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Preface

BEAT 2 (full title: 2nd International Workshop on Behavioural Types), affiliated to SEFM,
follows on from the BEAT 2013 workshop, which was affiliated to POPL 2013, and an invita-
tional meeting which took place in Lisbon in April 2011.

Behavioural type systems go beyond data type systems in order to specify, characterize and
reason about dynamic aspects of program execution. Behavioural types encompass: session
types; contracts (for example in service-oriented systems); typestate; types for analysis of ter-
mination, deadlock-freedom, liveness, race-freedom and related properties; intersection types
applied to behavioural properties; and other topics. Behavioural types can form a basis for both
static analysis and dynamic monitoring. Recent years have seen a rapid increase in research
on behavioural types, driven partly by the need to formalize and codify communication struc-
tures as computing moves from the data-processing era to the communication era, and partly
by the realization that type-theoretic techniques can provide insight into the fine structure of
computation.

The aim of BEAT 2 is to bring together researchers in all aspects of behavioural type
theory and its applications, in order to share results, consolidate the community, and discover
opportunities for new collaborations and future directions. The workshop was organised under
the auspices of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software
Systems (BETTY), and the Programme Committee for the workshop was formed by taking a
representative from each country participating in BETTY.

Papers were submitted in two categories: original research papers, and presentations of
papers already published elsewhere. There is also an invited lecture from Dr Achim Brucker of
SAP, whose participation is funded by COST Action IC1201 and by the workshop registration
fees. The workshop programme was completed by several talks offered by members of BETTY
and by participants in the workshop, as follows:

• Typing Actors using Behavioural Types
Adrian Francalanza and Joseph Masini

• Linear types in programming languages: progress and prospects
Simon Gay

• Types for resources in psi-calculi
Hans Hüttel

• Globally Governed Session Semantics
Dimitrios Kouzapas and Nobuko Yoshida

• Behaviour inference for deadlock checking
Violet Ka I Pun, Martin Steffen and Volker Stoltz

• Specification and Verification of Protocols for MPI Programs
Eduardo R. B. Marques, Francisco Martins, Vasco T. Vasconcelos, Nicholas Ng, Nuno
Dias Martins, César Santos and Nobuko Yoshida

Finally, I would like to thank the programme committee members for their hard work, and
the SEFM workshop chair and local organizers for their help.

Simon Gay, PC Chair
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Samir Omanović University of Sarajevo, Bosnia and Herzegovina
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Service Compositions: Curse or Blessing for

Security

(Abstract)

Achim Brucker

SAP AG

Building large systems by composing reusable services is not a new idea, it is at least 25 years
old. Still, only recently the scenario of dynamic interchangeable services that are consumed via
public networks is becoming reality. Following the Software as a Service (SaaS) paradigm, an
increasing number of complex applications is offered as a service that themselves can be used
composed for building even larger and more complex applications. This will lead to situations
in which users are likely to unknowingly consume services in a dynamic and ad hoc manner.

Leaving the rather static (and mostly on-premise) service composition scenarios of the past
25 years behind us, dynamic service compositions, have not only the potential to transform the
software industry from a business perspective, they also requires new approaches for addressing
the security, trustworthiness needs of users.

The EU FP7 project Aniketos develops new technology, methods, tools and security services
that support the design-time creation and run-time dynamic behaviour of dynamic service
compositions, addressing service developers, service providers and service end users.

In this talk, we will motivate several security and trustworthiness requirements that occur in
dynamic service compositions and discuss the solutions developed within the project Aniketos.
Based on our experiences, we will discuss open research challenges and potential opportunities
for potential opportunities for applying type systems.

1
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Behavioural Types Inspired by

Cellular Thresholds

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract

The sodium-potassium exchange pump is a transmembrane transport protein that es-
tablishes and maintains the appropriate internal concentrations of sodium and potassium
ions in cells. This exchange is an important physiological process, and it is critical in
maintaining the osmotic balance of the cell. Inspired by the functioning of this pump, we
introduce and study a ratio-based type system using thresholds in a bio-inspired formalism.
The intent is to avoid errors in the definition of the formal model used to model biologic
processes. For this type system we prove a subject reduction theorem.

1 Introduction

Cell membranes are crucial to the life of the cell. Defining the boundary of the living cells,
membranes have various functions and participate in many essential cell activities including bar-
rier functions, transmembrane signalling and intercellular recognition. The sodium-potassium
exchange pump [13] is a transmembrane transport protein in the plasma membrane that estab-
lishes and maintains the appropriate internal ratio of sodium (Na+) and potassium ions (K+)
in cells. By using energy from the hydrolysis of ATP molecules, the pump extrudes three Na+

ions, in exchange for two K+. This exchange is an important physiological process, and it is
critical in maintaining the osmotic balance of the cell, the resting membrane potential of most
tissues and the excitability properties of muscle and nerve cells. Limitations on the values of the
Na+/K+ ratio, together with their significance are described in [12]. If this ratio is unbalanced,
it indicates physiological malfunctions within the cell: an unbalanced sodium/potassium ratio
is associated with heart, kidney, liver, and immune deficiency diseases. The sodium/potassium
ratio is also linked to adrenal gland function [9]. For example, the intracellular Na+/K+ ratios
of the normal epithelial cells fall in a rather narrow range; their average is 0.11 [14].

Types articulate computation in a given paradigm. The traditional notion of types offers
abstractions for data, objects and operations on them. The basic form of behavioural types
articulates the ways in which interactions are performed. In this paper we introduce behavioural
types inspired by cellular thresholds. We associate to each system a set of constraints that
must be satisfied in order to assure that the application of the rules to a well-formed membrane
system leads to a well-formed membrane system as well. We have a two-stage approach to
the description of biological behaviours: the first describes reactions in an “untyped” setting,
and the second rules out certain evolutions by imposing thresholds. This allows one to treat
separately different aspects of modelling: which transitions are possible at all, and under which
circumstances they can take place.

Membrane systems represent a formalism used to describe biological systems [15], thus
also the sodium/potassium pump [3]. The model has compartments enclosed by membranes,
floating objects, proteins associated with the internal and external surfaces of the membranes,
and built-in proteins (the pump) that transport and process chemical substances. Evolution
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rules represent the formal counterpart of chemical reactions, and are given in the form of
rewriting rules that operate on the objects, as well as on the compartmentalised structure (e.g.,
by dissolving, dividing, creating, or moving membranes).

2 A Multiset Model of Membranes

Given a finite set O of symbols, the set of all strings over O is denoted by O∗, and the set of all
non-empty strings over O is denoted by O+ = O∗\λ, where λ is the empty string. A multiset
over O [16] is a map u : O → N, where u(a) denotes the multiplicity of the symbol a ∈ O in the
multiset u; |u| =

∑

a∈O u(a) denotes the total number of objects appearing in a multiset u. A
multiset u is included into a multiset v (denoted by u ⊆ v) if u(a) ≤ v(a), ∀a ∈ O. An object a
is included into a multiset u (denoted by a ∈ u) if u(a) > 0. For a ∈ O, we write a instead of
the multiset u if u(a) = 1 and u(b) = 0 for all b &= a. The empty multiset is denoted by ε, and
ε(a) = 0, ∀a ∈ O. For two multisets u and v, we define the sum u+v by (u+v)(a) = u(a)+v(a),
∀a ∈ O, and the difference u− v by (u− v)(a) = max{0, u(a)− v(a)}, ∀a ∈ O.

In what follows we work with terms ranged over by st, st1, . . ., that are built by means
of a membrane constructor [−]−, using a set O of objects. The syntax of terms st ∈ ST
is st ::= u | [st]v | st st, where u denotes a (possibly empty) multiset of objects placed
inside a membrane, v a multiset of objects within or on the surface of a membrane, and st st
is the parallel composition. Since we work with multisets of terms, we introduce a structural
congruence relation following a standard approach from process algebra. The defined structural
congruence is the least equivalence relation on terms satisfying also the rule: if v1 ≡ v2 and
st1 ≡ st2 then [st1]v1

≡ [st2]v2
.

A pattern is a term that may include variables. We denote with P the infinite set of
patterns P of the form: P ::= st | [ P X ]v y | P P . We distinguish between “simple
variables” (ranged over by x, y, z) that may occur only on the surface of membranes (i.e., they
can be replaced only by multisets of objects) and “term variables” (ranged over by X, Y , Z)
that may only occur inside regions (they can be replaced by arbitrary terms). Therefore, we
assume two disjoint sets: VO∗ (set of simple variables) and VST∗ (set of term variables). We
denote by V = VO∗ ∪ VST∗ the set of all variables, and with ρ any variable in V .

An instantiation is a partial function σ : V → ST ∗ that preserves the type of all variables:
simple variables (x ∈ VO∗) and term variables (X ∈ VST∗) are mapped into objects (σ(x) ∈ O∗)
and terms (σ(X) ∈ ST ∗), respectively. Given a pattern P , the term obtained by replacing all
occurrences of each variable ρ ∈ V with the term σ(ρ) is denoted by Pσ. The set of all possible
instantiations is denoted by Σ, and the set of all variables appearing in P is denoted by V ar(P ).

Formally, a rewriting rule r is a pair of patterns (P1, P2), denoted by P1 → P2, where P1 &= ε
(P1 is a non-empty pattern) and V ar(P1) ⊆ V ar(P2). A rewriting rule P1 → P2 states that a
term P1σ can be transformed into the term P2σ, for some instantiation function σ.

The notion of context is used to complete the definition of a rewriting semantics for mem-
brane systems with integral proteins. This is done by enriching the syntax with a new object !
representing a hole. By definition, each context contains a single hole !. The infinite set C of
contexts (ranged over by C) is given by: C ::= ! | C st | [ C ]v.

Given C1, C2 ∈ C, C1[ st ] denotes the term obtained by replacing ! with st in C1, while
C1[ C2 ] denotes the context obtained by replacing ! with C2 in C1.

Given a membrane system with integral proteins and a set of rewriting rules R, the reduction
semantics of the system is the least transition relation → satisfying the following rule:

P1 → P2 ∈ R P1σ &= ε σ ∈ Σ C ∈ C
C[P1σ] → C[P2σ]

.
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→∗ denotes the reflexive and transitive closure of →.
Unfortunately, the limitations of certain ratios (e.g., Na+/K+, ATP/ADP ) as described

in [12] cannot be modelled using the above class of membrane systems. From a physiological
point of view, these ratios are important, as well as the lower and upper limits for the objects
involved in ion channel transport. For this reason we define a type system for membrane systems
with integral proteins that is able to impose constraints on the evolution with respect to the
ratios between objects.

3 Ratio-based Type System Over Multisets

An important idea of type theory is to provide the possibility of distinguishing between different
classes of objects (types). Types are fundamental both in logic and computer science, and have
many applications. Recently it has been used in biological formalisms in order to transfer
the complexity of biological properties from evolution rules to types. The syntax of types is
simple, easy to understand and use, and these aspects make types ideal for expressing general
constraints. The type system could be also used to decrease the number of rules in some models
by defining a limited number of generic rules as in [1].

The behaviour of typed terms can be controlled by a type system in order to avoid unwanted
evolutions. According to [12], the evolution of a healthy cell ensures that the ratio between
objects (e.g., Na+/K+) of a cell is kept between certain values. We investigate the application
of our type system to membrane systems with integral proteins.

Let T be a finite set of basic types ranged over by t. We classify each object in O with a
unique element of T ; we use Γ to denote this classification. In general, different objects a and b
can have the same basic type t. When there is no ambiguity, we denote the type associated
with an object a by ta. We assume the existence of two functions, min : T × T → (0,∞) ∪ {, }
and max : T × T → (0,∞) ∪ {, } for each ordered pair of basic types (t1, t2). These functions
indicate the minimum and maximum ratio between the number of objects of basic types t1
and t2 that can be present inside a membrane.

For example, by considering the constraintsmin(ta, tb) = 3 and max(ta, tb) = 5, the number
of objects of basic type ta is larger than the number of objects of basic type tb with a coefficient
between three and five. min(t1, t2) = , and max(t1, t2) = , mean that these functions are
undefined for the pair of types (t1, t2). Biologically speaking, the ratio between the types t1
and t2 is either unknown, or can be ignored.

We consider only local properties: the objects influence each other only if

• they are present inside the same membrane;

• they are integral on sibling membranes;

• one is present inside and the other is integral to the membrane;

• one is present outside and the other is integral to the membrane.

Definition 1 (Consistent Basic Types). A system consisting of a set of basic types T and the
functions min and max is consistent if:

1. ∀t1, t2 ∈ T , min(t1, t2) &= , iff max(t1, t2) &= ,;

2. ∀t1, t2 ∈ T if min(t1, t2) &= , then min(t1, t2) ≤ max(t1, t2);

3. ∀t1, t2 ∈ T if min(t1, t2) &= , and max(t2, t1) &= , then min(t1, t2) ·max(t2, t1) = 1.
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The meaning of these constraints is explained below:

1. the minimum ratio between the number of objects of basic types t1 and t2 is defined iff
the corresponding maximum ratio is defined;

2. the minimum ratio between the number of objects of basic types t1 and t2 must be lower
than the maximum ratio between the number of objects of basic types t1 and t2;

3. the maximum ratio between the number of objects of basic types t2 and t1 must be equal
to the inverse of the minimum ratio between the number of objects of types t1 and t2.

Definition 2 (Quantitative types). Are triples (L,Pr, U) over the set T of basic types, where:

• L (lower) is the set of minimum ratios between basic types;

• Pr (present) is the multiset of basic types of present objects (the objects present at the top
level of a pattern, i.e. in the outermost membrane);

• U (upper) is the set of maximum ratios between basic types.

The number of objects of type t appearing in Pr is denoted by Pr(t). In order to define well-
formed types, the sets Prt (present), Lt (lower bounds) and Ut (upper bounds) are required:

• Prt =
⋃

t′∈Pr

{

t/t′ :
Pr(t)

Pr(t′)
| t &= t′, P r(t′) &= 0

}

;

• Lt =
⋃

t′∈T {t/t′ : min(t, t′) | t &= t′,min(t, t′) &= ,};

• Ut =
⋃

t′∈T {t/t′ : max(t, t′) | t &= t′,max(t, t′) &= ,}.

These sets contain labelled values in order to be able to refer to them when needed: e.g.,

t/t′ :
Pr(t)
Pr(t′)

denotes the fact that the ratio between the objects of types t and t′ that are

present in Pr has the label t/t′ and the value
Pr(t)
Pr(t′)

.

Definition 3 (Well-Formed Types). A type (L,Pr, U) is well-formed if
L =

⋃

t∈Pr Lt, U =
⋃

t∈Pr Ut and L ≤
⋃

t∈Pr Prt ≤ U .

The constraints of this definition can be read as follows:

• L =
⋃

t∈Pr Lt - contains the minimum ratio constraints for the present objects;

• U =
⋃

t∈Pr Ut - contains the maximum ratio constraints for the present objects;

• L ≤
⋃

t∈Pr Prt - the ratio between present objects respects the minimum ratio from L: if

for all (t/t′ : min(t, t′)) ∈ L and (t/t′ :
Pr(t)

Pr(t′)
) ∈

⋃

t∈Pr Prt, then min(t, t′) ≤
Pr(t)

Pr(t′)
;

•
⋃

t∈Pr Prt ≤ U - the ratio between present objects respects the maximum ratio from U :

if for all (t/t′ :
Pr(t)

Pr(t′)
) ∈

⋃

t∈Pr Prt and (t/t′ : max(t, t′)) ∈ U , then
Pr(t)

Pr(t′)
≤ max(t, t′).

From now on we work only with well-formed types. For instance, the two well-formed types
(L,Pr, U) and (L′, P r′, U ′) of the following two definitions are constructed by using the ratio
tables of min and max.
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Definition 4 (Meet and Join). The meet of sets L and L′ (denoted by L - L′) is:
L - L′ = {t/t′ : min(t, t′) | (t/t′ : min(t, t′)) ∈ L or (t/t′ : min(t, t′)) ∈ L′}.

The join of sets U and U ′ (denoted by U . U ′) is:
U . U ′ = {t/t′ : max(t, t′) | (t/t′ : max(t, t′)) ∈ U or (t/t′ : max(t, t′)) ∈ U ′}.

Definition 5 (Type Compatibility). Two well-formed types (L,Pr, U) and (L′, P r′, U ′) are
compatible, written (L,Pr, U) %& (L′, P r′, U ′), if

• min(t, t′) ≤
(Pr + Pr′)(t)

(Pr + Pr′)(t′)
holds for all (t/t′ : min(t, t′)) ∈ L - L′ and

(t/t′ :
(Pr + Pr′)(t)

(Pr + Pr′)(t′)
) ∈

⋃

t∈(Pr+Pr′)(Pr + Pr′)t;

•
(Pr + Pr′)(t)

(Pr + Pr′)(t′)
≤ max(t, t′) holds for all (t/t′ : max(t, t′)) ∈ U . U ′ and

(t/t′ :
(Pr + Pr′)(t)

(Pr + Pr′)(t′)
) ∈

⋃

t∈(Pr+Pr′)(Pr + Pr′)t.

Definition 6. A basis ∆ assigning types to simple and term variables is defined by

∆ ::= ∅ | ∆, x : (Lt, t, Ut) | ∆, X : (L,Pr, U).
A basis is well-formed if all types in the basis are well-formed.

A classification Γ maps each object in O to a unique element of the set T of basic types.
The judgements are of the form∆ 0 P : (L,Pr, U) indicating that a pattern P is well-typed
having the type (L,Pr, U) relative to a typing environment ∆ .

Types are assigned to patterns and terms according to the typing rules in Table 1. It is not
difficult to verify that a derivation starting from well-formed bases produces only well-formed
bases and well-formed types. The rules are rather trivial, except for the rules (TPar) and
(TMem). The type of a parallel composition given by the (TPar) rule is derived from the
types of the two sub-patterns; if two patterns P and P ′ are compatible, then the type of the
obtained pattern P P ′ is derived from the types (L,Pr, U) and (L′, P r′, U ′) of the connected
patterns where Pr + Pr′ is the multiset sum of the present types pr and Pr′, the minimum
meet type L - L′ is and the maximum join type U . U ′ are as in Definition 4. The type of
rule (TMem) is the type of the multiset of integral proteins v (because a membrane makes the
objects inside it invisible to the outside). Since the objects on the membrane are influenced
by the ones inside it, the type of the multiset placed on the membrane and the type of the
pattern placed inside the membrane must be compatible in order to obtain the overall type of
the membrane.

We define a typed semantics, since we are interested in applying reduction rules only to
correct terms having well-formed types, and whose requirements are satisfied. More formally,
a term st is correct if ∅ 0 st : (L,Pr, U) for some well-formed type (L,Pr, U). An instantiation
σ agrees with a basis ∆ (denoted by σ ∈ Σ∆) if ρ : (L,Pr, U) ∈ ∆ implies ∅ 0 σ(ρ) : (L,Pr, U).

In order to apply the rules in a safe way, we introduce a restriction on rules based on the
context of application rather than on the type of patterns involved in the rule. In this direction,
we characterise contexts by the types of terms that can fill their hole, and the rules by the types
of terms produced by their application.

Definition 7 (Typed Holes). Given a context C and a type (L,Pr, U) that is well-formed, the
type (L,Pr, U) fits the context C if for some well-formed type (L′, P r′, U ′) it can be shown
that X : (L,Pr, U) 0 C[X] : (L′, P r′, U ′).
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Table 1: Typing Rules

∆ 0 ε : (∅, ∅, ∅) (TEps)
a : t ∈ ∆

∆ 0 a : (Lt, t, Ut)
(TObj)

∆, ρ : (L,Pr, U) 0 ρ : (L,Pr, U) (TV ar)

∆ 0 v : (L,Pr, U) ∆ 0 P ′ : (L′, P r′, U ′) (L,Pr, U) %& (L′, P r′, U ′)

∆ 0 [P ′]v : (L,Pr, U)
(TMem)

∆ 0 P : (L,Pr, U) ∆ 0 P ′ : (L′, P r′, U ′) (L,Pr, U) %& (L′, P r′, U ′)

∆ 0 P P ′ : (L - L′, P r + Pr′, U . U ′)
(TPar)

The above notion guarantees that we obtain a correct term filling a context with a term
whose type fits the context: note that there may be more than one type (L,Pr, U) such that
(L,Pr, U) fits the context C.

We can classify reduction rules according to the types that can be derived for the right hand
sides of the rules, since they influence the type of the obtained term.

Definition 8 (∆-(L,Pr, U) safe rules). A rewriting rule P1 → P2 is ∆ safe if for some well-
formed type (L,Pr, U) it can be shown that ∆ 0 P2 : (L,Pr, U).

To ensure correctness, each application of a rewriting rule must verify that the type of the
right hand side of the rule fits the context. Using Definitions 7 and 8, if it is applied a rule whose
right hand side has type (L,Pr, U) and this type fits the context, a correct term is obtained.

