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Session types in Scala: why...

andwhatwe achieve

Sh = µX.(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

prot⟪Sh⟫N =
sealed abstract class Start
case class Greet(p: String)(val cont: Out[Greeting]) extends Start
case class Quit(p: Unit) extends Start

sealed abstract class Greeting
case class Hello(p: String)(val cont: Out[Start]) extends Greeting
case class Bye(p: String) extends Greeting

“Session Scala” (pseudo-code)

def hello(c: S_h): Unit = {

if (...) {

c ! Greet("Alice")

c ? {

case Hello(name) => hello(c)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}

Scala + lchannels

def hello(c: Out[Start]): Unit = {

if (Random.nextBoolean()) {

val c2 = c !! Greet("Alice")_

c2 ? {

case m @ Hello(name) => hello(m.cont)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}
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▸ Object-oriented and functional

▸ Immutable vals vs. mutable vars

▸ Case classes for OO pattern matching

sealed abstract class Term(val descr: String)

case class Var(name: String) extends Term("Variable")

case class Lam(arg: String, body: Term) extends Term("Lambda")

case class App(f: Term, v: Term) extends Term("Application")

def term2string(term: Term): String = {

term.descr + ": " + {

term match {

case Var(n) => n

case Lam(x, b) => f"${x} . ${term2string(b)}"

case App(f, v) => f"(${term2string(f)}) (${term2string(v)})"

}

}

}
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Promises and futures

From the standard library:
concurrent programming via promises and futures

import scala.concurrent.{Promise, Future, Await}

val p = Promise[Int]

val f = p.future // Type: Future[Int]

// In one thread...

p success 42

// ...and in another thread...

val v = Await.result(f, timeout) // Will be Success(42)
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Lightweight session types in Scala
Abstract

Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to guarantee that the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose a lightweight integration of session types in Scala,
based on the native features of its type system and standard library. We generalise the idea
of Continuation-Passing Style (CPS) protocols, and study their formal relationship with session
types. We illustrate how session-types-based software development can be carried over in Scala,
by introducing lchannels: a small library for local and distributed type-safe communication
via asynchronous linear channels. We show how to formalise a communication protocol and
represent it using lchannels, so to statically rule out protocol safety violations. We attest the
practicality of our approach by implementing a realistic use case, and evaluating the performance
of lchannels with a series of benchmarks.

Keywords and phrases session types, Scala, concurrency

1 Introduction and motivation
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Loop/Alt i ∈ {1, . . . , n}Loop/Alt i ∈ {1, . . . , n} Client-server session

Figure 1 Server with frontend.

Concurrent and distributed applications are notoriously
difficult to design, develop and maintain. One of the main
challenges lies in ensuring that various software compon-
ents interact according to some predetermined communic-
ation protocols describing all the valid message exchanges.
Such a challenge is typically tackled at runtime, by resort-
ing to systematic testing and message monitoring.

Unfortunately, runtime checking does not scale well
with the complexity of the protocols and the number of
components. Consider the message sequence chart on the
right: it is based on an example of “actor protocol” from
[22] (slide 42), and schematises the authentication proced-
ure of an application server. A client connects to a fron-
tend, trying to retrieve an active session by its Id; the fron-
tend queries the application server: if Id is valid, the client
gets an Active(S) message with a session handle S, which
can be used to perform the command/response loop at the
bottom; otherwise, the client must authenticate: the fron-
tend obtains an handle A from an authentication server,
and forwards it to the client with a New(A) message. The
client must now use A to send its credentials (through an
Authenticate message); if they are not valid, the authen-
tication server replies Failure(); otherwise, it retrieves a
session handle S and sends Success(S) to the client, who
uses S for the session loop (as above).

In this example, four components interact with intertwined protocols regulating their
interactions. Ensuring that messages are sent with the right type and order, and that each
component correctly handles all possible responses, can be an elusive and time-consuming
task. Runtime monitoring/testing can detect the presence of communication errors, but can-
not guarantee their absence; moreover, protocols and code may change during the life cycle
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Case study: app server with frontend
(R. Kuhn, “Project Gålbma: Actors vs Types”, slide 42)

Actors interact via untyped mailboxes.

