Multiparty protocol specification and
endpoint implementation using Scribble

Raymond Hu

Imperial College London

http://www.doc.ic.ac.uk/~rhu/bettyi6a.pdf

http://www.doc.ic.ac.uk/~rhu/betty16a.pdf

Aims

» Scribble

> Implementation and application of MPST to current practices

» Specify real-world protocols
> Implement fully interoperable endpoints in mainstream languages

Hello, world: HTTP (GET)

» Hypertext Transfer Protocol

» HTTP/1.1 RFCs 7230-7235 [HTTP]
> Client-server request-response “methods”

> https://tools.ietf.org/html/rfc7230#section-2.1

> (e.g. Web browser fetching a page from Web server)

[HTTP1.1] https://tools.ietf.org/html/rfc7230, ...

3/40

https://tools.ietf.org/html/rfc7230#section-2.1
https://tools.ietf.org/html/rfc7230

» Protocol specification = messages + interactions

> https://github.com/rhul/scribble-java/tree/rhuil-research/modules/core/src/
test/scrib/demo/betty16/leci/httpshort

// Message types

sig <java> "demo.bettyl6.lecl.httpshort.message.client.Request"
from "demo/bettyl6/httpshort/message/Request.java"
as Request;

sig <java>
as Response;
global protocol Http(role C, role S) {
// Interaction structure
Request from C to S;

Response from S to C;

}

4/40

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httpshort
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httpshort

Client implementation in Java

» For now, assume a basic fluent (call-chaining) Java APl over TCP sockets
String host = "www.doc.ic.ac.uk"; int port = 80;

Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

5/40

Client implementation in Java

» For now, assume a basic fluent (call-chaining) Java APl over TCP sockets

String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Response("1.1", "..body.."))
.receive(S, Response, buf);

4 The method send(S, Request) ... for the arguments (S, Response) ‘

5/40

Client implementation in Java

» For now, assume a basic fluent (call-chaining) Java APl over TCP sockets

String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Respomse, buf); ‘ 47 The method send(S, Request) is undefined for the type Http_C_2

5/40

Client implementation in Java

» For now, assume a basic fluent (call-chaining) Java APl over TCP sockets

String host = "www.doc.ic.ac.uk"; int port = 80;
Buf<Response> buf = new Buf<>();

c.send(S, new Request("/~rhu/", "1.1", host))
.receive(S, Response, buf); // Received message read into buf

> ..so is that it? For a good implementation

5/40

Message types vs. interaction structure

» Simple interaction structure..
> ..means more work is done in message serialization /deserialization

> https://tools.ietf.org/html/rfc7230#section-3

> The call-response pattern and top-level data types are checked..
how about serialization/deserializaton?

» Specification interplay between data types and interaction structure

> Can leverage session types to expose message formatting details

6

40

https://tools.ietf.org/html/rfc7230#section-3

HTTP client-server conversation

» telnet www.doc.ic.ac.uk 80

GET /~rhu/ HTTP/1.1
Host: www.doc.ic.ac.uk

User-Agent: User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20

100101 Firefox/47.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-GB,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

40

HTTP client-server conversation

» telnet www.doc.ic.ac.uk 80

HTTP/1.1 200 OK

Date: Mon, 13 Jun 2016 19:42:34 GMT

Server: Apache

Strict-Transport-Security: max-age=31536000; preload; includeSubDomains
Strict-Transport-Security: max-age=31536000; preload; includeSubDomains
Last-Modified: Thu, 14 Apr 2016 12:46:24 GMT

ETag: "74a-53071482f6e0f"

Accept-Ranges: bytes

Content-Length: 1866

Vary: Accept-Encoding

Content-Type: text/html

Via: 1.1 www.doc.ic.ac.uk

40

Decomposing message structures..

> https://github.com/rhul/scribble-java/tree/rhul-research/modules/core/src/test/
scrib/demo/betty16/lecl/httplong

» Client messages

sig <java> "...message.client.RequestLine" from "...message/RequestlLine.java"
as RequestLine; // GET /~rhw/ HTTP/1.1
sig <java>

as Host; // host: www.doc.ic.ac.uk
sig <java>
as UserAgent; // User-Agent: Mozilla/5.0 ... Firefoz/38.0

> Server messages

sig <java>
as HTTPV; // HTTP/1.1
sig <java>
as 200; // 200 OK
sig <java>
as 404; // 404 Not found

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httplong
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/httplong

..promotes more fine-grained interaction structures

global protocol Http(role C, role 8) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;
} or {
} or {
Body from C to S;
}
2

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role 8) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;
} or {
} or {
Body from C to S;
}
+ 3

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {

RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {

choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;

} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {

} or {
Body from C to S;

}

} 3

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;
}or {
}or {
Body from C to S;
¥
} 3

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;
} or {
} or {
Body from C to S;
}
2

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;

} or {
} or {
Body from C to S;

}
}r

9/40

..promotes more fine-grained interaction structures

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);

}

global protocol Request(role C, role S) {
RequestLine from C to S; // GET /~rhu/ HTTP/1.1
rec X {
choice at C {
Host from C to S; // Host: www.doc.ic.ac.uk
continue X;
} or {
UserAgent from C to S; // User-Agent: Mozilla/5.0 ...
continue X;
} or {
} or {
Body from C to S;
}
} 3

9/40

..promotes more fine-grained interaction structures

global protocol Reponse(role C, role S) {
HttpVers from S to C; // HTTP/1.1
choice at S {

200 from S to C; // 200 OK
} or {
404 from S to C; // 404 Not found
} or {
}
rec Y {

choice at S {
Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;
}or {
Server from S to C; // Server: Apache
continue Y;

} or {
} or {
Body from S to C; // <html>...</html>

}
3

9/40

..promotes more fine-grained interaction structures

global protocol Reponse(role C, role S) {
HttpVers from S to C; // HTTP/1.1
choice at S {

200 from S to C; // 200 OK
}or {

404 from S to C; // 404 Not found
}or {
}
rec Y {

choice at S {
Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;