Typed Semantics. Given a finite set R of rewriting rules, the typed semantics of membrane
systems with integral proteins is given by the least relation ⇒ closed with respect to ≡ and
satisfying the following rule pattern:

P1 → P2 ∈ R is a∆-( L,Pr, U) safe rule, P1σ &= ε
σ ∈ Σ∆ C ∈ C and (L,Pr, U) fits C

C[P1σ] ⇒ C[P2σ]
(RPat)

4 Subject Reduction and Other Results

The type system of Table 1 satisfies weakening and other properties.

Proposition 1 (Weakening). If ∆ 0 P : (L,Pr, U) and ∆ ⊆ ∆′, then ∆′ 0 P : (L,Pr, U).

Proposition 2. If ∆ 0 C[P ] : (L,Pr, U) then

1. ∆ 0 P : (L′, P r′, U ′) for some (L′, P r′, U ′);

2. ∆, X : (L′, P r′, U ′) 0 C[X] : (L,Pr, U);

3. if P ′ is such that ∆ 0 P ′ : (L′, P r′, U ′) (namely, P ′ has the same type as P ), then
∆ 0 C[P ′] : (L,Pr, U).

The link between substitutions and well-formed bases guarantees type preservation, as ex-
pressed in the following proposition.
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Proposition 3. If σ ∈ Σ∆, then ∅ 0 Pσ : (L,Pr, U) iff ∆ 0 P : (L,Pr, U).

Starting from a correct term, all the terms obtained via ∆-(L,Pr, U) safe rules are correct,
and thus we can avoid conditions over P1 because they do not influence the type of the obtained
term. As expected, typed reduction preserves correctness. The main result of the paper is given
by the following subject reduction theorem.

Theorem 1 (Subject Reduction). If ∅ 0 st : (L,Pr, U) and st ⇒ st′, then
∅ 0 st′ : (L′, P r′, U ′) for a well-formed type (L′, P r′, U ′).

Proof. The given typed semantics implies st = C[P1σ] and st′ = C[P2σ], while Definition 8
implies∆ 0 P2 : (L,Pr, U). From Proposition 3 and σ ∈ Σ∆ it follows that ∅ 0 P2σ : (L,Pr, U).
Since (L,Pr, U) fits C (according to the given typed semantics), it means that X : (L,Pr, U) 0
C[X] : (L′, P r′, U ′) for some well-formed type (L′, P r′, U ′). According to Proposition 3, it
follows that ∅ 0 C[P2σ] : (L′, P r′, U ′) for some well-formed type (L′, P r′, U ′).

Example 1. Let us assume the consistent system formed from a set of basic types T =
{tNa, tK , tATP , tADP , tP , tE}, a classification Γ = {Na : tNa; K : tK ; ATP : tATP ; ADP :
tADP ; P, Pi : tP ; E1, E2, EP

1 , EP
2 : tE}, the functions min and max given by

min(t1, t2) =







0.6 if t1 = tNa and t2 = tK
0.25 if t1 = tK and t2 = tNa

, otherwise

max(t1, t2) =







4 if t1 = tNa and t2 = tK
5/3 if t1 = tK and t2 = tNa

, otherwise
.

and the set of rules
r1 : [ Na3 X ]E1 x → [ X ]E1 Na3 x

r2 : [ ATP X ]E1 Na3 x → [ADP X ]EP
1

Na3 x

r3 : [ X ]EP
1

Na3 x → [ X ]EP
2

x Na3

r4 : [ X ]EP
2

x K2 → [ X ]EP
2

K2 x

r5 : [ X ]EP
2

K2 x → [ Pi X ]E1 K2 x

r6 : [ X ]E1 K2 x → [ K2 X ]E1 x

Using all of the above rules once, the well-formed term
[ATP 3 Na8 K2]E1

Na9 K5

is rewritten in a well-formed term
[ATP 3 Na8 K2]E1

Na9 K5 ⇒∗ [ATP 2 ADP Pi Na5 K4]E1
Na12 K3.

It is worth to note that another rule cannot be applied because we would obtain terms that are
not well-formed. For instance, consider rule r1 : [ Na3 X ]E1 x → [ X ]E1 Na3 x, the context
C = ! Na12 K3 and the instantiations σ(X) = ATP 2 ADP Pi Na2 K4 and σ(x) = ε.

By applying rule r1 we obtain a term that is not well-formed:

[ATP 2 ADP Pi Na5 K4]E1
Na12 K3⇒ [ATP ADP 2 Pi Na2 K4]E1 Na3Na12 K3

This is because the type (LE1
- LNa, t3NatE1

, UE1
. UNa) of P2 does not fit the context C. It

does not fit since the term C[P2] has the type (LE1
-LNa-LK, t15NatE1

t3K , UE1
.UNa.UK) that

is not well-formed because the ratio between tNa and tK at the top level is
12 + 3

3
= 5 which is

greater than 4.
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5 Conclusion

In [8], the Na–K pump was described by using the π-calculus. In [7], the transfer mechanisms
were described step by step, and software tools of verification were also applied. This means
that it would be possible to verify properties of the described systems by using a computer
program, and the use of the verification software as a substitute for expensive lab experiments.
A similar development for membrane systems would be a useful achievement.

Recent years have seen a rapid increase in research on behavioural types, driven partly
by the need to formalise and codify communication structures. Behavioural type systems go
beyond data type systems in order to specify, characterise and reason about dynamic aspects
of execution. Behavioural types encompass session types [10], multiparty session types [11] and
other functional types for communications in distributed systems. Here we put forward a new
view inspired by cellular biology by introducing behavioural types that control the behaviour
of systems, namely quantitative types based on ratio thresholds. The inspiration comes from
sodium/potassium pump, which extrudes sodium ions in exchange for potassium ions. These
exchanges take place only if the ratios of these elements are between certain lower and upper
bounds. To properly cope with such constraints, we introduce a ratio-based type system over
multisets. We associate to each system a set of constraints, and relate them to the ratios
between elements. If the constraints are satisfied, we prove that if a system is well-typed and
an evolution rule is applied, then the obtained system is also well-typed.

The proposed typed semantics completely excludes the fact that sometimes biological con-
straints can be broken leading to a disease or even to the death of the biological system.
However, the typed semantics can be modified in order to allow transitions that lead to terms
that are not typable. In this case the type system should signal that some undesired event has
been reached. In this way, it can be checked if a term breaks some biological property, or if the
system has some unwanted behaviour.

We previously modelled the sodium/potassium pump using untyped membrane systems [3]
and typed symport/antiport membrane systems [1]. The novelty of [1] is that it introduces types
for the symport/antiport membrane systems, defining typing rules which control the passage
of objects through the membranes. We proved that if a system is well-typed and an evolution
rule is applied, then the obtained system is also well-typed.

A formalism that is somewhat related to the membrane systems considered in this paper
is the calculus of looping sequences (CLS), a formalism based on term rewriting. An essential
difference is that membrane systems with integral proteins use multisets to describe objects
within or on membranes, while CLS terms use (looping) sequences. There are various type
systems for CLS [2, 4, 5]. Our work is related to [4], where a type systems defined for the
calculus of looping sequences is based on the number of elements (and not on the ratios between
elements). The quantitative type system for CLS preserves some biological properties depending
on the minimum and the maximum number of elements of some type; the author uses the
number of elements in a system, a fact that is not relevant in biology, where concentration and
ratios are typical.

Acknowledgements. Many thanks to the reviewers for their useful comments. The work
was supported by a grant of the Romanian National Authority for Scientific Research, project
number PN-II-ID-PCE-2011-3-0919.
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Compliance and testing preorders di↵er

⇤

Giovanni Bernardi and Matthew Hennessy

School of Computer Science, University of Dublin, Trinity College, Ireland

Abstract

Contracts play an essential role in the Service Oriented Computing, for which they
need to be equiped with a sub-contract relation. We compare two possible formulations,
one based on compliance and the other on the testing theory of De Nicola and Hennessy.
We show that if the language of contracts is su�ciently expressive then the resulting sub-

contract relations are incomparable.
However if we put natural restrictions on the contract language then the sub-contract

relations coincide, at least when applied to servers. But when formulated for clients they
remain incomparable, for many reasonable contract languages. Finally we give one example
of a contract language for which the client-based sub-contract relations coincide.

1 Introduction

Contracts play a central role in the orchestration and development of web services, [CCLP06,
LP07]. Existing services are advertised for use by third parties, which may combine these exist-
ing services to construct, and in turn advertise for further use, new services. The behavioural
specification of advertised services is given via contracts, high-level descriptions of expected
behaviour, which should come equipped with a sub-contract relation. Intuitively ct1 vcrt ct2

means that a third party requiring a service to provide contract ct1 may use one which already
provides ct2, so in this sense ct2 is better than ct1. The purpose of this short technical note
is to compare and contrast two di↵erent approaches to defining this sub-contract relation.

The first method, [LP07, CGP09, Pad10], is based on a notion of compliance between two
contracts, where one contract notionally formalises the behaviour o↵ered by a server p, and the
other one the behaviour o↵ered by a client r. Contracts are interpreted as abstract processes,
written in process algebras similar to CCS or CSP, [Mil89, Hoa85]. However, as pointed out by
[Bd10, BH12] they can also be viewed as session types [THK94, GH05]. Intuitively p and r
are in compliance, written r a p, if when viewed as abstract processes they can continuously
interact, and if this interaction ever stops then the client is in a happy state; the formal definition
is co-inductive and is given in Definition 2.4. This leads to a natural comparison between server-
oriented contracts : p1 vcpl

svr p2 if every client which complies with p1 also complies with p2. As
suggested in [Bd10], client-oriented contracts can also be compared, but in terms of the servers
with which they comply, r1 vcpl

clt r2.
It has been pointed out by various authors [LP07, CGP09, Pad09, Pad10] that the server

contract preorder, vcpl
svr, bears a striking resemblance to the well-known must-testing preorders

from [DH84]. For example, the axioms for the strong sub-contract relation in [Pad09, Table 1],
are essentially the same for the testing preorder in [Hen85, Figure 3.6]; and the behavioural char-
acterisations of the sub-contract relation use ready sets, which were already in the behavioural
characterisation of the must-testing preorder [DH84]. In this approach clients are viewed as
tests for servers and servers are compared by their ability to guarantee that tests are satisfied.
This is formalised as an inductive relation between tests and servers. Intuitively p must r if

⇤Research supported by SFI project SFI 06 IN.1 1898.
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whenever the two abstract processes p, r are executed in parallel the test r is guaranteed to
reach a happy state. This in turn leads to a second pair of sub-contract relations, which we
denote by p1 @⇠

tst
svr p2 and r1 @⇠

tst
clt r2 respectively.

In this paper we contrast these two di↵erent approaches to the notion of sub-contract by com-
paring the relations vcpl

?

and @⇠
tst
?

, for both servers and clients. This study is of interest because

the testing-based preorders have been thoroughly studied. In particular @⇠
tst
svr has a behavioural

characterisation, an axiomatisation (for finite terms) [DH84, Hen85], a logical characterisa-
tion [CH10], and an algorithm to decide it (on finite state LTSs) [CH93]; moreover the client
preorder @⇠

tst
clt has recently been investigated in [Ber13].

The outcome of the comparison depends on the expressive power of the language used
to express contracts. We examine three di↵erent possibilities. The first is when there is no
restriction on the contract language. We essentially allow any description of behaviour from
the process calculus CCS; this includes infinite state and potentially divergent contracts. In
this case the preorders are incomparable; see Section 3.1

In the second case we restrict the contract language to what we call CCSweb; this only allows
finite-state contracts, which can never give rise to divergent behaviour; this language includes
all the contract languages used in the standard literature, such as [LP07, Bd10, Pad09] and the
concrete one of [CGP09]. In this setting the two server-contract preorders coincide:

p1 vcpl
svr p2 if and only if p1 @⇠

tst
svr p2

However the client-contract preorders remain incomparable. This is discussed in Section 3.2.
It turns out that the di↵erence in the formulation of the compliance relation between con-

tracts and that based on must-testing, one co-inductive and the other inductive, has significant
implications on the client-preorders, regardless of the expressivity of the contract language.
This is explained via examples in Section 3.3. In particular it is di�cult to think of a reason-
able contract language in which they coincide. We provide one example, also in Section 3.3,
which essentially coincides with the finite session behaviours of [Bd10]; one can think of these as
first-order session types [THK94]. But, as we will see, introducing recursion into this contract
language will once more enable us to di↵erentiate between the two client-preorders.

The remainder of the paper is structured as follows. In the next section, Section 2, we provide
formal definitions for the concepts introduced informally above, together with a description of
the abstract language CCS, which is used as a general description language for contracts. Then
the three di↵erent scenarios are discussed in turn in Section 3. Finally we discuss the related
literature in Section 4.

2 LTS and behavioural preorders

A labelled transition system, LTS, consists of a triple hP, �!, Act
⌧ X i where P is a set of

processes and �! ✓ P ⇥ Act
⌧ X ⇥ P is a transition relation between processes decorated with

labels drawn from the set Act
⌧ X. We use the infix notation p

µ�! q in place of (p, µ, q) 2�!.
Let CCS be the set of terms defined by the grammar

p, q, r ::= 1 | A | µ.p |
P

i2I

p
i

where µ 2 Act
⌧

, I is a countable index sets, and A,B,C, . . . range over a set of definitional

constants each of which has an associated definition A
def
= p

A

. We use 0 to denote the empty
external sum

P
i2; pi and p1 + p2 for the binary sum

P
i2{ 1,2 } pi. Note that we have omitted

2
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1
X�! 0

[a-Ok]
µ.p

µ�! p
[a-Pre]

p
��! p0

p + q
��! p0

[r-Ext-l]
q

��! q0

p + q
��! q0

[r-Ext-r]

p
��! p0

A
��! p0

A
def
= p; [r-Const]

Figure 1: The operational semantics of CCS

q
��! q0

q || p ��! q0 || p
[p-Left]

p
��! p0

q || p ��! q || p0
[p-Right]

q
↵�! q0 p

↵�! p0

q || p ⌧�! q0 || p0
[p-Synch]

Figure 2: The operational semantics of contract composition

the parallel operator ||, as contracts, and their associated session types [Bd10, BH12], are
normally expressed purely in terms of prefixing and choices.

The operational semantics of the language is given by the LTS generated by the relations
p

µ�! q determined by the rules given in Figure 1. The happy or successful states mentioned

in the Introduction are considered to be those CCS terms satisfying p
X�!.

We use standard notation for operations in LTSs. For example Act?
⌧ X, ranged over by t,

denotes the set of finite sequences of actions from the set Act
⌧ X, and for any t 2 Act?

⌧ X we

let p
t�! q be the obvious generalisation of the single transition relations to sequences. For an

infinite sequence u 2 Act1
⌧ X of the form µ0µ1 . . . we write p

u�! to mean that there is an infinite

sequence of actions p
µ0�! p

o

µ1�! p1 . . .. These action relations are lifted to the weak case in the
standard manner, giving rise to p

s

=) q for s 2 Act?X and p
u

=) for u 2 Act1. Finally a process
diverges, written p *, if there is an infinite sequence of actions p

⌧�! p1
⌧�! . . .

⌧�! p
k

⌧�! . . ..
Otherwise it is said to converge, written p + .

To model the interactions that take place between the server and the client contracts, we
introduce a binary composition of contracts, r || p, whose operational semantics is in Figure (2).

Definition 2.1. [ Compliance ] Let Fa : P(CCS2) �!P (CCS2) be the rule functional defined
so that (r, p) 2 Fa(R) whenever the following conditions are true:

(a) if p * then r
X�!

(b) if r || p
⌧

6�! then r
X�!

(c) if r || p ⌧�! r0 || p0 then r0 R p0

3
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If X ✓ Fa(X), then we say that X is a co-inductive compliance relation. The monotonicity
of Fa and the Knaster-Tarski theorem ensure that there exists the greatest solution of the
equation X = Fa(X); we call this solution the compliance relation, and we denote it a. That
is a = ⌫X.Fa(X). If r a p we say that the client r complies with the server p.

Thanks to its co-inductive nature, the compliance admits everlasting computations, even if the
client side never reaches a happy state. This is a typical feature of the compliance relation.

Example 2.2. Let C
def
= ⌧.↵.C and S

def
= ↵.S. Even if C can not reach a happy state, it

complies with S, for { (C, S), (↵.C, S) } is a co-inductive compliance. This set enjoys the
properties required by Definition 2.1: Point (a) is trivially true for S converges, point (b) is
true because C || S ⌧�! and ↵.C || S ⌧�!. A routine check shows that also point (c) is true.

Another property of a is that it is preserved by the interactions of contracts.

Lemma 2.3. If r a p and r || p ⌧�!
⇤
r0 || p0 then r0 a p0.

Proof. It follows from induction on the number of reduction steps in
⌧�!

⇤
, and point (c) of

Definition 2.1.

Definition 2.4. [ Compliance preorders ] In an arbitrary LTS we write

(1) p1 vcpl
svr p2 if for every r, r a p1 implies r a p2

(2) r1 vcpl
clt r2 if for every p, r1 a p implies r2 a p

Note that our compliance relation is slightly di↵erent than that of [LP07]; we require that a client
that complies with a divergent server report success immediately, whereas in [LP07] the client
may report success in the future, and cannot engage in any interaction. This does not a↵ect
the resulting sub-contract relations on the language of contracts discussed in [CGP09, Pad10].

We also briefly recall the notion of must-testing from [DH84] A computation consists of
series of ⌧ actions of the form

r || p = r0 || p0
⌧�! r1 || p1

⌧�! . . .
⌧�! r

k

|| p
k

⌧�! . . . (1)

It is maximal if it is infinite, or whenever r
n

|| p
n

is the last state then r
n

|| p
n

⌧

6�!. A
computation may be viewed as two processes p, r, one a server and the other a client, co-
operating to achieve individual goals. We say that (1) is client-successful if there exists some

k � 0 such that r
k

X�!.

Definition 2.5. [ Testing preorders ] In an arbitrary LTS we write p must r if every maximal
computation of r || p is client-successful. Then

(1) p1 @⇠
tst
svr p2 if for every r, p1 must r implies p2 must r

(2) r1 @⇠
tst
clt r2 if for every p, p must r1 implies p must r2

Before comparing the testing and the compliance preorders, we highlight the di↵erences
between a and must. We use standard examples [LP07, Ber13]. The discussion on the preorders
will mirror the di↵erences shown in these examples.

4
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p

p2p1p0 p3 . . .

↵
↵

↵
↵

↵

q

↵

T 1 0↵
⌧ X

Figure 3: While p vcpl
svr q, the test T witnesses that p 6@⇠

tst
svr q (see Example 3.1)

Example 2.6. [ Meaning of livelocks ] In this example we prove that r a p does not imply
p must r. Recall the contracts C and S from Example 2.2. In that example we have seen that
since {(C, S), (↵.C, S)} is a co-inductive compliance, C a S.

The fact that S 6must C is true because C does not perform X, and so no computation of
C || S is client-successful.

The previous example shows that while the compliance admits livelocks where clients do not
report success, the must testing does not. The testing relation requires clients to reach a
successful state in every (maximal) computation.

Example 2.7. [ Meaning X ] In this example we prove that p must r does not imply r a p.

Let r = 1 + ⌧. 0. For every p, p must r because r
X�!, so all the computations of r || p are

client-successful. For every p, the proof that r 6a p relies on the following computation,

r || p ⌧�! 0 || p ⌧�! . . .

Since 0 6a p, Lemma 2.3 implies that r 6a p.

In the must testing, the behaviour of a client that has reported success is completely disregarded;
that is p must r and r || p ⌧�! r0 || p0 does not imply p0 must r0. For the compliance it is the
contrary, as we have seen in Lemma 2.3.

3 Examples

We have three sub-sections, each examining one of the scenarios for contracts alluded to in the
Introduction.

3.1 General contracts

Here we assume that contracts may be any term in the language CCS defined above. First we
show that the server-contract preorders are incomparable.

Example 3.1. [ Infinite traces and servers ] Here we prove that p vcpl
svr q but p 6@⇠

tst
svr q where

these terms are depicted in Figure 3.
The symbol p

k

denotes a process which performs a sequence of k ↵ actions and then be-
comes 0; so the process p performs every finite sequence of ↵s. In contrast, the process q
performs also an infinite sequence of ↵s.

5
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p1⌧ p2 0
↵

r 0

X

↵

Figure 4: While p1 @⇠
tst
svr p2, the client r lets us prove that p1 6vcpl

svr p2 (see Example 3.2)

To prove that p vcpl
svr q, we have to show that r a p then r a q. It su�ces to prove that the

following relation is a co-inductive compliance,

R = { (r0, q) | r a p, r
↵

k

=) r0, for some k 2 N and r 2 CCS }

We have to show that if r0 R q then the pair (r0, q) satisfies the conditions given in Definition 2.1.

Pick a pair (r0, q) in the relation R. By construction of R and of q, we know that r
↵

k

=) r0 for
some k 2 N and some r such that r a p.

