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Table 10.1 Examples of compliance rules for medical processes

c1 Before a surgery may be performed the patient must be prepared for it and be sent to
the surgical suite.

c2 After examining the patient a decision must be made. However, this must not be done
before the examination.

c3 After the examination, the patient must be informed about the risks of the (planned)
surgery.

c4 Before scheduling the surgery the patient has to be informed about anesthesia.

c5 If a surgery has not been scheduled it must not be performed.

c6 After a patient is discharged a discharge letter must be written.

c7 After performing the surgery and before writing the discharge letter, a surgery report
must be created and a lab test be made.

particularly crucial for process instances defined or adapted on-the-fly (cf. Chap. 7),
i.e., for which there is no fully prespecified process model. Likewise, compliance
monitoring at run-time is required if a priori compliance checking is not feasible,
e.g., if the process model is too large or the compliance rules are too complex.
Regarding completed process instances, in addition, a process-aware information
system (PAIS) needs to be able to determine whether these instances were executed
in compliance with given regulations, laws, and guidelines. For this purpose, a
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😃 compliance rules (the reasons) are the model	
⇒ flexible & maintainable when rules change
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😃 DCR Graphs are directly executable	
!

😃 The state of a graph is a familiar to-do list
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Workflow engine
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

Implemented at dcr.itu.dk

[FM 2015]

All regular&	
omega-regular properties
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it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

did the event happen?

Implemented at dcr.itu.dk
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

did the event happen?
is it included?

Implemented at dcr.itu.dk
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

did the event happen?
is it included?

is it required in the future?

Implemented at dcr.itu.dk
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individual event states f : (h, i, r) as follows.

(Event action) e ·
�
f : (h, i, r))

� def
= f :

�
h _ (f=e)| {z }
happened?

, i, r^(f 6=e)| {z }
restless?

�

(E↵ect action) � ·
�
f : (h, i, r)

� def
= f :

�
h, (i ^ f 62E) _ f 2I| {z }

included?

, r _ f 2R| {z }
restless?

�

That is, for the event action, if f = e, the event is marked “happened” (first
component becomes t) and it ceases to be restless (last component becomes f).
For the e↵ect action, the event only stays included (second component) if f 62 E

(it is not excluded) or f 2 I (it is included). This also means that if an event is
both excluded and included by the e↵ect, inclusion takes precedence. Finally, f
is marked restless (third component) if either it was already restless or it became
restless (f 2 R). We then define the combined action of an event and e↵ect by
(e : �) ·M = � · (e ·M).

With these mechanics in place, we give transition semantics of processes in
Fig. 3 below, where the merge of e↵ects �1��2 is simply defined as the pointwise
union: (E1, I1, R1)� (E2, I2, R2) = (E1 [ E2, I1 [ I2, R1 [R2).

[M ] T ` e : �

[M ] T
e:���! T

[intro]
[M ] T1

e:�1��! T 0
1 [M ] T2

e:�2��! T 0
2

[M ] T1 | T2
e:�1��2�����! T 0

1 | T 0
2

[par]

[M ] T
e:���! T 0

[M ] T
e�! [e : � ·M ] T 0

[effect]

Fig. 3. Basic transition semantics.

We use two forms of transitions: the e↵ect transition [M ] T
e:���! T

0 says that
[M ] T may exhibit event e with e↵ect �, in the process updating the term T

to become T

0. (At this stage we will always have T = T

0; we will need updates
only when we extend the calculus in Section 3 below.) The process transition

[M ] T
e�! [N ] U takes a process to another process, applying the e↵ect of e to

the marking M , and thus only exhibiting the event e. The [intro] rule elevates
an enabled event with an e↵ect to an e↵ect transition. The [par] rule merges
the e↵ects of transitions from the two sides of a parallel; note that markings on
either side must be the same. The [effect] rule lifts an e↵ect transition to a
process transition by applying the e↵ect to the marking.

Process transitions gives rise to an LTS, which we equip with a notion of
acceptance defined below a run is accepting if every restless event eventually
either happens or is excluded.

Definition 2. A DCR process defines an LTS with states [M ] T and (process)

transitions [M ] T
e�! [N ] U . A run of [M ] T is a finite or infinite sequence of

6

be modelled by the following term:

T0 = recv % deadline | recv + round | bm • round | recv!• bm

The first constraint is that the event deadline excludes the event recv, repre-
senting that applications can not be received after the deadline. The second
constraint is that the event round includes the event recv, representing that ap-
plications can (again) be received if the round is (re)opened. The third constraint
is that the event bm is a response to the event round, representing that a board
meeting must happen eventually if the round is opened. The last constraint is
that the event recv is a condition for bm, representing that, if the event recv

is included, an application must have been received before the board meeting
can be held. The initial state of the process is then defined by declaring that no
event has happened and no event is restless (i.e. required to happen) and every
event but recv is included. This is represented by the marking:

M0 = round : (f, t, f), deadline : (f, t, f), recv : (f, f, f), bm : (f, t, f) .

We give semantics to DCR processes incrementally. First, the notion of an event
being enabled and what e↵ects it has. The judgement [M ] T ` e : E, I,R, defined
(for atomic terms, parallel will be dealt with later) in Fig. 2. It should be read:
“in the marking M , the (atomic) term T allows the event e to happen with the
e↵ects of excluding events E, including events I, and making events R restless.”