}or {
Server from S to C; // Server: Apache
continue Y;

}or {

}or {
Body from S to C; // <html>...</html>

}

+ 3

9/40

..promotes more fine-grained interaction structures

global protocol Reponse(role C, role S) {
HttpVers from S to C;
choice at S {
200 from S to C;
} or {
404 from S to C;
} oor {

}

rec Y {

choice at S {
Date from S to C; // Date: Sun, 24 May 2015 21:04:36 GMT
continue Y;

}or {
Server from S to C; // Server: Apache
continue Y;

} or {

} or {
Body from S to C; // <html>...</html>

}

}r

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 cl, String host) oo 1
cl.send(S, new RequestLine("/~rhu/", "1.1"))

(s, Host (host))
(s, Body (""));

v Formatting of request message (request line, fields) is now checked

10/40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 cl, String host) oo 1
cl. (s, RequestLine (s))
.send (S, new Host(host))
(s, Body (""));
}

v Formatting of request message (request line, fields) is now checked

10 /40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

Http_C_3 request(Http_C_1 cl, String host) oo 1
return
cl. (s, RequestLine(s))
(s, Host (host))

.send (S, new Body(""));

v Formatting of request message (request line, fields) is now checked

10 /40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c¢3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S):
switch (status.op) {
case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;

default: throw new RuntimeException("[TODO]: " + status.op);
+}

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = cb.branch(S);
switch (cases.op) {
case DATE: responseAux(cases.receive (DATE)) ; break;
case SERVER: responseAux(cases.receive(SERVER)); break;

case BODY: { Buf<Body> buf_body = new Buf<>();
cases.receive(BODY, buf_body) ;

System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);

+}

10/40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c¢3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {
case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;
default: throw new RuntimeException("[TODO]: " + status.op);

}}

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = cb.branch(S);
switch (cases.op) {
case DATE: responseAux(cases.receive (DATE)) ; break;
case SERVER: responseAux(cases.receive(SERVER)); break;

case BODY: { Buf<Body> buf_body = new Buf<>();
cases.receive(BODY, buf_body) ;
System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);

+}

10/40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c¢3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {
case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;

default: throw new RuntimeException("[TODO]: " + status.op);
+}

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = cb.branch(S);
switch (cases.op) {
case DATE: responseAux(cases.receive (DATE)) ; break;
case SERVER: responseAux(cases.receive(SERVER)); break;

case BODY: { Buf<Body> buf_body = new Buf<>();
cases.receive(BODY, buf_body) ;

System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);

+}

10/40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c¢3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {
case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;

default: throw new RuntimeException("[TODO]: " + status.op);
+}

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = cb.branch(S);
switch (cases.op) {
case DATE: responseAux(cases.receive(DATE)); break;
case SERVER: responseAux(cases.receive(SERVER)); break;

case BODY: { Buf<Body> buf_body = new Buf<>();
cases.receive(BODY, buf_body) ;

System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);
+3

10/40

Revised client code

response (request (new Http_C_1(client), "www.doc.ic.ac.uk"));

void response(Http_C_3 c¢3) throws ... {
Http_C_4_Cases status = c3.async(S, HTTPV).branch(S);
switch (status.op) {
case _200: responseAux(status.receive(_200)); break;
case _404: responseAux(status.receive(_404)); break;

default: throw new RuntimeException("[TODO]: " + status.op);
+}

void responseAux(Http_C_5 c5) throws ... {
Http_C_5_Cases cases = cb.branch(S);
switch (cases.op) {
case DATE: responseAux(cases.receive (DATE)) ; break;
case SERVER: responseAux(cases.receive(SERVER)); break;

case BODY: { Buf<Body> buf_body = new Buf<>();
cases.receive(BODY, buf_body) ;

System.out.println(buf_body.val.getBody());
return; }

default: throw new RuntimeException("[TODO]: " + cases.op);

+}

10/40

Hello, world: HTTP (GET)

» Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

» Further alternative specifications?

> Most simplified:
» Most detailed:

» Similarly for the server

> All versions interoperable with (compliant) real-world implementations
> And with each other

11 /40

Hello, world: HTTP (GET)

» Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

» Further alternative specifications?

> Most simplified: call-return of ASCII strings
> Most detailed:

» Similarly for the server

> All versions interoperable with (compliant) real-world implementations
> And with each other

11/40

Hello, world: HTTP (GET)

» Rigorous specification and verification of protocols is important
(Even for a “simple” binary call-return)

» Further alternative specifications?

> Most simplified: call-return of ASCII strings
> Most detailed: towards “character-perfect” 1/0?

» Similarly for the server

> All versions interoperable with (compliant) real-world implementations
> And with each other

11/40

Outline

» Scribble toolchain implementation of MPST

» Specify and check global protocol
> Check endpoint implementations follow their role in the protocol

» Remainder of this session

» Overview of the Scribble toolchain

> lllustration of correspondence between MPST and communicating FSMs

» Good and bad asynchronous multiparty protocols by example

» Next session
» Session programming in Java

> Hybrid session verification by Endpoint APl generation

> (Implementation of distributed session delegation and
asynchronous interrupt messages)

Scribble

» Adapts and extends formal MPST as a practical language for explicit
specification of multiparty message passing protocols
> Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani

» Key features build on correspondence to communicating FSM
[ESOP12] Deniélou, Yoshida

» Communication model: asynchronous, reliable, role-to-role ordering

13 /40

Scribble

» Adapts and extends formal MPST as a practical language for explicit
specification of multiparty message passing protocols

> Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani
» Key features build on correspondence to communicating FSM
[ESOP12] Deniélou, Yoshida

» Communication model: asynchronous, reliable, role-to-role ordering
Osc=20,

13 /40

Scribble

» Adapts and extends formal MPST as a practical language for explicit
specification of multiparty message passing protocols
> Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani

» Key features build on correspondence to communicating FSM
[ESOP12] Deniélou, Yoshida

» Communication model: asynchronous, reliable, role-to-role ordering
Osc=20,
e 1() from A to B;

2() from A to C;
3() from C to B;

13 /40

Scribble

» Adapts and extends formal MPST as a practical language for explicit
specification of multiparty message passing protocols

> Type syntax close to [MSCS15] Coppo, Dezani-Ciancaglini, Yoshida and Padovani

» Key features build on correspondence to communicating FSM
[ESOP12] Deniélou, Yoshida

» Communication model: asynchronous, reliable, role-to-role ordering

O=
&Q’

1() from A to B;

2() from A to C;
3() from C to B;

> Scribble applies to sessions conducted over transports that fit this model
e.g. TCP, HTTP/TCP, ..., (AMQP), ..., shared memory, ...