Condition (a) is trivially true, because q converges. We discuss condition (b) and (c).

Suppose that r0 || q
⌧

6�!; this implies that r0
⌧

6�!. By construction p
↵

k

=) 0, so we infer

r || p =) r0 || 0
⌧

6�!. Now r a p and Lemma 2.3 imply that r0 a 0; Definition 2.1 ensures that

r0
X�!.
Suppose that r0 || q ⌧�! r00 || q0; we prove that r00 R q0. The argument is a case analysis

on the rule used to infer the reduction. In every case q = q0. If rule [p-Left] was applied

then r0
⌧�! r00; as r

↵

k

=) r00 the definition of R implies that r00 R q0. Rule [p-Right] cannot

have been applied, for q
⌧

6�!. If rule [p-Synch] was applied, then the reduction is due to an

interaction. As q engages only in ↵, it follows r
↵

k+1

=) r00. The definition of R implies that
r00 R q0.

We have proven that the relation R is a co-inductive compliance, so p vcpl
svr q.

Now we prove that p 6@⇠
tst
svr q; we define a test that is passed by p and not by q. Let T

def
=

⌧. 1 +↵.T . The LTS of T is depicted in Figure (3). Every computation of T || p is finite and
successful, so p must T . However when q is run as a server interacting with T , there is the
possibility of an indefinite synchronisation on ↵, which is not a successful computation; q 6must
T .

Example 3.2. [ Convergence of servers ] In this example we prove that p1 @⇠
tst
svr p2 but p1 6vcpl

svr

p2, where p1 = ⌧1 and p2 = ↵. 0. The LTS of these processes is in Figure (4).

We prove that p1 @⇠
tst
svr p2. First note that p1 *, so if p1 must r, then r

X�!; this is because
of the infinite computation due only to the divergence of p1. It follows that if p1 must r then
p2 must r.

Now we define a client that lets us prove p1 6vcpl
svr p2. Let r = 1 +↵. 0. To prove that r a p1

Definition 2.1 requires us to show a co-inductive compliance that contains the pair (r, p1). The
following relation {(r, p1)} will do, because the only state ever reached by r || p1 is itself. We

have to prove that r 6a p2. Consider the computation r || p2 =) 0 || 0
⌧

6�!. Since 0
X
6�!,

Definition 2.1 ensures that 0 6a 0. An application of Lemma 2.3 leads to r 6a p2.

6
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Let us now consider the client preorders in this setting of general contracts. The fact that
@⇠

tst
clt 6✓ vcpl

clt will follow from Example 3.5. One final example is needed to show the converse.

Example 3.3. [ Infinite traces and clients ] Here we prove that vcpl
clt 6✓ @⇠

tst
clt. Let us define r

as the the process p of Example 3.1, but with a X transition after each finite sequence of ↵s.
Recall also the process T of Example 3.1. To see why r vcpl

clt T , it is enough to check that the
relation

R= { (T, p0) | r a p, p
↵

k

=) p0 for some k 2 N and p 2 CCS }
[ { (1, p) | p 2 CCS }

is a co-inductive compliance. To prove this, an argument similar to the one of Example 3.1 will
do.

Now we show that r 6@⇠
tst
clt T ; to see why, consider the server S

def
= ↵.S. All the maximal

computations of r || S are client-successful, so S must r; while T || S performs an infinite
computation with no client-successful states.

The two essential di↵erences in how servers are treated by the compliance relation and the
testing relation are crystallised Example 3.1 and Example 3.2. In the former we see that a
server may fail a test because of the presence of an infinite sequence of actions, although this
does not impede the test, or client, from complying with the server. In the latter we see that
divergent computations a↵ect the preorders di↵erently. The relation @⇠

tst
svr is sensitive to the

divergence of servers: any server that diverges is a least element of @⇠
tst
svr. So if p1 @⇠

tst
svr p2 and p1

diverges, the traces that p2 performs need not be matched by the traces of p1. This is not the
case if p1 vcpl

svr p2; the traces of p2 have to be matched suitably by the traces of p1, regardless
of the divergence of p1.

3.2 Contracts for web-services

There are natural constraints on the contract language which avoid the phenomena described
above. We say that a process p converges strongly if for every s 2 Act?, p

s

=) p0 implies
p0 + . Then let CCSweb denote the subset of processes in CCS which both strongly converge and
are finite-state. Note that Konigs Lemma ensures that for every p 2 CCSweb, p can perform
an infinite sequence of actions u whenever it can perform all finite subsequences of u. Thus
neither Example 3.1 nor Example 3.2 can be formulated in CCSweb. Nevertheless it is still a very
expressive contract language. It encompasses (via an interpretation) first-order session types
[Bd10, BH12], and, up to syntactic di↵erences, the LTSs of contracts for web-services used in
[LP07, CGP09, Pad10] are contained in the LTS h CCSweb, �!, Act

⌧ X i.

Theorem 3.4. In CCSweb, p1 @⇠
tst
svr p2 if and only if p1 vcpl

svr p2.

Proof. See Proposition 5.1.21 of [Ber13]. The proof relies on the behavioural characterisation
of the two preorders, which is the same relation -svr. Roughly speaking, p1 -svr p2 if and
only if for every trace s 2 Act?, the potential deadlocks of p2 after s are matched the potential
deadlocks1 of p1 after s. These properties characterise both @⇠

tst
svr and vcpl

svr, that is @⇠
tst
svr = -svr

and vcpl
svr = -svr. The theorem follows from these equalities.

However even in CCSweb the client sub-contract preorders remain di↵erent. In Example 3.5
and Example 3.6 below we prove that the client preorders are not comparable; Theorem 3.4 is
false for the client preorders. and Also the converse (negative) inequality is true; we prove it in
Example 3.6 below.

1More precisely, the acceptance sets.
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C r r0 S

⌧

↵

⌧

�

↵

Figure 5: In any LTS that contains C and r, and where ↵ 6= �, S witnesses that C 6vcpl
clt r2.

However C @⇠clt r (see Example 3.5)

r 0

X

⌧ 10 r1

r2 �. 1

↵X

�

X �

(a) (b)

Figure 6: Clients that let us prove that the client preorders are not comparable even in the
finite fragment of CCSweb (see Example 3.6 and Example 3.7)

Example 3.5. [ Client preorders and livelocks ] In this example we prove that in CCSweb,
@⇠

tst
clt 6✓ vcpl

clt. Suppose that for two actions ↵,� we have ↵ 6= �, recall the processes C, S of
Example 2.6. Their LTS are depicted in Figure 5 along with the LTS of a process r.

We prove that C @⇠
tst
clt r and that C 6vcpl

clt r. The inequality C @⇠
tst
clt r is trivially true, because

C does not perform X, so p 6must C for every C.
To show that C 6vcpl

clt r we have to exhibit a server with which C complies, while r does not.
This server is S. In Example 2.2 we have already proven that C a S. On the other hand, since

↵ cannot interact with �, we have r0 || S
⌧

6�!. As r0
X
6�!, Definition 2.1 and Lemma 2.3 ensure

that r 6a S.

3.3 Finite session behaviours

Underlying Example 3.5 is the treatment of livelocks. These are catastrophic for the testing
based preorder, but can be accommodated by the compliance based one. However, there is
another completely independent reason for which the two client preorders are di↵erent. Both
are sensitive to the presence of the X action, but in di↵erent ways.

In the examples below, Example 3.6 and Example 3.7, we prove that because of this dif-
ference, even for finite clients, with no recursion, the client preorders are incomparable. These
examples show that any test which immediately performs X is a top element in the testing
based preorder, even if it subsequently evolves to a state in which X is no longer possible. On
the other hand for the compliance relation the action X matters only in the stuck states of the
client; its presence in all other states is immaterial.

Example 3.6. [ 1 and internal moves ] Here we prove that vcpl
clt 6✓ @⇠

tst
clt even for finite clients

(without recursion). Recall the client r of Example 2.7; its LTS is depicted in column (a) of

8
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Figure 6.
On the one hand, r vcpl

clt 0. This is true because for every p, r || p ⌧�! 0 || p, thus r a p

and Lemma 2.3 imply that 0 a p. On the other hand r 6@⇠
tst
clt 0, because 0 must r (as r

X�!),
however 0 6must 0.

Example 3.7. [ 1 and interactions ] Here we show that @⇠
tst
clt 6✓ vcpl

clt. Let r1 = ↵. 1 and
r2 = 1 +�.�. 1; their LTS is in column (b) of Figure 6.

Regardless of the server p we have p must r2 because r2
X�!. It follows trivially that

r1 @⇠
tst
clt r2. However, r1 6vcpl

clt r2; a typical server which distinguishes the two clients is p =

↵. 0 +�. 0. The proof that r1 a p amounts in checking that the relation { (r1, p), (1, 0) } is
a co-inductive compliance. The fact that r2 6a p is due to Lemma 2.3 and the computation

r2 || p ⌧�! �. 1 || 0
⌧

6�!.

A further restriction of CCSweb provides a language in which this di↵erence in the treatment
of X does not materialise. Let SBf be the language given by the following grammar,

p, q, r ::= 1 |
P

i2I

↵
i

.p
i

|
P

i2I

⌧.↵
i

.p
i

where ↵ 2 Act , I is a finite non-empty set, and the actions ↵
i

s are pairwise distinct. This
language gives rise to the LTS h SBf , �!, Act

⌧ X i in the usual manner. The language SBf

is essentially the finite part of the session behaviours of [Bd10], which we can think of as the
first-order part of the session types used in [GH05]. Here the language is finite so as to avoid
duplicating Example 3.5.

Theorem 3.8. In SBf ,

(1) p1 @⇠
tst
svr p2 if and only if p1 vcpl

svr p2

(2) r1 @⇠
tst
clt r2 if and only if r1 vcpl

clt r2

Outline. Part (1) follows from Corollary 6.4.8 of [Ber13]. Part (2) follows from Corollary 6.5.15,
Proposition 6.2.12, and the fact that for every r 2 SBf there exists a p such that p must r.
The proof of the latter fact is by structural induction on r.

4 Conclusion

In this paper we have shown the di↵erences between the sub-contract preorders [CGP09, Pad10]
and the testing preorders [DH84, Ber13]. Another study of sub-contract relations is [BMPR10].
There di↵erent compliances are used; two similar to a, and a fair one.

The sub-contract relation was first proposed in [CCLP06], and further developed in [LP07,
CGP09, Pad10]. For instance, the latter papers show how to adapt the behaviour of contracts
by applying filters, or orchestrators; thereby defining weak sub-contracts, whose elements can
be forced (by filtering) into the sub-contract. [CGP09] also shows an encoding of WS-BPEL
activities into the language of contracts. A result similar to Theorem 3.4 was already established
in [LP07], and it has been referenced by [Pad09],[Pad10, Proposition 2.7], and [CGP09, pag. 13].
The sub-contract for clients was proposed first in [Bd10], and it is instrumental in modelling
the subtyping for first-order session types [GH05]. The preorder that models the subtyping
coincides with a combination of the client sub-contract and a server one. This model was
proven sound in [Bd10] and fully-abstract in [BH12].
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Abstract

Choreographies allow designers to specify the protocols followed by participants of a
distributed interaction. Adapting the behavior of a participant, either because of external
requests or as a self-update to better suit a changing environment, requires to update
in a coordinated way (possibly) all the participants interacting with him. We propose a
language able to describe a choreography together with its adaptation strategies, and we
discuss the main issues that have to be solved to enable adaptation on a participant code
dealing with many interleaved protocols.

1 Introduction

Modern complex distributed software systems face the great challenge of adapting to varying
contextual conditions, user requirements or execution environments. Service-oriented Com-
puting (SOC), and service-oriented architectures in general, have been designed to support a
specific form of adaptation: services can be dynamically discovered and properly combined in
order to achieve an overall service composition that satisfies some specific desiderata that could
be known only at service composition time. Rather sophisticated theories have been defined
for checking and guaranteeing the correctness of this service assemblies (see, e.g., the rich liter-
ature on choreography/orchestration languages [2, 13], behavioral contracts [7, 6], and session
types [4, 11, 5]). In this paper, we consider a more fine-grained form of adaptation that can
occur when the services have been already combined, but have not yet completed their task.
This form of adaptation can occur, for instance, when the desiderata dynamically change or
when some unexpected external event occurs. In these cases, it could be necessary to dynam-
ically modify the choreography and behavior of the combined services, and this modification
must occur in a consistent and coordinated manner in order to avoid breaking the correctness
of the overall service composition.

More precisely, we initiate the investigation of new models and theories for service composi-
tion that properly take into account this form of adaptation. First of all, we extend a previous
language for the description of service choreographies [2] with two operators: one allows for the
specification of adaptable scopes that can be dynamically modified, while the second may dy-
namically update code in one of such scopes. This language is designed for the description, from
a global perspective, of dynamically adaptable multi-party interaction protocols. As a second
step in the development of our theory, we define a service behavioral contract language for the
description, from a local perspective, of the input-output communications. In order to support
adaptation, also in this case we enhance a previous service contract language [2] with two new
operators for adaptable scope declaration and code update, respectively. The most complex

⇤This work was partially supported by COST Action IC1201: Behavioural Types for Reliable Large-Scale
Software Systems (BETTY).
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aspect to be taken into account is the fact that, at the local level, peers should synchronize
their local adaptations in order to guarantee a consistent adaptation of their behavior.

As mentioned above, these two languages are expected to be used to describe multi-party
protocols from a global and a local perspective, respectively. The relationship between the
two languages is formalized in terms of a projection function from a global specification to a
corresponding local one. The complete theory that we plan to develop will also consider a
concrete language for programming services; such a language will include update mechanisms
like those provided by, for instance, the Jorba service orchestration language [12]. The ultimate
aim of our research is to define appropriate behavioral typing techniques able to check whether
the concretely programmed services correctly implement the specified multi-party adaptable
protocols. This will be achieved by considering the global specification of the protocol, by
projecting such specification on the considered peer, and then by checking whether the actual
service correctly implements the projected behavior. In order to clarify our objective, we discuss
an example inspired by a health-care scenario [15]. Two adaptable protocols are described by
using the proposed choreography languages: the first protocol describes the interaction between
the doctor and the laboratory agents, while the second involves a doctor, a nurse, and a patient.
In case of emergency, the doctor may speed up the used protocols by interrupting running
tests and avoiding the possibility that the nurse refuses to use a medicine she does not trust
—this possibility is normally allowed by the protocol. Then, using a ⇡-calculus-like language,
we present the actual behavior of some of the involved peers and discuss the kinds of problems
that we will have to address in order to define appropriate behavioral type checking techniques.

Disclaimer. This paper presents the main ideas of an ongoing thread of research: many
details are still preliminary.

2 Choreography and Endpoint Languages

2.1 Choreography Language

2.1.1 Syntax

We describe here the syntax of our choreography language.

C ::= a
r1!r2 (action) | C ; C (sequence)

| C | C (parallel) | C + C (choice)
| C⇤ (star) | 1 (one)
| 0 (nil)

| X : T [C] (scope) | X
r

{C} (update)

The basic element of a choreography C is an interaction a
r1!r2 , with the intended meaning that

participant r1 sends a message to participant r2 over channel a. Two choreographies C1 and C2

can be composed in sequence (C1 ; C2), in parallel (C1 | C2), and using nondeterministic choice
(C1 + C2). Also, a choreography may be iterated zero or more times using the Kleene star ⇤.
The empty choreography, which just successfully terminates, is denoted by 1. The deadlocked
choreography 0 is needed for the definition of the semantics: we assume it is never used when
writing a choreography.

The two last operators deal with adaptation. Adaptation is specified by defining a scope
that delimits a choreography that at runtime may be replaced by a new choreography, coming
from either inside or outside the system. Adaptations coming from outside may be decided

2
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by the user through some adaptation interface, by some manager module, or by the environ-
ment. In contrast, adaptations coming from inside represent self-updates, decided by a part of
the system towards itself or towards another part of the system, usually as a result of some
interaction producing unexpected values. Adaptations from outside and from inside are indeed
quite similar, e.g. an update decided by a manager module may be from inside if the manager
behavior is part of the choreography, from outside if it is not. Construct X : T [C] defines a
scope named X currently executing choreography C — the name is needed to designate it as a
target for a particular adaptation. Type T is the set of roles (possibly) occurring in the scope.
This is needed since a given update can be applied to a scope only if it specifies how all the
involved roles are adapted. Operator X

r

{C} defines internal updates, i.e., updates o↵ered by a
participant of the choreography. Here r is the name of the participant o↵ering the update, X
the name of the target scope, and C the new choreography.

Not all choreography terms generated by the syntax above are actually choreographies. We
call choreographies only the choreography terms satisfying the conditions below. They rely on
the set of roles roles(C) inside a choreography C. This includes roles of actions, i.e., r1, r2
in a

r1!r2 , types of scopes, i.e., T in X : T [C 0], and roles originating update prefixes, i.e., r
in X

r

{C 00
}, but not roles in C 00. Roles in C 00 are not considered since the update can be an

external update towards another choreography.

Definition 1. C is a choreography if:

1. names of scopes are unique: we call type(X) the type T included in the unique occurrence
X : T [C 0] of scope X;

2. C is well-typed, i.e., for every scope X : T [C 0] occurring in C we have roles(C 0) ✓ T and
every update prefix X

r

{C 00
} occurring in C is such that roles(C 00) ✓ T .

2.1.2 Semantics

As in the syntax, the most interesting part of the semantics concerns update constructs.

Definition 2. The semantics of choreographies is the smallest labeled transition system closed
under the rules in Table 1 where T is a set of roles and C[C 0/X] replaces all scopes with name
X : T occurring in C not inside update prefixes with X : T [C 0].

Rules in the first four rows of the table are standard (cf. [2]). Rule (Comm) executes an
interaction, making it visible in the label. While rule (Seq) allows the first component of a
sequential composition to compute, rule (SeqTick) allows it to terminate, starting the execution
of the second component. Rule (Par) allows parallel components to interleave their executions.
Rule (ParTick) allows parallel components to synchronize their termination. Rule (Cho) selects
a branch in a nondeterministic choice. Rule (Star) unfolds the Kleene star. Note that the
unfolding may break uniqueness of scopes with a given name. We will come back to this point
later on. Rules (StarTick) and (One) allow termination of a Kleene star and of the empty
choreography, respectively.

The other rules in the table deal with adaptation. Rule (CommUpd) makes an internal adap-
tation available, moving the information to the label. Adaptations propagate through sequence,
parallel composition, and Kleene star using rules (SeqUpd), (ParUpd), and (StarUpd), respec-
tively. Note that, while propagating, the update is applied to the continuation of the sequential
composition, to parallel terms and to the body of Kleene star. Notably, the update is applied
to both enabled and non enabled occurrences of the desired scope. Rule (ScopeUpd) allows a
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(One)
1

p
�!0

(Comm)
ar1!r2

ar1!r2�! 1
(Seq) C1

ar1!r2�! C

0
1

C1; C2

ar1!r2�! C

0
1;C2

(SeqTick) C1

p
�!C

0
1 C2

↵�!C

0
2

C1; C2
↵�!C

0
2

(Par) C1

ar1!r2�! C

0
1

C1 | C2

ar1!r2�! C

0
1 | C2

(ParTick) C1

p
�!C

0
1 C2

p
�!C

0
2

C1 | C2

p
�!C

0
1 | C

0
2

(Cho) C1
↵�!C

0
1

C1+C2
↵�!C

0
1

(Star) C

ar1!r2�! C

0

C

⇤
ar1!r2�! C

0; C

⇤
(StarTick)

C

⇤
p

�!0

(CommUpd)
Xr{C}Xr{C}�! 1

(SeqUpd) C1
Xr{C}�! C

0
1

C1; C2
Xr{C}�! C

0
1;(C2[C/X])

(ParUpd) C1
Xr{C}�! C

0
1

C1 | C2
Xr{C}�! C

0
1 | (C2[C/X])

(StarUpd) C1
Xr{C}�! C

0
1

C

⇤
1

Xr{C}�! C

0
1; (C1[C/X])⇤

(ScopeUpd) C1
Xr{C}�! C

0
1

X:T [C1]
Xr{C}�! X:T [C]

(Scope) C1
↵�!C

0
1 ↵ 6=Xr{C} for any r,C

X:T [C1]
↵�!X:T [C0

1]

Table 1: Semantics of choreographies

scope to update itself (provided that the names coincide), while propagating the update to the
rest of the choreography. Rule (Scope) allows a scope to compute.

We can now define traces. We consider both internal transitions, and open transitions
corresponding to updates from a parallel choreography.