What about protocols with sequencing and choices?

Akka Typed proposes typed references ActorRef[A]

and Continuation-Passing Style protocols

case class GetSession(id: Int,

replyTo: ActorRef[GetSessionResult])

sealed abstract class GetSessionResult

case class Active(service: ActorRef[Command])

extends GetSessionResult

case class New(authc: ActorRef[Authenticate])

extends GetSessionResult

case class Authenticate(username: String, password: String,

replyTo: ActorRef[AuthenticateResult])

sealed abstract class AuthenticateResult

case class Success(service: ActorRef[Command])

extends AuthenticateResult

case class Failure() extends AuthenticateResult

sealed abstract class Command

// ... case classes for the client-server session loop ...
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Case study: app server with frontend (cont’d)
(R. Kuhn, “Project Gålbma: Actors vs Types”, slide 42)
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Abstract
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represent it using lchannels, so to statically rule out protocol safety violations. We attest the
practicality of our approach by implementing a realistic use case, and evaluating the performance
of lchannels with a series of benchmarks.
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case class GetSession(id: Int,

replyTo: ActorRef[GetSessionResult])

sealed abstract class GetSessionResult

case class Active(service: ActorRef[Command])

extends GetSessionResult

case class New(authc: ActorRef[Authenticate])

extends GetSessionResult

// ... case classes for authentication, etc ...

To get a continuation, spawn a new actor
(pseudo-code follows)

def client(frontend: ActorRef[GetSession]) = {

val cont = spawn[GetSessionResult] {

case New(a) => doAuthentication(a)

case Active(s) => doSessionLoop(s)

}

frontend ! GetSession(42, cont)

}
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Case study: app server with frontend (cont’d)
(R. Kuhn, “Project Gålbma: Actors vs Types”, slide 42)

Lightweight session types in Scala
Abstract

Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to guarantee that the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose a lightweight integration of session types in Scala,
based on the native features of its type system and standard library. We generalise the idea
of Continuation-Passing Style (CPS) protocols, and study their formal relationship with session
types. We illustrate how session-types-based software development can be carried over in Scala,
by introducing lchannels: a small library for local and distributed type-safe communication
via asynchronous linear channels. We show how to formalise a communication protocol and
represent it using lchannels, so to statically rule out protocol safety violations. We attest the
practicality of our approach by implementing a realistic use case, and evaluating the performance
of lchannels with a series of benchmarks.

Keywords and phrases session types, Scala, concurrency

1 Introduction and motivation
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difficult to design, develop and maintain. One of the main
challenges lies in ensuring that various software compon-
ents interact according to some predetermined communic-
ation protocols describing all the valid message exchanges.
Such a challenge is typically tackled at runtime, by resort-
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right: it is based on an example of “actor protocol” from
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tend, trying to retrieve an active session by its Id; the fron-
tend queries the application server: if Id is valid, the client
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case class GetSession(id: Int,

replyTo: ActorRef[GetSessionResult])

sealed abstract class GetSessionResult

case class Active(service: ActorRef[Command])

extends GetSessionResult

case class New(authc: ActorRef[Authenticate])

extends GetSessionResult

// ... case classes for authentication, etc ...

To get a continuation, spawn a new actor
(pseudo-code follows)

def client(frontend: ActorRef[GetSession]) = {

val cont = spawn[GetSessionResult] {

case New(a) => doAuthentication(a)

case Active(s) => doSessionLoop(s)

}

frontend ! GetSession(42, cont)

}
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CPS protocols vs. session types
case class GetSession(id: Int,

replyTo: ActorRef[GetSessionResult])

sealed abstract class GetSessionResult

case class Active(service: ActorRef[Command])

extends GetSessionResult

case class New(authc: ActorRef[Authenticate])

extends GetSessionResult

case class Authenticate(username: String, password: String,

replyTo: ActorRef[AuthenticateResult])

sealed abstract class AuthenticateResult

case class Success(service: ActorRef[Command])

extends AuthenticateResult

case class Failure() extends AuthenticateResult

sealed abstract class Command

// ... case classes for the client-server session loop ...