> Scribble protocols should be fully explicit:
no implicit messages needed to conduct a session

Scribble collaborations
> JBoss Savara (Red Hat): tool support for Testable Architecture
> http://www.jboss.org/savara
» Cognizant ZDLC: tools for governance and reverse engineering workflows

> Uses Savara for internal modelling
> http://www.cognizantzdlc.com/

» Ocean Observatories Initiative
» Python-based endpoints on an AMQP-based network

> http://oceanobservatories.org/
> https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+

Conversations+and+Session+Types

» Scribble resources

> http://www.scribble.org/
(Some of the pre-built tools are based on older Scribble versions)

> Master: https://github.com/scribble/scribble-java
> Research: (used in these lectures; additional features but less stable)
https://github.com/rhul/scribble-java/tree/rhul-research

lybrid session verification through Endpoint generation. Hu and Yoshida.
FASE16] Hybrid 1 ification th, h Endpoint API jon. H d Yoshid
[TGC13] The Scribble Protocol Language. Yoshida, Hu, Neykova and Ng.

14 /40

http://www.jboss.org/savara
http://www.cognizantzdlc.com/
http://oceanobservatories.org/
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+Conversations+and+Session+Types
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+TV+Conversations+and+Session+Types
http://www.scribble.org/
https://github.com/scribble/scribble-java
https://github.com/rhu1/scribble-java/tree/rhu1-research

Scribble: MPST adapted for

run-time monitoring

Global protocol » Global protocol
Specification

(Scribble) Projection » Protocol validation
/ ! \
Local Local » Local protocols
protocol protocol » FSM translation
I I . . .
Implementation (Python, Java, C, ...) (endpoint monitor generation)
l l _
Endpoint Endpoint > (Heterogeneous) endpoint
Dynamic code code programs
Verification i ;
Scribble Scribble » Scribble session 1/0 API
Runtime Runtime . (| ¢ bl)d' tributed
nteroperable) distribute
L5 Monitor Monitor P

I I session runtime

15 /40

OOl Agent negotiation: user description

P> https:

//confluence.oceanobservatories.org/display/syseng/CIAD+COI+0V+Negotiate+Protocol

» https://github.com/rhul/scribble-java/blob/rhul-research/modules/core/src/test/

scrib/demo/betty16/lecl/nego/Negotiate.scr

Consumer
Agent

negotiate: request{SAP_1)

Provider
Agent
m s

MNagotiatian starting by &
Cansumar making 2 propasal.

negotiate: accepl(SAP_1, details)

complementary acoept
by the other party (both

than
‘canfimed by Cansumar

negotiate: confirn(SAP_1)

must acoept for an

‘41—_| agreement),

‘With a mutual accapt, at
least one commitment

ALT

negotiate: invite(SAP_1)

on each side of the
results.

Negaliation stariing by the

Provicer inviting & Cansumer

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with 2 gropasal, accepted by
Consumer and confirmed
Prowi

negotiate: confirm(SAP_1)

ALT

negotiate: request(SAP_1)

MNegatistion starting by &

negotiate: counter-propose(SAP_2)

8 proposal.
Thes recipiet {Provicér) ks
& counler-propsal supplanting

negotiate: accept(SAP_2, details)

A ler-propose s a
new SAP, but it typically
refines or partially
madifies the prior SAP,

SAP_1, which i then accepled
by Carsuimer and canrmed by

negatiate: confirn(SAP_2)

the Provider.

negotiate: request(SAP_1)

Any parly can reject

instead of counter-

negotiate: reject(SAP_1) —==———_ propose (or accepl)

16

40

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Negotiate+Protocol
https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Negotiate+Protocol
https://github.com/rhu1/scribble-java/blob/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/nego/Negotiate.scr
https://github.com/rhu1/scribble-java/blob/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/nego/Negotiate.scr

OOl Agent negotiation: global protocol

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

Consumer
confirm() from C to P; [;;;]

} or { [l
reject() from P to C; sy Crans

1)

Provider
Agent
negoliate: request(SAP_1) B 7 the
complementary acoept
"1, detalls) by the other party (both
must a

ccept for an

}or {

~ [V & ctual acoept &t |

1)

‘on each side of the

propose (SAP) from P to C;

choice at C {

>_1, dotals) (may b mutipl). The.

1)

Negataon saring by e 1

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A 0
2 new SAP, but L ypcally

P
2, dotat) —‘ modifies the prior SAP.

} or { :
reject() from C to P; EE T

negoliate: eonim(SAP_2)

negotiate: request{SAP_1)

} or { ar
propose (SAP) from C to P; BT

negotiate: reject(SAP_1)

Any party can reject
insteac o counter-
-=:?ﬁ P laised]

continue X;

Fr 1}

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;
global protocol Negotiate(role C, role P) {
propose (SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

confirm() from C to P;

Consumer Provider
Agent Agent
negoliate: request(SAP_1) CoTS e
1, detals) o
1, by the other party (bath
must acceptfor an

1)

} or { [l
reject() from P to C; ooty mme
} or {

~ [V & ctual acoept &t |

propose (SAP) from P to C;

B ‘on each side of the

choice at C {

>_1, dotals) (maybe mutiple). The

riract s as stated in

1)

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A Proposs
new SAP, but it typically

>_2)
e |

P
modifes the prior SAP.