Definition 3. Traces of a choreography C are (possibly infinite) sequences of states and tran-
sitions arising from the semantics of C. Open traces of a choreography C are traces in the
set OTr(C) defined as follows. Let Tr be the (union of) the set of traces of C 0

|C for any
choreography C 0 such that roles(C) and roles(C 0) are disjoint and C 0

|C is a choreography.
OTr(C) = {w(tr) | tr 2 Tr}, where w(tr) is obtained from tr by: (i) removing all actions con-
cerning roles not in roles(C) and all X

r

{C 00
} update transitions, for any C 00, arising from roles

r not in roles(C) and such that the scope named X does not occur inside C; and (ii) relabeling
X

r

{C 00
} update transitions, for any C 00, arising from roles r not in roles(C) and such that the

scope named X occurs inside C, into X{C 00
} (i.e. labels representing updates performed by the

environment).

As we have said, in a choreography we assume scope names to be unique. However, unique-
ness is not preserved by transitions. Nevertheless a slightly weaker property is indeed preserved,
and it simplifies the implementation of the adaptation mechanisms at the level of endpoints.

Proposition 1. Let C be a choreography and let C 0 be a choreography term reachable from C
via zero or more transitions (possibly open). For every X there exists at most an occurrence of
a scope named X which is enabled (i.e., which can compute).

2.1.3 An Example

Below we give an example of an adaptable choreography to illustrate the features introduced
above. The example is based on a health-care workflow inspired by field study [15] carried out
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in previous work. The field study was also considered as inspiration for recent work on session
types for health-care processes [10] and adaptable declarative case management processes [16],
but the combination of session types and adaptability has not been treated previously.

In the considered scenario, Doctors, Nurses and Patients employ a distributed, electronic
health-care record system where each actor (including the patient) uses a tablet pc/smartphone
to coordinate the treatment. Below, iteration C+ stands for C;C⇤.

X : {D,N}[
�
(prescribe

D!N

)+; (sign
D!N

+X
D

{sign
D!N

};up
D!N

); trust
N!D

�+
];

medicine
N!P

The doctor first records one or more prescriptions, which are sent to the nurse’s tablet
(prescribe

D!N

)+. When receiving a signature, sign
D!N

, the nurse informs the doctor if
the prescription is trusted. If not trusted then the doctor must prescribe a new medicine. If
trusted, the nurse proceeds and gives the medicine to the patient, which is recorded at the
patient’s smartphone, medicine

N!P

. However, instead of signing and waiting for the nurse to
trust the medicine, in emergency cases the doctor may update the protocol so that the possi-
bility of not trusting the prescription is removed: the nurse would have to give the medicine
to the patient right after receiving the signature. In the example, this is done by a self-update
(X

D

{sign
D!N

}) of the running scope. In other scenarios, this could have been done by an
entity not represented in the choreography, such as the hospital director, thus resulting in
an external update. The doctor notifies the protocol update to the nurse using the up

D!N

interaction.
Now consider the further complication that the doctor may run a test protocol with a

laboratory, after prescribing a medicine and before signing:

X 0
{D,L} : [orderTest

D!L

; (results
L!D

+ X̃ 0
D

{1})]

We allow the test protocol also to be adaptable, since the doctor may decide that there is an
emergency while waiting for the results, and thus also having to interrupt the test protocol. If
the two protocols are performed in interleaving by the same code, then the updates of the two
protocols should be coordinated. We illustrate this in § 3 below.

2.2 Endpoint Language

Since choreographies are at the very high level of abstraction, defining a description of the same
system nearer to an actual implementation is of interest. In particular, for each participant in
a choreography (also called endpoint) we want to describe the actions it has to take in order to
follow the choreography. The syntax of endpoint processes is as follows:

P ::= a
r

(output) | a
r

(input)
| P ; P (sequence) | P | P (parallel)
| P + P (choice) | P ⇤ (star)
| 1 (one) | 0 (zero)

| X[P ]F (scope) | X(r1,...,rn){P1, . . . , Pn

} (update)

where F is either A, denoting an active (running) scope, or ", denoting a scope still to be
started (" is omitted in the following).

As for choreographies, endpoint processes contain some standard operators and some oper-
ators dealing with adaptation. Communication is performed by output a

r

, denoting an output

5
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on channel a towards participant r, and the corresponding input a
r

, waiting for a message from
participant r on channel a. Two endpoint processes P1 and P2 can be composed in sequence
(P1 ; P2), in parallel (P1 | P2), and using nondeterministic choice (P1+P2). Endpoint processes
can be iterated using a Kleene star ⇤. The empty endpoint process is denoted by 1 and the
deadlocked endpoint process (needed only for the definition of the semantics) is denoted by 0.

Adaptation is applied to scopes. X[P ]F denotes a scope named X executing process P . F
is a flag distinguishing scopes whose execution has already begun (A) from scopes which have
not started yet ("). The update operator X(r1,...,rn){P1, . . . , Pn

} provides an update for scope
named X, involving roles r1, . . . , rn. The new process for role r

i

is P
i

.
Endpoints are of the form [[P ]]

r

, where r is the name of the endpoint and P its process.
Systems are composed by parallel endpoints:

S ::= [[P ]]
r

(endpoint) | S||S (parallel system)

As for choreographies, not all systems are endpoint specifications. Given a function type(X)
associating a set of roles to each scope name X, endpoint specifications are defined as follows.

Definition 4. S is an endpoint specification if: (i) no active scopes are present, (ii) endpoint
names are unique, (iii) all roles r occurring in terms of the form a

r

, a
r

, or such that r 2 type(X)
for some scope X are endpoints of S (iv) a scope with name X con occur (outside updates) only
in endpoints r 2 type(X), (v) every update has the form X

type(X){P1, . . . , Pn

} (vi) outputs a
r

and inputs a
r

included in X
type(X){P1, . . . , Pn

} are such that r 2 type(X).

For space reasons, we do not define a formal semantics for endpoints: we just point out that
it should include all the labels of the semantics of choreographies, plus some additional labels
corresponding to partial activities, such as an input. We also highlight the fact that, for all
scopes with the same name in a system, the scope start transition (transforming a scope from
inactive to active) and the scope end transition (removing it) are synchronized: this is needed
to ensure that scopes which correspond to the same choreography scope evolve together.

2.3 Projection

Since choreographies provide system descriptions at the high level of abstraction and endpoint
specifications provide more low level descriptions, a main issue is to derive from a given chore-
ography an endpoint specification executing it. This is done using the notion of projection.

Definition 5 (Projection). The projection of a choreography C on the role r of an endpoint
specification, denoted by C �

r

, is defined by the clauses below

• a
r1!r2 �r= a

r2 , if r = r1;
a
r1!r2 �r= a

r1 if r = r2;
a
r1!r2 �r= 1, otherwise.

• X
r

0
{C}�

r

= X(r1,...,rn){C �
r1 , . . . , C �

rn}, where {r1, . . . , rn} = type(X), if r = r0;
X

r

0
{C}�

r

= 1, otherwise.

• X : T [C]�
r

= X[C �
r

] if r 2 type(X);
X : T [C]�

r

= 1, otherwise.

and is an homomorphism on the other operators. The endpoint specification resulting from a
choreography C is obtained by composing in parallel roles [[C �

r

]]
r

, where r 2 roles(C).

6
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One can see that the term S obtained by projecting a choreography is an endpoint specifi-
cation. Ideally, traces of the projected system should be included in the traces of the original
choreography. Actually, this occurs only for choreographies satisfying suitable connectedness
conditions. The conditions needed for our choreographies, and that we do not present here,
extend the ones in [13]. This is not an actual restriction, since choreographies that do not
respect the conditions can be transformed into choreographies that respect them [14].

Theorem 1. Traces of projection of connected choreographies are included into traces of the
original choreography.

To be precise, the definition of trace inclusion in the theorem maps labels X
r

{C} of transi-
tions of the choreography into labels [X(r1,...,rn){P1, . . . , Pn

}]
r

of the transitions of the endpoint
specification obtained by projection, where type(X) = {r1, . . . , rn} and P1 = C �

r1 , . . . , Pn

=
C �

rn are obtained, themselves, by projection from C. The proof exploits uniqueness of scope
names.

As an example, the endpoint projection obtained from the prescribe choreography intro-
duced in §2.1 is [P

N

]
N

||[P
D

]
D

||[P
P

]
P

where

P
N

= X[((prescribe
D

)+ ; (sign
D

+ up
D

); trust
D

)+] ; medicine
P

P
D

= X[((prescribe
N

)+ ; (sign
N

+X
D,N

{sign
N

, sign
D

} ; up
N

); trust
N

)+]
P
P

= medicine
N

For presentation purposes, we dropped 1 processes generated by the projection when not needed.

3 Typing a Concrete Language

As demonstrated by our examples, choreography and endpoint terms provide a useful language
for expressing protocols with adaptation. In this section, we investigate the idea of using such
protocols as specifications for a programming language with adaptation. We plan to follow
the approach taken in multiparty session types [11], where choreographies (and endpoints)
are interpreted as behavioral types for typing sessions in a language modeled as a variant of
the ⇡-calculus. In the sequel, we investigate the core points of such a language by giving an
implementation that uses the protocols specified in the examples of the previous sections. In
particular, we discuss what are the relevant aspects for developing a type system for such a
language, whose types are the choreographies introduced in § 2.1.

In both protocols (the prescribe protocol and the test protocol), the doctor plays a key role
since (s)he initiates the workflow with prescriptions, decides when tests have to be requested,
and decides when the protocols have to be interrupted due to an emergency. A possible imple-
mentation of the doctor could be given by the following program:

1. P
D

= pr(k); X[ repeat {repeat {

2. k : prescribe
N

he
pr

i; test(k0);

3. X 0[k0 : orderTest
L

he
o

i;
4. (k0 : results

L

(x) +X 0
(D,L){X(D,N){k : sign

N

he
s

i, k : sign
D

(z)},1})]

5. } until ok(x);

6. (k : sign
N

he
s

i+X(D,N){k : sign
N

he
s

i, k : sign
D

(z)} ; k : up
N

hi);

7. k : trust
N

(t)} until trusted(t) ]

7
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In the code there are two kinds of communication operations, namely protocol initiation oper-
ations, where a new protocol (or session) is initiated, and in-session operations where protocol
internal operations are implemented. The communication pr(k) is for initiating a protocol called
pr and its semantics is to create a fresh protocol identifier k that corresponds to a particular
instance of protocol pr. In-session communications are standard.

The novelty in the process above is in the scope X[. . .] and update X
...

{. . .}, which state
respectively that the program can be adapted at any time in that particular point, and that
an adaptation is available. Interestingly enough, the way the program P

D

uses the protocols
needs care. If the doctor wants to adapt to emergency while waiting for tests, both the test
protocol and the prescription protocol need to be adapted as shown in line 4. If the doctor
adapts to emergency after having received tests that are ok, then only the prescription protocol
needs to be adapted. One can see that session pr can be typed using the prescribe endpoint
specification and session test using the test endpoint specification. The update of X in line 4
does not appear in the protocol test since it acts as an external update for a di↵erent protocol.

4 Conclusion

Adaptation is a pressing issue in the design of service-oriented systems, which are typically
open and execute in highly dynamic environments. There is a rather delicate tension between
adaptation and the correctness requirements defined at service composition time: we would like
to adapt the system’s behavior whenever necessary/possible, but we would also like adaptation
actions to preserve overall correctness. Here we have reported ongoing work on adaptation
mechanisms for service-oriented systems specified in terms of choreographies. By enhancing an
existing language for choreographies with constructs defining adaptation scopes and dynamic
code update, we obtained a simple, global model for distributed, adaptable systems. We also
defined an endpoint language for local descriptions, and a projection mechanism for obtaining
(low-level) endpoint specifications from (high-level) choreographies.

We now briefly comment on related works. The work in [8] is closely related, for it develops
a framework for rule-based adaptation in a choreographic setting. Both choreographies and
endpoints are defined; their relation is formally defined via projection. The main di↵erence
w.r.t. the work described here is our choice of expressing adaptation in terms of scopes and
code update constructs, rather than using rules. Also, we consider choreographies as types and
we allow multiple protocols to interleave inside code. These problems are not considered in [8].
Our approach bears some similarities with works on multiparty sessions [11, 3]. Our focus so
far has been on formally relating global and local descriptions of choreographies via projection
and trace inclusion; investigating correctness properties (e.g., communication safety) via typing
in our setting is part of ongoing work. We also note that exceptions and runtime adaptation are
similar but conceptually di↵erent phenomena: while the former are typically related to foreseen
unexpected behaviors in (low-level) programs, adaptation appears as a more general issue, for it
should account for (unforeseen) interactions between the system and its (varying) environment.
We have borrowed inspiration from [16], in which adaptive case management is investigated by
relying on Dynamic Condition Response (DCR) Graphs, a declarative process model. Finally,
the adaptation constructs we have considered for choreographies and endpoints draw inspiration
from the adaptable processes defined in [1]. The application of adaptable processes in models
of structured communications (focusing on the case of binary sessions) has been studied in [9].

An immediate topic for future work is the full formalization of the concrete language and
its typing disciplines. Other avenues for future research include the investigation of refinement
theories with a testing-like approach, enabled by having both systems and adaptation strategies
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modeled in the same language, and the development of prototype implementations.
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Abstract
We present SePi, a concurrent programming language based on the monadic pi-calculus,

where interaction is governed by linearly refined session types. On top of the core calculus
and type system, and in order to facilitate programming, we introduce a number of abbre-
viations and derived constructs. This paper provides a brief introduction to the language.

1 Introduction

Session types [9] are by now a well-established methodology for typed, message-passing con-
current computations. By assigning session types to communication channels, and by checking
programs against session type systems, a number of program properties can be established,
including the absence of races in channel manipulation operations, and the guarantee that
channels are used as prescribed by their types. As a simple example, a type of the form !string

.! integer.end describes a channel end on which processes may first output a string, then output
an integer value, after which the channel provides no further interaction. The process holding
the other end of the channel must first input a string, then an integer, as described by the
complementary (or dual) type, ?string.?integer.end. If the string denotes a credit card number
and the integer value the amount to be charged to the credit card, then we may further re-

fine the type by requiring that the capability to charge the credit card has been offered, as in
?ccard:string.?amount:{x:integer|charge(ccard,x)}.end. The most common approach to handle refinement
types is classical first-order logic which is certainly sufficient for many purposes but cannot
treat formulae as resources. In particular it cannot guarantee that the credit card is charged
with the given amount once only.

SePi is an exercise in the design and implementation of a concurrent programming language
solely based on the message passing mechanism of the pi calculus [13], where process interaction
is governed by (linearly refined) session types. SePi allows to explore the practical applicability
of recent work on session-based type systems [1, 22], as well as to provide a tool where new
program idioms and type developments may be tested and eventually incorporated. In this
respect, SePi shares its goal with Pict [16] and TyCO [19].

The SePi core language is the monadic synchronous pi-calculus [13] with replication rather
than recursion [12], labelled choice [9], and with assume/assert primitives [1]. On top of this
core we provide a few derived constructs aiming at facilitating code development. The current
version of the language includes support for mutually recursive process definitions and type
declarations, and for polyadic message passing. The type system of SePi is that of linearly
refined session types [1], the algorithmic rules for the refinement-free type language are adapted
from [22], and those for refinements are described in this paper.

SePi is currently implemented as an Eclipse plug-in, allowing code development (and in-
terpretation) with the usual advantages of an IDE, such as syntax highlighting, syntactic and
semantic validation, code completion and refactoring. There is also a command line alter-
native, in the form of a jar file. Installation details and examples can be found at http:
//gloss.di.fc.ul.pt/sepi. The interpreter is based on Turner’s abstract machine [18].
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The rest of this paper is structured as follows. The next section reviews related work.
Section 3 briefly introduces SePi, based on a running example. Section 4 presents a few technical
aspects of the language. Section 5 concludes the paper, pointing possible future language
extensions.

2 Related work

This section briefly reviews programming language implementations either based on the pi-
calculus or that incorporate session types.

There are a few programming languages based on the pi-calculus, but neither incorporates
session types. Pict [16] is a language in the ML-tradition, featuring labelled records, higher-
order polymorphism, recursive types and subtyping. Similarly to the SePi approach, Pict
builds a on a tiny core (a variant of the asynchronous pi-calculus [3, 8]) by adding a few
derived constructs. TyCO [20] is another language based on a variant of the asynchronous
pi-calculus, featuring labelled messages (atomic select/output) and labelled receptors (atomic
branch/input) [19], predicative polymorphism and full type inference. In turn, SePi is based
on the monadic synchronous pi-calculus with labelled choice [9], explicitly typed and equipped
with refined session types [1]. Polymorphism and subtyping are absent from the current version
of SePi.

On the other hand, there are some programming languages that feature session types or
variants of these, but are based on paradigms other than the pi-calculus. For functional lan-
guages, we find those that take advantage of the rich system of Haskell, monads in particular,
and those based on ML. Neubauer and Thiemann implemented session types on Haskell using
explicit continuation passing [14]. Sackman and Eisenbach improve this work, augmenting the
expressive power of the language [17]. Given that session types are encoded, the Haskell code for
session-based programs can be daunting. SePi works directly with session types, thus hopefully
leading to readable programs. Bhargavan et al. [2] present a ML-like language for specifying
multiparty sessions [10] for cryptographic protocols, with integrity and secrecy support.

For object-oriented languages, Fähndrich et al. developed Sing# [6], a variant of C# that
supports message-based communication via shared-memory where session types are used to
describe communication patterns. Hu et al. introduced SJ [11], an extension of Java with
specific syntax for session types and structured communication operations. Based on a work
by Gay et al. [7], Bica [4] is an extension of the Java 5 compiler that checks conventional Java
source code against session type specifications for classes. Type specifications, included in Java
annotations, describe the order by which methods in classes should be called, as well as the
tests clients must perform on results from method calls. Following a similar approach, but using
session types with lin/un annotations [22], Mool [5] is a minimal object based language.

Finally, for imperative languages, Ng et al. developed Session C [15], a multiparty session-
based programming environment for the C programming language and its runtime libraries [15].
Neither of the languages discussed above feature any form of refinement types, linear or classical.

3 A gentle introduction to the SePi language

This section introduces the SePi language, its syntax, type system and operational semantics.
The presentation is intentionally informal. Technical details can be found on the theoretical
work the language builds upon, namely [22] for the base language and [1] for refinements.

2
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Our running example is based on the online petition service [21] and on the online store [1].
An Online Donation Server manages donation campaigns. Clients seeking to start a donation
campaign for a given cause begin by setting up a session with the server. The session is
conducted on a channel on which the campaign related data is provided. The same channel
may then be disseminated and used by different benefactors for the purpose of collecting the
actual donations. Parties donating for some cause do so by providing a credit card number and
the amount to be charged to the card. The type system makes sure that the exact amount
specified by the donor is charged, and that the card is charged exactly once.

SePi is about message passing on bi-directional synchronous channels. Each channel is
described by two end points. At each point in a program, processes may write on one end or
else read from the other end. Channels are governed by types that describe the sequence of
messages a channel may carry. We start with input/output types. A type of the form ! integer.end

describes a channel end where processes may write an integer value, after which the channel
offers no further interaction. Similarly, a type ?integer.end describes a channel end from which
processes may read an integer value, after which the channel offers no further interaction.

To create a channel of the above type one writes
new w r : ! integer . end

Such a declaration introduces two identifiers: w of type ! integer.end, and r of type ?integer.end.
A semantically equivalent declaration is new r w: ?integer.end. To write the integer value 2013 on
the newly created channel, one writes w!2013. To read from the channel and store the value on
program variable x one writes r?x. For the purpose of printing integer values on the console,
SePi provides a primitive channel printInteger , and similarly for the remaining base types: boolean

and string. Code such as channel writing or reading can be composed by prefixing via the dot
notation. To read an integer value and then to print it, one writes r?x. printInteger !x. To run two
processes in parallel one uses the vertical bar notation. Putting everything together one obtains
our first complete program, composed of a channel declaration and two processes running in
parallel while sharing the channel.
new w r : ! integer . end

w!2013 | r ?x . p r i n t I n t e g e r ! x

Running such a program would produce 2013 on the console, after which the program terminates.
We now move on to choice types. The donation server allows clients to setup donation

campaigns piece-wise. The required information (title, description, due date, etc.) may be
introduced in any order, possibly more than once each. Once satisfied, the client presses the
“commit” button. A channel end that allows a writer to select either the setDate option or the
commit option is written as
+{ setDate : end , commit : end }

Conversely, a channel end that provides a menu composed of the two same choices can be written
as &{setDate:end, commit:end}. To select the setDate option on a + channel end we write w select setDate.
Conversely to branch on a & channel end one may write case r of setDate ! ... commit ! ... . Putting
everything together one obtains
new w r : +{ setDate : end , commit : end }
w select setDate |
case r of setDate ! p r i n t S t r i n g ! " Got setDate "

commit ! p r i n t S t r i n g ! " Got commit "

Types are composed by prefixing, using the dot notation: ! integer.end means write an integer
and then go on as end. We can compose the output and the select type we have seen above, so
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that the output of an integer is required after the setDate choice is taken. We leave to the reader
composing the two programs above so that it interacts correctly on a channel whose client end
is of type +{setDate:!integer.end, commit:end}.

