
Embedding Session Types in Haskell
(Tool presentation)

Sam Lindley J. Garrett Morris
The University of Edinburgh, UK

{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract
We present a novel embedding of session-typed concurrency in
Haskell. We extend an existing HOAS embedding of linear λ-
calculus with a set of core session-typed primitives, using indexed
type families to express the constraints of the session typing disci-
pline. We give two interpretations of our embedding, one in terms
of GHC’s built-in concurrency and another in terms of purely func-
tional continuations. Our safety guarantees, including deadlock
freedom, are assured statically and introduce no additional runtime
overhead.

1. Introduction and Overview
Many communication protocols specify not just the types or for-
mats of data or commands in the protocol, but also place restrictions
on the order in which data is to be communicated. For example, the
simple mail transfer protocol (SMTP) not only includes commands
to specify the sender, recipients, and contents of an email message,
but also requires that the sender command precede the recipient
commands, which must in turn precede the commands giving the
message body. Session types [3, 4, 8] capture such protocols in the
types of communication channels. Session types have two distin-
guishing features. First, the endpoints of a channel must be given
dual types: if one process expects to send a value along some chan-
nel, the process on the other end of the channel must expect to
receive it. Second, session types must evolve over the course of a
computation to prevent processes from repeating or skipping steps
of the protocol.

Much of the existing work presents session types in the context
of core concurrency-focused calculi (frequently based on either π-
calculus or linear λ-calculus). Such calculi provide a holistic view
of session types, integrating aspects of their syntax, the distinguish-
ing aspects of the types themselves (such as duality), and their con-
current interpretations. However, typically they do not address how
session types can be integrated into existing languages or the rela-
tionship between the concurrency expressed using session typing
and that provided by existing concurrent primitives. We have de-
veloped a core session-typed functional calculus called GV [5, 6].
GV has strong connections to classical linear logic; consequently,
its type system guarantees deadlock freedom in addition to typical
safety properties. Our development of GV is also intended to be
modular. We build on a standard linear λ-calculus, and attempt to
minimize the number of concurrent features, preferring to express
concurrent features in terms of λ-calculus constructs when possi-
ble. GV’s metatheory is developed modularly as well; for example,
this allows us to show that the addition of several non-logical fea-
tures does not compromize GV’s deadlock freedom, even though
the extended calculus no longer enjoys a tight correspondence with
classical linear logic.

In this work, we developed a parameterized tagless embed-
ding [1, 2] of GV in Haskell and two implementations of that em-
bedding. (We will use the term parameterized tagless or just tagless
in preference to finally tagless or tagless final.) We began with an
embedding of GV in Haskell, building on Polakow’s [7] embed-
ding of linear λ-calculus in Haskell. In doing so, we demonstrate
the generality of Polakow’s embedding: first, we are able to extend
his core calculus with GV’s concurrent primitives, and second, we
are able to build a monadic interpretation of his embedding to sup-
port computations with side effects. Then, we built two implemen-
tations of our embedding, one based on the concurrent primitives in
Haskell’s IO monad and another that expresses concurrency using
continuations. The former shows that this approach has practical
applicability. We are able to wrap existing concurrent primitives
with new type information, providing additional static safety guar-
antees without introducing runtime cost. The latter validates that
our primitives also have a purely functional interpretation, follow-
ing the formal semantics of GV. It also provides general insight into
parameterized tagless embeddings and translations between them;
in particular, while we are able to implement GV in terms of a more
explicit language, Polarized GV, such an implementation requires
limitations on the modularity of our source language.

The contributions of the work are as follows. First, we gave
a monadic interpretation of Polakow’s embedding of linear λ-
calculus in Haskell. We gave an embedding of the syntax and typing
of the core GV calculus in Haskell. We built two implementations
of GV. The first uses the IO monad, and demonstrates that GV’s
static guarantees need introduce no runtime overhead. We also
showed extensions of this embedding that increase its expressivity
(at the cost of some of its static guarantees), demonstrating GV’s
modular nature. The second realizes the CPS semantics of GV
in the continuation monad. The CPS semantics is non-parametric
in that the translation of some term forms depends on the type
at which they are used. To restore parametricity, we introduce a
polarized version of the calculus. We then showed that we can
implement the original language in terms of its polarized variant.
These implementations show that GV concurrency can be used in a
purely functional setting (or other setting in which using IO would
be undesirable, such as STM), and show that our embeddings are
are suitable for metaprogramming.

The code underlying this work is available at the following
URL:

http://github.com/jgbm/gvinhs/

References
[1] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific

languages. In S. Weirich, editor, Proceedings of the 2nd ACM SIGPLAN
Symposium on Haskell, Haskell 2009, Edinburgh, Scotland, UK, 3
September 2009, pages 37–48. ACM, 2009.

http://github.com/jgbm/gvinhs/


[2] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5):509–543, 2009.

[3] K. Honda. Types for dyadic interaction. In E. Best, editor, CONCUR
’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture
Notes in Computer Science, pages 509–523. Springer, 1993.

[4] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
C. Hankin, editor, Programming Languages and Systems - ESOP’98,
7th European Symposium on Programming, Held as Part of the Eu-
ropean Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
volume 1381 of Lecture Notes in Computer Science, pages 122–138.
Springer, 1998.

[5] S. Lindley and J. G. Morris. A semantics for propositions as sessions. In
J. Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture
Notes in Computer Science, pages 560–584. Springer, 2015.

[6] S. Lindley and J. G. Morris. Talking bananas: Structural recursion for
session types. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 19-21, 2016. ACM, 2016.

[7] J. Polakow. Embedding a full linear lambda calculus in Haskell. In
B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4,
2015, pages 177–188. ACM, 2015.

[8] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In C. Halatsis, D. G. Maritsas, G. Philokyprou,
and S. Theodoridis, editors, PARLE ’94: Parallel Architectures and
Languages Europe, 6th International PARLE Conference, Athens,
Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes in
Computer Science, pages 398–413. Springer, 1994.


	Introduction and Overview