} or { :
reject() from C to P; EE T
}or {

negotiate: request{SAP_1)

propose (SAP) from C to P;

Negoisionsistna by s
o moking pcpos

negotiate: confim(SAP_2).
Any party can rject
nsieac of counter-
<K_1 propose (or acoept)

negotiate: reject(SAP_1)

ne Negoision.

continue X;

F}r1r}

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;
global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

confirm() from C to P;

Consumer Provider
Agent Agent
negolate: request(SAP_1) Contm e
1, detal) o
1, by the other pary (bolh
must acceptfor an

1)

} or { T l
reject() from P to C; ooty mme
} or {

~ [V & ctual acoept &t |

propose (SAP) from P to C;

B ‘on each side of the

choice at C {

>_1, dotals) (maybe mutiple). The

riract s as stated in

1)

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A Proposs
new SAP, but it typically

>_2)
e |

P
modifes the prior SAP.

} or { :
reject() from C to P; EE T
}or {

negotiate: request{SAP_1)

propose (SAP) from C to P;

Negoisionsistna by s
o moking pcpos

negotiate: confim(SAP_2).
Any party can rject
nsieac of counter-
<K_1 propose (or acoept)

negotiate: reject(SAP_1)

ne Negoision.

continue X;

FY 1l

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;

global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

: Ed
confirm() from C to P; Agent Agert
X i neglle roques(SAP_1) TS
or SR 1, dotals) Sl
reject() from P to C; i o il
} or { W
propose(SAP) from P to C; AT 1) e oo
: Negataion saing by o T {maye muse. Tre
choice at C { e - ok le saandn
accpt() from C to P;
confirm() from P to C; AT regote: requesSHE_) T
) new SAP, but ypically
} or { > 2, gota) —‘ modifles the prio SAP.
reject() from C to P; i,“&:.‘“‘&"gm [—
} or {
AT negotiate: request(SAP_1) Ay party can reject
propose(SAP) from C to P; e gt OOAP_1) o rogens o s
continue X; — ‘
H

17 /40

OOl Agent negotiation: global protocol

type <yml> from

as SAP;

global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;
confirm() from C to P;
}or {
reject() from P to C;
}or {
propose (SAP) from P to C;
choice at C {
accpt() from C to P;
confirm() from P to C;
}or {
reject() from C to P;
}or {
propose (SAP) from C to P;
continue X;

F}r1r}

Consumer
Agent

Nepaisionsatng bva
onfmd by Careumar

1)

Provider
Agent
negoiate: request(SAP_1) Corhms e
1, detals) o
1, oy the other party (both
must accept for an

~ [V & ctual acoept &t |

1)

‘on each side of the

>_1, dotals)

1)

(maybe mulipie). The
confract s as staled in

negotiate: request(SAP_1)

A propas
>) new SAP, but t ypically
P
> 2, detais) T modifies the prior SAP.
o Cararar iy negoliate: confim(SAP_2)
e Provier
AT

Negoisionsistna by s
o moking pcpos

negoliate: request(SAP_i) ‘Any party can reject

instead of counter-

negotiate: reject(SAP 1) —=————— proposa (or acoept)
1

ne Negoision.

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;
global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

confirm() from C to P;

Consumer Provider
Agent Agent
negoliate: request(SAP_1) CoTS e
1, detals) o
1, by the other party (bath
must acceptfor an

1)

} or { [l
reject() from P to C; ooty mme
} or {

~ [V & ctual acoept &t |

propose(SAP) from P to C;

B ‘on each side of the

choice at C {

>_1, dotals) (maybe mutiple). The

riract s as stated in

1)

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A Proposs
new SAP, but it typically

>_2)
e |

P
modifes the prior SAP.

} or { :
reject() from C to P; EE T
}or {

negotiate: request{SAP_1)

propose (SAP) from C to P;

Negoisionsistna by s
o moking pcpos

negotiate: confim(SAP_2).
Any party can rject
nsieac of counter-
<K_1 propose (or acoept)

negotiate: reject(SAP_1)

ne Negoision.

continue X;

F}r1r}

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;
global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

confirm() from C to P;

Consumer Provider
Agent Agent
negolate: request(SAP_1) Contm e
1, detal) o
1, by the other pary (bolh
must acceptfor an

1)

} or { Wmmw.l
reject() from P to C; ooty mme
} or {

~ [V & ctual acoept &t |

propose (SAP) from P to C;

B ‘on each side of the

choice at C {

>_1, dotals) (maybe mutiple). The

riract s as stated in

1)

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A Proposs
new SAP, but it typically

>_2)
e |

P
modifes the prior SAP.

}or { :
reject() from C to P; EE T
}or {

negotiate: request{SAP_1)

propose (SAP) from C to P;

Negoisionsistna by s
o moking pcpos

negotiate: confim(SAP_2).
Any party can rject
nsieac of counter-
<K_1 propose (or acoept)

negotiate: reject(SAP_1)

ne Negoision.

continue X;

Yril

17 /40

OOl Agent negotiation: global protocol

type <yml> from

as SAP;

global protocol Negotiate(role C, role P) {

propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose (SAP) from P to C;
choice at C {
accpt() from C to P;
confirm() from P to C;
} or {
reject() from C to P;
} or {
propose(SAP) from C to P;
continue X;

F}r1r}

Consumer Provider
Agent Agent
negolate: request(SAP_1) ST
Negenswirab s complementary accept
1, delails) by the other pary (both
et by Corsumar must a

negoliate: confim(SAP_1) cceptfor an

§ With a mutual accept. at
AT M ‘on each side of the
Negataion saring iy e T (may bs mulpe). The
e T - .
ALT negotiate: request(SAP_1) A
) _‘ ew SAP, but il ypically
:
- ek
R e .
Erasy [——
S
AT negotiate: request(SAP_1) ‘Any pary can reject
e TETE
st asys i) nogotte ejea(SAP_1) ——=——""" _ropoue (o acoepl)
s T

17 /40

OOl Agent negotiation: global protocol

type <yml> from as SAP;
global protocol Negotiate(role C, role P) {
propose(SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;

confirm() from C to P;

Consumer Provider
Agent Agent
negolate: request(SAP_1) Contm e
1, detal) o
1, by the other pary (bolh
must acceptfor an

1)

} or { [l
reject() from P to C; ooty mme
} or {

~ [V & ctual acoept &t |

propose (SAP) from P to C;

B ‘on each side of the

choice at C {

>_1, dotals) (maybe mutiple). The

riract s as stated in

1)

accpt() from C to P;

confirm() from P to C;

negotiate: request(SAP_1)

A Proposs
new SAP, but it typically

>_2)
e |

P
modifes the prior SAP.