The problem with this type is that it does not reflect the idea of “uploading the campaign
information until satisfied, and then press the commit button”. All a client can do is either set
the date or else commit. What we would like to say is that after the setDate choice is taken the
whole menu is again available. For this we require a recursive type of the form:

rec a . + { setDate : ! integer . a , commit : end }

A client w may now upload the date two times before committing:

w select setDate . w!2012. w select setDate . w!2013. w select commit

The donation server, governed by type rec a.&{setDate:?integer.a, commit:end}, needs to continuously
offer the setDate and commit options. Such behaviour cannot be achieved with a finite composition
of the primitives we have seen so far. We need some form unbounded behaviour, which SePi
provides in the form a def process. The Setup process below is the part of the donation server
responsible for downloading the campaign information. To simplify the example, only the due
date is considered and even this information, x, is immediately discarded. We will see that Setup

is a form of input channel that survives interaction, thus justifying its invocation with the exact
same syntax as message sending: Setup!r.

def Setup r : rec a .&{ setDate :? integer . a , commit : end } =
case r of setDate ! r ?x . Setup ! r

commit ! . . .

Process definition, def, is the second form of declaration in SePi (the first is new). There is
yet a third kind of declaration (rather, an abbreviation): type. Introducing the name Donation

for the above recursive type, one may write

type Donation = +{ setDate : ! integer . Donation , commit : end }

A sequence of declarations followed by a process is a SePi process. Declarations are mutually
recursive. One may write

def X z : T = z ! true . Y ! z
new r w: T
type U = ?boolean . T
def Y z :U = z?b . pr in tBoo lean ! b . X ! z
type T = ! boolean .U
X! r | Y !w

where the system of equations {T = !boolean.U, U =?boolean.T} is solved in order to obtain two
recursive types, one for T, the other for U.

There is a further handy abbreviation. Session types tend to be quite long; if a channel’s end
point is of type rec a.+{setDate:!integer.a, commit:end}, the other end is of type rec a.&{setDate:?integer.

a, commit:end}. In this case we say that one type is dual of the other, a notion central to session
types. Given that we abbreviated the first type to Donation, the second can be abbreviated to
dualof Donation. Putting every together we obtain the following process.

type Donation = +{ setDate : ! integer . Donation , commit : . . . }
def Setup r : dualof Donation =

case r of setDate ! r ?x . Setup ! r
commit ! . . .

new w r : Donation / / the donat ion channel

4
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w select setDate . w!2012. w select setDate . w!2013. w select commit / / a c l i e n t
Setup ! r / / a server

Continuing with the example. After setup comes the promotion phase. Here the donation
channel is used to collect donations from benefactors. Benefactors donate to a cause by provid-
ing a credit card number and the amount to be charged to the card. So we rewrite the donation
type to:

type Donation = +{ setDate : ! integer . Donation , commit : Promotion }
type Credi tCard = str ing

How does type Promotion look like? If we make it !CreditCard.!integer.end, then the server accepts
a single donation. Clearly undesirable. If we choose rec a.!CreditCard.!integer.a, then we accept an
infinite number of donations. And this is undesirable for two reasons: regrettably, no campaign
will ever receive an infinite number of donations, and all these donations would have to be
issued from the same thread (a process without parallel composition), one after the other. The
first problem can be easily circumvented with a rec-choice combination, as in type Donation. The
root of the second problem lies in the fact that types are linear by default, meaning that each
channel end can be known, at any given point in the program, by exactly one thread. And this
goes against the idea of disseminating the channel in such a way that any party may individually
donate, just by knowing the channel. What we need is to able to classify the channel as shared

or unrestricted. We do so by adding to the type a un qualifier.1
The type system keeps track of how many threads know a channel end: if lin then exactly

one, if un then zero or more. Linear channels are exempt from races: we do not want two
threads competing to set up a donation campaign. Shared channels are prone to races: we do
want many (as many as possible) simultaneous benefactors carrying out their donations. Care
must however be exerted when using shared channels. Imagine that type Promotion looks like
rec a.un!CreditCard.un!integer.a, and that we have two donors trying to interact with the server,

w! " 2345 " .w!500 | w! " 1324 " .w!2000 | r ?x . r ?y . . .

Further imagine that the first donor wins the race, and exchanges message "2345". We are
left with a process of the form w!500 | w!"1324".w!2000 | r?y ... , where the value transmitted on the
next message exchange can be an integer value (500) or a string ("1324"), a situation clearly
undesirable. To circumvent this situation we pass the two values in a single message, by
making w of type rec a.un!(CreditCard,integer).a. This pattern, rec a.un!T.a, is so common that we
provide an abbreviation for it: ⇤!T, and similarly for input. So here is the new type for Promotion.

type Promotion = ⇤ ! ( CreditCard , integer )

Now a client can donate twice (in parallel); it may also pass the channel to all its acquain-
tances so that they may donate and/or further disseminate the channel. Notice the parallel
composition operator enclosed in braces when used within a process.

w select setDate . w!2014. w select commit . {
w ! ( " 2345 " , 500) | w ! ( " 1324 " , 2000) | acquaintance !w

}

The ability to define types that “start” as linear (e.g. Donation) and end up as unrestricted
(Promotion) was introduced in [22].

So far our example is composed of one server and one client. What if we require more than
one client (the plausible scenario for an online system) or more than one server (perhaps for

1
The lin qualifier is optional. For example, ! integer.end abbreviates lin ! integer.end.

5

37



A concurrent programming language with refined session types Franco and Vasconcelos

load balancing)? If we add a second client, in parallel with the above code for the server and the
client, the program does not compile anymore: there is a race between the two clients for the
linear channel end w. On the one hand we have seen that the donation channel must be linear;
on the other hand we want a donation server reading on a well-known, public, un, channel. We
start by installing the server on a channel end of type ⇤?Donation, and disseminate the client end
of the channel (of type dualof ⇤!Donation, that is ⇤?Donation). Our main program with two clients
looks as follows.

new c s : ⇤?Donation / / c reate a Onl ine Donation channel
Donat ionServer ! s | / / send one end to the Donation Server
C l i en t1 ! c | C l i en t2 ! c / / l e t the whole world know the other

To obtain a (linear) Donation channel from a (shared) ⇤!Donation channel we use a technique
called session initiation: the server creates a new channel, keeps the dualof Donation end to itself
and writes the Donation end on the known-to-the-client ⇤!Donation channel end.

def DonationServer donat ionServer : ⇤ ! Donation =
def Setup r : dualof Donation = <as above>
new r w: Donation / / c reate a channel f o r a new donat ion campaign
donat ionServer ! r . / / send one end
Setup !w. / / keep the other
Donat ionServer ! donat ionServer / / serve another c l i e n t

def Cl i en t1 donat ionServer : ⇤?Donation =
donat ionServer?w. / / get a session channel from the donat ion server
w select setDate . w! 2 0 1 2 . . . / / i n t e r a c t on i t

We now concentrate on how the donation server charges credit cards. In general, merchants
cannot directly charge credit cards. As such our donation server forwards the transaction
details (the credit card number and amount to be charged) to the credit card issuer (a bank,
for example). Assume the following definition for a bank: def Bank (ccard: CreditCard, amount: integer).
Well behaved servers receive the data and forward it to the bank:

r ?( ccard , amount ) . Bank ! ( ccard , amount )

Not so honest servers may try to charge a different amount (perhaps an hidden tax),

r ?( ccard , amount ) . Bank ! ( ccard , amount+10)

or to charge the right amount, only that twice.

r ?( ccard , amount ) . { Bank ! ( ccard , amount ) | Bank ! ( ccard , amount ) }

While types cannot constitute a general panacea for fraudulent merchants, the situation can
be improved. The idea is that the bank is not interested in arbitrary (ccard,amount) pairs but else
on pairs for which a charge (ccard,amount) capability has been granted. We then refine the type
of the amount in the Bank’s signature. We are now interested on amounts x of type integer for
which the predicate charge (ccard,x) holds, that is, parameter amount is of type

{ x : integer | charge ( ccard , x ) }

The capability of charging a given amount on a specific credit card is usually granted by the
benefactor, by assuming an instance of the charge predicate, as in:

assume charge ( " 2345 " , 500) | w ! ( " 2345 " , 500)

The Bank, in turn, makes sure the transaction details were granted by the client, by asserting

the same predicate:

6
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def Bank ( ccard : CreditCard , amount : { x : integer | charge ( ccard , x ) } ) =
assert charge ( ccard , amount ) . . .

Assumptions and assertions have no operational significance on well-typed programs. At
the type system level, assumptions and assertions are treated linearly : for each assert there
must be exactly one assume, and conversely. In this way formulae are treated as resources: they
are introduced in the type system via assume processes, passed around in refinement types,
and consumed via assert processes. As such, the code for servers that try to charge twice the
right amount (see above) does not compile, for the Bank’s “second” assert is not matched by
any assumption. The code for servers that try to charge a different amount (see above) does
not compile either. In this case the benefactor’s assumption charge("2345", 500) would never be
asserted, whereas the bank’s assertion charge("2345", 510) would not have a corresponding assump-
tion. Linearity also means that code for banks that forget to assert charge(ccard, amount) does not
compile. We leave as an exercise writing a typeful server code that charges an amount different
from that stated (and assumed) by the benefactor, and that charges twice the right amount,
by careful manipulation of assume/assert in the server code.

Benefactors that wish to be charged twice, may issue two separate assumptions or join them
on a single formulae, as in the code below.

assume charge ( " 2345 " ,500)⇤charge ( " 2345 " ,500) | w ! ( " 2345 " ,500) | w ! ( " 2345 " ,500)

Likewise, multiple assertions can be conjoined in one, via the tensor (⇤) formula constructor.

4 Technical aspects of the language

SePi is based on the synchronous monadic pi calculus (as in [22]) extended with assert and
assume primitives (inspired in [1]). Formulae in the current version of the language are built
from uninterpreted predicates (over values only), tensor and unit. On top of this core calculus
we added a few derived constructs, namely support for mutually recursive process definitions
and type declarations, and for polyadic message passing. The types of SePi are linearly refined
session types [1]. We have also added the dualof type operator, the ⇤?T and the ⇤!T abbreviations2
(see Section 3), and made the lin annotation optional.

The dualof type operator produces a new type where input ? is replaced by output !, branch-
ing & is replaced by selection +, and conversely in both cases. Furthermore, dualof end is end;
dualof rec a.T is rec a. dualof T; and dualof a is a. The operator is defined on these type constructors
only.

Mutually recursive declarations (cf. the X!r | Y!w example in Section 3) are elaborated in
three phases: first by solving the system of type equations, then by checking channel creation,
and lastly by analysing the process definitions. Systems of type equations are guaranteed to
have a solution due to the presence of recursive types in the syntax of the language and to the
fact that types are required to be contractive.3

Each declaration of the form def X y:T = P introduces a new channel as in new X X1: ⇤?(dualof T),
where X1 is a fresh identifier. In the scope of all new channels (those explicitly introduced with
new and those introduced by virtue of def), we a add replicated input processes of the form
⇤X1?y.P. Replicated processes survive message reception. For example:

new w r : ⇤ ! integer

w!2013 | ⇤ r ?x . p r i n t I n t e g e r ! x | w!2014

2
For completeness, the following abbreviations are also available: ⇤+{m1 ,..., mn}, and ⇤&{m1 ,..., mn}.

3
A type is contractive if it contains no sub-expression of the form rec a1. ... rec an.a1.
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prints two integers, while

w!2013 | r ?x . p r i n t I n t e g e r ! x | w!2014

will print one only. Putting everything together, the X!r | Y!w example in Section 3 is semanti-
cally equivalent to

new r w: rec a . l i n ! boolean . l i n ?boolean . a
new X X1 : rec b . un ! ( rec a . l i n ! boolean . l i n ?boolean . a ) . b
new Y Y1 : rec b . un ! ( rec a . l i n ?boolean . l i n ! boolean . a ) . b
⇤X1?z . z ! true . Y ! z |
⇤Y1?z . z?b . p r in tBoo lean ! b . X ! z |
X ! r | Y !w

Process declaration obviates in most cases the direct usage of replicated input processes.
More important, it hides one of the channel ends (X1) thus simplifying code development, and
they are amenable to an optimisation in code interpretation [18].

In order to simulate interference-free polyadic message passing on shared (un) channels,
we use a standard encoding for the send and receive operations (cf. [22]). For example, the
pair-type (ccard: CreditCard, amount: {x: integer|charge(ccard,x)}) in the signature of the Bank definition
(Section 3) is equivalent to the refined linear session type

l i n ?ccard : Credi tCard . l i n ?amount : { x : integer | charge ( ccard , x ) } . end

where each interaction point in the type is labelled with an optional identifier (e.g., ccard) that
may be referred to in the continuation type (e.g., charge(ccard,x)). On the process side, the output
process b!( "2345", 500).P abbreviates

new r w: l i n ?ccard : Credi tCard . l i n ?amount : { x : integer | charge ( ccard , x ) } . end

b ! r . w! " 2345 " . w!500 . P

and the input process b?(x,y) .P abbreviates

b?z . z?x . z?y . P

The type system of the SePi language is decidable. The algorithmic rules are those in [22],
with minor adaptations in the rules for replicated input and case processes. Algorithmic typing
systems crucially rely on the decidability of type equivalence. Type equivalence for the non-
refined language is decidable [22]. Type equivalence for SePi is also decidable thanks to the
extremely simple syntax of formulae. In essence, we keep separated a typing context and a
multiset of predicates. An invariant of the type system says that context entries do not contain
refinement types at the top level. The type equivalence procedure (basically, equality of regular
infinite trees) may use (hence, remove) predicates from the multiset, if required.

The rules for assume and assert in [1] are not algorithmic. Nevertheless, algorithmic rules are
easy to obtain. Processes of the form assume A add A to the multiset after breaking the tensors
and eliminating occurrences of unit; processes of the form assert A try to remove the predicates
in A from the multiset. Input processes of the form x?y.P eliminate the top-level refinements in
the type for y; the resulting type is added to the typing environment, the predicates are added to
the multiset (this operation in unnecessary for new processes given that channels types cannot
be directly refined). The remaining rules remain as in [22], except that they now work with the
new procedure for type equivalence.
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5 Conclusion and future work

We presented SePi, a concurrent programming language based on the monadic pi-calculus where
communication between processes is governed by session types and where linearly refinement
types may be used to specify properties about the values exchanged. In order to facilitate
programming we added to SePi a few derived constructs, such as output and input of multiple
values, mutually recursive process definitions and type declaration, as well as the dualof type
operator.

Our early experience with the language unveiled a few further constructs that may speed up
code development, including: a simple import clause allowing the inclusion of code in a different
source file, thus providing for limited support for API development; an abbreviation for session

initiation where a process creates a new channel, keeps one end and passes the other (a form of
bound output). In order to keep the language simple, the current version of SePi uses predicates
over values only, thus preventing formulae containing expressions, such as p(x+1). We plan to add
expressions to predicates, together with the appropriate theories (e.g., arithmetic), combining
the current type checking algorithm with an SMT solver. Finally, we acknowledge that the
current language of formulae is quite limited (essentially a multiset of uninterpreted formulae).
We are working on a system that provides for the persistent availability of resources in a form
of replicated (or exponential) resources. Polymorphism and subtyping may be incorporated in
future versions of the language. We are also interested in extending the type system so that it
may guarantee some form of progress for well typed processes.

Acknowledgements. This work was partially supported by project PTDC/EIA–CCO/1175
13/2010. We are grateful to Dimitris Mostrous, Hugo Vieira, and to anonymous referees for
their feedback.
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Abstract. The goal of this work is to ensure that processes that integrate sev-
eral services in a Cloud correctly interact according to a specification of their
communication behaviour. To accomplish this goal, we employ session types to
analyse the global and local communication patterns. A session type represents a
“formal blueprint” of how users and services should interact with the Cloud at an
appropriate level of abstraction for specifying message flows.
This work confirms the feasibility of applying session types to business protocols
used by an e-commerce Cloud provider. The protocols are developed in SessionJ,
an extension of Java implementing session-based programming. Furthermore, we
highlight how our approach can be used to intergrate services across multiple
Cloud providers, each of whom must correctly cooperate.

1 Introduction

Cloud providers typically o↵er a portfolio of services, where access and billing for
all services are integrated in a single distributed system. Services are then made avail-
able on demand to anyone with a credit card, eliminating the up front commitment of
users [1]. Furthermore, there is a drive for services to be integrated, not only within a
Cloud, but also between multiple Cloud providers [14].

Protocols that integrate heterogeneous services with a single point of access and
billing strategy can become complex. Thus we require an appropriate level of abstrac-
tion to specify and implement such protocols. Further to the complexity, the protocols
are a critical component of the business strategy of a Cloud provider. Failure of the
protocols could result in divergent behaviour that jeopardises services, leading to loss
of customers or even legal disputes. These risks can be limited by using techniques that
statically prove that protocols are correct and dynamically check that protocols are not
violated at runtime.

It is challenging to manage service interactions that go beyond simple sequences
of requests and responses or involve large numbers of participants. One technique for
managing protocols between multiple services is to specify the protocol using a chore-
ography. A choreography specifies a global view of the interactions between participat-
ing services. However, by itsself, a choreography does not determine how the global
view can be executed.

The challenge of controlling interactions of participants motivated the design of
Web Services Choreography Description Language (WS-CDL) [8]. The WS-CDL work-
ing group identified critical issues [3] including:
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1. the need for tools to validate conformance to choreography specifications to ensure
correct cooperation between Web Services;

2. design time verification of choreographies to guarantee correctness of properties
such as deadlock and livelock, as well as the conformance of the behaviour of
participants.
The aforementioned challenges can be tackled by adopting a solid foundational

model, such as session types [8,7]. Successful approaches related to session types in-
clude: SessionJ [12], Scribble [11] and Session C [13] due to Honda and Yoshida;
Sing# [4] that extends Spec# with choreographies; and UBF(B) [2] for Erlang.

In this paper, we present a case study where the interaction of process that integrate
services in a commercial Cloud provider1 are controlled using session types. Session
types ensure communication safety by verifying that session implementations of each
participant (the users, the services and the Cloud), conform to the specified protocols.
In our case study, we use SessionJ, an extension of Java supporting sessions, to specify
protocols used by the Cloud provider that involve iteration and higher order communi-
cation.

In Section 2 we provide an overview of SessionJ. In Section 3, we explain and
refine a protocol used by a Cloud provider and implemented using SessionJ. Finally, in
Section 4, we suggest that session types can be used in the design of reliable inter-Cloud
protocols, following the techniques employed in this work.

2 Methodology for Verifying Protocols in SessionJ

We chose SessionJ for the core of our application, since Java was already used for sev-
eral services. Furthermore, the language has a concise syntax and an active community.

We briefly outline how SessionJ is employed to correctly implement protocols.
Firstly, the global protocol is specified using a global calculus similar to sequence di-
agrams. Secondly, the global calculus is projected to sessions types, which specify the
protocol for each participant. Thirdly, the session is implemented using operations on
session sockets. The correctness of the global protocol can be verified by proving that
the implementation of each session conforms to the corresponding session type.

Protocol Specification. The body of a protocol defines a session type, according to the
grammar in Figure 1. The session type specifies the actions that the participant in a
session should perform. In SessionJ, the behaviour of an implementation of a session
is monitored by the associated protocol, as enforced by the SessionJ compiler and run-
time. The constructs in Figure 1 can describe a diverse range of complex interactions,
including message passing, branching and iteration. Each session type construct has its
dual construct, because a typical requirement is that two parties implement compatible
protocols such that the specification of one party is dual to another party.

Higher Order Communication. SessionJ allows message types to themselves be ses-
sion types. This is called higher-order communication and is supported by using sub-
typing [15]. Consider the dual constructs !h?(int)i and ?(?(int)). These types specify

1 V3na Cloud Platform. AlmaCloud Ltd., Kazakhstan. http://v3na.com
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L1, L2 label

p protocol name

M F Datatype | T message

S F p {T } protocol

T F T . T Sequencing
| begin Session initiation
| !hMi Message send
| ?(M) Message receive
| {L1 : T1, . . . , Ln : Tn} Session branching
| [T ] ⇤ Session iteration
| rec L [T ] Session recursion scope
| #L Recursive jump
| @p Protocol reference

Fig. 1: SessionJ protocol specification using session types (T ).

sessions that expect to respectively send and receive a session of type ?(int). Higher
order communication is often referred to a session delegation. Figure 2 shows a basic
delegation scenario.

In Figure 2, the left diagram represents the session configuration before the delega-
tion is performed: the user is engaged in a session s of type !hinti with the Cloud, while
the Cloud is also involved in a session s0 with a service of type !h?(int)i. So, instead of
accepting the integer from the user, Cloud delegates his role in s to the service. The di-
agram on the right of Figure 2 represents the session configuration after the delegation
has been performed: the user now directly interacts with the service for the session s.
The delegation action corresponds to a higher-order send type for the session s0 between
the Cloud and the service.

