
The Open Challenge of Typed Expressiveness in

Concurrency

Jorge A. Pérez
University of Groningen, The Netherlands

http://www.jperez.nl

Context Communication and types are increasingly relevant in (concurrent)
programming. To bear witness of this trend, several languages promoted by
industry offer advanced type systems (or type-based analysis tools) and/or sup-
port (message-passing) communication. For instance, Facebook’s Flow [1] is a
type checker for JavaScript based on gradual typing; Mozilla’s Rust [4] exploits
affine, ownership types to balance safety and control; Google’s Go [3] supports
process concurrency and channel-based communication. Other languages (e.g.,
Erlang [2]) also offer forms of (message-passing) communication.

If communication and types are here to stay, on what foundations languages
integrating both features should rest? Much research within formal techniques
in distributed systems has been devoted to models for concurrency and commu-
nication. In particular, process calculi have been widely promoted as a basis for
type systems for concurrent programs. Indeed, building upon the π-calculus, a
variety of behavioral type systems have been put forward [5, 6]: by classifying
behaviors (rather than values), these type structures abstract structured proto-
cols and enforce disciplined message-passing programs. Existing work suggests
that rather than a shortage of foundations for types and communication, we
have the opposite problem: there are many formal foundations and it is unclear
how to build upon them to transfer analysis techniques into practice.

The Challenge The current situation calls for rigorous comparisons between
well-established (but distinct) behavioral typed frameworks. Besides revealing
bridges between different models of typed processes, such comparisons should
clarify the complementarities/shortcomings of analysis techniques based on types.
Developing a theory of typed expressiveness is thus a challenge for the specifica-
tion and analysis of distributed systems. The consolidation of communication-
centered software systems (collections of interacting, heterogeneous services)
and the renewed interest of software practitioners in communication and types
endow this challenge with practical significance.

We argue that the much needed formal comparisons may draw inspiration
from results and frameworks for relative expressiveness, as studied in concur-
rency theory. This area has elucidated important formal relations between un-

1

http://www.jperez.nl


typed process languages (see [7] for a survey); it thus appears as an adequate
basis for analogous formal results in a typed setting.

This Presentation Building upon the recent position paper [8], this pre-
sentation first overviews main achievements in untyped expressiveness. Then,
it briefly reviews expressiveness results that consider behavioral types and/or
behaviorally typed processes. It concludes by discussing promising research
directions.

References

[1] Flow: A Static Type Checker for JavaScript, http://flowtype.org

[2] The Erlang Programming Language, http://www.erlang.org

[3] The Go Programming Language, https://golang.org

[4] The Rust Programming Language, https://www.rust-lang.org

[5] Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An
overview. In: WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer (2010)

[6] Huttel, H., Lanese, I., Vasconcelos, V., Caires, L., Carbone, M., Deniélou,
P.M., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T.,
Zavattaro, G.: Foundations of session types and behavioural contracts. ACM
Computing Surveys (2016), to appear

[7] Parrow, J.: Expressiveness of process algebras. ENTCS 209, 173–186 (2008),
http://dx.doi.org/10.1016/j.entcs.2008.04.011

[8] Pérez, J.A.: The challenge of typed expressiveness in concurrency. In: Proc.
of FORTE 2016. LNCS, vol. 9688, pp. 239–247. Springer (2016)

2

http://flowtype.org
http://www.erlang.org
https://golang.org
https://www.rust-lang.org
http://dx.doi.org/10.1016/j.entcs.2008.04.011

