
Typing Adaptation Monitors for Actor Systems

Ian Cassar & Adrian Francalanza

University of Malta

{ian.cassar.10, adrian.francalanza}@um.edu.mt

17th March 2016

Monitors Variants (Runtime Verification Monitors)

Monitor System
events

events

actions

flag

Detect and Flag Errors then stop.

Monitors Variants (Runtime Adaptation Monitors)

Monitor System
events

events

actions

flag

Detect errors, adapt system (automate recovery) then continue.

Verifying Monitor Correctness

The Monitor should be part of the Trusting Computing Base.

I Monitors rarely come with guarantees — may introduce errors.
I The Monitor’s verdict is useless if the monitor is incorrect.

Actor Systems

Id1 Id2 Id3

Id4
m1

m2

m3

Id4

m4

Actor Systems

Id1 Id2 Id3

Id4

m1

m2

m3

Id4

m4

Actor Systems

Id1 Id2 Id3 Id4
m1

m2

m3

Id4

m4

Technologies and Characteristics

Actor Languages/Frameworks

I Erlang
I Akka for Scala and Java
I Salsa (JVM)
I Stage (Python)

Monitoring and Adapting Actor Systems

I Our Monitors take advantage of the fact that Actor Systems
are not Monolithic.

I The Monitors can effect specific parts of the system without
effecting others.

I We start from RV Monitors ...
I designed to passively observe individual parts of actor

systems...
I and we move to RA Monitors ...

I we introduce control capabilities by which the monitors can
influence certain parts of the system based on the observed
behaviour.

Monitoring and Adapting Actor Systems

Id1 Id2 Id3 Id4
m1

m2

m3

Id4

spw

Mon

I Monitoring is performed by an
external actor.

I Monitoring follows the Actor
model’s methodology.
− think concurrent

Actor System Example

Incrementor Decrementor

Server Interface

j k

i

{inc, 3, cli}{res, 4}

err

{inc, 3, cli}

External View

{inc, 3, cli}

Actor System Example

Incrementor Decrementor

Server Interface

j k

i

{inc, 3, cli}

{res, 4}

err

{inc, 3, cli}

External View

{inc, 3, cli}

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}] ([j.y!{res, x + 1}] Y)
&

([z.y!err] ff)

Issues
I Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.
2. Synchronous monitoring carries huge overheads [1].
3. We must synchronise a minimal subset to allow correct

adaptation.

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}] ([j.y!{res, x + 1}] Y)
&

([z.y!err] ff)

Issues
I Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.
2. Synchronous monitoring carries huge overheads [1].
3. We must synchronise a minimal subset to allow correct

adaptation.

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}] ([j.y!{res, x + 1}] Y)
&

([z.y!err] restart(i). purge mbx(z). Y)

Issues
I Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.
2. Synchronous monitoring carries huge overheads [1].
3. We must synchronise a minimal subset to allow correct

adaptation.

Example Property (Adaptation Monitors)

max Y. [i?{inc, x, y}] ([j.y!{res, x + 1}] Y)
&

([z.y!err] restart(i). purge mbx(z). Y)

Issues
I Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.
2. Synchronous monitoring carries huge overheads [1].
3. We must synchronise a minimal subset to allow correct

adaptation.

Example Property (Adaptation Monitors)

max Y. [i?{inc, x, y}] ([j.y!{res, x + 1}] Y)
&

([z.y!err] restart(i). purge mbx(z). Y)

Issues
I Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.
2. Synchronous monitoring carries huge overheads [1].
3. We must synchronise a minimal subset to allow correct

adaptation.

Monitor Synchronisations for Actor Systems

I We thus introduce mechanisms to incrementally block and
unblock actors.

I We can block actors before a potential violation occurs

I We release blocked actors when we the monitor collects more
information showing that the predicted violation will not occur.

I We apply rectifying adaptation actions immediately when the
monitor collects enough information to confirm that the
predicted violation has occurred.

Proposed Mechanism for Incremental Synchronisation

[α] φ

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}] Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Proposed Mechanism for Incremental Synchronisation

[α] blist φ

The Blocking list — A list of actor ids that will be Blocked after
system action α is performed.

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}] Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Proposed Mechanism for Incremental Synchronisation

[α] blist
rlist φ

The Release list — A list of actor ids that will be Released after
system action α is not performed.