Fig. 2: Session delegation

Protocol Implementation using SessionJ. Session sockets represent the participants of a
session connection. Each socket implements the session code according to the specified
session type. In SessionJ session sockets extend the abstract SJSocket class. The session
is implemented within a session-try scope using a vocabulary of session operations.
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3 Case Study: Protocols for a Cloud

Our case study is an e-commerce Cloud application, V3na, that provides integrated
Software as a Service solutions for business. V3na provides a central access point to
several services, including document storage, document flow, and customer relations
management. The central component of the e-commerce Cloud is responsible for seam-
less integration and maintenance of the services that a user subscribes to, while manag-
ing user accounts and billing.

A typical scenario is when a user requires the document storage service. The user
will first subscribe for the service either by registering to be billed or by entering a
trial period. When the user has subscribed for the document service and they attempt
to access their documents, requests to the API of the document store are delegated, by
V3na, to the relevant document server for a lease period. After delegation, the client
interacts directly with the API of the document store until the lease expires.

A major challenge was to automate the process of service integration as a reliable
service. In particular, V3na implements the following problems that can be addressed
using sessions types:

– A customer can connect to a service for a trial period;
– V3na provides one entry point to all services a user subscribes to;
– A subscription may be extended or frozen;
– Billing and payment for use of a service can be managed.

In this section, we illustrate two refinements of the first scenario above.

3.1 Scenario 1: Forwarding and Branching

To begin, we specify a simple business protocol for connecting to a service. The proto-
col is informally specified as follows:

Protocol 1.1: User

protocol p_uv {
begin.
!<JSONMsg >.
?{
OK: ?(JSONMsg),
FAIL:

}
}

Protocol 1.2: Cloud

protocol p_vu {
begin.?(JSONMsg).!{
OK: !<JSONMsg>,
FAIL:

}
}
protocol p_vs {
begin.!<JSONMsg >.

?(JSONMsg)
}

Protocol 1.3: Service

protocol p_sv {
begin.
?(JSONMsg).!<JSONMsg>

}

Fig. 3: Protocol specifications for Scenario 1

1. The user begins a request session with Cloud service (V3na) and sends the request
“connect to service” as JSON-encoded message.

2. V3na selects either:
(a) FAIL, if the user has no active session (not signed in).
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(b) OK, if the user has logged in and the request data has passed validation steps.
3. If OK is selected, then, instead of responding immediately to the user, the Cloud

initiates a new session with the service. In the new session the Cloud forwards
the JSON message from the client to the service and receives a response from the
server. The session between the Cloud and the service terminates. Finally, the orig-
inal session resumes and the Cloud forwards the response from the service to the
Client. From the perspective of the user it appears that the Cloud responded directly.

In Figure 3 we provide the protocol specifications for each participant (User, Cloud
or Service). The protocols between the user and the Cloud and between the Cloud and
the service are dual, i.e. the specification of interaction from one perspective is opposite
to the other perspective. SessionJ employs the outbranch and inbranch operations to
implement the branching behaviour.

3.2 Scenario 2: Session Delegation and Iteration

We present a refined example that demonstrates iteration and session delegation. To
avoid becoming a bottleneck, the core processes of the Cloud should delegate the ses-
sion to a service as soon as the user is authenticated for the service.

Fig. 4: Sequence diagram of interactions for Scenario 2

Figure 4 depicts two related sessions s and s0. Session s begins with interactions
between the user and the Cloud; but, after authentication, s0 delegates the rest of session
s from the Cloud to the service. Session s is completed by an exchange between the user
and the service directly. We informally describe the global protocol in more detail:
1. The user begins a request session (session s in Fig. 4) with the Cloud (V3na).
2. The user logs in by providing the Cloud with a user name and password.
3. V3na receives the user credentials and verifies them: If the user is not authenticated

and still has tries go back to step 2, otherwise continue.
4. If the user is not allowed to access the Cloud, the interaction between the user and

the Cloud continues on the DENY-branch, otherwise on the ACCESS-branch.
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5. In the case of the ACCESS branch, the user sends his connection request in a JSON
message to the Cloud. The Cloud creates a new session with the service (session
s0 in Fig. 4). The new session delegates the remaining session with the user to the
service, and also forwards relevant user request details to the service. Session s0 is
then terminated.

6. The service continues session s, but now interactions are between the user and the
service. The service either responds to the user with OK or FAIL. In either case,
the user receives the reason and status of his request directly from the service in a
JSON message. Finally, session s is terminated.

Protocol 2.1: User

protocol p_uv {
begin.?[!<String >.!<String> ]*.
?{
ACCESS: !<JSONMsg >.
?{
OK: ?(JSONMsg),
FAIL: ?(JSONMsg)

},
DENY: ?(String)
}

}

Protocol 2.2: Cloud

protocol p_vu {
begin.
![ ?(String).?(String) ]*. // login
!{
ACCESS: ?(JSONMsg).
!{
OK: !<JSONMsg>,
FAIL: !<JSONMsg>

},
DENY: !<String>

}
}

Fig. 5: User-Cloud interaction protocol specifications for Scenario 2

In Figure 5, the protocol between the user and the cloud provider appear to interact
perfectly. The iterative login step works as expected, so either the ACCESS or DENY
branch will be selected. If the ACCESS branch is selected, then, as expected, a JSON
message is sent from the user to the Cloud. However, instead of the Cloud choosing OK
or FAIL directly, the session (s0) in Figure 6 is triggered.

Protocol 2.3: Cloud

protocol p_vs {
begin.
!<!{
OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}>.
!<JSONMsg>

}

Protocol 2.4: Service

protocol p_sv {
begin.
?(!{
OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}).
?(JSONMsg)

}

Fig. 6: Cloud-Service interaction protocol specifications for Scenario 2

The session in Figure 6 delegates the part of the session where either OK or FAIL is
selected to the service. The delegation is enabled by a higher order session type, where
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a socket of session type !{OK : !hJSONMessagei , FAIL : !hJSONMessagei} is sent from
the Cloud in protocol p vs and received by the service in protocol p sv. Following,
the delegation, a JSON message is sent from the Cloud to the service containing the
relevant user request details.

Once the delegation has taken place, the service is able to complete the session that
was begun by the Cloud. The service can negotiate directly with the client and either
choose the OK branch or the FAIL branch, followed by sending the appropriate JSON
message. The simple choice between an OK and a FAIL message could be replaced by
a more complex iterated session between the user and the service.

4 Future Work: Inter-Cloud Protocols and Session Types

For customers of Cloud providers, there are considerable benefits when service can be
hosted on more than one Cloud provider [6,5,1]. If data is replicated across multiple
Cloud providers, customers can avoid becoming locked in to one provider. Thus cus-
tomers are less exposed to risks such as fluctuations in prices and quality of service
at a single provider. If a Cloud provider goes out of business, then customers entirely
dependent on one Cloud provider are critically exposed.

Several visions have been proposed for inter-Cloud protocols [10,9]. In [14], they
identify the main components of general inter-Cloud architecture: a Cloud coordinator,
for exposing Cloud services; a Cloud broker, for mediating between service consumers
and Cloud coordinators; and a Cloud exchange, for collecting consumers’ demands
and locating Cloud providers. Based on our experience in this work, we suggest that
multi-party session types [13] are appropriate for specifying and correctly implement-
ing protocols between Cloud providers and Cloud integrators.

5 Conclusion

This case study demonstrates the ability of session types to control interaction patterns
between communicating processes in a Cloud. Participants are statically type-checked
at compile time and dynamically monitored at run-time to ensure that components crit-
ical to a Cloud provider communicate correctly. The high level of abstraction of session
types, implemented in the SessionJ language, enabled e↵ortless translation of business
scenarios into protocols. We were able to refine our protocol from Scenario 1 to Sce-
nario 2, due to support of higher-order message passing (session delegation). Further
to scenarios presented here, our case study covered payment and wallet recharging
transactions, where we discovered the benefits of combining session delegation and
threading provided by SessionJ. Our experience shows that the session-programming
approach is suited to correctly implementing inter-Cloud protocols, which is our future
objective.
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Abstract

In this paper we report on work-in-progress towards defining a formal framework for studying
privacy. Our framework is based on the π-calculus with groups [1] accompanied by a type system
for capturing privacy-related notions. The typing system we propose combines a number of concepts
from the literature: it includes the use of groups to enable reasoning about information collection, it
builds on read/write capabilities to control information processing, and it employs type linearity to
restrict information dissemination. We illustrate the use of our typing system via simple examples.

1 Introduction
The notion of privacy does not have a single solid definition. It is generally viewed as a collection of re-
lated rights as opposed to a single concept and attempts towards its formalization have been intertwined
with philosophy, legal systems, and society in general. The ongoing advances of network and informa-
tion technology introduce new concerns on the matter of privacy. The formation of large databases that
aggregate sensitive information of citizens, the exchange of information through e-commerce as well
as the rise of social networks, impose new challenges for protecting individuals from violation of their
right to privacy as well as for providing solid foundations for understanding privacy a term.

A study of the diverse types of privacy, their interplay with technology, and the need for formal
methodologies for understanding and protecting privacy is discussed in [7], where the authors base their
arguments on the taxonomy of privacy rights by Solove [6]. According to [6], the possible privacy
violations within a system can be categorized into four groups: invasions, information collection, in-
formation processing, and information dissemination. These violations are typically expressed within
a model consisting of three entities: the data subject about whom a data holder has information and
the environment, the data holder being responsible to protect the information of the data subject against
unauthorized adversaries in the environment.

The motivation for this work stems from the need to provide a formal framework (or a set of different
formal frameworks) for reasoning about privacy-related concepts, as discussed above. Such a framework
would provide solid foundations for understanding the notion privacy and it would allow to rigorously
model and study privacy-related situations. Our interest for formal privacy is primarily focused on the
processes of information collection, information processing, and information dissemination and how
these can be controlled in order to guarantee the preservation of privacy within a system.

1.1 Privacy and the π-Calculus
The approach we follow in this paper attempts to give a correspondence between the requirements of the
last paragraph and the theory and meta-theory of the π-calculus [4]. The π-calculus is a formal model
of concurrent computation that uses message-passing communication as the primitive computational
function. A rich theory of operational, behavioural and type system semantics of the π-calculus is used
as a tool for the specification and the study of concurrent systems. Our aim is to use the π-calculus

1
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machinery to describe notions of privacy. Specifically, we are interested in the development of a meta-
theory, via a typing system, for the π-calculus that can enforce properties of privacy, as discussed above.

The semantics for the Gπ-calculus, a π-calculus that disallows the leakage of information (secrets)
is presented in [1]. That work proposes the group type along with a simple typing system that is used
to restrict the scope of a name’s existence, i.e., a name cannot exist outside its group scope. We find
the semantics of the Gπ-calculus convenient to achieve the privacy properties regarding the information
collection category. A data holder can use the group type to disallow unauthorized adversaries from
collecting information about a data subject.

Consider for example the processes:

DBadmin = a〈c〉.0
Nurse = a(x).b〈x〉.0
Doctor = b(x).x(y).x〈data〉.0

The database administrator process DBadmin sends a reference c to a patient’s data to a doctor process
Doctor using a nurse process Nurse as a delegate. Channel c is sent to the nurse via channel a and is
then forwarded to the doctor via channel b by the nurse. The doctor then uses c to read and write data
on the patient’s records. The composition of the above processes under the fresh hospital group Hosp,
and an appropriate typing of c, enforces that no external adversary will be able to collect the information
exchanged in the above scenario, namely c: name c, belonging to group G, is not possible to be leaked
outside the defined context because (1) groups are not values and cannot be communicated and (2) the
group G is only known by the three processes (see [1] for the details).

(ν Hosp)(((νc : Hosp[])DBadmin) | Nurse | Doctor)

Let us now move on to the concept of information processing and re-consider the example above
with the additional requirement that the nurse should not be able to read or write on the patient’s record
in contrast to the doctor who is allowed both of these capabilities. To address this issue we turn to the
input/output typing system for the π-calculus of Pierce and Sangiorgi, [5]. Therein, the input/output
subtyping is used to control the input and output capabilities on names and it is a prime candidate for
achieving privacy with respect to the requirement in question: A type system that controls read and
write capabilities1 can be used by a data holder to control how the information about a data subject
can be processed. Thus, in the case of our example, the requirements may be fulfilled by extending the
specification with a read/write typing system as follows:

Tdata = Hosp[MedicalData]−

Tc = Hosp[Tdata]rw
Ta = Hosp[Hosp[Tdata]−]rw
Tb = Hosp[Hosp[Tdata]rw]rw

where names a, b and c are of types Ta, Tb and Tc, respectively. The medical data are a basic type
with no capability of read and write. Channel c can be used for reading and writing medical data.
Channel a is used to pass information to the nurse without giving permission to the nurse to process the
received information, while channel b provides read and write capabilities to the doctor. Nonetheless,
the above system suffers from the following problem. Although the nurse acquires restricted capabilities
for channel c via channel a, it is still possible for a nurse process to exercise its read capability on b and,
thus, acquire read and write capability on the c channel. To avoid this problem, the system may be

1The terminology for read and write capabilities is equivalent with input and output terminology.
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redefined as follows:

DBadmin = (νb : Tb) tonurse〈b〉.todoc〈b〉.a〈c〉.0
Nurse = tonurse(z).a(x).z〈x〉.0
Doctor = todoc(z).z(x).x(y).x〈data〉.0

where channel todoc has type Hosp[Tb]rw but channel tonurse has type Hosp[T ′
b ]

rw, where T ′
b =

Hosp[Hosp[Tdata]rw]w. In other words, the nurse is not assigned read capabilities on channel b.
Note that the above typing is not completely sound: for instance the nurse process is expected to

pass on to the doctor process more capabilities than those it acquires via channel a. Nevertheless in our
theory we use a more complex type structure able to solve this problem.

Regarding the information dissemination category of privacy violations, we propose to handle infor-
mation as a linear resource. Linear resources are resources that can be used for some specific number of
times. A typing system for linearity was originally proposed in [3]. A linear typing system can be used
by the data holder to control the number of times an information can be disseminated. In our example,
we require from the nurse the capability of sending the reference of the patient only once, while we
require from the doctor not to share the information with anyone else:

Tdata = Hosp[MedicalData]−∗

Tc = Hosp[Tdata]rw∗

Ta = Hosp[Hosp[Tdata]−1]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw0

T ′
b = Hosp[Hosp[Tdata]rw0]w0

The ∗ annotation on the types above defines a shared (or unlimited) resource. Such resources are
the patient’s data and the reference to the patient’s data. Channels a and b communicate values that can
be disseminated one and zero times respectively. (Again there is a soundness problem solved by a more
complex typing structure.) Furthermore channels a and b cannot be sent to other entities.

A central aspect of our theory is the distinction between the basic entities. The operational seman-
tics of the π-calculus focuses on the communication between processes that are composed in parallel.
Although a process can be thought of as a computational entity, it is difficult to distinguish at the op-
erational level which processes constitute a logical entity. In our approach, we do not require any
operational distinction between entities, since this would compromise the above basic intuition for the
π-calculus, but we do require the logical distinction between the different entities that compose a system.

Finally, we note that our typing system employs a combination of i/o types and linear types, which
are low-level π-calculus types, to express restrictions on system behavior. We point out that the expres-
sivity of such ordinary π-calculus types has been studied in the literature and, for instance, in [2] the
authors in fact prove that linear and variant types can be used to encode session types.

2 The Calculus
Our study of privacy is based on the π-calculus with groups proposed by Cardelli et al. [1]. In this
section we briefly overview the syntax and reduction semantics of the calculus.

Beginning with the syntax, this is standard π-calculus syntax with the addition of the group restric-
tion construct, (ν G)P, and the requirement for typing on bound names (the definition of types is in
Section 3).

P ::= x(y:T ).P | x〈z〉.P | (ν G)P | (ν a:T )P | P1 | P2 | !P | 0
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Free names fn(P), bound names bn(P), free variables fv(P), and bound variables bv(P) are defined
in the standard way for π-calculus processes. We extend this notion to the sets of free groups in a process
P and a type T which we denote as fg(P) and fg(T ), respectively.

We now turn to defining the reduction semantics of the calculus. This employs the notion of struc-
tural congruence which allows the structural rearrangement of a process so that the reduction rules can
be performed. Structural congruence is the least congruence relation, written ≡, that satisfies the rules:

P | 0 ≡ P (ν a:T )P1 | P2 ≡ (ν a : T )(P1 | P2) if a /∈ fn(P2)

P1 | P2 ≡ P2 | P1 (ν a:T1)(ν b:T2)P ≡ (ν b:T2)(ν a:T1)P

(P1 | P2) | P3 ≡ P1 | (P2 | P3) (ν G)P1 | P2 ≡ (ν G)(P1 | P2) if G /∈ fg(P2)

!P ≡ P | !P (ν G1)(ν G2)P ≡ (ν G2)(ν G1)P

(ν G1)(ν a:T )P ≡ (ν a:T )(ν G1)P if G /∈ fg(T )

We may now present the reduction relation P −→ Q which consists of the standard π-calculus re-
duction relation extended with a new rule for group creation.

a〈b〉.P1 | a(x : T ).P2 −→ P1 | P2{b/x}
P1 −→ P2 implies P1 | P3 −→ P2 | P3

P1 −→ P2 implies (ν G)P1 −→ (ν G)P2

P1 −→ P2 implies (ν a : T )P1 −→ (ν a : T )P2

P1 ≡ P′
1,P

′
1 −→ P′

2,P
′
2 ≡ P2 implies P1 −→ P2

3 Types and Typing System
In this section we define a typing system for the calculus which builds upon the typing of [1]. The typing
system includes: (i) the notion of groups of [1], (ii) the read/write capabilities of [5] extended with the
empty capability, and (iii) a notion of linearity on the dissemination of names. The type structure is used
for static control over the permissions and the disseminations on names in a process.

For each channel, its type specifies (1) the group it belongs to, (2) the type of values that can be
exchanged on the channel, (3) the ways in which the channel may be used in input/output positions
(permissions p below) and (4) the number of times it may be disseminated (linearity λ below):

T ::= G[]pλ | G[T ]pλ

p ::= − | r | w | rw

λ ::= ∗ | i where i ≥ 0

For example, a channel of type T = G[]r2 is a channel belonging to group G that does not communicate
any names, can be used in input position and twice in object position. Similarly, a name of type G′[T ]rw∗
is a channel of group G′ that can be used in input and output position for exchanging names of type T
and can be sent as the object of a communication for an arbitrary number of times.
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Subtyping. Our typing system makes use of a subtyping relation which, in turn is, based on two
pre-orders, one for permissions p, denoted as *p, and one for linearities λ , denoted as *λ :

*p: rw*p w rw*p r rw,r,w*p −
*λ : ∗ *λ i for all i i *λ j if i ≥ j

The preorder for permissions is as expected with the empty capability being the greatest element.
For linearities, fewer permissions are included in larger permissions and ∗ is the least element.

Let Type be the set of all types T . The subtyping relation, written ≤ as an infix notation, may be
defined coinductively as the largest fixed point (F ω(Type×Type)) of the monotone function:

F : (Type×Type)−→ (Type×Type)

where
F (R) = {(G[]−0,G[]−0)}

∪ {(G[T1]pλ1 ,G[T2]−λ2)) | (T1,T2) ∈ R,(T2,T1) ∈ R,λ1 *λ λ2}
∪ {(G[T1]pλ1 ,G[T2]rλ2) | (T1,T2) ∈ R, p *p r,λ1 *λ λ2}
∪ {(G[T1]pλ1 ,G[T2]wλ2) | (T2,T1) ∈ R, p *p w,λ1 *λ λ2}
∪ {(G[T1]rwλ1 ,G[T2]rwλ2) | (T1,T2),(T2,T1) ∈ R,λ1 *λ λ2}

The first pair in the construction of F says that the least base type is reflexive. The next four
cases define subtyping based on the preorders defined for permissions and linearities. According to
the second case, the empty permission is associated with an invariant subtyping relation because the
empty permission disallows for a name to be used for reading and/or writing. The read permission
follows covariant subtyping, the write permission follows contravariant subtyping, while the read/write
permission follows invariant subtyping. Note that linearities are required to respect the relation λ1 *
λ2 for subtyping in all cases. For example, according to the subtyping relation, the following hold:
G1[G2[]rw5]rw∗ ≤ G1[G2[]w3]r3, G1[G2[]−3]rw∗ ≤ G1[G2[]w3]w0, and G1[G2[]w5]rw∗ ≤ G1[G2[]w5]−1.

Typing Judgements. We now turn to the typing system of our calculus. This assigns an extended
notion of a type on names which is constructed as follows:

T= (T1,T2)

In a pair T we record the current capabilities of a name, captured by T1, and its future capabilities after
its dissemination, captured by T2.