CPS protocols are Scala types providing structured interaction in Akka

But they are also:

▸ low-level, cumbersome to write (and read)

▸ not related with any high-level protocol formalism

▸ ambiguous about linearity of (typed) actor references
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CPS protocols vs. session types

case class GetSession(id: Int,

replyTo: ActorRef[GetSessionResult])

sealed abstract class GetSessionResult

case class Active(service: ActorRef[Command])

extends GetSessionResult

case class New(authc: ActorRef[Authenticate])

extends GetSessionResult

case class Authenticate(username: String, password: String,

replyTo: ActorRef[AuthenticateResult])

sealed abstract class AuthenticateResult

case class Success(service: ActorRef[Command])

extends AuthenticateResult

case class Failure() extends AuthenticateResult

sealed abstract class Command

// ... case classes for the client-server session loop ...

Idea: if you squint a bit, CPS protocols remind the encoding of session
types into linear and variant types for standard π-calculus
— i.e., represent sessions in a language without session primitives
(Dardha, Giachino & Sangiorgi, PPDP’12; Dardha, BEAT’14)

We develop this idea to obtain lightweight session types in Scala
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Session vs. linear types (in pseudo-Scala)

Sh = µX.(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

“Session Scala”

def hello(c: S_h): Unit = {

if (...) {

c ! Greet("Alice")

c ? {

case Hello(name) => hello(c)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}

“Linear Scala”

def lHello(c: LinOutChannel[?]): Unit = {

if (...) {

val (c2in, c2out) = createLinChannels[?]()

c.send( Greet("Alice", c2out) )

c2in.receive match {

case Hello(name, c3out) => lHello(c3out)

case Bye(name) => ()

}

} else {

c.send( Quit() )

}

}

Goals:

▸ define and implement linear in/out channels

▸ instantiate the “?” type parameter

▸ automate channel endpoint creation
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lchannels: interface
abstract class In[+A] {

def future: Future[A]

}

abstract class Out[-A] {

def promise[B <: A]: Promise[B] // Impl. must be constant

}

Based on standard Promises/Futures
▸ reuse runtime linearity checks and error handling

Note input/output co/contra-variance
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lchannels: interface
abstract class In[+A] {

def future: Future[A]

def receive(implicit d: Duration): A = {

Await.result[A](future, d)

}

}

abstract class Out[-A] {

def promise[B <: A]: Promise[B] // Impl. must be constant

def send(msg: A): Unit = promise.success(msg)

}

Based on standard Promises/Futures
▸ reuse runtime linearity checks and error handling

Note input/output co/contra-variance
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lchannels: interface
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def future: Future[A]
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}
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abstract class Out[-A] {

def promise[B <: A]: Promise[B] // Impl. must be constant
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def !(msg: A) = send(msg)

}

Based on standard Promises/Futures
▸ reuse runtime linearity checks and error handling

Note input/output co/contra-variance
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lchannels: interface
abstract class In[+A] {

def future: Future[A]

def receive(implicit d: Duration): A = {

Await.result[A](future, d)

}

def ?[B](f: A => B)(implicit d: Duration): B = {

f(receive)

}

}

abstract class Out[-A] {

def promise[B <: A]: Promise[B] // Impl. must be constant

def send(msg: A): Unit = promise.success(msg)

def !(msg: A) = send(msg)

def create[B](): (In[B], Out[B])

}

Based on standard Promises/Futures
▸ reuse runtime linearity checks and error handling

Note input/output co/contra-variance
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lchannels: non-distributed implementation

class LocalIn[+A](val future: Future[A]) extends In[A]

class LocalOut[-A](p: Promise[A]) extends Out[A] {

override def promise[B <: A] = {

p.asInstanceOf[Promise[B]] // Type-safe cast

}

override def create[B]() = LocalChannel.factory[B]()

}

object LocalChannel {

def factory[A](): (LocalIn[A], LocalOut[A]) = {

val promise = Promise[A]()

val future = promise.future

(new LocalIn[A](future), new LocalOut[A](promise))

}

}

Just a thin abstraction layer on top of a Promise/Future pair
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Session programming= In[⋅]/Out[⋅]+CPSprotocols

How do we instantiate the In[⋅]/Out[⋅] type parameters?