[M, f : (h, i, ), e : ( , t, )] f !• e ` e : ;, ;, ; (when i) h)

[M, e : ( , t, )] f  • e ` e : ;, ;, {f}
[M, e : ( , t, )] f + e ` e : ;, {f}, ;
[M, e : ( , t, )] f % e ` e : {f}, ;, ;

[M, e : ( , t, )] 0 ` e : ;, ;, ;
[M, e : ( , t, )] f 0 R f ` e : ;, ;, ; (when e 6= f)

Fig. 2. Enabling & e↵ects. We write “ ” for “don’t care”, i.e., either true t or false f,
and write R for any of the relations !•, •, + ,% .

The first rule says that if f is a condition for e, then e can happen only if (1)
it is itself included, and (2) if f is included, then f previously happened. The
second rule says that if f is a response to e and e is included, then e can happen
with the e↵ect of making f restless. The third (fourth) rule says that if f is
included (excluded) by e and e is included, then e can happen with the e↵ect of
including (excluding) f . The fifth rule says that the completely unconstrained
process 0, an event e can happen if it is currently included. The last rule says
that a relation allows any included event e to happen without e↵ects when e is
not the relation’s right-hand–side event.

Given enabling and e↵ects of events, we define the action of respectively an
event e and an e↵ect � = (E, I,R) on a marking M pointwise by the action on

5
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

also implemented at dcr.itu.dk
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T, U ::= . . .

| (⌫e : �) T local event
| e{T} reproductive event

Fig. 4. DCR⇤ syntax.

The local event (⌫e : �) T
asserts that e with state � is
local to the term T . This con-
struct is binding, and for rea-
sons to be clear when we de-
fine the notion of accepting runs below, we will follow the Barendregt-convention
and assume that all such local events are distinct. A reproductive event e{T}
creates, whenever the event e happens, a copy of T in parallel (to maintain the
Barendrecht-convention, every local event in the copy is ↵-converted to a fresh,
but identically labelled event ). 4

Example 6 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (⌫approve : (f,t, t)) (⌫reject : (f,t, f))
�
approve % reject | approve!• bm

�

Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject

to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 5. Only terms
and transition rules are extended; markings are the same.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An e↵ect on the local event is recorded in the marking in the
binder of that event. The event might have e↵ects on non-local events, e.g., in
(⌫f : M) e + f , the local f has e↵ects on the non-local e. Thus the e↵ects
are preserved in the conclusion, except that part of the e↵ect which pertain
only to f . Rule [par-2] propagates a local e↵ect through a parallel composition.
It’s possible that the e↵ect � mentions events in U ; however, it cannot mention
events local to U . So the e↵ects of � on U are fully expressed in the (eventual)
e↵ect of � on M . Rule [effect-2] lifts e↵ect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If

4 We assume an infinite number of events in E for each label in L.

8

[M, f : �] T
e:���! T 0 f : �0 = (e : �) · (f : �) � = ⌫e if e = f , o.w. � = e

[M ] (⌫f : �) T
�:(�\f)�����! (⌫f : �0) T 0

[local]

[M ] T
⌫e:���! T 0

[M ] T | U ⌫e:���! T 0 | U
[par-2]

[M ] T 0 e:���! T 00 T ⇠=↵ T 0

[M ] e{T} e:���! e{T} | T 00
[rep]

[M ] T
⌫e:���! T 0

[M ] T
⌫e�! [� ·M ] T 0

[effect-2]

Here �\f = (E\{f}, I\{f}, R\{f}). We omit the obvious rule symmetric to [Par-2].

Fig. 5. Transition semantics for local and reproductive events.

the guarding event e happening would update the body T to become T

0, then e

can unfold to such a T

0. In DCR⇤, the term does change as the process evolves.
To define accepting runs we need to track local restless events across transi-

tions. For this reason we assume the unique local events and maintain this by
↵-conversion (denoted by ⇠=↵) of local events when a reproductive event happens,
i.e., local events duplicated by [rep] are chosen globally fresh.

Definition 7. A run of a DCR⇤ process [M ] T is a finite or infinite sequence

[Mi] Ni
�i�! [Mi+1] Ni+1 with � = ei or � = ⌫ei. The trace of a run is the

sequence of labels of its events, i.e., the string given by `(�i) where `(⌫e)
def
= `(e).

A run is accepting if whenever an event e is marked as restless in Mi respectively
a local event ⌫e is marked as restless by its binder in Ti, then there exists some

j � i s.t. either [Mj ] Tj
�i�! [Mj+1] Tj+1 with �i = e respectively �i = ⌫e; or the

event state of e in Mj respectively Tj has e excluded.

Example 8. A possible transition sequence for the reproductive recv{A} event
defined above in the marking M1 = recv : (f, t, f), bm : (f, t, f) is as follows.

[M1] recv{A} recv��! [M2] recv{A} | A1

recv��! [M2] recv{A} | A1 | A2 (1)
⌫approve1������! [M2] recv{A} |

�
(⌫approve1 : ( t , t, f )) (⌫reject1 : (f, t, f))

(2)

approve1 % reject1 | approve1 !• bm

�
| A2

⌫reject2����! [M2] recv{A} |
�
(⌫approve1 : (t, t, f)) (⌫reject1 : (f, t, f)) (3)

approve1 % reject1 | approve1 !• bm

�

�
(⌫approve2 : (f, f , t)) (⌫reject2 : ( t , t, f))

approve2 % reject2 | approve2 !• bm

�

bm��! [M3] recv{A} | · · · (4)

Here M2 = recv : ( t , t, f), bm : (f, t, f) and M3 = recv : (t, t, f), bm : ( t , t, f).

