
Dynamic Choreographies
Safe Runtime Updates of Distributed Applications

Ivan Lanese
Computer Science Department

University of Bologna/INRIA
Italy

Joint work with Mila Dalla Preda, Maurizio
Gabbrielli, Saverio Giallorenzo and Jacopo Mauro

Map of the talk

 Choreographic programming
 Dynamic updates
 Results and applications
 Conclusion

Map of the talk

 Choreographic programming
 Dynamic updates
 Results and applications
 Conclusion

Choreographic programming

 Choreographic programming applies the ideas of global
types and endpoint projection

– not at the level of types
– but at the level of programming language

 Choreographic programs ≈ global types + data + conditions
 One choreographic program describes a whole distributed

application
 The basic building block is an interaction, i.e. a

communication between two participants
 Interactions can be composed using standard constructs:

sequences, conditionals, cycles,...

Choreographic programming: syntax

 I ::= o : r(e) → s(x) interaction
x@r = e assignment
1 skip
I ; I' sequence
I | I' parallel
if b@r { I } else { I' } conditional
while b@r { I } loop

 o are operations, r,s are roles, e expressions, b boolean
expressions, x variables

A sample choreographic program

 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
price@seller = getPrice(pName);
offer : seller (price) → buyer (pr);
...

mailto:prodName@buyer
mailto:price@seller

Advantages of choreographic programming

 Same as for global types
 Clear view of the global behavior
 No deadlocks and no races by construction
 … and you are in an untyped setting!

How to execute choreographic programs?

 Most constructs involve many participants
 What each participant should do?
 We want to compile one choreographic program generating

a local code for each participant
 We define a projection function to this end

– Similar to endpoint projection for multiparty session
types

 When executed, the derived participants should interact as
specified in the choreographic program
– Correctness of the compilation (close to session fidelity)
– No deadlocks and no races

The target language

 P ::= o : e to r send
o : x from r receive
x = e assignment
1 skip
P ; P' sequence
P | P' parallel
if b { P } else { P' } conditional
while b { P } loop

 A distributed application is composed by named
participants, each executing a program P

Projection: basic idea

 An interaction o : r(e) → s(x) becomes
– A send o : e to s on r

– A receive o : x from r on s

– A skip 1 on all the other participants

 Assignments and guard evaluations are executed by the
declared role

 Other constructs are projected homomorphically

 Very simple…

Projection: basic idea

 An interaction o : r(e) → s(x) becomes
– A send o : e to s on r

– A receive o : x from r on s

– A skip 1 on all the other participants

 Assignments and guard evaluations are executed by the
declared role

 Other constructs are projected homomorphically

 Very simple…
 …but it does not work

Projection: problems

 Participants are independent
o

1
 : r

1
(5) → s

1
(x);o

2
 : r

2
(7) → s

2
(y)

 Interaction on o
2
 should happen after interaction on o

1

– No participant can force this

 Participants’ execution may depend on other participants
if x@r

1
 {o : r

2
(5) → s(x)} else {o : r

2
(7) → s(x)}

 Participant r
2
 should send 5 or 7 according to a local

decision of r
1

Projection: solutions

 Two kinds of solutions
 Restricting the allowed compositions (connectedness)

– More difficult for the programmer to write code satisfying the
requirements

– Easier compilation

 Adding auxiliary communications beyond the ones
specified
– Easier for the programmer
– More difficult compilation, and additional communications cause

overhead

 We use both the approaches, depending on the construct

Map of the talk

 Choreographic programming
 Dynamic updates
 Results and applications
 Conclusion

Dynamic updates

 We want to change the code of running applications, by
integrating new pieces of code coming from outside

 Those pieces of code are called updates
 The set of updates

– is not known when the application is designed, programmed or
even started

– may change at any moment and without notice

 Many possible uses
– Deal with emergency behavior
– Deal with changing business rules or environment conditions
– Specialise the application to user preferences

Our approach, syntactically

 Pair a running application with a set of updates
– Each update is a choreographic program
– The set of updates may change at any time

 At the choreographic level, the update may replace a part
of the application
– Which part?