} or { :
reject() from C to P; EE T
}or {

negotiate: request{SAP_1)

propose (SAP) from C to P;

Negoisionsistna by s
o moking pcpos

negotiate: confim(SAP_2).
Any party can rject
nsieac of counter-
<K_1 propose (or acoept)

negotiate: reject(SAP_1)

ne Negoision.

continue X;

FrY3

17 /40

OOl Agent negotiation:

propose (SAP) to P;
rec X {
choice at P {
accpt() to C;
confirm() to P;
} or {
reject() from P;
}oor {
propose (SAP) from P;
choice at C {
accpt() to P;
confirm() from P;
} or {
reject() to P;
}or {
propose (SAP) to P;
continue X;

} 1}

local projection for C

Consumer
Agent

negolate:requestiSAP_1)

Provider
Agent

e —_— complementary ccoept
Commer i s nogotate: accepl{SAP_1, details) T T T
s G mustacoep oran

negoliate: confirm(SAP_1)

~ [V & ctual acoept &t |

P N ncach o et o
e o Eomesim e
e A p e i = contract is as- in
) =5
AT negotiate: request(SAP_1) A g
‘Negotiaton startng by & negoiate: counter-propose{SAP_2) —‘ new SAP, but it typically
- ey ke
S e
Rei Jee——
AT
T

AT negoliate: request(SAP_1) ‘Any parly can reject

instead of counter-

o g rope, nogotiat: eil(SAP_1) ————"" _ propose (or accepl)
|

ne Negoison

18 /40

OOl Agent negotiation: local projection for C

propose(SAP) to P;
rec X {
choice at P {
accpt() to C;

confirm() to P; Agent Agent

} { — negoliate: request(SAP_1) S
or > 1, detals) m&m’;xm
reject() from P; et Corm f—— it st o o

}or {

propose (SAP) from P; A o o cacn e o e
; T s arirs 1 cetale) (may be muliie). The:
choice at C { o il o = B

accpt() to P;
confirm() from P; At ot ruestSAE1

2 o Sap ot oty
}or{ TS + 2, detais) —‘ modifies the prior SAP.
reject() to P; oo [——)
} o { ALT
negoliate: request(SAP_1) ‘Any parly can reject
propose(SAP) to P; e peepr— S
continue X; S !
H

1}

18 /40

OOl Agent negotiation:

propose (SAP) to P;
X {
P {
accpt() to C;
confirm() to P;
} {
reject() from P;
} {
propose (SAP) from P;
c{
accpt() to P;
confirm() from P;
} {
reject() to P;
} {
propose (SAP) to P;
X3
}r}

local projection for C

Consumer
Agent

nstatina bra

Negoo
Consarr maling 3 papoes

negolate:requestiSAP_1)

nogotiato: accepl[SAP. 1 delails)

Provider
Agent

Conbmaed b Caeumar

negoliate: confirm(SAP_1)

complementary acoept
by the other perty (belh
must accept for an

~ [V & ctual acoept &t |

AT 1 ‘on each side of the
et saring by e 1, detat) (maybe mulipie). The
i pofost eped by confract s as staled in
> 1) the
AT negoliate: request(SAP_1)

[—

negotiate: counter-propose(SAP_2)

A pose s a
new SAP, but it typically

s courirsrcpost spploing

KD, i s hn aopted

by s s coninad b
e o

> 2, detals)

|| o,

negoliate: eonim(SAP_2)

AT

Negoisionsistna by s
o moking pcpos

ne Negoison

negotise: request(SAP_1) Ay party can roect

insinad of counter-

nogotiat: eil(SAP_1) ————"" _ propose (or accepl)
|

18 /40

OOl Agent negotiation: FSM translation for C

propose (SAP) to P;
rec X {
choice at P {
accpt() to C;
confirm() to P;
} or {
reject() from P;
}oor {
propose (SAP) from P;
choice at C {
accpt() to P;
confirm() from P;
} or {
reject() to P;
}or {
propose (SAP) to P;
continue X;

} 1}

Plpropose(SAP)

P!propose(SAP)

Placept()

Pleontirm(})

Peconfirmy)

19 /40

Python Conversation API

class UserApp(BaseApp) :
def start(self):
conv = Conversation.create(’Negotiate’, ’config.yml’)
with conv.join(C, ’consumer’) as c
c.send(P, ’propose’, sap)
aux(c, sap)

def aux(self, c, sap):
msg = c.recv(P) # Monitor ensures accept/propose/reject

if msg.label == ’accept’:
c.send(P, ’confirm’)
elif msg.label == ’propose’:

if isAcceptable(msg.argl[0]):
c.send(P, ’accept’)
c.receive(P, ’confirm’)

elif isNegotiable(msg.argl[0]):
sap2 = revise(msg.arg[0])
c.send(P, ’propose’, sapl)
aux(c, sapl)

else:
c.send(P, ’reject’)

> Endpoints implemented using Scribble-Python API
> Inline (“synchronous”) vs. outline (“asynchronous”) monitoring

20/40

MPST-based distributed protocol monitoring

Trusted infrastructure |

¥ Untyped — | Untrusted |
¥ - "——'_\/’ N —+% component }
o component | comper 1
il . Monitored network -
i | [Typed component e Untrusted !
g L component i
: 1 /\,/’\/\ | 1
I
|

» Dynamic verification of MPST communication safety

> Session fidelity: correspondence between system of monitored endpoints
and the original global specification

> Local transparency: a monitored process has equivalent behaviour to an
unmonitored but statically verified process

> Interoperability

[FMOODS13] Monitoring networks through multiparty session types. Bocchi, Chen,
Demangeon, Honda and Yoshida.