9

Acceptance undecidable
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Multiparty Session Types Meet
Communicating Automata

Pierre-Malo Deniélou and Nobuko Yoshida

Department of Computing, Imperial College London

Abstract. Communicating finite state machines (CFSMs) represent processes
which communicate by asynchronous exchanges of messages via FIFO channels.
Their major impact has been in characterising essential properties of communica-
tions such as freedom from deadlock and communication error, and buffer bound-
edness. CFSMs are known to be computationally hard: most of these properties
are undecidable even in restricted cases. At the same time, multiparty session
types are a recent typed framework whose main feature is its ability to efficiently
enforce these properties for mobile processes and programming languages. This
paper ties the links between the two frameworks to achieve a two-fold goal. On
one hand, we present a generalised variant of multiparty session types that have
a direct semantical correspondence to CFSMs. Our calculus can treat expres-
sive forking, merging and joining protocols that are absent from existing session
frameworks, and our typing system can ensure properties such as safety, bound-
edness and liveness on distributed processes by a polynomial time type checking.
On the other hand, multiparty session types allow us to identify a new class of CF-
SMs that automatically enjoy the aforementioned properties, generalising Gouda
et al’s work [12] (for two machines) to an arbitrary number of machines.

1 Introduction
Multiparty Session Types The importance that distributed systems are taking today
underlines the necessity for precise specifications and full correctness guarantees for
interactions (protocols) between distributed components. To that effect, multiparty ses-
sion types [3, 14] are a type discipline that can enforce strong communication safety for
distributed processes [3, 14], via a choreographic specification (called global type) of
the interaction between several peers. Global types are then projected to end-point types
(called local types), against which processes can be statically type-checked. Well-typed
processes are guaranteed to interact correctly, following the global protocol. The tool
chain (projection and type-checking) is decidable in polynomial time and automatically
guarantees properties such as type safety, deadlock freedom, and progress. Multiparty
session types are thus directly applicable to the design and implementation of real dis-
tributed programming languages. They are used for structured protocol programming
in contexts such as security [8, 22], protocol optimisations for distributed objects [21]
and parallel algorithms [17], and have recently lead to industrial projects [19, 20].

Communicating Automata. or Communicating Finite State Machines (CFSMs) [5],
are a classical model for protocol specification and verification. Before being used in
many industrial contexts, CFSMs have been a pioneer theoretical formalism in which
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but will always concurrently wait for the acknowledgement Acki to send Msgi.
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Abstract. Communicating finite state machines (CFSMs) represent processes
which communicate by asynchronous exchanges of messages via FIFO channels.
Their major impact has been in characterising essential properties of communica-
tions such as freedom from deadlock and communication error, and buffer bound-
edness. CFSMs are known to be computationally hard: most of these properties
are undecidable even in restricted cases. At the same time, multiparty session
types are a recent typed framework whose main feature is its ability to efficiently
enforce these properties for mobile processes and programming languages. This
paper ties the links between the two frameworks to achieve a two-fold goal. On
one hand, we present a generalised variant of multiparty session types that have
a direct semantical correspondence to CFSMs. Our calculus can treat expres-
sive forking, merging and joining protocols that are absent from existing session
frameworks, and our typing system can ensure properties such as safety, bound-
edness and liveness on distributed processes by a polynomial time type checking.
On the other hand, multiparty session types allow us to identify a new class of CF-
SMs that automatically enjoy the aforementioned properties, generalising Gouda
et al’s work [12] (for two machines) to an arbitrary number of machines.

1 Introduction
Multiparty Session Types The importance that distributed systems are taking today
underlines the necessity for precise specifications and full correctness guarantees for
interactions (protocols) between distributed components. To that effect, multiparty ses-
sion types [3, 14] are a type discipline that can enforce strong communication safety for
distributed processes [3, 14], via a choreographic specification (called global type) of
the interaction between several peers. Global types are then projected to end-point types
(called local types), against which processes can be statically type-checked. Well-typed
processes are guaranteed to interact correctly, following the global protocol. The tool
chain (projection and type-checking) is decidable in polynomial time and automatically
guarantees properties such as type safety, deadlock freedom, and progress. Multiparty
session types are thus directly applicable to the design and implementation of real dis-
tributed programming languages. They are used for structured protocol programming
in contexts such as security [8, 22], protocol optimisations for distributed objects [21]
and parallel algorithms [17], and have recently lead to industrial projects [19, 20].

Communicating Automata. or Communicating Finite State Machines (CFSMs) [5],
are a classical model for protocol specification and verification. Before being used in
many industrial contexts, CFSMs have been a pioneer theoretical formalism in which
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

[FM 2015]

T, U ::= . . .

| (⌫e : �) T local event
| e{T} reproductive event

Fig. 4. DCR⇤ syntax.

The local event (⌫e : �) T
asserts that e with state � is
local to the term T . This con-
struct is binding, and for rea-
sons to be clear when we de-
fine the notion of accepting runs below, we will follow the Barendregt-convention
and assume that all such local events are distinct. A reproductive event e{T}
creates, whenever the event e happens, a copy of T in parallel (to maintain the
Barendrecht-convention, every local event in the copy is ↵-converted to a fresh,
but identically labelled event ). 4

Example 6 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (⌫approve : (f,t, t)) (⌫reject : (f,t, f))
�
approve % reject | approve!• bm

�

Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject

to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 5. Only terms
and transition rules are extended; markings are the same.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An e↵ect on the local event is recorded in the marking in the
binder of that event. The event might have e↵ects on non-local events, e.g., in
(⌫f : M) e + f , the local f has e↵ects on the non-local e. Thus the e↵ects
are preserved in the conclusion, except that part of the e↵ect which pertain
only to f . Rule [par-2] propagates a local e↵ect through a parallel composition.
It’s possible that the e↵ect � mentions events in U ; however, it cannot mention
events local to U . So the e↵ects of � on U are fully expressed in the (eventual)
e↵ect of � on M . Rule [effect-2] lifts e↵ect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If

4 We assume an infinite number of events in E for each label in L.

8
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

[FM 2015]

T, U ::= . . .

| (⌫e : �) T local event
| e{T} reproductive event

Fig. 4. DCR⇤ syntax.

