Typing Adaptation Monitors for Actor Systems

lan Cassar & Adrian Francalanza

University of Malta

{ian.cassar.10, adrian.francalanza}@um.edu.mt

17t March 2016

Monitors Variants (Runtime Verification Monitors)

events System

A

Monitor

flag

Detect and Flag Errors then stop.

Monitors Variants (Runtime Adaptation Monitors)

actions

events System

A

Monitor
events

Detect errors, adapt system (automate recovery) then continue.

Verifying Monitor Correctness

The Monitor should be part of the Trusting Computing Base.

» Monitors rarely come with guarantees — may introduce errors.
» The Monitor’s verdict is useless if the monitor is incorrect.

Actor Systems

«O» < Fr < =

«=>

Q>

Actor Systems

m2

o 5 = = E DA

Actor Systems

ld4

Technologies and Characteristics

Actor Languages/Frameworks

» Erlang

» Akka for Scala and Java
» Salsa (JVM)

» Stage (Python)

Monitoring and Adapting Actor Systems

v

Our Monitors take advantage of the fact that Actor Systems
are not Monolithic.

v

The Monitors can effect specific parts of the system without
effecting others.

We start from RV Monitors ...
» designed to passively observe individual parts of actor
systems...
» and we move to RA Monitors ...

» we introduce control capabilities by which the monitors can
influence certain parts of the system based on the observed
behaviour.

v

Monitoring and Adapting Actor Systems

Id1

Mon

ld4

@3 - oo ld4

>4_I\/I0h'i‘toring is performed by an

external actor.

» Monitoring follows the Actor
model's methodology.
— think concurrent

Actor System Example

Incrementor | ﬂ Decrementor

{inc, 3, CI;N

n Server Interface |

External View -{----------------q4-------------------

{res, 4} {inc, 3, cli}

Actor System Example

Incrementor | ﬂ Decrementor

/{'inc, 3, cli}

n Server Interface |

External View ------------------H--~--~--------------

{inc, 3, cli} err

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}]

([py!Hres,x +1]1Y)
&
([z>y!err]ff)

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}]

([py!Hres,x +1]1Y)
&
([z>y!err]ff)

Example Property (Detection Monitors)

max Y. [i?{inc, x, y}]

([py!Hres,x +1}]1Y)
&
([z>y!err] restart(i). purge_mbx(z). Y)

Example Property (Adaptation Monitors)

max Y. [i?{inc, x, y}]

([py!Hres,x +1}]1Y)
&
([z>y!err] restart(i). purge_mbx(z). Y)

Example Property (Adaptation Monitors)

max Y. [i?{inc, X, y}]
([pyHres,x +1}]Y)
&
([z>y!err] restart(i). purge_mbx(z). Y)

Issues

» Full-blown synchronous monitoring is not an option:

1. Actor Systems are inherently asynchronous.

2. Synchronous monitoring carries huge overheads [1].

3. We must synchronise a minimal subset to allow correct
adaptation.

Monitor Synchronisations for Actor Systems

» We thus introduce mechanisms to incrementally block and
unblock actors.

» We can block actors before a potential violation occurs

» We release blocked actors when we the monitor collects more
information showing that the predicted violation will not occur.

» We apply rectifying adaptation actions immediately when the
monitor collects enough information to confirm that the
predicted violation has occurred.

Proposed Mechanism for Incremental Synchronisation

[a] ¢

Proposed Mechanism for Incremental Synchronisation

[a,] blist ¢

The Blocking list — A list of actor ids that will be Blocked after
system action « is performed.

Proposed Mechanism for Incremental Synchronisation

bllst
[a/] rI|st

The Release list — A list of actor ids that will be Released after
system action « is not performed.

Proposed Mechanism for Incremental Synchronisation

bllst
[a/] rI|st

max Y. [i?{inc, X, y}]’

([py!Hres,x +1]1Y)
&
([zry'!err]? restart(i). purge_mbx(z);,.Y)

Actor System Example with Incremental
Synchronisations

Incrementor | ﬂ Decrementor

n Server Interface |

Actor System Example with Incremental
Synchronisations

Incrementor | n Decrementor

{inc, 3, cli}

{inc, 3, cli}

Actor System Example with Incremental
Synchronisations

Incrementor | ﬂ Decrementor

{inc, 3, CIR

n Server Interface |

{res, 4} {inc, 3, cli}

Actor System Example with Incremental
Synchronisations

Incrementor | n Decrementor

{inc, 42, cli}

{inc, 42, cli}

Actor System Example with Incremental
Synchronisations

Incrementor

{inc, 42, cli}

{inc, 42, cli} err

Programming Synchronisations

Rationale

» Hard to infer automatically.

