
Behavioural types to make

object-oriented programs go right

Mario Bravetti∗ Adrian Francalanza† Hans Hüttel‡ António Ravara§

12 September 2016

Stateful objects typically have a non-uniform behaviour, as the availability of their methods
depend on their internal state. For instance, in an object that implements file access the method
to read a file should not be invoked before caling the method to open that file. Similarly, in an
iterator object, calls to the next method should be preceeded by calls to the hasNext method.

Behavioural types are particularly well-suited to object-oriented programming, as they make
it possible to statically guarantee that method calls happen when an object has an internal state
that is safe for the method’s execution. Following the typestates approach [5], one may declare for
each possible state of the object the set of methods that can be safely executed in that state.

Several languages, like Bica [3], Mool [1, 2], or Mungo [4], associate with a class a dynamic
description of objects’ behaviour declaring the admissible sequences of method calls. These de-
scriptions, herein called usages, can be used to ensure at compile time that, in a given program,
all the sequences of method calls to each object follow the order declared by its usage. To ensure
usages to be followed, objects are linear to prevent interferences unexpectedly changing their state.

However, the typing systems referred to above have two shortcomings. First, type checking
is typically inefficient, as a method’s body is checked each time that method appears in a usage.
Second, said typing systems limit themselves to just verifying that method calls follow the usage,
and do not necessarily prevent the typed program from “going wrong” (e.g., getting stuck or
producing a null pointer exception).

Our work addresses these weaknesses. We attain a stronger type-safety result to the sequential
subset of Mool (the simplest of the three languages referred), by including de-referencing a null
reference in the definition of errors and by including in type-checking a form of null pointer analysis.
Thus, type-safety in our setting means no run-time errors and complete execution of objects’
usages. We attain more efficient type-checking by analysing methods’ bodies only once. Instead
of checking the code following the usage, we introduce client usages, behavioural descriptions of
how a methods’ code changes the state of objects in fields (and variables/parameters), type the
method bodies following that information and check the consistency of the usages independently.

Client usages have actually three advantages: (1) they improve the efficiency of type-checking;
(2) they facilitate null-pointer analysis for shared objects; and (3) they can, not only be inferred
from the code, but also be used to produce pre- and post-conditions to methods that then allow
to infer usages (as done by Vasconcelos and Ravara [6]).

We are developing this work in stages. First we define a type system only with usages and
prove type-safety (our enhanced version). Subsequently, we extend the type system with client
usages and get a more efficient type-checking. Afterwards we infer the client usages from the code,
and finally we infer pre- and post-conditions from client usages. Our aim is to provide an approach
that takes a program in a Java-like language and automatically infers class usages that describe
safe orders of method calls, but also type-checks (client) code against usages (either inferred or
user-defined) so as to guarantee that the whole program does not go wrong.

∗Department of Computer Science and Engineering, University of Bologna, Italy/ Focus, INRIA, France
†Department of Computer Science, University of Malta, Malta
‡Department of Computer Science, Aalborg University, Denmark
§Department of Computer Science, FCT, New University of Lisbon, Portugal

1



References

[1] Joana Campos and Vasco Thudichum Vasconcelos. Channels as objects in concurrent object-
oriented programming. In Proceedings of the Third Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software, volume 69 of EPTCS, pages
12–28, 2011.

[2] Joana Correia Campos. Linear and shared objects in concurrent programming. Master’s thesis,
University of Lisbon, 2010.

[3] Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modular
session types for objects. Logical Methods in Computer Science, 11(4), 2015.

[4] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J.Gay. Typechecking protocols
with Mungo and StMungo. In Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming. ACM, 2016.

[5] R E Strom and S Yemini. Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Softw. Eng., 12(1):157–171, January 1986.

[6] Cláudio Vasconcelos and António Ravara. From object-oriented code with assertions to be-
havioural types. In Proceedings of the Portuguese Simposium in Informatics. INFORUM, 2016.
URL: http://usinfer.sourceforge.net/articles/inforum2016.pdf.

2