The local event (⌫e : �) T
asserts that e with state � is
local to the term T . This con-
struct is binding, and for rea-
sons to be clear when we de-
fine the notion of accepting runs below, we will follow the Barendregt-convention
and assume that all such local events are distinct. A reproductive event e{T}
creates, whenever the event e happens, a copy of T in parallel (to maintain the
Barendrecht-convention, every local event in the copy is ↵-converted to a fresh,
but identically labelled event ). 4

Example 6 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (⌫approve : (f,t, t)) (⌫reject : (f,t, f))
�
approve % reject | approve!• bm

�

Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject

to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 5. Only terms
and transition rules are extended; markings are the same.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An e↵ect on the local event is recorded in the marking in the
binder of that event. The event might have e↵ects on non-local events, e.g., in
(⌫f : M) e + f , the local f has e↵ects on the non-local e. Thus the e↵ects
are preserved in the conclusion, except that part of the e↵ect which pertain
only to f . Rule [par-2] propagates a local e↵ect through a parallel composition.
It’s possible that the e↵ect � mentions events in U ; however, it cannot mention
events local to U . So the e↵ects of � on U are fully expressed in the (eventual)
e↵ect of � on M . Rule [effect-2] lifts e↵ect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If

4 We assume an infinite number of events in E for each label in L.
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(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) · w back into the policy language.

Definition 5: Let P be a policy over ⌃. An enforcement
mechanism m is correct for P iff for all v 2 D

m

there exists
w 2 ⌃

1 such that v · w 2 P .
A violation of the policy P is a word u that has no possible

extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline
was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 6: Define the finite violations language ¯P of a policy
P over ⌃ by ¯P def

= ⌃

⇤ \ prefixes(P). If m is correct for policy
P then for all v 2 D

m

we have m(v) 62 ¯P .
Note that this language is closely related to the notion of bad
prefixes for languages over infinite words, defined in [19].

We formulate transparency in terms of the finite violations
language:

Definition 7: Let m be an enforcement mechanism for a
target system t = (S,⌃,�,�). We say that m is transparent
iff for all v 2 D

m

and a 2 ⌃ such that v · a 2 S , whenever
m(v · a) 6= m(v) · a then m(v) · a 2 ¯P .
That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

The question remains of how one constructs useful enforce-
ment mechanisms and builds practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here our language for timed DCR processes
and its semantics. The language is closely based on the core
DCR process language [8], conservatively extended to make it
possible to express timed DCR graphs as introduced in [14].

DCR processes are about events E and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e 2 E has an associated label `(e) 2
L, for tick 62 L. The set L [ {tick} of labels extended with
the time action tick will be used as a (finite) alphabet for
defining the language recognised by a timed DCR process. For
simplicity, we restrict our attention to DCR processes where
E = L and `(e) = e.

A. Syntax
A DCR process P = [M ] T comprises a marking M and a

term T ; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term T specifies both constraints between
events, and the effects on that state of executing events. We
explain term and marking separately.

T, U ::= e • k � f condition, k 2 N [ {0}
| e ⇧ f milestone

| e •d�! f response, d 2 N [ {!}
| e!+ f inclusion
| e!% f exclusion
| T | U parallel
| 0 unit

� ::= (h, i, r) event state
M,N ::= M, e : � marking

| ✏
P,Q ::= [M ] T process

Fig. 2. DCR Process Syntax.

Terms. Terms describe constraints and effects between events
as follows.

• A condition e • k � f imposes the constraint that for the
event e to happen, the event f must either previously
have happened at least k time units ago, or currently be
excluded. Note that k is a natural number or zero.

• A milestone e ⇧ f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

• A response e •d�! f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

• An exclusion e !% f imposes the effect that when e
happens, it excludes f . An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

• An inclusion e !+ f imposes the effect that when the
event e happens, it re-includes the event f .

If several condition (response) constraints are defined be-
tween the same two events in T , the process will have the
maximal delay (minimal deadline). A process with all delays
0 and all deadlines ! corresponds to an untimed DCR process
[8], so we write e •�! f for e •!�! f and f • � e for f • 0 � e.

Example 8: Suppose we wish to model that the event
release (“a patient is released from hospital”) requires that the
event delete (“the patient’s record is deleted”) subsequently
happens within 14 days. We specify this obligation with a
timed response relation:

release •14d��! delete .

Suppose instead we wish to model the provision that the event
archive (“archiving data”’) cannot be followed by the event

[FM 2015]

T, U ::= . . .

| (⌫e : �) T local event
| e{T} reproductive event

Fig. 4. DCR⇤ syntax.