» There are many ways how to carry out incremental
synchronisations.

Programming Synchronisations

Rationale

» Hard to infer automatically.

» There are many ways how to carry out incremental
synchronisations.

Disadvantage
We allow the possibility for synchronisation errors.

Examples of Potential Errors

max Y. [i?{inc, x, y}]’

(ry!ires,x +1}] Y)
&
([zwy'err]? restart(i). purge_mbx(z), . Y)

Examples of Potential Errors

max Y. [i?{inc, x, y}]’

(ry!ires,x +1}] Y)
&
([zwy'err]? restart(i). purge_mbx(z), . Y)

Examples of Potential Errors

max Y. [i?{inc, x, y}]’

(py!{res,x +1}], Y)
&
([zey'err]] restart(i). purge mbx(z),,.Y)

A Type System for Adaptation Scripts

Program
—>

Theorem

well-typed

Type
System

e
N\,

ill-typed

Well-Typed Scripts are guaranteed not to generate
synchronisation errors at runtime.

A Type System for Adaptation Scripts

We introduce two primary types for monitor variables.

» Linear Typed Variables

» can be used only amongst a single concurrent branch (¢ & ¥);
» used to bind actor ids that can be used in blocking, releasing
and adaptation mechanisms.

A Type System for Adaptation Scripts

We introduce two primary types for monitor variables.

» Linear Typed Variables

» can be used only amongst a single concurrent branch (¢ & ¥);
» used to bind actor ids that can be used in blocking, releasing
and adaptation mechanisms.

» Unrestricted Typed Variables

» can be shared amongst multiple concurrent branch (¢ & ¥);
» used to generic data and actor ids that are only used for
monitoring purposes.

A Type System for Adaptation Scripts

2Ny 2 vy
2+)&y

TCN1

» The value type environment I is splitinto I'1 and 2.
» They do not share linear identifiers (lid and Ibid).
» They may share unrestricted variables.

A Type System for Adaptation Scripts

B 2 (I bnd(e))Fblk(b) ¢ Z; T krel(r)tt
Zirelel) ¢

If e occurs then the actors in b should be blocked, while those in r
should be released.

TNC

A Type System for Adaptation Scripts

r=r,w:ld 2 (7, w:lbid)r¢
2, I'rblk(w) ¢

If the actors in w are typed as linear ids (lid) then their type
changes to linear blocked upon a block operation.

TBLK

A Type System for Adaptation Scripts

r=r,w:ld 2 (7, w:lbid)r¢
2, I'rblk(w) ¢

If the actors in w are typed as linear ids (lid) then their type
changes to linear blocked upon a block operation.

TBLK

I'=TI",w:lbid 2, w:lid) ke
Z.Trreliw) g

The vice-versa happens upon a release operation.

TREL

A Type System for Adaptation Scripts

I'=Tr",w:lbid XiTrrel(r) ¢
2 CrsA(w), @

Synchronous adaptations may only be applied on linear blocked
process ids.

TADS

A Type System for Adaptation Scripts

I'=Tr",w:lbid XiTrrel(r) ¢

TADS
2 CrsA(w), @
Synchronous adaptations may only be applied on linear blocked
process ids.
Ir=r"w:ld 2iTrrel(r) ¢
TADA

E;FI—&A(W)HP

Similarly, asynchronous adaptations are only applied on linear
process ids.

Guaranteeing a degree of Monitor Correctness

Definition

def “A Synchronous Adaptation is applied to
error(s > ¢) = an Unblocked actor.”

Theorem (Type Soundness)

t o
s>¢p = s'>¢" implies —error(s’ > ¢’)

Implementation - AbapTER

v

ApapTER Repository
» https://bitbucket.org/casian/adapter

v

Based on DeTecTER.

v

First we introduced Synchronous Monitoring through AOP.
Then we added Adaptations.

v

Implementation - Protocol

Monitor

async event

sync event

adaptations

release

System

Implementation - Results

Avg. Response Times per req. (ms)

Il Il Il
50 100 200 500 1000 2000
No. of Client Requests

» Performance evaluation was conducted wrt. the Yaw
Webserver.

» We defined several Adaptation Properties for Yaws to
strengthen it.

» We patched a Directory Traversal Vulnerability.

References

CAsSAR, |., AND FRANCALANZA, A.

On Synchronous and Asynchronous Monitor Instrumentation for Actor Systems.
In FOCLASA (2014), vol. 175, pp. 54-68

CAassAR, |., AND FRANCALANZA, A.

Runtime Adaptation for Actor Systems.
In RV (2015), pp. 38-54.

CAasSAR, |., AND FRANCALANZA, A.

On Implementing a Monitor-Oriented Programming Framework for Actor Systems.
In iFM (2016).

(to appear).