S

In[?] or Out[?]

S

Out[?] or In[?]

ServerClient

Session types

Scala types
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Session programming= In[⋅]/Out[⋅]+CPSprotocols

How do we instantiate the In[⋅]/Out[⋅] type parameters?
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Out[A] or In[A]

ServerClient

CPS protocol classes
A1,A2, . . . ,An

Session types

Scala types



Why & what Scala CPS protocols lchannels Extensions Evaluation Formal properties Conclusions

Session programming= In[⋅]/Out[⋅]+CPSprotocols

How do we instantiate the In[⋅]/Out[⋅] type parameters?

Linear I/O types

S

?(U) or !(U)

In[A] or Out[A]

S

!(U) or ?(U)

Out[A] or In[A]

ServerClient

U

CPS protocol classes
A1,A2, . . . ,An

Session types

Scala types
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Programming with lchannels (I)
Sh = µX.(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

prot⟪Sh⟫N =
sealed abstract class Start
case class Greet(p: String)(val cont: Out[Greeting]) extends Start
case class Quit(p: Unit) extends Start

sealed abstract class Greeting
case class Hello(p: String)(val cont: Out[Start]) extends Greeting
case class Bye(p: String) extends Greeting

def client(c: Out[Start]): Unit = {

if (Random.nextBoolean()) {

val (c2in, c2out) = c.create[Greeting]()

c.send( Greet("Alice", c2out) )

c2in.receive match {

case Hello(name, c3out) => client(c3out)

case Bye(name) => ()

}

} else {

c.send( Quit() )

}

}Goals:

▸ define and implement linear in/out channels 3
▸ instantiate the “?” type parameter 3
▸ automate channel endpoint creation 7
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Automating channel endpoint creation

We can observe that In/Out channel pairs are usually created for
continuing a session after sending a message

Let us add the !! method to Out[⋅]:

abstract class Out[-A] {

...

def !![B](h: Out[B] => A): In[B] = {

val (cin, cout) = this.create[A]()

this ! h(cout)

cin

}

def !![B](h: In[A] => B): Out[B] = {

val (cin, cout) = this.create[A]()

this ! h(cin)

cout

}

}
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continuing a session after sending a message

Let us add the !! method to Out[⋅]:

abstract class Out[-A] {

...

def !![B](h: Out[B] => A): In[B] = {

val (cin, cout) = this.create[A]()

this ! h(cout)

cin

}

def !![B](h: In[A] => B): Out[B] = {

val (cin, cout) = this.create[A]()

this ! h(cin)

cout

}

}



Why & what Scala CPS protocols lchannels Extensions Evaluation Formal properties Conclusions

Programming with lchannels (II)

Sh = µX.(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

prot⟪Sh⟫N =
sealed abstract class Start
case class Greet(p: String)(val cont: Out[Greeting]) extends Start
case class Quit(p: Unit) extends Start

sealed abstract class Greeting
case class Hello(p: String)(val cont: Out[Start]) extends Greeting
case class Bye(p: String) extends Greeting

“Session Scala” (pseudo-code)

def hello(c: S_h): Unit = {

if (...) {

c ! Greet("Alice")

c ? {

case Hello(name) => hello(c)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}

Scala + lchannels

def hello(c: Out[Start]): Unit = {

if (Random.nextBoolean()) {

val c2 = c !! Greet("Alice")_

c2 ? {

case m @ Hello(name) => hello(m.cont)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}
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if (...) {

c ! Greet("Alice")

c ? {

case Hello(name) => hello(c)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}

Scala + lchannels

def hello(c: Out[Start]): Unit = {

if (Random.nextBoolean()) {

val c2 = c !! Greet("Alice")_

c2 ? {

case m @ Hello(name) => hello(m.cont)

case Bye(name) => ()

}

} else {

c ! Quit()

}

}
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Run-time and compile-time checks

Well-typed output / int. choice Compile-time
Exhaustive input / ext. choice Compile-time

Double use of linear output endp. Run-time (disallowed)

Double use of linear input endp. Run-time (allowed, constant)

“Forgotten” output Run-time (timeout on input side)

“Forgotten” input Unchecked
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lchannels for distributed interaction