The local event (⌫e : �) T
asserts that e with state � is
local to the term T . This con-
struct is binding, and for rea-
sons to be clear when we de-
fine the notion of accepting runs below, we will follow the Barendregt-convention
and assume that all such local events are distinct. A reproductive event e{T}
creates, whenever the event e happens, a copy of T in parallel (to maintain the
Barendrecht-convention, every local event in the copy is ↵-converted to a fresh,
but identically labelled event ). 4

Example 6 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (⌫approve : (f,t, t)) (⌫reject : (f,t, f))
�
approve % reject | approve!• bm

�

Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject

to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 5. Only terms
and transition rules are extended; markings are the same.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An e↵ect on the local event is recorded in the marking in the
binder of that event. The event might have e↵ects on non-local events, e.g., in
(⌫f : M) e + f , the local f has e↵ects on the non-local e. Thus the e↵ects
are preserved in the conclusion, except that part of the e↵ect which pertain
only to f . Rule [par-2] propagates a local e↵ect through a parallel composition.
It’s possible that the e↵ect � mentions events in U ; however, it cannot mention
events local to U . So the e↵ects of � on U are fully expressed in the (eventual)
e↵ect of � on M . Rule [effect-2] lifts e↵ect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If

4 We assume an infinite number of events in E for each label in L.

8
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say that the mechanism is transparent?
Answering these questions necessarily involves a system

model, a policy language, and an enforcement mechanism.
The system model must clarify how the target system and the
enforcement mechanism interact and what the mechanism can
and cannot cause or control in the target system. The policy
language must be expressive enough to formulate realistic
policies, yet constrained enough that we can efficiently com-
pute (1) whether a policy is enforceable and (2) actions that
avert impending obligation violations. Finally, the enforcement
mechanism ties the two together, using the policy language to
compute action sequences and the system model to execute
them on the target system.

Our policy language is Timed Dynamic Condition Response
Processes [14] (DCR processes, for short), a declarative pro-
cess model for specifying timed causal relationship between
events. Untimed DCR processes were introduced in [8] as a
process language for describing DCR graphs, a declarative
graphical process notation. DCR processes are expressive
enough for many security applications: With respect to linear-
time properties, they are equivalent in their expressivity to
Büchi automata, but their language primitives are rather dif-
ferent. Rather than specifying processes in terms of states and
transitions, a DCR process describes the causal relationships
between events declaratively in terms of conditions and re-
sponses, and describes dynamic conflict relationships between
events in terms of exclusions and inclusions. To allow for
the specification of timed polices, we conservatively extend
the DCR process language introduced in [8] to allow for
describing timed DCR graphs [14].

Altogether, timed DCR processes are very well-suited for
the present work. They strike the right balance between
expressiveness and tractability, and they have both commercial
and academic implementations, supporting practical proto-
types and experiments. DCR primitives directly express timed
provisions and obligations, and DCR states explicitly represent
pending obligations and deadlines. We use these features to
construct our enforcement mechanism and reason about its
correctness.

Contributions. Conceptually, we present a system model, a
policy language, and an enforcement mechanism for timed
provisions and obligations. Our enforcement mechanism de-
duces those actions necessary to avert policy violations and
proactively causes the target system to take these actions in the
nick of time, that is, whenever a deadline is about to be missed.
This approach improves upon existing formalisms in two
ways: (1) we exploit the target system’s existing functionality
to avert proactively, rather than compensate reactively for,
policy violations and, (2) rather than requiring the manual
specification of remedial actions in the policy, we automat-
ically deduce relevant actions directly from the policy.

Technically, we show that enforceability of policies ex-
pressed as timed DCR processes is decidable but NP-hard.
We then give a sufficient polynomial time verifiable condition
for a DCR policy to be enforceable. Moreover, we give an

Target System Enforcement 
Mechanism

Request permission?

Grant/deny!

Cause actions!

Inform

Fig. 1. System Model

algorithm that, given a DCR state of an enforceable DCR
policy, computes a sequence of actions that, when executed
on the target system, will discharge impending obligations.

As proof-of-concept, we have built a prototype implemen-
tation of the algorithms in this paper. The implementation
is available on-line along with simulations of the examples
presented in this paper; the original DCR process authors
have kindly included our proof-of-concept in their academic
DCR Workbench available at http://dcr.itu.dk/obligations. See
Appendix B for further details.

Scope. We focus exclusively on policies governing the se-
quencing of actions. This approach plays to the strengths of
the DCR formalisms and helps focus the presentation on the
central issue of proactively policy enforcement. We leave open
extensions to the policy language, like the addition of events
dependent on data, and the question of whether and how
comparable enforcement mechanisms can be achieved in other
formalisms.

Overview. In Section II we present our system model and
define enforcement. We present timed DCR processes in
Section III, and give examples of policies in Section IV. We
show in Section V when and how a DCR policy is enforceable
and we also report on a prototype implementation of a DCR
policy enforcement point. Finally, in Sections VI and VII
we discuss related work and draw conclusions. Due to space
limitations, proofs and most lemmas have been relegated to
Appendix A.

II. SYSTEM MODEL AND ENFORCEMENT

A. System Model

Our system model is depicted in Figure 1. The target
system and the enforcement mechanism (also called a Policy
Enforcement Point, or simply PEP) are independently running
processes, which interact in three distinct ways:

1) Whenever the target system wishes to undertake some
controllable action, it requests permission from the en-
forcement mechanism (upper arrow, left to right), which
will return either “grant” or “deny” (upper arrow, right to
left). The target system actually undertakes the requested
action iff the enforcement mechanism responds “grant”.

2) Whenever the target system performs an uncontrollable
action, it informs the enforcement mechanism that it
does so (middle arrow).

3) Finally, a subset of actions of the target system, its
causable actions, are available to be triggered by the
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advance(ahP i, w), for w 2 ⌃

⇤. Then the DCR enforcement
mechanism m

P

is given inductively by

m
P

(✏)
def
= ✏

m
P

(w · a) def
= m

P

(w) ·m(advance(P,m
P

(w)), a) .

Note that m
P

is not defined for all P , since resolve

(Definition 21) is only defined on resolvable DCR processes.
Theorem 34: Let t = (S,⌃,�,�) be a target system, and

let P be a DCR process with dom(P ) = ⌃ and dependable
busy events B ✓ �, and assume every event ⌃ \� is enabled
in any P 0 reachable from P . Then m

P

is a correct, transparent
enforcement mechanism.

