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Choreographic programming

 Choreographic programming applies the ideas of global 
types and endpoint projection 

– not at the level of types
– but at the level of programming language

 Choreographic programs ≈ global types + data + conditions
 One choreographic program describes a whole distributed 

application
 The basic building block is an interaction, i.e. a 

communication between two participants
 Interactions can be composed using standard constructs: 

sequences, conditionals, cycles,...



Choreographic programming: syntax

 I ::=  o : r(e) → s(x) interaction
x@r = e assignment
1 skip
I ; I' sequence
I | I' parallel
if b@r { I } else { I' } conditional
while b@r { I } loop

 o are operations, r,s are roles, e expressions, b boolean 
expressions, x variables 



A sample choreographic program

 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
price@seller = getPrice(pName);
offer : seller (price) → buyer (pr);
...

mailto:prodName@buyer
mailto:price@seller


Advantages of choreographic programming

 Same as for global types
 Clear view of the global behavior
 No deadlocks and no races by construction
 … and you are in an untyped setting!



How to execute choreographic programs?

 Most constructs involve many participants
 What each participant should do?
 We want to compile one choreographic program generating 

a local code for each participant
 We define a projection function to this end

– Similar to endpoint projection for multiparty session 
types

 When executed, the derived participants should interact as 
specified in the choreographic program 
– Correctness of the compilation (close to session fidelity)
– No deadlocks and no races



The target language

 P ::=  o : e to r send
o : x from r receive
x = e assignment
1 skip
P ; P' sequence
P | P' parallel
if b { P } else { P' } conditional
while b { P } loop

 A distributed application is composed by named 
participants, each executing a program P



Projection: basic idea

 An interaction o : r(e) → s(x) becomes
– A send        o : e to s     on   r  

– A receive      o : x from r   on   s 

– A skip           1                        on all the other participants

 Assignments and guard evaluations are executed by the 
declared role 

 Other constructs are projected homomorphically

 Very simple…
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 An interaction o : r(e) → s(x) becomes
– A send        o : e to s     on   r  

– A receive      o : x from r   on   s 

– A skip           1                        on all the other participants

 Assignments and guard evaluations are executed by the 
declared role 

 Other constructs are projected homomorphically

 Very simple…
 …but it does not work



Projection: problems

 Participants are independent
o

1
 : r

1
(5) → s

1
(x);o

2
 : r

2
(7) → s

2
(y)

 Interaction on o
2
 should happen after interaction on o

1

– No participant can force this

 Participants’ execution may depend on other participants
if x@r

1
 {o : r

2
(5) → s(x)} else {o : r

2
(7) → s(x)}

 Participant r
2
 should send 5 or 7 according to a local 

decision of r
1



Projection: solutions

 Two kinds of solutions
 Restricting the allowed compositions (connectedness)

– More difficult for the programmer to write code satisfying the 
requirements

– Easier compilation

 Adding auxiliary communications beyond the ones 
specified
– Easier for the programmer
– More difficult compilation, and additional communications cause 

overhead

 We use both the approaches, depending on the construct
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Dynamic updates

 We want to change the code of running applications, by 
integrating new pieces of code coming from outside

 Those pieces of code are called updates
 The set of updates

– is not known when the application is designed, programmed or 
even started

– may change at any moment and without notice

 Many possible uses
– Deal with emergency behavior
– Deal with changing business rules or environment conditions
– Specialise the application to user preferences



Our approach, syntactically

 Pair a running application with a set of updates
– Each update is a choreographic program
– The set of updates may change at any time

 At the choreographic level, the update may replace a part 
of the application
– Which part?

 Extend choreographic programs with scopes
– scope @r { I }
– Before starting, the scope may be replaced by an update



Our approach, graphically
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Our approach, semantically

 A scope can either execute, or be replaced by an update

< Σ , I , scope @r { I } >                 < Σ , I , I >

< Σ , I , scope @r { I } >                 < Σ , I , I' >

 The set of available updates can change at any time

< Σ , I , I  >                 < Σ , I' , I  >

no-up

    I'
roles( I' ) roles( I )      I'  I      I'  connected

    I'



A sample update

 cardReq : seller () → buyer ();
cardSend : buyer ( cardId ) → seller ( buyerId );
if ( isValid(buyerId) ) @ seller
    { price@seller = getPrice(pName) * 0.8; }
else
    { price@seller = getPrice(pName);}
offer : seller ( price ) → buyer ( pr )



Making the choreographic program updatable

    

 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
price@seller = getPrice(pName);
offer : seller (price) → buyer (pr);
...



Making the choreographic program updatable

 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
scope @seller {
     price@seller = getPrice(pName);
     offer : seller (price) → buyer (pr)
}
...



Dynamic updates: challenges

 All the participants should agree on 
– whether to update a scope or not
– in case, which update to apply 

 All the participants need to retrieve (their part of) the 
update
– Not easy, since updates may disappear

 No participant should start executing a scope that needs to 
be updated



Dynamic updates: our approach

 For each scope a single participant coordinates its 
execution
– Decides whether to update it or not, and which update to apply
– Gets the update, and sends to the other participants their part

 The other participants wait for the decision before 
executing the scope

 We add scopes (and higher-order communications) to the 
target language, with the informal semantics above



Compositionality issue

 Applying an update at the choreographic level results in a 
new choreographic program, composed by
– The unchanged part of the old choreographic program
– The update

 Even if the two parts are connected, the result may not be 
connected

 Auxiliary communications are added to ensure 
connectedness
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Results

 A choreographic program and its projection behave the 
same
– They have the same set of weak traces (abstracting away 

auxiliary actions)
– Under all possible, dynamically changing, sets of updates

 The projected application is deadlock free and race free by 
construction

 These results are strong given that we are considering an 
application which is 
– distributed 
– updatable



An instance for rule-based adaptation

 Our result is quite abstract
– Whether to update or not, and which update to apply is 

nondeterminstic

 Different instances are possible, reducing nondeterminism
 AIOCJ [SLE 2014] explores one such possibility
 A framework for safe rule-based adaptation of distributed 

applications
 Available as an eclipse plugin
 http://www.cs.unibo.it/projects/jolie/aiocj.html
 Projection produces service-oriented code

http://www.cs.unibo.it/projects/jolie/aiocj.html


What AIOCJ adds?

 Scopes include some information describing the current 
implementation

 The framework includes an environment providing 
contextual information

 A rule is an update plus an applicability condition
– A Boolean formula taking into account scope 

information, environmental information and state 
information

 An adaptation manager allows one to load sets of rules 
dynamically



Demo time
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Conclusion

 A choreographic approach to dynamic updates
 The derived distributed application follows the behavior 

defined by the choreographic program
 We ensure deadlock freedom and race freedom in a 

challenging setting
 We instantiated the theoretical framework to adaptable 

service-oriented applications



Future work

 Extend the approach to asynchronous communication
 How to cope with multiple interleaved sessions? 
 How to improve the performance?

– Drop redundant auxiliary communications

 Can we instantiate our approach on existing frameworks 
for adaptation?
– E.g., dynamic aspect-oriented programming
– To inject correctness guarentees



End of talk
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