 Extend choreographic programs with scopes
– scope @r { I }
– Before starting, the scope may be replaced by an update

Our approach, graphically

Our approach, graphically

proj

Our approach, graphically

proj proj

Our approach, semantically

 A scope can either execute, or be replaced by an update

< Σ , I , scope @r { I } > < Σ , I , I >

< Σ , I , scope @r { I } > < Σ , I , I' >

 The set of available updates can change at any time

< Σ , I , I > < Σ , I' , I >

no-up

 I'
roles(I') roles(I) I'  I I' connected

 I'

A sample update

 cardReq : seller () → buyer ();
cardSend : buyer (cardId) → seller (buyerId);
if (isValid(buyerId)) @ seller
 { price@seller = getPrice(pName) * 0.8; }
else
 { price@seller = getPrice(pName);}
offer : seller (price) → buyer (pr)

Making the choreographic program updatable



 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
price@seller = getPrice(pName);
offer : seller (price) → buyer (pr);
...

Making the choreographic program updatable

 prodName@buyer = getInput();
priceReq : buyer (prodName) → seller (pName);
scope @seller {
 price@seller = getPrice(pName);
 offer : seller (price) → buyer (pr)
}
...

Dynamic updates: challenges

 All the participants should agree on
– whether to update a scope or not
– in case, which update to apply

 All the participants need to retrieve (their part of) the
update
– Not easy, since updates may disappear

 No participant should start executing a scope that needs to
be updated

Dynamic updates: our approach

 For each scope a single participant coordinates its
execution
– Decides whether to update it or not, and which update to apply
– Gets the update, and sends to the other participants their part

 The other participants wait for the decision before
executing the scope

 We add scopes (and higher-order communications) to the
target language, with the informal semantics above

Compositionality issue

 Applying an update at the choreographic level results in a
new choreographic program, composed by
– The unchanged part of the old choreographic program
– The update

 Even if the two parts are connected, the result may not be
connected

 Auxiliary communications are added to ensure
connectedness

Map of the talk

 Choreographic programming
 Dynamic updates
 Results and applications
 Conclusion

Results

 A choreographic program and its projection behave the
same
– They have the same set of weak traces (abstracting away

auxiliary actions)
– Under all possible, dynamically changing, sets of updates

 The projected application is deadlock free and race free by
construction

 These results are strong given that we are considering an
application which is
– distributed
– updatable

An instance for rule-based adaptation

 Our result is quite abstract
– Whether to update or not, and which update to apply is

nondeterminstic

 Different instances are possible, reducing nondeterminism
 AIOCJ [SLE 2014] explores one such possibility
 A framework for safe rule-based adaptation of distributed

applications
 Available as an eclipse plugin
 http://www.cs.unibo.it/projects/jolie/aiocj.html
 Projection produces service-oriented code

http://www.cs.unibo.it/projects/jolie/aiocj.html

What AIOCJ adds?

 Scopes include some information describing the current
implementation

 The framework includes an environment providing
contextual information

 A rule is an update plus an applicability condition
– A Boolean formula taking into account scope

information, environmental information and state
information

 An adaptation manager allows one to load sets of rules
dynamically

Demo time

Map of the talk

 Choreographic programming
 Dynamic updates
 Results and applications
 Conclusion

Conclusion

 A choreographic approach to dynamic updates
 The derived distributed application follows the behavior

defined by the choreographic program
 We ensure deadlock freedom and race freedom in a

challenging setting
 We instantiated the theoretical framework to adaptable

service-oriented applications

Future work

 Extend the approach to asynchronous communication
 How to cope with multiple interleaved sessions?
 How to improve the performance?

– Drop redundant auxiliary communications

 Can we instantiate our approach on existing frameworks
for adaptation?
– E.g., dynamic aspect-oriented programming
– To inject correctness guarentees

End of talk

Thanks!Thanks!

Questi
ons?

Questi
ons?

	Slide 1
	Map of the talk
	Slide 3
	Choreographic programming: aim
	Slide 5
	Slide 6
	Advantages of choreographic programming
	How to execute choreographic programs?
	Slide 9
	Projection: basic idea
	Slide 11
	Projection: problems and solutions
	Slide 13
	Slide 14
	Dynamic updates
	Our approach, syntactically
	Our approach, graphically
	Our approach, graphically
	Our approach, graphically
	Our approach, semantically
	Slide 21
	Making the choreographic program updatable
	Slide 23
	Dynamic updates: challenges
	Dynamic updates: our approach
	Compositionality issue
	Slide 27
	Results
	Implementation
	Slide 30
	Slide 31
	Slide 32
	Conclusion
	Future work
	End of talk