From Lemma 6, we know then that m
P

steers clear of the
finite violations language:

Corollary 35: Let P and m
P

be defined as in the Theo-
rem 34. Then for all w 2 D

m

we have w 62 ¯P .
To apply DCR policy enforcement in practice, we require:
1) A target system with actions (S,⌃,�,�),
2) A DCR policy P over ⌃ such that P is �-resolvable,

and every P 0 reachable from P has every e 2 ⌃ \ �

enabled, and
3) A PEP implementing m

P

.
For (1), note that the causable actions � must be enabled in
the target system whenever they are in the policy P : otherwise
the PEP cannot rely on executing them to avert deadlines. In
practice, this requires either (some) white-box knowledge of
the target system, e.g., the knowledge that these actions are
always available.

For (2), apply Theorem 31 to get resolvability. We do not
address here the means of ensuring that uncontrollable events,
i.e., events in ⌃\�, are always enabled. Several options exists
along the lines of Theorem 31. However, a very pragmatic
approach is to simply require the events ⌃\� to be completely
unconstrained in P . Alternatively, it suffices for the set ⌃ \ �
to be empty. This will be the case when the target system must
ask the PEP for permission on all (policy-relevant) actions and
is analogous to the principle of complete mediation for access
control policies.

For (3), we have constructed a prototype PEP implementing
m

p

, built on top of the DCR process engine of [7]. This
prototype is available on-line, kindly hosted by the original
DCR authors in their “DCR Workbench”, at http://dcr.itu.dk/
obligations. (To quickly appreciate the flavour of the tool,
consult the screen-shots in the Appendix.)

Our prototype PEP repeatedly waits to either be consulted
about an action by the target system, or for a deadline to come
close, in either case acting as m of Definition 33: For actions,
it grants or denies depending on whether the corresponding
event is executable in the current DCR policy state. When
actions are granted, the state is advanced by executing the
event in it. For deadlines, the PEP instructs the target system
to issue actions as given by resolve. Since we have assumed
that non-controllable events ⌃ \ � are always enabled, they
need no special treatment.

// A PEP takes as input an Observation which is
// either an (attempted) transition, or a deadline
// approaching.
type Observation =
| Transition of DCR.event
| Deadline of DCR.event
| Inform of DCR.event

// A PEP produces as output a Reaction. (Code for
// acting on the Reaction is not included here.)
type Reaction =
| Grant
| Deny
| Cause of DCR.event list
| Ignore

// DCR-PEP. Takes a current DCR policy-state P and
// an Observation, and produces a Reaction and a
// new DCR policy-state.
let PEP P observation =

match observation with
| Deadline e ->

Cause (resolve P e), P // (i)
| Transition e ->

if (DCR.is_executable P e) then
Grant, DCR.execute e P // (iii)

else
Deny, P // (ii)

| Inform e ->
Ignore, DCR.execute e P // (iii)

Fig. 9. F# implementation of mP .

We give the actual F# code implementing m in Figure 9.
Note the comments connecting various branches to cases of
Definition 33. Note too the use of the resolve algorithm
provided by Theorem 33. Our prototype uses the policy P
also as the target system; this is enough for experimentation
and simulation in the DCR Workbench. To lift the prototype
to an actual enforcement mechanism, it is sufficient to update
the driver function producing the Observation inputs and
executing the Reaction outputs of Figure 9 to one that
interacts, say, via REST, with an actual system, as dictated
by the system model of Section II.

VI. RELATED WORK

In this section, we compare our approach with related
policy specification languages for handling obligations and
with alternative enforcement mechanisms.

A. Specification
The idea of adding obligations to policies was first proposed

by Minsky and Lockman [24]. They augmented permissions
with tasks to be executed within a stated deadline after
an access request is granted. This deadline corresponds, for
example, to the passage of time or is triggered by other
events. Park and Sandu examined obligations in the context
of usage control [26] and Bettini et al. [4] systematically
considered the combination of provisions and obligations
within a datalog formalism. In both cases, the emphasis is
on policy specification (and, in the case of [4], also analysis),
rather than applications to enforcement and monitoring.

Obligations have also been used in languages such as
PONDER [6] and XACML [32]. Obligations there are event
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2 Time, Data, and Communication in Declarative Event-based Programming

2 Timed Dynamic Condition Response Graphs with Data and I/O

Following [2] we express timed DCR graphs with data and I/O as a process [M] T in a process calculus,
where T is a term specifying both types of events, dependencies between events, and the effects of
executing events and M is a marking specifying the state of events. The syntax is defined in Fig. 1. We
assume three fixed (not necessarily disjoint) sets of events E , values V and channels A . We assume a
discrete time model and let N refer to the natural numbers including zero.

The marking M is a finite list e1 : F1, . . . ,e
k

: F
k

of pairs of (unique) events and event states (h, i,r,v)
defining a map from events to event states. The first component of the event state h 2 N[{?} records
how many time steps ago the event (h)appened, referred to as the age of the event. We let 0 represent now
and ? represents never and write Age(M,e) for the age of the event e in marking M. Note that an event
may happen several times, and the state only records the time since the last occurrence. The second
component, i 2 {?,>}, is a boolean indicating whether the event is currently (i)ncluded. We write
Inc(M,e) for the inclusion state of e in M. Inclusion and exclusion of events is used to represent conflicts
between events. The third component, r 2 N[{w,?}, indicates the (r)esponse deadline before which
the event is obliged to happen. Here w represents “eventually”, ? represents that the event is not obliged
to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
we refer to it as urgent. We write Res(M,e) for the response deadline of e in M. Finally, the fourth
component v represents the current data value assigned to the event. Values are either received as input
or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
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v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
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is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
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Inc(M,e) for the inclusion state of e in M. Inclusion and exclusion of events is used to represent conflicts
between events. The third component, r 2 N[{w,?}, indicates the (r)esponse deadline before which
the event is obliged to happen. Here w represents “eventually”, ? represents that the event is not obliged
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or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
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[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events
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and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any
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often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
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or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events
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and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any