We have seen a local implementation of lchannels,
allowing thread interaction

val (cin, cout) = LocalChannel.factory[Start]()

// cin, cout have type LocalIn[Start], LocalOut[Start]

spawnThread( server(cin) )

spawnThread( client(cout) )

However, LocalIn/LocalOut instances cannot be serialised,
and thus cannot be sent/received over a network

Still, In/Out can abstract a distributed communication medium

▸ we implemented interaction via Akka actors and TCP/IP sockets
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Examples and case studies
We used session types, CPS protocols and lchannels to
implement several examples and case studies, including e.g.:

Sleeping barber

11

such a name when X occurs (for another case of recursion, see Example 4.2). Note that
cont is an input endpoint, used by the recipient to receive a further value, while the sender
keeps the output endpoint to produce a value. The endpoint processes can be written as:
1 def sender(fifo: Out[Datum[Int]]): Unit = {
2 val cont = fifo !! Datum(1)_ !! Datum(2)_
3 sender(cont)
4 }

1 def receiver(fifo: In[Datum[Int]]): Unit = {
2 val v = fifo.receive
3 println(f"Got ${v.p}"); receiver(v.cont)
4 }

Here, sender performs two outputs in a row (line 2): this is allowed since each application
of !! returns a channel of type Out[Datum[T]] (cf. declaration of Datum[T] above).

▸ Example 4.2 (Greeting protocol). Consider the types Sh and Sh from § 2. Unlike Ex-
ample 4.1, we now have non-singleton internal/external choices. To extract their CPS
protocols, we apply item D2b of § 4.2: add a sealed abstract class for each internal/ex-
ternal choice, extending it with one case class per label. In this case, we add:

Start for the internal choice of Sh (i.e., the external choice of Sh) between Greet,Quit;
Greeting for the external choice of Sh (i.e., the internal choice of Sh) between Hello,Bye.

We obtain the CPS protocol
classes on the right, with
Out[Start]/In[Start] being
the encodings of Sh/Sh. We can
write two endpoint processes as:

1 sealed abstract class Start
2 case class Greet(p: String)(cont: Out[Greeting]) extends Start
3 case class Quit(p: Unit) extends Start
4

5 sealed abstract class Greeting
6 case class Hello(p: String)(cont: Out[Start]) extends Greeting
7 case class Bye(p: String) extends Greeting

1 def client(c: Out[Start]): Unit = {
2 if (Random.nextBoolean()) {
3 val c2 = c !! Greet("Alice")_
4 c2 ? {
5 case m @ Hello(name) => client(m.cont)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() } }

1 def server(c: In[Start]): Unit = {
2 c ? {
3 case m @ Greet(whom) => {
4 val c2in = m.cont !! Hello(whom)_
5 server(c2in)
6 }
7 case Quit() => ()
8 } }

Note that client
is similar to the
pseudo code of
hello in Fig. 4
(left).

▸ Example 4.3 (Sleeping barber with session delegation). We address a classical problem in
concurrency theory [8]: a barber waits for customers in his shop, sleeping when there is
nobody to serve. When a customer enters in the shop, he goes through a waiting room
with n chairs: if all chairs are taken, he leaves; otherwise, he sits. If the barber is sleeping,
he wakes up, serves all sitting customers (one a time), and sleeps again when nobody is
waiting. We model this scenario with three components: the customer, the shop and the
barber, using session types to formalise their expected interactions, schematised below.
Customer Shop Barber

Full()7
AltAlt No seats

Seat()3
Available()

Ready()
Customer(Scut)

Descr(String)
Haircut()
Pay(Int)

AltAlt Seat available

This example shows how multiple concurrent sessions (one per
customer) can be handled by single-threaded programs (the shop
and the barber). We also show how to address the problem with
session delegation, by leveraging higher-order session types (i.e.,
channel endpoints that send/receive other channel endpoints).