[RV13] Practical Interruptible Conversations. Hu, Neykova, Yoshida, Demangeon and
Honda.

[TGC11] Asynchronous Distributed Monitoring for Multiparty Session Enforcement. Chen,
Bocchi, Deniélou, Honda and Yoshida.

21/40

Exercise: refactor Negotiate

Consumer Provider
Agent Agent
propose(SAP) |
[il
accept |
confirm é
reject —_— AT
—Lr ALT
propose{SAP)
accept
confim
ALT reject
ALT propose{SAP)

// Protocol decl
global protocol Proto

(role R1, role R2) {

// Message passing
123(T) from R1 to R2;

// Located choice
choice at R {
}or {

}

// "Subprotocol”
do Proto(R1, R2);

22 /40

Exercise: refactor Negotiate

// Protocol decl
global protocol Proto
(role R1, role R2) {

global protocol Negotiate(role C, role P) {
propose (SAP) from C to P;
rec X {
choice at P {
accpt() from P to C;
confirm() from C to P;

Ford // Message passing
reject() from P to C; 123(T) from R1 to R2;
}or { ’

propose (SAP) from P to C;
choice at C {
accpt() from C to P;
confirm() from P to C;

// Located choice
choice at R {

} or { } ;;’{
reject() from C to P;
} or 1) e

propose(SAP) from C to P;
continue X;

Y33y // "Subprotocol”

do Proto(R1, R2);

22 /40

Exercise: refactor Negotiate

Negotiate(c, P) {
propose (SAP) from C to P;
do Aux(P, C);

}
Agent Agent
global protocol Aux(role A, role B) {
A{ I e 1
accpt () A B; |
. . accept
. conj‘F{lrm() B A; g -
reject() A B;]
X J p - ——
propose (SAP) A B; !
Aux (B, A); Propose(SAP) ™
¥ accept
} confim
ALT reject
ALT propose{SAP)

23 /40

Exercise: refactor Negotiate

Consumer Provider
Agent Agent

global protocol Aux(role A, role B) {
propose(SAP)

choice at A { I 1
accpt() from A to B; I
confirm() from B to A; il

} or { canfimm ‘Z:i:

) Zijict() from A to B; o — e

ropose (SAP) from A to B; |
prop propose(SAP) -ﬁ’_;_ALT

} aceept

} confirm
ALT reiect
ALT propose{SAP)

23 /40

Exercise: refactor Negotiate

Negotiate(c, P) {
propose (SAP) ¢ P;
Aux(P, C);
}
Agent Agent
global protocol Aux(role A, role B) {
propose(SAP)
A { ! {
accpt () A B; |
. . accept

. conilrm() B A; —
reject() A B;]

} J{ reject —%ALT
propose (SAP) A B; !
do Aux(B, A); propose{SAP) === AT

' accept

} confim
AT reject
ALT propose{SAP)

23 /40

Exercise: refactor Negotiate

global protocol Negotiate(role C, role P) {
propose (SAP) from C to P;
choice at P {
accpt() from P to C;
confirm() from C to P;
} or { Agent #

propose(SAP)

reject() from P to C; I 1
}or { . |
- . p . accep
, do Negotiate(P, C); g Z
’ reject —%ALT
I
propose{SAP) == AT
aceept
confim
ALT reiect
ALT propase(SAP)

24 /40

Good/bad MPST by example

» Core Scribble constructs (review)

> Further illustration of endpoint FSMs

» MPST safety and liveness errors (informally)

» What can go wrong in a "bad” session type?
» How are they ruled out in formal MPST (syntactically)

P> https://github.com/rhul/scribble-java/tree/rhul-research/modules/core/src/test/
scrib/demo/betty16/lecl/misc

40

https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/misc
https://github.com/rhu1/scribble-java/tree/rhu1-research/modules/core/src/test/scrib/demo/betty16/lec1/misc

Role-to-role message passing

123(Int, String) from A to B;

1123(Tnt, String) A°123(Tnt, String)

> Message signature

> Operator (header, label, ...)
> Payload types

() from A to B;

» Empty operator and/or payload OK

26

40

Choice

» “Located” multiparty choice

choice at A {
1() from A to B;
2() from A to C;
}or {
3() from A to B;
4() from A to C;
}

> Internal choice by global choice subject
» External choice for all other involved roles

A73()

40

Choice

» “Located” multiparty choice

choice at A {
1() from A to B;
2() from A to C;
}or {
3() from A to B;
4() from A to C;
}

A73()

> Internal choice by global choice subject
» External choice for all other involved roles

> Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

40

Choice

» “Located” multiparty choice

A73()

4() from A to C;
3() from A to B;

> Internal choice by global choice subject
» External choice for all other involved roles

> Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

40

“Located” choice

choice at A {
buyer1(Int) from A to
(Int) from B to A;
buyer2(Int) from A to

} or {
buyer1(Int) from A to
(Int) from C to A;
buyer2(Int) from A to

}

3 // Total to pay

// B will pay this much

; // C pays remainder

; // Total to pay

// C will pay this much

; // B pays remainder

» More “flexible” than “directed” choice

p—q :{li:Gi}ier Branching

28 /40

“Located” choice

choice at A {
buyer1(Int) from A to
(Int) from B to A;
buyer2(Int) from A to

} or {
buyer1(Int) from A to
(Int) from C to A;
buyer2(Int) from A to

}

3 // Total to pay

// B will pay this much

; // C pays remainder

; // Total to pay

// C will pay this much

; // B pays remainder

» More “flexible” than “directed” choice

p—q :{li:Gi}ier Branching

> Branching via messages with identical payloads OK (cf. [POPL11])

choice at A { 1() from A to B; } or { 1(Int) from A to B; } X

28 /40

Exercise: role enabling

» Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

}or {
2() from B to A;
choice at B {
2() from B to C;
}or {
3() from B to C;
}

> Syntactic Scribble error?