1We can define scopes of events as in [2], but leave this to the full paper.
2We leave the definition of expression language and semantics for the full paper, but note that an expression evaluates to ?
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Following [2] we express timed DCR graphs with data and I/O as a process [M] T in a process calculus,
where T is a term specifying both types of events, dependencies between events, and the effects of
executing events and M is a marking specifying the state of events. The syntax is defined in Fig. 1. We
assume three fixed (not necessarily disjoint) sets of events E , values V and channels A . We assume a
discrete time model and let N refer to the natural numbers including zero.
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defining a map from events to event states. The first component of the event state h 2 N[{?} records
how many time steps ago the event (h)appened, referred to as the age of the event. We let 0 represent now
and ? represents never and write Age(M,e) for the age of the event e in marking M. Note that an event
may happen several times, and the state only records the time since the last occurrence. The second
component, i 2 {?,>}, is a boolean indicating whether the event is currently (i)ncluded. We write
Inc(M,e) for the inclusion state of e in M. Inclusion and exclusion of events is used to represent conflicts
between events. The third component, r 2 N[{w,?}, indicates the (r)esponse deadline before which
the event is obliged to happen. Here w represents “eventually”, ? represents that the event is not obliged
to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
we refer to it as urgent. We write Res(M,e) for the response deadline of e in M. Finally, the fourth
component v represents the current data value assigned to the event. Values are either received as input
or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events

Hours? | HourlyRate? | TaxRate?

and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any

1We can define scopes of events as in [2], but leave this to the full paper.
2We leave the definition of expression language and semantics for the full paper, but note that an expression evaluates to ?
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Figure 1: Syntax of DCR processes with data and I/O.

number of times. However, the computation events will never be executed since they are not urgent. To
fix this, we declare that the computation events become urgent, when any of the input events they depend
on is executed by using a response relation with urgent deadline (i.e. 0):

Hours • 0�!Wage | HourlyRate • 0�!Wage | TaxRate • 0�!WageAfterTax |Wage • 0�!WageAfterTax

When the Hours or HourlyRate event is executed, the Wage event is recorded as urgent. The time and
input events can not happen if there are urgent computation or output events, so the wage is recomputed
before time can progress or a new input is provided. Similarly, the urgent response relation from Wage
and TaxRate to WageAfterTax forces the recomputation of WageAfterTax whenever Wage or TaxRate
is changed.

We can enforce that the HourlyRate and TaxRate are inputted at least once before Hours by using
the condition relation

Hours • 0 � HourlyRate | Hours • 0 � TaxRate

We illustrate the use of guarded constraints, include and exclude relations and output events: We add
an output event sending the wage after tax to the finance department on the channel Finance whenever
RequestPayment is executed, but only if the wage after tax is not ? (it may be ? if some of the input
fields have not been provided yet). We use the exclude relation to exclude RequestPayment when the
request is send to the finance department and the include relation to included it again when Answer
happens. This ensures that no payment can be requested while one is already being processed.

RequestPayment • 0;WageAfterTax 6=?�����������! Finance | FinancehWageAfterTaxi |
Finance!% RequestPayment | Answer!+ RequestPayment | Answer? | RequestPayment?

To illustrate delays, we can model that the finance department receives a request, eventually decides,
and sends back an answer after a delay of at least 10 time steps but within a deadline of 20 time steps.

Finance?ToPay | Decision? |AnswerhDecisioniSendAnswer | ToPay •w�! Decision

Decision • 20�! SendAnswer | SendAnswer • 10 � Decision

Dynamics/reactions/behaviour:
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Following [2] we express timed DCR graphs with data and I/O as a process [M] T in a process calculus,
where T is a term specifying both types of events, dependencies between events, and the effects of
executing events and M is a marking specifying the state of events. The syntax is defined in Fig. 1. We
assume three fixed (not necessarily disjoint) sets of events E , values V and channels A . We assume a
discrete time model and let N refer to the natural numbers including zero.

The marking M is a finite list e1 : F1, . . . ,e
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of pairs of (unique) events and event states (h, i,r,v)
defining a map from events to event states. The first component of the event state h 2 N[{?} records
how many time steps ago the event (h)appened, referred to as the age of the event. We let 0 represent now
and ? represents never and write Age(M,e) for the age of the event e in marking M. Note that an event
may happen several times, and the state only records the time since the last occurrence. The second
component, i 2 {?,>}, is a boolean indicating whether the event is currently (i)ncluded. We write
Inc(M,e) for the inclusion state of e in M. Inclusion and exclusion of events is used to represent conflicts
between events. The third component, r 2 N[{w,?}, indicates the (r)esponse deadline before which
the event is obliged to happen. Here w represents “eventually”, ? represents that the event is not obliged
to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
we refer to it as urgent. We write Res(M,e) for the response deadline of e in M. Finally, the fourth
component v represents the current data value assigned to the event. Values are either received as input
or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events

Hours? | HourlyRate? | TaxRate?

and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any

1We can define scopes of events as in [2], but leave this to the full paper.
2We leave the definition of expression language and semantics for the full paper, but note that an expression evaluates to ?