When a customer enters in the shop, he gets a Scstm-typed
channel endpoint:
Scstm = ?Full & ?Seat.?Ready.Scut Scut = !Descr(String).?Haircut.!Pay(Int)
He might receive either a Full message (when no seats are avail-
able), or a Seat: in the first case, the session ends; in the second
case, he waits for the barber to be Ready. Then, he continues with
Scut: Describes the new hairdo, waits for the Haircut, Pays and
leaves. The shop uses the other, dually-typed channel endpoint:

Scstm = !Full ⊕ !Seat.!Ready.Scut Scut = ?Descr(String).!Haircut.?Pay(Int)
(types: ∼20 LOC)

Chat server with frontend

Lightweight session types in Scala
Abstract

Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to guarantee that the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose a lightweight integration of session types in Scala,
based on the native features of its type system and standard library. We generalise the idea
of Continuation-Passing Style (CPS) protocols, and study their formal relationship with session
types. We illustrate how session-types-based software development can be carried over in Scala,
by introducing lchannels: a small library for local and distributed type-safe communication
via asynchronous linear channels. We show how to formalise a communication protocol and
represent it using lchannels, so to statically rule out protocol safety violations. We attest the
practicality of our approach by implementing a realistic use case, and evaluating the performance
of lchannels with a series of benchmarks.
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Success(S)
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AltAlt Session Id is valid
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GetAuthentication()
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Authenticate(Credentials)

Failure()7
AltAlt Invalid credentials

CreateSession(User)
NewSession(S)

Success(S)3

AltAlt Valid credentials

AltAlt Session Id does not exist, or is expired

Commandi(Ti)
Responsei(T ′i )

. . . . . .

Loop/Alt i ∈ {1, . . . , n}Loop/Alt i ∈ {1, . . . , n} Client-server session

Figure 1 Server with frontend.

Concurrent and distributed applications are notoriously
difficult to design, develop and maintain. One of the main
challenges lies in ensuring that various software compon-
ents interact according to some predetermined communic-
ation protocols describing all the valid message exchanges.
Such a challenge is typically tackled at runtime, by resort-
ing to systematic testing and message monitoring.

Unfortunately, runtime checking does not scale well
with the complexity of the protocols and the number of
components. Consider the message sequence chart on the
right: it is based on an example of “actor protocol” from
[22] (slide 42), and schematises the authentication proced-
ure of an application server. A client connects to a fron-
tend, trying to retrieve an active session by its Id; the fron-
tend queries the application server: if Id is valid, the client
gets an Active(S) message with a session handle S, which
can be used to perform the command/response loop at the
bottom; otherwise, the client must authenticate: the fron-
tend obtains an handle A from an authentication server,
and forwards it to the client with a New(A) message. The
client must now use A to send its credentials (through an
Authenticate message); if they are not valid, the authen-
tication server replies Failure(); otherwise, it retrieves a
session handle S and sends Success(S) to the client, who
uses S for the session loop (as above).

In this example, four components interact with intertwined protocols regulating their
interactions. Ensuring that messages are sent with the right type and order, and that each
component correctly handles all possible responses, can be an elusive and time-consuming
task. Runtime monitoring/testing can detect the presence of communication errors, but can-
not guarantee their absence; moreover, protocols and code may change during the life cycle
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(types: ∼100 LOC)

▸ Most typical protocol errors are statically ruled out
▸ Timeouts and linearity exceptions take care of the rest
▸ Session delegation is supported — even encouraged!
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bottom; otherwise, the client must authenticate: the fron-
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In this example, four components interact with intertwined protocols regulating their
interactions. Ensuring that messages are sent with the right type and order, and that each
component correctly handles all possible responses, can be an elusive and time-consuming
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Benchmark: ring (448,000 message transmissions, 30 runs)
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More benchmarks (448,000 message transmissions, 30 runs)
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Formal properties

Theorem (Preservation of duality).⟪S⟫
N

= ⟪S⟫
N

(where In[A] = Out[A] and Out[A] = In[A]).

Theorem (Dual session types have the same CPS protocol classes).

prot⟪S⟫
N

= prot⟪S⟫
N

.

Theorem (Scala subtyping implies session subtyping).