Based on these extended types, the environment on which type checking is carried out in our calcu-
lus consists of the components Π and Γ. These declare the names (free and bound) and groups in scope
during type checking. We define Γ-environments by Γ ::= /0 | Γ ·x : T | Γ ·G. The domain of an environ-
ment Γ, dom(Γ), is considered to contain all names and groups recorded in Γ. We assume that any name
and group in dom(Γ) occurs exactly once in Γ. Then, a Π-environment is defined by Π ::= /0 | Π · x : T,
where dom(Π) contains all variables in Π, each of which must exist in Π exactly once.

We define three typing judgements: Γ. x!T , Π. x!T , and Π,Γ.P. The first two typing judgement
say that under the typing environment Γ, respectively Π, variable x has type T . The third typing judge-
ment stipulates that process P is well typed under the environments Π,Γ, where Γ records the groups
and the types of the free names of P and Π the types of all bound names x that are created via a (νx)
construct within P. We require that these bound names are uniquely named within P and, if needed, we
employ α conversion to achieve this. In essence, this restriction requires for all freshly-created names
to be recorded a-priori within the typing environment. If an unrecorded name is encountered, then the
typing system will lead to failure as is implemented by the typing system. It turns out that recording
this information on bound names of a process is necessary in order to control the internal processing of
names that carry sensitive data.
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Typing System. We now move on to the rules of our typing system. First, we present two auxiliary
functions. To begin with we define the linearity addition operator ⊕ where λ1 ⊕λ2 = ∗, if λ1 = ∗ or
λ2 = ∗, and λ1⊕λ2 = λ1+λ2, otherwise. We may now lift this notion to the level of typing environments
via operator 0 which composes its arguments by concatenating their declarations with the exception of
the common domain where linearities are added up via ⊕:

Γ1 0Γ2 = Γ1\Γ2 ·Γ2\Γ1

· {x : G[T ]pλ1⊕λ2 | x : G[T ]pλ1 ∈ Γ1,x : G[T ]pλ2 ∈ Γ2}

At this point we make the implicit assumption that Γ1 and Γ2 are compatible in the sense that the
declared types of common names may differ only in the linearity component.

We are ready now define the typing system:

(Name)

x 1∈ dom(Γ ·Γ′)
fg(T)⊆ dom(Γ ·Γ′)

Γ · x : T ·Γ′ . x!T
(SubN)

Γ . x! (T ′
1 ,T

′
2),T

′
1 ≤ T1,T ′

2 ≤ T2

Γ . x! (T1,T2)

(In)

Π,Γ · y : (T1,T2) . P
Γ . x! (G[T1]r0,G[T2]r0)

Π,Γ . x(y : T1).P
(Out)

Π,Γ · y : (Gy[T1]−λ ,T2) . P
Γ . x! (Gx[T2]w0,Gx[T2]w0)

Π,Γ · y : (Gy[T1]
−(λ⊕1),T2) . x〈y〉.P

(ResG)
Π,Γ ·G . P

Π,Γ . (ν G)P
(ResN)

Π,Γ · x : (T,T ′) . P
Π · x : (T,T ′),Γ . (ν x : T )P

(Par)
Π1,Γ1 . P1 Π2,Γ2 . P2

Π1 0Π2,Γ1 0Γ2 . P1 | P2
(Rep)

Π,Γ . P
∀x ∈ fn(P) if Γ . x! (G[T1]pλ1 ,G[T2]pλ2)

then λ1 ∈ {0,∗}
Π,Γ .!P

(Nil) Π,Γ . 0 (SubP)
Π,Γ · x : (T ′

1 ,T
′

2) . P T ′
1 ≤ T1,T ′

2 ≤ T2

Π,Γ · x : (T1,T2) . P

Rule (Name) is used to type names. Note that in name typing we require that all group names of
the type are present in the typing environment. Rule (SubN) defines a subsumption based on subtyping
for channels. Rule (In) types the input prefixed process. We first require that the input subject has at
least permission for reading. Then, the type y is included in the type environment Γ with a type that
matches the type of the input channel x. This is to ensure that the input object will be used as specified.
The rule for the output prefix (Out) checks that the output subject has write permissions. Furthermore,
x should be a channel that can communicate names up-to type T2, the maximum type by which y can
be disseminated. Then, the continuation of the process P, should be typed according to the original
type of y and with its linearity reduced by one. Finally, the output object should have at least the empty
permission.

In rule (ResG) we record a newly-created name in Γ. For name restriction (ResN) specifies that a
process type checks only if the restricted name is recorded in environment Π. In this way is is possible
to control the internal behavior of a process, in order to avoid possible privacy violations. Parallel
composition uses the 0 operator to compose typing environments, since we want to add up the linearity
usage of each name. For the replication operator, axiom (Rep) we require that free names of P have
either linearity zero (i.e. they are not sent by P) or infinite linearity (i.e. they can be sent as many times
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as needed). The inactive process can be typed under any typing environment (axiom (Nil)). Finally we
have a subsumption rule, (SubP) that uses subtyping to control the permissions on processes.

Type Soundness. We prove that the typing system is sound through a subject reduction theorem.
Before we proceed with the subject reduction theorem we state the basic auxiliary lemmas.

Lemma 1 (Weakening).

1. If Γ . x!T and y /∈ dom(Γ) then Γ · y : T′ . x!T.

2. If Π,Γ . P and y /∈ dom(Γ) then Π,Γ · y : T . P.

Lemma 2 (Strengthening).

1. If Γ · y : T′ . x!T, y 1= x, then Γ . x!T.

2. If Π,Γ · y : T . P and y /∈ fn(P) then Π,Γ . P.

Lemma 3 (Substitution). If Π,Γ · x : T . P and Γ . y!T then Π,Γ . P{y/x}

Lemma 4 (Subject Congruence). If Π,Γ . P1 and P1 ≡ P2 then Π,Γ . P2.

We are now ready to state the Subject Reduction theorem.

Theorem 1 (Subject Reduction). Let Π,Γ . P and P −→ P′ then Π,Γ . P′.

Proof. The proof is by induction on the reduction structure of P.
Basic Step:

P = a〈b〉.P1 | a(x).P2 −→ P1 | P2{b/x} and Π,Γ . P. From the typing system we get that

Γ = Γ1 0Γ2 (1)
Π1,Γ1 . a〈b〉.P1 (2)
Π2,Γ2 . a(x).P2 (3)

From the typing system we get that Π1,Γ1 . P1 for (2) and Π2,Γ2 · x : T . P2 for (3). We apply the
substitution lemma (Lemma 3) to get that Π2,Γ2 · b : T . P2{b/x}. We can now conclude that Π,Γ .
P1 | P2{b/x}.
Induction Step:
Case: Parallel Composition. Let P1 | P2 −→ P′

1 | P2 with Π,Γ . P1 | P2. From the induction hypothesis
we know that Π1,Γ1 . P1 and Π1,Γ1 . P′

1. From these two results and the parallel composition typing
we can conclude that Π1 0Π2,Γ1 0Γ2 . P1 | P2 and Π1 0Π2,Γ1 0Γ2 . P′

1 | P2 as required.
Case: Group Restriction. Let (ν G)P −→ (ν G)P′ with Π,Γ . (ν G)P. From the induction hypothesis
we know that Π,Γ ·G . P and Π,Γ ·G . P′. If we apply the name restriction rule on the last result we
get Π,Γ . (ν G)P′.
Case: Name Restriction. Let (ν a : T )P −→ (ν a : T )P′ with Π · a : T,Γ . P. From the induction
hypothesis we know that Π,Γ · a : T . P and Π,Γ · a : T . P′. If we apply the name restriction rule on
the last result we get Π ·a : T,Γ . (ν a : T )P′.
Case: Structural Congruence closure. We use the subject congruence lemma (Lemma 4).

Let P = P1,P1 −→ P2,P2 ∼= P′ with Π,Γ . P. We apply subject congruence on P to get Π,Γ . P1.
Then we apply the induction hypothesis and subject congruence once more to get the required result.
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4 Examples
In this section we show simple use cases that apply the theory developed. We also show how we tackle
different problems that might arise.

4.1 Patient Privacy
Our first example revisits our example from the introduction and completes the associated type system.
Recall the scenario where a database administrator (process DBadmin) sends a reference to the medical
data of a patient to a doctor (process Doctor) using a nurse (process Nurse) as a delegate.

DBadmin = (νb : Tb) tonurse〈b〉.todoc〈b〉.a〈c〉.0
Nurse = tonurse(z).a(x).z〈x〉.0
Doctor = todoc(z).z(x).x(y).x〈data〉.0

The processes are composed together inside the hospital (Hosp) group.

Hospital= (ν Hosp)(((νc : Tc)DBadmin) | Nurse | Doctor)

Our prime interest is to avoid leakage of the data during their dissemination to the doctor. This means
that the nurse should not have access to the patients’ data. On the other hand the doctor should be able
to read and update medical data, but not be able to send the data to anyone else. We can control the
above permissions using the following typing.

We define the types
Tdata = Hosp[]−∗

Tc = Hosp[Tdata]rw∗

Ta = Hosp[Hosp[Tdata]−1]rw0

T′
a = Hosp[Tc]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw2

Tn
b = Hosp[Hosp[Tdata]rw0]w0

Td
b = Hosp[Hosp[Tdata]rw0]r0

Ttd = Hosp[Tn
b]
rw0

Ttn = Hosp[Td
b ]
rw0

to construct:
D = (Tdata,Tdata)
C = (Tc,Tc)
A = (Ta,T′

a)
B = (Tb,Tb)

T D = (Ttd ,Ttd)
T N = (Ttn,Ttn).

We can show that:

b : B · c : C, tonurse : T N · todoc : T D ·a : A ·data : D . Hospital

Now, let us consider the case where the nurse sends channel c on a private channel in an attempt to
gain access on the patient’s medical data:

Nurse2 = tonurse(z).a(x).(ν e : Tb)(e〈x〉.0 | e(y).y(w).0)
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In this case, in order for the resulting system to type-check, the type of name e would be recorded in
the environment Π, as in

e : B ·b : B · c : C, tonurse : T N · todoc : T D ·a : A ·data : D
. (ν Hosp)(((νc : Tc)DBadmin) | Nurse2 | Doctor)

This implies that, if we allow the creation of e, there is possibility of violation in a well-typed
process. To avoid this, the administrator of the system should observe all names created and included
in Π and, in this specific case, disallow the creation of e. In future work we intend to address this point
by providing typing policies that capture this type of problems and to refine our type system to disallow
such privacy violations, possibly by controlling the process of name creation.

4.2 Social Network Privacy

Social networks allow users to share information within social groups. In the example that follows we
define a type system to control the privacy requirements of participating users. In particular, we consider
the problem where a user can make a piece of information public (e.g. a picture), but require that only
specific people (his friends) can see it (and do nothing else with it).

The example considers a user who makes public the address, paddr, of a private object, pic, and
wishes only the friend Friend to be able to read pic through the public address paddr. To achieve this the
user makes available through the typing of name public only the object capability for paddr. However,
by separately providing the friend with name a, it is possible to extend the capabilities of paddr to
the read capability. In this way, channel a acts as a key for Friend to unlock this private information.
Assuming that notAFriend does not gain access to a name of type Ta, as in the process below, he will
never be able to obtain read capability on channel paddr.

User = (νa : Ta)(tofriend〈a〉.(νpaddr : Tpaddr)(!public〈paddr〉.0 | !paddr〈pic〉.0))
notAFriend = public(z).0

Friend = tofriend(x).public(y).(x〈y〉.0 | x(z).z(w).0)

The processes are composed together inside the SN group.

SocialNetwork= (ν SN)(User | notAFriend | Friend)

To achieve this, we define the types

Tpic = SN[]−∗

Tpaddr = SN[Tpic]
rw∗

T′
paddr = SN[Tpic]

−1

Ta = SN[Tpaddr]
rw∗

Ttofriend = SN[Ta]
rw0

Tpublic = SN[Tpaddr]
rw0

T′
public = SN[T′

paddr]
rw0
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which are combined into the following tuples

PIC = (Tpic,Tpic)

A = (Ta,Ta)

PA = (Tpaddr,Tpaddr)

TF = (T′
tofriend,Ttofriend)

PB = (T′
public,Tpublic)

We can show that:

a : A ·paddr : PA, tofriend : TF ·public : PB ·pic : PIC . SocialNetwork

whereas for notAFriend′ = public(z).z(w).0 and

SocialNetwork′ = (ν SN)(User | notAFriend′ | Friend)

the following judgment fails.

a : A ·paddr : PA, tofriend : TF ·public : PB ·pic : PIC . SocialNetwork′

5 Conclusions
In this paper we have presented a formal framework based on the π-calculus with groups for study-
ing privacy. Our framework is accompanied by a type system for capturing privacy-related notions:
it includes the use of groups to enable reasoning about information collection, it builds on read/write
capabilities to control information processing, and it employs type linearity to restrict information dis-
semination. We illustrate the use of our typing system via simple examples.

In future work we would like to develop a policy language for defining privacy policies associated to
our framework and subsequently to refine our type system so that it can check the satisfaction/violation
of these policies. Furthermore, we would like to study the relation of our type system to other typing
systems in the literature.
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Abstract

This paper introduces a programming framework based on the theory of session types
for safe and scalable parallel designs. Session-based languages can o↵er a clear and
tractable framework to describe communications between parallel components and guar-
antee communication-safety and deadlock-freedom by compile-time type checking and par-
allel MPI code generation. Many representative communication topologies such as ring or
scatter-gather can be programmed and verified in session-based programming languages.
We use a case study involving N-body simulation to illustrate the session-based program-
ming style. Finally, we outline a proposal to integrate session programming with heteroge-
neous systems for e�cient and communication-safe parallel applications by a combination
of code generation and type checking.

1 Introduction

Software programs that utilises parallelism to increase performance is no longer an exclusive
feature of high performance applications. Modern day hardware, from multicore processor in
smartphones to multicore multi-graphics card gaming systems, all take advantage of paral-
lelism to improve performance. Message-passing is a scalable programming model for parallel
programming, where the user has to make communication between components explicit using
the basic primitives of message send and receive.

However, writing correct parallel programs is far from straightforward – blindly parallelising
components with data dependencies might leave the overall program in an inconsistent state;
arbitrary interleaving of parallel executions combined with complex flow control can easily lead
to unexpected behaviour, such as blocked access to resources in a circular chain (i.e. deadlock) or
mismatched send-receive pairs. These unsafe communications are a source of non-termination
or incorrect execution of a program. Thus tracking and avoiding communication errors of
parallel programs is as important as ensuring their functional correctness.

This work focuses on a programming framework which can automatically ensure deadlock-
freedom and communication-safety i.e. matching communication pairs, for message-passing par-
allel programs based on the theory of session types [3, 4]. Towards the end of this paper, we
discuss how this session-based programming framework can fit in heterogeneous computing en-
vironments with reconfigurable acceleration hardware such as Field Programmable Gate Arrays
(FPGAs).

To illustrate how session types can track communication mismatches, consider the parallel
program in Figure 1 that exchanges two values between two processes.

Process 0 Process 1

Recv char

Send 42

Recv char

Send 42

t=0

t=1

Figure 1: Mismatched communication.

In this notation, the arrow points from the
sender of the message to the intended re-
ceiver. Both Process0 and Process1 start
by waiting to receive a value from the other
processes, hence we have a typical deadlock
situation.

1
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Process 0 Process 1

Send 42

Recv char

Recv char

Send 42

t=0

t=1

Figure 2: Communication order swapped.

A simple solution is to swap the order of
the receive and send commands for one of the
processes, for example, Process0, shown in
Figure 2.

However, the above program still has mis-
matched communication pairs and causing
type error. Parallel programming usually involves debugging and resolving these communi-
cation problems, which is often a tedious task.

Using the session programming methodology, we can not only statically check that the
above programs are incorrect, but can also encourage programmers to write safe designs from
the beginning, guided by the information of types. Session types [3, 4] have been actively
studied as a high-level abstraction of structured communication-based programming, which are
able to accurately and intelligibly represent and capture complex interaction patterns between
communicating parties.

The two examples above have session types shown in Figure 3 and Figure 4 respectively.

Process 0: Recv char; Send int

Process 1: Recv char; Send int

Figure 3: Session types for original example.

Process 0: Send int; Recv char

Process 1: Recv char; Send int

Figure 4: Session types for swapped example.

In the session types above, Send int stands for output with type int and Recv int stands
for input with type int. The session types are used to check that the communications between
Process 0 and Process 1 are incompatible (i.e. incorrect) because one process must have a
dual type of the other.

On the other hand, the following program is correct, having neither deadlock nor type errors,
since it has a mutually dual session types shown on the right hand side:

Process 0 Process 1

Send ’a’

Recv int

Recv char

Send 42

t=0

t=1

Process 0: Send char; Recv int

Process 1: Recv char; Send int

In the session types theory, Recv type is dual to Send type, hence the type of Process 0 is
dual of the type of Process 1.

The above compatibility checking is simple and straightforward in the case of two parties. We
can extend this idea to multiparty processes (i.e. more than two processes) based on multiparty
session type theory [4]. Type-checking for parallel programs with multiparty processes is done
statically and is e�cient, with a polynomial-time bound with respect to the size of the program.

Below we list the contributions of this paper.

• Novel programming languages for communications in parallel designs and two session-
based approaches to guarantee communication-safety and deadlock freedom (§ 2);

• Implementations of advanced communication topologies for parallel computer clusters by
session types (§ 3)

• A case study with N-body simulation to illustrate session programming for clusters (§ 4)

2 Session-based language design

2.1 Overview

As a language independent framework for communication-based programming, session types
can be applied to di↵erent programming languages and environments. Previous work on Ses-
sion Java (SJ) [5, 8] integrated sessions into the object-oriented programming paradigm as an

2
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extension of the Java language, and was applied to parallel programming [8]. Session types have
also been implemented in di↵erent languages such as OCaml, Haskell, F#, Scala and Python.
This section explains session types and their applications, focussing on an implementation of
sessions in the C language (Session C) as a parallel programming framework. Amongst all
these di↵erent incarnations of session types, the key idea remains unchanged. A session-based
system provides (1) a set of predefined primitives or interfaces for session communication and
(2) a session typing system which can verify, at compile time, that each program conforms to
its session type. Once the programs are type checked, they run correctly without deadlock nor
communication errors.

2.2 Multiparty session programming

Session C [9,17] implements a generalised session type theory, multiparty session types (MPST)
[4]. The MPST theory extends the original binary session types [3] by describing communi-
cations across multiple participants in the form of global protocols. Our development uses a
Java-like protocol description language Scribble [1, 12] for describing the multiparty session
types. Figure 5 explains two design flows of Session C programming. In the type checking
approach, the programmer writes a global protocol starting from the keyword protocol and the
protocol name. In the first box of Figure 5, the protocol named as P contains one communication
with a value typed by int from participant A to participant B. For Session C implementation,
the programmer uses the endpoint protocol generated by the projection algorithm in Scribble.
For example, the above global protocol is projected to A to obtain int to B (as in the second
box) and to B to obtain int from A. Each endpoint protocol gives a template for developing safe
code for each participant and as a basis for static verification. Since we started from a cor-
rect global protocol, if endpoint programs (in the third box) conform to the induced endpoint
protocols, it automatically ensures deadlock-free, well-matched interactions. This endpoint
projection approach is particularly useful when many participants are communicating under
complex communication topologies. Due to space limitation, this paper omits the full defi-
nition of global protocols, and will explain our framework and examples using only endpoint
protocols introduced in the next subsection.

Define global protocol

in Scribble

protocol P

{int from A to B}

Project into

endpoint protocol

protocol P at A

{int to B}

Implement program

int main() {

calc(buf(buf, cnt);

send_int(B, 42); }

Static type checking

Check implementation
conforms with endpoint
protocol at compile time

Generate MPI code

int main() { /*insert code*/

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Implement program

int main() { calc(buf, cnt);

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Code generation approach

Type checking approach

Figure 5: Session C design flows.

2.3 Protocols for session communications

The endpoint protocols include types for basic message-passing and for capturing control flow
patterns. We use the endpoint protocol description derived from Scribble to algorithmically
specify high-level communication of distributed parallel programs as a library of network com-

3
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munications. A protocol abstracts away the contents but keeps the high level structures of
communications as a series of type primitives.

The syntax of Scribble is described in details in [1,12], and can be categorised to three types
of operations: message-passing, choice and iteration.

Message passing. It represents that messages (or data) being communicated from one process
to another; in the language it is denoted by the statements datatype to P1 or datatype from

P0 which stands for sending/receiving data of datatype to the participant identified by P0/P1
respectively. Notice that the protocol does not specify the value being sent/received, but
instead designate the datatype (which could be primitive types such as int or composite types),
indicating its nature as a high-level abstraction of communication.

Choice. It allows a communication to exhibit di↵erent behavioural flows in a program. We
denote a choice by a pair of primitives, choice from and choice to, meaning a distributed choice
receiver and choice maker, respectively. A choice maker first decides a branch to take, identified
by its label, and executes its associated block of statements. The chosen label is sent to the
choice receiver, which looks up the label in its choices and execute the its associated block of
statements. This ensures the two processes are synchronised in terms of the choice taken.