if it depends on an event with value ?.
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how many time steps ago the event (h)appened, referred to as the age of the event. We let 0 represent now
and ? represents never and write Age(M,e) for the age of the event e in marking M. Note that an event
may happen several times, and the state only records the time since the last occurrence. The second
component, i 2 {?,>}, is a boolean indicating whether the event is currently (i)ncluded. We write
Inc(M,e) for the inclusion state of e in M. Inclusion and exclusion of events is used to represent conflicts
between events. The third component, r 2 N[{w,?}, indicates the (r)esponse deadline before which
the event is obliged to happen. Here w represents “eventually”, ? represents that the event is not obliged
to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
we refer to it as urgent. We write Res(M,e) for the response deadline of e in M. Finally, the fourth
component v represents the current data value assigned to the event. Values are either received as input
or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events

Hours? | HourlyRate? | TaxRate?

and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any

1We can define scopes of events as in [2], but leave this to the full paper.
2We leave the definition of expression language and semantics for the full paper, but note that an expression evaluates to ?
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to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
we refer to it as urgent. We write Res(M,e) for the response deadline of e in M. Finally, the fourth
component v represents the current data value assigned to the event. Values are either received as input
or the result of a computation expression; we let w range over arbitrary expressions and c over boolean
expressions. A marking M thus assigns values to events; we write MJwK for evaluating w under M.

A term T is a parallel composition of event declarations, constraint terms and the nil process 0. The
event declarations determine whether an event e is of input, computation, or output type. We assume that
the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events

Hours? | HourlyRate? | TaxRate?

and cells with formulas by computation events

[= HourlyRate⇤Hours]Wage | [=Wage⇤ (1�TaxRate)]WageAfterTax

Input events a?e are executed either by the environment or by synchronisation with a concurrent

output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
the events are always enabled, which means that the input events can be executed in any order and any
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to happen and 0 represents that the event is obliged to happen in the current time-step, in which case
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the type of an event is uniquely declared and define a labelling function `(T,e) yielding ahwi, a? and
[= w] for an event e declared respectively asahwie (compute and output w on channel a and save as value
of e), a?e (input on channel a and save as value of e) and [= w]e (compute w and save as value of e). We
often abbreviate output and input declarations as ahwi and a? if the channel and event name is the same.

As a running example, consider a spreadsheet for computing the wage before and after tax, based on
the number of hours, the hourly rate and tax rate. Input cells are represented by input events
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output event ahwie0 on the same channel as defined in the formal semantics below. In both cases, a value
v is provided and stored in the marking as the new value of e. Note that input events are not binders, the
value can be accessed by any other computation and output event.1

When a computation ([= w]e) or output (ahwie) event is executed, the value of the expression w is
computed and stored as the new value of the event e in the marking.2 A computation or output event
is executed by the process when the event is urgent and enabled. In our spreadsheet example above,
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number of times. However, the computation events will never be executed since they are not urgent. To
fix this, we declare that the computation events become urgent, when any of the input events they depend
on is executed by using a response relation with urgent deadline (i.e. 0):

Hours • 0�!Wage | HourlyRate • 0�!Wage | TaxRate • 0�!WageAfterTax |Wage • 0�!WageAfterTax

When the Hours or HourlyRate event is executed, the Wage event is recorded as urgent. The time and
input events can not happen if there are urgent computation or output events, so the wage is recomputed
before time can progress or a new input is provided. Similarly, the urgent response relation from Wage
and TaxRate to WageAfterTax forces the recomputation of WageAfterTax whenever Wage or TaxRate
is changed.

We can enforce that the HourlyRate and TaxRate are inputted at least once before Hours by using
the condition relation

Hours • 0 � HourlyRate | Hours • 0 � TaxRate

We illustrate the use of guarded constraints, include and exclude relations and output events: We add
an output event sending the wage after tax to the finance department on the channel Finance whenever
RequestPayment is executed, but only if the wage after tax is not ? (it may be ? if some of the input
fields have not been provided yet). We use the exclude relation to exclude RequestPayment when the
request is send to the finance department and the include relation to included it again when Answer
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and TaxRate to WageAfterTax forces the recomputation of WageAfterTax whenever Wage or TaxRate
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We illustrate the use of guarded constraints, include and exclude relations and output events: We add
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RequestPayment is executed, but only if the wage after tax is not ? (it may be ? if some of the input
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To illustrate delays, we can model that the finance department receives a request, eventually decides,
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We can enforce that the HourlyRate and TaxRate are inputted at least once before Hours by using
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We illustrate the use of guarded constraints, include and exclude relations and output events: We add
an output event sending the wage after tax to the finance department on the channel Finance whenever
RequestPayment is executed, but only if the wage after tax is not ? (it may be ? if some of the input
fields have not been provided yet). We use the exclude relation to exclude RequestPayment when the
request is send to the finance department and the include relation to included it again when Answer
happens. This ensures that no payment can be requested while one is already being processed.
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To illustrate delays, we can model that the finance department receives a request, eventually decides,
and sends back an answer after a delay of at least 10 time steps but within a deadline of 20 time steps.
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input events can not happen if there are urgent computation or output events, so the wage is recomputed
before time can progress or a new input is provided. Similarly, the urgent response relation from Wage
and TaxRate to WageAfterTax forces the recomputation of WageAfterTax whenever Wage or TaxRate
is changed.

We can enforce that the HourlyRate and TaxRate are inputted at least once before Hours by using
the condition relation
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We illustrate the use of guarded constraints, include and exclude relations and output events: We add
an output event sending the wage after tax to the finance department on the channel Finance whenever
RequestPayment is executed, but only if the wage after tax is not ? (it may be ? if some of the input
fields have not been provided yet). We use the exclude relation to exclude RequestPayment when the
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happens. This ensures that no payment can be requested while one is already being processed.
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