
The Intimacy of Session Types and Proof Theory

Recent developments

Bogdan Aman1, Gabriel Ciobanu1 and Ross Horne1,2

1 Romanian Academy, Institute of Computer Science, Iaşi, Romania
2 School of Computer Engineering, Nanyang Technological University, Singapore

bogdan.aman@gmail.com, gabriel@info.uaic.ro, rhorne@ntu.edu.sg

Session types were originally inspired by linear logic. The computational
interpretation of (intuitionistic) linear logic due to Abramsky [1] decomposes
choice into internal and external choice, which interpret a de Morgan dual pair
of additive operators. Honda exploited this duality when devising a theory of
binary session types [7]. However, the correspondence between linear logic and
session types is not exact. In particular, Honda’s binary session types feature a
self-dual non-commutative operator representing sequentiality that is not present
in linear logic. More recently, proof theorists devised a framework, called the
calculus of structures [6], that is capable of expressing extensions of linear logic
with a self-dual non-commutative operator. This advance enabled the authors
to devise a tight and direct formulation of finite multi-party session types [9] as
propositions in a proof calculus called MAV [2, 10].

A significant fragment of the session modelling language Scribble [8] can be
embedded in the proof calculus MAV. The behaviour of each party in a session is
modelled by local types, which we ensure are compatible [3] in the sense that all
parties realise a global protocol when executed together. Remarkably, executions
witnessing that local types are compatible are exactly proofs in the system MAV.
Thus provability in MAV corresponds with multi-party compatibility. Since MAV
is an analytic proof calculus this correspondence provides procedures for deciding
multi-party compatibility.

Further to capturing multi-party compatibility, proofs in MAV can be used
to define a subtype system. In typical applications of session types for static
analysis [12, 13], the control flow of a program is extracted and the values com-
municated are replaced by types to obtain a session type. We then check that
the session type obtained from the control flow is a subtype of the specification.
As in the binary session case [14, 4], subtyping can vary branches of a choice and
the basic types input and output on channels. Subtyping also permits causal de-
pendencies to be relaxed. The subtyping relation is given by exactly the provable
linear implications in MAV. A corollary of the cut elimination result for MAV [10]
is that linear implication defines a preorder over session types.

Reassuringly, as a process preorder, linear implication is sound with respect to
both (weak complete) simulation and pomset traces [5]; hence respects branching
time and causality. A subtype system based on linear implication is therefore safe
to use for processes deployed on systems guaranteeing a consistency model at
least as strong as causal consistency. Hence when linear implication is employed
for subtyping, false positives where subtyping incorrectly claims a party meets



its specification are less likely than for definitions of subtyping based on trace
inclusion for instance.

Correspondences between linear logic and session types have been sought as
an objective justification for design decisions in session types. We have demon-
strated an intimate correspondence where propositions in MAV are session types,
proofs are witnesses of multi-party compatibility, and linear implication is sub-
typing. By extending with first-order quantifiers to obtain MAV1 [11], processes
can be modelled in a similar fashion by directly embedding processes as predi-
cates. A novel feature of MAV1 is a pair of de Morgan dual nominal quantifiers
that model private names in the π-calculus. MAV1 can embed numerous ex-
tensions of finite π-calculus processes such as a π-calculus with both internal
and external choice in which multi-party compatibility can be extended to the
process level. Future work includes establishing the consistency of second-order
extensions of MAV for modelling fixed points and delegation.

References

1. Samson Abramsky. Computational interpretations of linear logic. Theoretical com-
puter science, 111(1):3–57, 1993.

2. Gabriel Ciobanu and Ross Horne. Behavioural analysis of sessions using the cal-
culus of structures. In PSI 2015, 25-27 August, Kazan, Russia, volume 9609 of
LNCS, 2015.

3. Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in commu-
nicating automata: Characterisation and synthesis of global session types. In Au-
tomata, Languages, and Programming, pages 174–186. Springer, 2013.

4. Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005.

5. Jay L. Gischer. The equational theory of pomsets. Theoretical Computer Science,
61(2-3):199–224, 1988.

6. Alessio Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 8(1), 2007.

7. Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509–523.
Springer, 1993.

8. Kohei Honda et al. Scribbling interactions with a formal foundation. In ICDCIT
2011, volume 6536 of LNCS, pages 55–75. Springer, 2011.

9. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. Journal of the ACM (JACM), 63(1):9, 2016.

10. Ross Horne. The consistency and complexity of multiplicative additive system
virtual. Sci. Ann. Comp. Sci., 25(2):245–316, 2015.

11. Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu. Private names
in non-commutative logic. In Josée Desharnais and Radha Jagadeesan, editors,
CONCUR 2016, number 31 in LIPIcs, pages 1–16.

12. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed pro-
gramming in java. In ECOOP, pages 516–541. Springer, 2008.

13. Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C: Safe par-
allel programming with message optimisation. In Objects, Models, Components,
Patterns, pages 202–218. Springer, 2012.

14. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
In LICS’93, pages 376–385. IEEE, 1993.