29 /40

Exercise: role enabling

» Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

}or {
2() from B to A;
choice at B {
2() from B to C;
}or {
3() from B to C;
}

> Syntactic Scribble error? B not enabled (“mixed choice” protocol states)

29 /40

Exercise: role enabling

» Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;

}or {
2() from B to A;
choice at B {
2() from B to C;
}or {
3() from B to C;
}

> Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
> What actually “goes wrong”?

29 /40

Exercise: role enabling

» Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

choice {
1() from A to B;
1() from B to C;
1() from C to A;
}or {
2() from B to A;
choice at B {
2() from B to C;
}or {
3() from B to C;
}
4() from C to A;

> Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
> What actually “goes wrong”?

29 /40

Exercise: role enabling

» Only enabled roles can send messages in choice paths

> Subject starts enabled; others disabled
> A disabled role is enabled by receiving a message from an enabled role

choice {
1() from A to B;
1() from B to C;
1() from C to A;
}or {
2() from B to A;
choice at B {
2() from B to C;
}or {
3() from B to C;
}
4() from C to A;

> Syntactic Scribble error? B not enabled (“mixed choice” protocol states)
> What actually “goes wrong”?

> MPST safety errors: receptions errors, orphan messages, deadlock

29 /40

s this choice OK? 1/4

choice at A {

1() from

3() from

4() from
}or {

2() from

3(0) from

5() from
}

A

to
to
to

to
to
to

30/40

s this choice OK? 1/4

A {

10 A B;
3() from B to C; X
4() from C to A;

} {
20 A B;
3() from B to C; X
5() from C to A;

¥

> “Ambiguous” choice to ¢
> Should C send a 4 or a 5 to A?

30/40

s this choice OK? 1/4

choice at A {

1() from

3() from

4() from
}or {

2() from

3(0) from

5() from
}

> “Ambiguous” choice to ¢

> Should C send a 4 or a 5 to A7
> Potential reception errors (4, 5), if interpreted non-deterministically

A
B
C

to
to
to

to
to
to

30/40

s this choice OK? 1/4

choice at A {
1() from A to B;
3() from B to C; X
4() from C to A;

}or {
2() from A to B;
3() from B to C; X
5() from C to A;

}

> “Ambiguous” choice to ¢
> Should C send a 4 or a 5 to A?
> Potential reception errors (4, 5), if interpreted non-deterministically
> Non-det external choice at C inconsistent with original internal choice by A

> Not “mergeable” in syntactic projection
(Need to merge continuations: undefined for distinct outputs)

> Simple fix: distinguish the 3's (distinct external choice ops mergeable)

s this choice OK? 2/4

choice at A {

1() from

3() from

4() from
} or {

2() from

3() from

4() from
}

A

to
to
to

to
to
to

31/40

s this choice OK? 2/4

choice A A
10
3() from B to C;
4() from A to C; vV

}or {

20 A B;
3() from B to C;
4() from A to C; vV

}

=
[s5)

31/40

s this choice OK? 2/4

choice A A
10 A B;
3() from B to C;
do Merge(A, C);
} or {
20 A B;
3() from B to C;
do Merge(A, C);
}

global protocol Merge(role A, role C) {
4() from A to C;
}

> Duplicate cases inherently mergeable, e.g. [POPL11]

31/40

s this choice OK? 2/4

choice A A
10 A B;
3() from B to C;
do Merge(A, C);
} or {
20 A B;
3() from B to C;
do Merge(A, C);
}

Merge (A, Cc) {
4() from C to A;

> Duplicate cases inherently mergeable, e.g. [POPL11]

31/40

s this choice OK? 2/4

choice A A
10 A B;
3() from B to C;
do Merge(A, C);
} or {
20 A B;
3() from B to C;
do Merge(A, C);
}

Merge (A, Cc) {
choice at A {
4() from A to C;
}or {
5() from A to C;
i

> Duplicate cases inherently mergeable, e.g. [POPL11]

31/40

s this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C;
3() from B to C;
4() from C to A;
}or {
1b() from A to B;
3() from B to C;
4() from C to A;
}

32/40

s this choice OK? 3/4

A A
1a() A B;
2() from A to C; X
3() from B to C;

40 C A;

} {
10 A B;
3() from B to C; X
40) C A;

}

> “Race condition” in choice to ¢ due to asynchrony

> What should C do after receiving a 37

32/40

s this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; X
3() from B to C;
4() from C to A;

}or {
1b() from A to B;
3() from B to C; X
4() from C to A;

}

> “Race condition” in choice to ¢ due to asynchrony

> What should C do after receiving a 37
> Potential orphan message (2), if intepreted as “multi-queue FIFO”

32/40

s this choice OK? 3/4

choice at A {
1a() from A to B;
2() from A to C; X
3() from B to C;
4() from C to A;

}or {
1b() from A to B;
3() from B to C; X
4() from C to A;

}

> “Race condition” in choice to ¢ due to asynchrony

> What should C do after receiving a 37
> Potential orphan message (2), if intepreted as “multi-queue FIFO”

> Inconsistent external choice subjects

> (Trivially non-mergeable in standard MPST)
> A role must be enabled by the same role in all choice paths

s this choice OK? 4/4

choice at A {

1() from A to B;

2() from A to C;
}or {

3() from A to B;
}

33/40

s this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; X
}or {
3() from A to B;
} X

» “Unrealisable” choice for ¢

> No implicit messages can be assumed, e.g., end-of-session
> How can C locally determine if no message is coming?

33/40

s this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; X
}or {
3() from A to B;
} X

» “Unrealisable” choice for ¢

> No implicit messages can be assumed, e.g., end-of-session

> How can C locally determine if no message is coming?

> Potential deadlock (C waiting-for A), or potential orphan (2),
depending on interpretation

33/40

s this choice OK? 4/4

choice at A {
1() from A to B;
2() from A to C; X
}or {
3() from A to B;
} X

» “Unrealisable” choice for ¢

> No implicit messages can be assumed, e.g., end-of-session

> How can C locally determine if no message is coming?

