2010.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi.
Session types revisited.
In PPDP, pages 139–150, New York, NY, USA, 2012. ACM.

Romain Demangeon and Kohei Honda.
Full abstraction in a subtyped pi-calculus with linear types.
In CONCUR, pages 280–296, 2011.

References III

Simon J. Gay.
Subtyping supports safe session substitution.
In A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th
Birthday, volume 9600 of LNCS, pages 95–108. Springer, 2016.

Simon J. Gay and Malcolm Hole.
Subtyping for session types in the pi calculus.
Acta Informatica, 42(2-3):191–225, nov 2005.

Kohei Honda, Nobuko Yoshida, and Marco Carbone.
Multiparty asynchronous session types.
In POPL, volume 43(1), pages 273–284. ACM, 2008.

Naoki Kobayashi.
A type system for lock-free processes.
Inf. Comput., 177(2):122–159, 2002.

References IV

Naoki Kobayashi.
A new type system for deadlock-free processes.
In CONCUR, pages 233–247, 2006.

Luca Padovani.
Fair subtyping for multi-party session types.
In COORDINATION, pages 127–141, Berlin, Heidelberg, 2011.
Springer-Verlag.

Luca Padovani.
Fair subtyping for open session types.
In ICALP, 2013.

Vasco T. Vasconcelos.
Fundamentals of session types.
Information Computation, 217:52–70, 2012.

References V

Philip Wadler.
Propositions as sessions.
In ICFP, pages 273–286, 2012.

	Origin of Session Types
	Session Types by Example
	Session Types Formally
	Foundation of Session Types
	Session Types and Standard -calculus Types
	Session Types and Linear Logic

	Subtyping
	Two Subtyping Relations for Sessions
	Subtyping by Encoding

	Session Types and Programming Languages (I)
	Multiparty Session Types
	Session Types and Programming Languages (II)
	Scribble
	Mungo
	StMungo
	Scribble + Mungo + StMungo for typechecking SMTP

	Advanced Topics