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}] Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Proposed Mechanism for Incremental Synchronisation

[α] blist
rlist φ

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}] Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Actor System Example with Incremental
Synchronisations

Incrementor Decrementor

Server Interface

Decrementor

Server Interface

j k

i

{inc, 3, cli}{inc, 42, cli}{res, 4} err

{inc, 3, cli} {inc, 42, cli}

Actor System Example with Incremental
Synchronisations

Incrementor Decrementor

Decrementor

Server Interface

j k

i

{inc, 3, cli}

{inc, 42, cli}{res, 4} err

{inc, 3, cli}

{inc, 42, cli}

Actor System Example with Incremental
Synchronisations

Incrementor Decrementor

Server Interface

Decrementor

Server Interface

j k

i

{inc, 3, cli}

{inc, 42, cli}

{res, 4}

err

{inc, 3, cli}

{inc, 42, cli}

Actor System Example with Incremental
Synchronisations

Incrementor Decrementor

Decrementor

Server Interface

j k

i

{inc, 3, cli}

{inc, 42, cli}

{res, 4} err

{inc, 3, cli}

{inc, 42, cli}

Actor System Example with Incremental
Synchronisations

Incrementor DecrementorDecrementor

Server Interface

j k

i

{inc, 3, cli}

{inc, 42, cli}

{res, 4}

err

{inc, 3, cli}

{inc, 42, cli}

Programming Synchronisations

Rationale

I Hard to infer automatically.
I There are many ways how to carry out incremental

synchronisations.

Disadvantage
We allow the possibility for synchronisation errors.

Programming Synchronisations

Rationale

I Hard to infer automatically.
I There are many ways how to carry out incremental

synchronisations.

Disadvantage
We allow the possibility for synchronisation errors.

Examples of Potential Errors

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}]

i

Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Examples of Potential Errors

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}]

i

Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

Examples of Potential Errors

max Y. [i?{inc, x, y}] i
([j.y!{res, x + 1}] i Y)
&

([z.y!err] z
i restart(i). purge mbx(z)i,z .Y)

A Type System for Adaptation Scripts

Theorem
Well-Typed Scripts are guaranteed not to generate
synchronisation errors at runtime.

A Type System for Adaptation Scripts

We introduce two primary types for monitor variables.

I Linear Typed Variables

I can be used only amongst a single concurrent branch (ϕϕϕ&ψ);
I used to bind actor ids that can be used in blocking, releasing

and adaptation mechanisms.

I Unrestricted Typed Variables

I can be shared amongst multiple concurrent branch (ϕϕϕ&ψψψ);
I used to generic data and actor ids that are only used for

monitoring purposes.

A Type System for Adaptation Scripts

We introduce two primary types for monitor variables.

I Linear Typed Variables

I can be used only amongst a single concurrent branch (ϕϕϕ&ψ);
I used to bind actor ids that can be used in blocking, releasing

and adaptation mechanisms.

I Unrestricted Typed Variables

I can be shared amongst multiple concurrent branch (ϕϕϕ&ψψψ);
I used to generic data and actor ids that are only used for

monitoring purposes.

A Type System for Adaptation Scripts

I The value type environment Γ is split into Γ1 and Γ2.
I They do not share linear identifiers (lid and lbid).
I They may share unrestricted variables.

A Type System for Adaptation Scripts

If e occurs then the actors in b should be blocked, while those in r
should be released.

A Type System for Adaptation Scripts

If the actors in w are typed as linear ids (lid) then their type
changes to linear blocked upon a block operation.

The vice-versa happens upon a release operation.

A Type System for Adaptation Scripts

If the actors in w are typed as linear ids (lid) then their type
changes to linear blocked upon a block operation.

The vice-versa happens upon a release operation.

A Type System for Adaptation Scripts

Synchronous adaptations may only be applied on linear blocked
process ids.

Similarly, asynchronous adaptations are only applied on linear
process ids.

A Type System for Adaptation Scripts

Synchronous adaptations may only be applied on linear blocked
process ids.

Similarly, asynchronous adaptations are only applied on linear
process ids.

Guaranteeing a degree of Monitor Correctness

Definition

error(s . φ)
def
=

“A Synchronous Adaptation is applied to
an Unblocked actor.”

Theorem (Type Soundness)

s . φ
t
⇒ s′ . φ′ implies ¬error(s′ . φ′)

Implementation - AdaptEr

I AdaptEr Repository
I https://bitbucket.org/casian/adapter

I Based on DetectEr.
I First we introduced Synchronous Monitoring through AOP.
I Then we added Adaptations.

Implementation - Protocol

async event

sync event

adaptations

release

Monitor System

Implementation - Results

I Performance evaluation was conducted wrt. the Yaw
Webserver.

I We defined several Adaptation Properties for Yaws to
strengthen it.

I We patched a Directory Traversal Vulnerability.

References

Cassar, I., and Francalanza, A.
On Synchronous and Asynchronous Monitor Instrumentation for Actor Systems.
In FOCLASA (2014), vol. 175, pp. 54–68.

Cassar, I., and Francalanza, A.
Runtime Adaptation for Actor Systems.
In RV (2015), pp. 38–54.

Cassar, I., and Francalanza, A.
On Implementing a Monitor-Oriented Programming Framework for Actor Systems.
In iFM (2016).
(to appear).