For all S,N :

▸ if ⟪S⟫
N
= In[A] and B <∶ In[A],

then ∃S ′,N ′ such that B = ⟪S ′⟫
N ′

and S ′ ⩽ S;

▸ if ⟪S⟫
N
= Out[A] and Out[A] <∶ B,

then ∃S ′,N ′ such that B = ⟪S ′⟫
N ′

and S ⩽ S ′.
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Conclusions

We presented a lightweight integration of session types in Scala

We leveraged standard Scala features (from its type system and
library) with a very thin abstraction layer (lchannels)

▸ lower cognitive overhead, integration and maintenance costs

▸ naturally supported by modern IDEs (e.g. Eclipse)

We found a formal connection between CPS protocols and
session types, based on their encoding into linear/variant types
for standard π-calculus

We validated our session-types-based programming approach with
case studies (from literature and industry) and benchmarks
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Future work

Lightweight integration of multiparty session types, using
Scribble to generate (more complicated) CPS protocol classes

Generalise the approach to other frameworks beyond
lchannels, and study its properties.
Natural candidate: Akka Typed

Investigate other programming languages. Possible candidate:
C# (declaration-site variance and FP features)
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Thanks!
(questions?)



Backup slides

Session types = In[⋅]/Out[⋅] + CPS protocols (cont’d)

Sh = µX.(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

Let us give a name to each non-singleton int/ext choice:

N⎛⎜⎝
!Greet(String).( ?Hello(String).X

& ?Bye(String).end
)

⊕ !Quit(Unit)
⎞⎟⎠ = Start N( ?Hello(String).X

& ?Bye(String).end
) = Greeting

Intermediate encoding into linear types with variants and records:

JShK = !

⎛⎜⎜⎝µX.

⎡⎢⎢⎢⎢⎢⎣
Greet {p ∶ String,c ∶ !([ Hello {p ∶ String,c ∶ !(X)},

GoodNight {p ∶ String,c ∶ ●} ])},

Quit {p ∶ Unit,c ∶ ●}
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

We get the CPS protocol of Sh

and its linear channel endpoint type:

prot⟪Sh⟫N =
sealed abstract class Start
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Actor-based channels

ActorIn and ActorOut extend In/Out, and send/receive
messages by automatically spawning Akka Typed actors

▸ they are both serialisable (unlike LocalIn/LocalOut)

▸ distributed interaction for free! (on top of Akka Remoting)

For example, on one JVM:

val (in, out) = ActorChannel.factory[Start]()

// in, out have type ActorIn[Start], ActorOut[Start]

server(in)

On another JVM, we can proxy out through its Actor Path:

val c = ActorOut[Start]("akka.tcp://sys@host.com/user/start")

// c has type ActorOut[Start]

client(c)
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Stream-based channels
StreamIn/StreamOut allow interoperability
by reading/writing messages from/to byte streams

Suppose that our “greeting

protocol” has a textual

format (e.g., from an RFC):

Message Text format
Greet(”Alice”) GREET Alice

Hello(”Alice”) HELLO Alice

Bye(”Alice”) BYE Alice

Quit() QUIT

We define a StreamManager

to read/write it (on the right)

class HelloStreamManager(in: InputStream, out: OutputStream)

extends StreamManager(in, out) {

private val outb = new BufferedWriter(new OutputStreamWriter(out))

override def streamer(x: scala.util.Try[Any]) = x match {

case Failure(e) => close() // StreamManager.close() closes in & out

case Success(v) => v match {

case Greet(name) => outb.write(f"GREET ${n}\n"); outb.flush()

case Quit() => outb.write("QUIT\n"); outb.flush(); close() // End

}

}

private val inb = new BufferedReader(new InputStreamReader(in))

private val helloR = """HELLO (.+)""".r // Matches Hello(name)

private val byeR = """BYE (.+)""".r // Matches Bye(name)

override def destreamer() = inb.readLine() match {

case helloR(name) => Hello(name)(StreamOut[Greeting](this))

case byeR(name) => close(); Bye(name) // Session end: close streams

case e => { close(); throw new Exception(f"Bad message: ’${e}’") }

}

}

val conn = new Socket("host.com", 1337) // Hostname and port of greeting server

val strm = new HelloStreamManager(conn.getInputStream, conn.getOutputStream)

val c = StreamOut[Start](strm) // Output channel endpoint, to host.com:1337

client(c)
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