> Potential deadlock (C waiting-for A), or potential orphan (2),
depending on interpretation

> Empty action option to terminal state

> Cannot merge end type with anything else

Recursion

rec X {
choice at A {
1() from A to B;
continue X;
2() from A to B;

} or {

3() from A to B;
}
4() from A to B;

}
5() from A to B;

> Tail recursion within recursive scopes

34 /40

Recursion

rec X {
choice at A {
1() from A to B;
continue X;
2() from A to B; X
} or {
3() from A to B;
}
4() from A to B;
}
5() from A to B;

> Tail recursion within recursive scopes

> Rechability of protocol states (no “dead code”)

34 /40

Recursion

rec X {
choice at A {
1() from A to B;
continue X;
2() from A to B; X
} or {
3() from A to B;
}
4() from A to B; X
¥
5() from A to B;

> Tail recursion within recursive scopes

> Rechability of protocol states (no “dead code”)
> Regular interaction structure at endpoints (CFSM model)

34 /40

Recursion

rec X {
1() from A to B;
continue X;

}
2() from A to B;

» Reachability of protocol states

35/40

Recursion

rec X {
1() from A to B;
continue X;

}

2() from A to B; X

» Reachability of protocol states

35/40

Recursion

rec X {
1() from A to B;

ti X;
. continue @BEIO

2() from A to B;

rec X {
1() from A to B;
continue X;

}
2() from C to D;

> Reachability of protocol states

35/40

Recursion

rec X {
1() from A to B;

ti X;
. continue @BEIO

2() from A to B;

rec X {
1() from A to B;
continue X;

}
2() from C to D; Vv

» Reachability of protocol states

35/40

Recursion

rec X {
1() from A to B;

ti X;
. continue @BEIO

2() from A to B;

rec X {
1() from A to B;
continue X;

}
2() from C to D; Vv

> Reachability of protocol states checked via projections

> (Reachability wrt. “per-role” protocol flow)

35/40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
1() from B to C;
continue X;
¥
}or {
2() from A to B;
2() from B to C;
}

> Safety errors? (reception errors, orphan messages, deadlock)

36 /40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
1() from B to C;
continue X;
¥
}or {
2() from A to B;
2() from B to C;
}

> Safety errors? (reception errors, orphan messages, deadlock)
> Endpoint FSM for A?

36

40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;
¥
}or {
2() from A to B;
2() from B to C;
}

> Safety errors? (reception errors, orphan messages, deadlock)

> Endpoint FSM for A?
> How about now?

36 /40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;
¥
}or {
2() from A to B;
2() from B to C;
}

> Safety errors? (reception errors, orphan messages, deadlock)

> Endpoint FSM for A?
> How about now?
> But is this a “good” protocol?

36 /40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;
¥
}or {
2() from A to B;
2() from B to C; X
}

» Safety errors? (reception errors, orphan messages, deadlock) no

> Endpoint FSM for A?
> How about now?
> But is this a “good” protocol?

» Liveness errors

> Role progress

36 /40

s this protocol OK? 1/2

choice at A {
rec X {
1() from A to B;
//1() from B to C;
continue X;
¥
}or {
2() from A to B;

}
2() from C to B; X

» Safety errors? (reception errors, orphan messages, deadlock) no
> Endpoint FSM for A?
> How about now?
> But is this a “good” protocol?

> Liveness errors

> Role progress
> Message liveness

36 /40

s this protocol OK? 2/2

rec X {
choice at A {
1() from A to B;
continue X;
}or {
2() from A to B;
2() from B to C;
}
}

> |s this a good protocol?

37/40

s this protocol OK? 2/2

rec X {
choice at A {
1() from A to B;
continue X;
}or {
2() from A to B;
2() from B to C;
}
}

> |s this a good protocol?

> Depends on...

37/40

s this protocol OK? 2/2

rec X {
choice at A {
1() from A to B;
continue X;
}or {
2() from A to B;
2() from B to C;
}
}

> |s this a good protocol?

> Depends on... fairness of output choice

37/40

s this protocol OK? 2/2

rec X {
choice at A {
1() from A to B;
continue X;
}or {
2() from A to B;
2() from B to C;
}
}

> |s this a good protocol?

> Depends on... fairness of output choice

> Session subtyping vs. fairness [MSCS16]

[MSCS16] Fair subtyping for multi-party session types. L. Padovani.

37/40

Homework

rec X {

choice at A {
1() from A to B;
2() from B to C;
3() from C to B;

}or {
4() from A to C;
5() from C to B;

}

continue X;

}

» Why does Scribble not allow this protocol?
» What can “go wrong”?

38/40

Implementing session delegation

» Type safe connection dynamics

» Transparent to the “passive party”

slp!({q,s'[p'])).P|s:h— P|s:h-(p.q,5[P]) [Deleg]

slp?((q.¥).P | s: (q,p,s[p'])-h — P{s'[p']/y} |s:h [SRev]

39/40

Implementing session delegation

» Type safe connection dynamics

» Transparent to the “passive party”

slp!({q,s'[p'])).P|s:h— P|s:h-(p.q,5[P]) [Deleg]

slp?((q.¥).P | s: (q,p,s[p'])-h — P{s'[p']/y} |s:h [SRev]

» Asynchrony modelled by decoupling input/output via (global) queue

>

39/40

Implementing session delegation

» Type safe connection dynamics

» Transparent to the “passive party”

s[p|'{(q,s'[p']))-P|s:h— P|s:h-(p,q,5[P]) [Deleg]
slp|?(q.y)).P | s: (q,p.s'[p'])-h — P{s'[p']/y} [s:h [SRev]

» Asynchrony modelled by decoupling input/output via (global) queue

> All messages “rerouted” in transit

39/40

Is this protocol OK?

rec X {
choice at A {
1() from A to B;
continue X;
}oor {
1() from A to B;
}
}

40 / 40

Is this protocol OK?

rec X {
choice at A {
1() from A to B;
continue X; 10
}oor {
1() from A to B;
}
}

> Potential deadlock or orphans

> (This example is invalid branch/select syntax in standard MPST)

40 / 40

