
From Object-Oriented Code with Assertions

to Behavioural Types

Cláudio Vasconcelos António Ravara
NOVA LINCS, DI-FCT, Universidade NOVA de Lisboa, Portugal

12 September 2016

The aim of our work is to take a step in the direction of infering behavioural types for object-
oriented languages, bridging the world of programming with assertions with the world of be-
havioural typed programming [1], in particular in Java. While the former is becoming increasingly
popular and well supported (being part of the Java language for more than a decade now1), the
latter has a growing impact and will probably soon be incorporated in mainstream languages. We
developed an algorithm that converts Java with assertions in a form of behavioural types (hence-
forth called usage, a textual representation of a finite automata). Usages represent all the safe
sequences of method calls and are (enhanced forms of) class types, checkable at compile-time.

We present a behavioural type inference approach that, from a program written in Mool [2, 3]
with assertions, generates the usage types necessary for the program to have its behaviour statically
checked by a type system. We developed and implemented algorithms to automatically perform
the transformation [6].2 The tool starts by generating a permissive and nondeterministic state
machine representing a typestate, based on the assertions on the code. The tool then translates
the generated typestates into usages. In the end, it defines the usage state that each object of the
class starts with by using the assertions and the usages obtained in the previous stage. This tool
is composed by three algorithms, with the first two adapted from algorithms presented in other
works [4, 5], and the third one being original.

In a nutshell, our approach is the following: given a program written in a subset of Java, fully
annotated with assertions, if such annotations are correct our algorithm returns its usage. The
goal is to provide developers with abstractions extracted from the code to represent its behaviour.
Furthermore, these abstractions can be attached to the code and then statically verified.

Although behavioural types are intuitive, informative, and easy to verify, the assurances given
by type systems using them and by proof systems based on assertions are complementary. Many
type systems do not guarantee, for instance, NullPointerExceptions. Furthermore, assertions are
part of Java and are used by many developers and present in many code supporting running
applications. Our algorithm allow thus for analysing statically this legacy code, checking even
automatically its correctness, and gives additional support to developers not familiarised with
behavioural types.

References

[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Pierre-Malo Deniélou, Nils
Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Fabrizio
Montesi, Rumyana Neykova, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in
programming languages. Foundations and Trends in Programming Languages, 2016.

[2] Joana Campos and Vasco Thudichum Vasconcelos. Channels as objects in concurrent object-
oriented programming. In Proceedings of the Third Workshop on Programming Language

1http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
2Available at http://usinfer.sourceforge.net/

1

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
http://usinfer.sourceforge.net/


Approaches to Concurrency and communication-cEntric Software, volume 69 of EPTCS, pages
12–28, 2011.

[3] Joana Correia Campos. Linear and shared objects in concurrent programming. Master’s thesis,
University of Lisbon, 2010.

[4] Guido De Caso, Victor Braberman, Diego Garbervetsky, and Sebastian Uchitel. Enabledness-
based program abstractions for behavior validation. ACM Transactions on Software Engineer-
ing and Methodology, 22(3):1–46, 2013.

[5] Peter Collingbourne and Paul H. J. Kelly. Inference of session types from control flow. Elec-
tronic Notes in Theorectical Computer Science, 238(6):15–40, 2010.

[6] Cláudio Vasconcelos and António Ravara. From Object-Oriented Code with Assertions to
Behavioural Types. In Proceedings of the Portuguese Simposium in Informatics. INFORUM,
2016. URL: http://usinfer.sourceforge.net/articles/inforum2016.pdf.

2