Iteration. It can represent repetitive communication patterns. We represent recursion by the
rec primitive (short for recursion), followed by the block of statements to be repeated, enclosed
by braces. The operation does not require communication as it is a local recursion. However two
communicating processes have to ensure both of their endpoint protocols contains recursion,
otherwise their protocols will not be compatible.

2.4 Session C

We present two approaches to session programming in C, using the Session C framework.
The first approach (§ 2.4.1) is by type checking of user written code, using a simple session
programming API we provided. The second approach (§ 2.4.2) is by MPI code generation from
protocols.

2.4.1 Type checking approach

In the type checking approach, a user implements a parallel program using the simple API
provided by the library, following communication protocols stipulated in Scribble. Once a
program is complete, the type checker verifies that the program code matches that of the
endpoint protocol description in Scribble to ensure that the program is safe. The core runtime
API corresponds the endpoint protocol as described below.

Message passing primitives in Session C are written as send_datatype(participant, data) for mes-
sage send, which is datatype to participant in the protocol, and recv_datatype(participant, &data) for
message receive (datatype from participant in the protocol).

Choice in Session C is a combination of ordinary C control-flow syntax and session primi-
tives. For a choice maker, each if-then or if-else block in a session-typed choice starts with
outbranch(participant, branchLabel) to mark the beginning of a choice. inbranch(participant, &branchLabel)

is a choice receiver, used as the argument of a switch-case statement, and each case-block is
distinguished by the branchLabel corresponding to a choice in the choice from block in the protocol.

Iteration in Session C corresponds to while loops in C. As no communication is required, the
implementation simply repeats a block of code consisting of above session primitives in a rec

recursion block.

4
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2.4.2 Code generation approach

In the code generation approach, given a Scribble protocol, we generate an MPI parallel pro-
gram skeleton. The program skeleton contains all the MPI code needed, the user inserts code
that performs computation on the input data (e.g. for scientific calculation) between the MPI
primitives, completing the program.

This approach is part of a larger extension of the Scribble language to support param-
eterised session types [18]. The extension, Parameterised Scribble, or Pabble, uses indices to
parameterise participants. Participants can be defined and accessed in an array-like notation, in
order to denote logical groupings of related participants. For example, a parallel algorithm that
uses many parallel workers, can define a group of participants using role participant[1..N], and a
pipeline of message passing is written in Pabble as datatype from participant[i:1..N-1] to participant[i+1].
Pabble protocols can be written once, and a protocol with di↵erent number of participants can
be instantiated by changing the value of N. MPI code generated from Pabble protocols can also
take advantage of this feature and will be scalable over di↵erent number of processes.

These two approaches to session programming complement each other and cover di↵erent
use cases: critical applications can use the type checking approach to ensure that the written
program is communication and type safe; whereas scalable and parametric applications can
use the MPI code generation capability to create communication safe and type safe parallel
programs.

3 Advanced communication topologies for clusters

This section shows how session endpoint protocols introduced in § 2.3 can be used to specify
advanced, complex communications for clusters. Consider a heterogeneous cluster with multiple
kinds of acceleration hardware, such as GPUs or FPGAs, as Processing Elements (PEs). To
allow a safe and high performance collaborative computation on the cluster, we can describe
communications between PEs by our communication primitives. The PEs can be abstracted as
small computation functions with a basic interface for data input and result output, hence we
can easily describe high-level understanding of the program by the session types.

We list some widely used structured communication patterns that form the backbones of
implementations of parallel algorithms. These patterns were chosen because they exemplify
representative communication patterns used in clusters. Computation can interleave between
statements if no conflict in the data dependencies exists. The implementation follows the theory
of the optimisation for session types developed in [7], maximising overlapped messaging.

Node0in�1:
rec LOOP { // Repeat shifting ring

datatype to Node[i+1]; // Next

datatype from Node[i-1]; // Prev

LOOP }

Noden:
rec LOOP { // Repeat shifting ring

datatype from Node[N-1]; // Prev

datatype to Node[0]; // Initial

LOOP }

Figure 6: Endpoint protocols of Ring.

Node2

Noden�1

3

Node1

2

Node0

1

Noden

5

4

Figure 7: n-node ring pipeline.

Ring topology. In a ring topology, as depicted in Figure 7, processes or PEs are arranged in
a pipeline, where the end of the node of the pipeline is connected to the initial node. Each of
the connections of the nodes is represented by an individual endpoint session. We use N-body
simulation as an example for ring topology. Note that the communication patterns between the
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middle n� 1 Nodes are identical. The endpoint protocol is shown in Listing 6.

Map-reduce pattern. Map-reduce is a common scatter-gather pattern used to parallelise
tasks that can be easily partitioned with few dependencies between the partitioned compu-
tations. The topology is shown in Figure 9. It combines the map pattern which partitions
and distributes data to parallel workers by a Master coordination node, and the reduce pat-
tern which collects and combines completed results from all parallel workers. At the end of a
map-reduce, the Master coordination node will have a copy of the final results combined into
a single datum. All Workers in a map-reduce topology share a simple communication pattern,
where they only interact with the Master coordination node. The Master node will have a
communication pattern containing all known Workers.

The MPI operation MPI_Alltoall is a communication-only instance of the map-reduce pattern
for all of the nodes, and only applies memory concatenation to the collected set of data. Our
endpoint types can represent this topology with more fine-grained primitives so that we can
obtain performance gain by communication-computation overlap. Although collective opera-
tions are more e�cient in cases where the implementations take advantage of the underlying
architectures, fine-grained primitives can more readily allow partial data-structures to be dis-
tributed, without the need to create new copies of data or calculating o↵sets (as in MPI_Alltoallv)
for transmission.

Master :
rec LOOP {
// Map phase

datatype to Worker[0], Worker[1];
// Reduce phase

datatype from Worker[0], Worker[1];
LOOP }

Worker0in :
rec LOOP {
datatype from Master; // Map phase

datatype to Master; // Reduce phase

LOOP }

Figure 8: Endpoint protocols of Map-reduce.

.

.

.
Master Master

Workern

Worker0

Figure 9: Map-reduce pattern.

4 Case study: N-body simulation
We implemented a 2-dimension N-body simulation using a ring topology. Each Worker is initially
assigned to a partition of the input data. In every round of the ring propagation, each Worker

receives a set of partitioned input from a neighbour, and pipelines the input data received from
the previous round to the other neighbour. This propagation continues until the set of particles
have been received by all Workers once. The algorithm will them perform one step of global
update to calculate the new positions of the particles after one time step of the simulation.
global protocol Nbody(role Worker[0..N] {
rec RING {
// Workers 0 to N: Worker[i] -> Worker[i+1]

int from Worker[i:1..N-1] to Worker[i+1];

// Data from Worker[N] -> Worker[0]

int from Worker[N] to Worker[0];

continue RING;
}

}

Listing 1: Protocol of N-body simulation.

protocol Nbody at Worker[0..N] {
rec RING {
// Workers 0 to N: Worker[i] -> Worker[i+1]

if Worker[i:1..N] int from Worker[i-1];
if Worker[i:0..N-1] int to Worker[i+1];
// Data from Worker[N] -> Worker[0]

if Worker[0] int from Worker[N];
if Worker[N] int to Worker[0];
continue RING;

}
}

Listing 2: Worker endpoint of N-body protocol.
Listing 1 is the protocol specification of the Worker participant of our N-body simulation

implementation, and Listing 2 is the automatically generated endpoint version, both written in
the syntax of parameterised Scribble.

6
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The block rec RING { } means recursion, and represents the repeating ring propagation in the
algorithm. The line if Worker[i:1..N] int from Worker[i-1] stands for receiving a message from my
previous neighbour Worker[i-1] with a message of type int, given that the current participant is
one of Worker[1], ..., or Worker[N]. The above protocol generates MPI code equivalent to below:
while (i++<N) {
if (1<=rank && rank<=N) MPI_Recv(rbuf, count, rank-1, MPI_INT, ..);

// (Sub-compute) Send received data to FPGA to process ..

if (0<=rank && rank<=N-1) MPI_Send(sbuf, count, rank+1, MPI_INT, ..);
if (rank==0) MPI_Recv(rbuf, count, N, MPI_INT, ..);

// (Sub-compute) Send received data to FPGA to process ..

if (rank==N) MPI_Send(sbuf, count, 0, MPI_INT, ..); }
// Perform global update after round

In MPI, all processes share the same source code and compiled program file, and they are
only distinguished at runtime by their assigned process id. The process id is stored in the rank

variable, and is available throughout the program to calculate participants addresses. In the
above MPI code, MPI_Send and MPI_Recv are the primitives in the MPI library to send and receive
data, and all the lines are guarded by a rank check. The variables sbuf and rbuf stand for send
bu↵er and receive bu↵er respectively, count is the number of elements to send/receive (i.e. array
size); MPI_INT is an MPI defined macro to indicate the data being sent/received is of type int.

The ring topology above is a simple yet powerful topology to distribute data between multi-
ple participants in small chunks. This allows more sub-computation and will potentially allow
more overlapping between communication and computation.

A Scribble protocol contains the interaction patterns (i.e. the session typing) for a set of
participants. It contains su�cient information to generate the MPI code shown above.

5 Related work and conclusion

ISP [15] and the distributed DAMPI [16] are formal dynamic verifiers which apply model-
checking techniques to standard MPI C source code to detect deadlocks using a test harness.
The tool exploits independence between thread actions to reduce the state space of possible
thread interleavings of an execution, and checks for potentially violating situations. TASS [13] is
another suite of tools for formal verification of MPI-based parallel programs by model-checking.
It constructs an abstract model of a given MPI program and uses symbolic execution to evaluate
the model, which is checked for a number of safety properties including potential deadlocks and
functional equivalences.

Compared to the test-based and model-checking approaches which may not be able to
cover all possible states of the model, the session type-based approach does not depend on
external testing or extraction of models from program code for safety. It encourages designing
communication-correct programs from the start, especially given the high level communication
structure which session types captures.

Recent works [2,6] used annotated MPI code and a software verifier to check the annotated
MPI code for compliance against session types. Their bottom-up approach focusses on accu-
rately representing MPI primitives and datatypes, whereas Session C treats them as high level
abstractions, often ignoring details such as send/receive data payload size.

There are a lot of challenges of verifying real-world MPI source code. MPI is a standard-
ised and platform independent message-passing API, the ubiquitous nature in supercomputing
makes it a convenient abstraction layer between software and underlying hardware. In cases such
as [11], it was used as a programming model for FPGAs. Hence its specification is intentionally
vague, in order to allow di↵erent implementations to take advantage of any platform-specific
optimisations. For example, there are a number of message transport modes such as the more
commonly used MPI_Send/Recv (standard mode) or MPI_Isend/Irecv (immediate/non-blocking). The
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modes do not correspond directly to standard synchronous or asynchronous communication
modes as one would expect. The di↵erent communication modes in MPI have subtle di↵erences
in their semantics. Care must be taken when making assumptions and correspondences with
high-level Scribble protocols. In addition to standard point-to-point communication primitives,
MPI also includes a huge number of primitives such as collective operators, topology construc-
tion and process management. A complete session type checking framework will be able to
consider these additional information to extract the session types from the source code. Com-
bining the flexibility of the host language (C) and the large number of MPI primitives makes
our approach more challenging compared to model checking based approaches. This is because
MPI model checkers work by observing the behaviours of the programs, which the same be-
haviour can be implemented in many di↵erent ways; whereas our type based approach requires
us to understand the consequences of each primitive because we construct a type model without
executing the program.

This paper is an extension of our previous works on Session C [9,10]. In both of the works,
parametric protocols and MPI code generation were not explored, this work is a short insight
into the benefits of using parametric protocols and potentials of integrating with specialised
accelerators, as the framework was evaluated on [14], a heterogeneous cluster with FPGAs.

6 Future work

At BEAT workshop, we plan to mainly present our progress on the first topic.

Integration with heterogeneous workflow. Immediate future works includes refining our
MPI code generation tool to better integrate with APIs of specialised hardware. This includes
streamlining the data received/sent from MPI directly into input/output bu↵ers of accelera-
tion hardware.Tighter integration between MPI and acceleration hardware will achieve better
overall performance of the heterogeneous system.

Type-directed optimisations. Extending our type checker to support inferring parame-
terised MPST from MPI code is a prerequisite for type-directed optimisations. Once parame-
terised MPST can be extract from MPI code, Session C framework can then extend the support
of asynchronous message optimisation [7] described in Session C framework [9] to expressive
parameterised protocols. The theoretical and engineering challenges of this future work will be
keeping type checking process decidable and representing most, if not all, of the common MPI
primitives in Scribble.

Assertion and error recovery. We propose the use of runtime assertions for session-based
programming in the Session C framework. Assertions are properties that are expected to hold
during runtime, and they can complement static type checking. Error recovery is also a topic
of interest, as large scale high performance parallel applications often need to gracefully han-
dle unexpected errors such as hardware failures. Type-based approach to error handling and
recovery will be explored as part of ongoing research on Scribble.
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under grant agreement number 257906, 287804 and 318521. The support by UK EPSRC, the
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Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types

Pierre-Malo Deniélou Nobuko Yoshida

Abstract Multiparty session types are a type system that can ensure the safety and liveness of distributed peers via
the global specification of their interactions. To construct a global specification from a set of distributed uncontrolled
behaviours, this paper explores the problem of fully characterising multiparty session types in terms of communicating
automata. We equip global and local session types with labelled transition systems (LTSs) that faithfully represent
asynchronous communications through unbounded buffered channels. Using the equivalence between the two LTSs,
we identify a class of communicating automata that exactly correspond to the projected local types. We exhibit an
algorithm to synthesise a global type from a collection of communicating automata. The key property of our findings
is the notion of multiparty compatibility which non-trivially extends the duality condition for binary session types.

1 Introduction
Over the last decade, session types [12, 18] have been studied as data types or functional types for communications
and distributed systems. A recent discovery by [4, 20], which establishes a Curry-Howard isomorphism between
binary session types and linear logics, confirms that session types and the notion of duality between type constructs
have canonical meanings. Multiparty session types [13, 2] were proposed as a major generalisation of binary
session types. They can enforce communication safety and deadlock-freedom for more than two peers thanks to
a choreographic specification (called global type) of the interaction. Global types are projected to end-point types
(local types), against which processes can be statically type-checked and verified to behave correctly.

The motivation of this paper comes from our practical experiences that, in many situations, even where we
start from the end-point projections of a choreography, we need to reconstruct a global type from distributed
specifications. End-point specifications are usually available, either through inference from the control flow, or
through existing service interfaces, and always in forms akin to individual communicating finite state machines. If
one knows the precise conditions under which a global type can be constructed (i.e. the conditions of synthesis),
not only the global safety property which multiparty session types ensure is guaranteed, but also the generated
global type can be used as a refinement and be integrated within the distributed system development life-cycle (see
[17]). This paper attempts to give the synthesis condition as a sound and complete characterisation of multiparty
session types with respect to Communicating Finite State Machines (CFSMs) [3]. CFSMs have been a well-
studied formalism for analysing distributed safety properties and are widely present in industry tools. They can be
seen as generalised end-point specifications, therefore an excellent target for a common comparison ground and
for synthesis. As explained below, to identify a complete set of CFSMs for synthesis, we first need to answer a
question – what is the canonical duality notion in multiparty session types?
Characterisation of binary session types as communicating automata The subclass which fully characterises
binary session types was actually proposed by Gouda, Manning and Yu in 1984 [11] in a pure communicating
automata context. Consider a simple business protocol between a Buyer and a Seller from the Buyer’s viewpoint:
Buyer sends the title of a book, Seller answers with a quote. If Buyer is satisfied by the quote, then he sends his
address and Seller sends back the delivery date; otherwise it retries the same conversation. This can be described
by the following session type:

µt.! title; ?quote; !{ ok :!addrs; ?date;end, retry : t } (1.1)

where the operator ! title denotes an output of the title, whereas ?quote denotes an input of a quote. The output
choice features the two options ok and retry and ; denotes sequencing. end represents the termination of the
session, and µt is recursion.

The simplicity and tractability of binary sessions come from the notion of duality in interactions [10]. The
interaction pattern of the Seller is fully given as the dual of the type in (1.1) (exchanging input ! and output ?
in the original type). When composing two parties, we only have to check they have mutually dual types, and
the resulting communication is guaranteed to be deadlock-free. Essentially the same characterisation is given in
communicating automata. Buyer and Seller’s session types are represented by the following two machines.

! /.-,()*+
!title

///.-,()*+
?quote

///.-,()*+!retry
ww

!ok
///.-,()*+

!addrs
///.-,()*+

?date
///.-,()*+���⌧⇠⇡⇢� ! /.-,()*+

?title
///.-,()*+

!quote
///.-,()*+?retry

ww
?ok

///.-,()*+
?addrs

///.-,()*+
!date

///.-,()*+���⌧⇠⇡⇢�
We can observe that these CFSMs satisfy three conditions. First, the communications are deterministic: messages
that are part of the same choice, ok and retry here, are distinct. Secondly, there is no mixed state (each state has
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either only sending actions or only receiving actions). Third, these two machines have compatible traces (i.e. dual):
the Seller machine can be defined by exchanging sending to receiving actions and vice versa. Breaking one of these
conditions allows deadlock situations and breaking one of the first two conditions makes the compatibility checking
undecidable [11, 19].

A! /.-,()*+ AB!quit //

AB!act ✏✏

/.-,()*+ AC!finish ///.-,()*+���⌧⇠⇡⇢�/.-,()*+ AC!commit
]]

B! /.-,()*+ AB?quit //

AB?act ✏✏

/.-,()*+ BC!save ///.-,()*+���⌧⇠⇡⇢�/.-,()*+ BC!sig
]]

C! /.-,()*+ BC?save //

BC?sig
✏✏

/.-,()*+ AC?finish ///.-,()*+���⌧⇠⇡⇢�/.-,()*+ AC?commit
]]

Commit

Multiparty compatibility This notion of duality is no longer effective in mul-
tiparty communications, where the whole conversation cannot be reconstructed
from only a single behaviour. To bypass the gap between binary and multiparty,
we take the synthesis approach, that is to find conditions which allow a global
choreography to be built from the local machine behaviour. Instead of directly try-
ing to decide whether the communications of a system will satisfy safety (which
is undecidable in the general case), inferring a global type guarantees the safety
as a direct consequence.
We give a simple example above to illustrate the problem. The Commit protocol
involves three machines: Alice A, Bob B and Carol C. A orders B to act or quit. If
act is sent, B sends a signal to C, and A sends a commitment to C and continues.
Otherwise B informs C to save the data and A gives the final notification to C to terminate the protocol.

This paper presents a decidable notion of multiparty compatibility as a generalisation of duality of binary ses-
sions, which in turns characterises a synthesis condition. The idea is to check the duality between each automaton
and the rest, up to the internal communications (1-bounded executions in the terminology of CFSMs, see § 2) that
the other machines will independently perform. For example, in the Commit example, to check the compatibility
of trace AB!quit AC!finish in A, we observe the dual trace AB?quit ·AC?finish from B and C executing the internal
communications between B and C such that BC!save ·BC?save. If this extended duality is valid for all the machines
from any 1-bounded reachable state, then they satisfy multiparty compatibility and can build a well-formed global
choreography.
Contributions and Outline Section 3 defines new labelled transition systems for global and local types that rep-
resent the abstract observable behaviour of typed processes. We prove that a global type behaves exactly as its
projected local types, and the same result between a single local type and its CFSMs interpretation. These corre-
spondences are the key to prove the main theorems. Section 4 defines multiparty compatibility, studies its safety
and liveness properties, gives an algorithm for the synthesis of global types from CFSMs, and proves the soundness
and completeness results between global types and CFSMs. Section 5 discusses related work and concludes. The
full proofs and applications of this work can be found in [17].

2 Communicating Finite State Machines
This section starts from some preliminary notations (following [6]). e is the empty word. A is a finite alphabet and
A⇤ is the set of all finite words over A. |x| is the length of a word x and x.y or xy the concatenation of two words x
and y. LetPbe a set of participants fixed throughout the paper: P✓ {A,B,C, . . . ,p,q, . . .}.

Definition 1 (CFSM). A communicating finite state machine is a finite transition system given by a 5-tuple M =
(Q,C,q0,A,d) where (1) Q is a finite set of states; (2) C = {pq 2P2 | p 6= q} is a set of channels; (3) q0 2 Q is
an initial state; (4) A is a finite alphabet of messages, and (5) d ✓ Q⇥ (C⇥ {!,?}⇥A)⇥Q is a finite set of
transitions.

In transitions, pq!a denotes the sending action of a from participant p to participant q, and pq?a denotes the
receiving action of a from p by q. `,` 0 range over actions and we define the subject of an action ` as the principal
in charge of it: subj(pq!a) = subj(qp?a) = p.

A state q 2 Q whose outgoing transitions are all labelled with sending (resp. receiving) actions is called a
sending (resp. receiving) state. A state q 2 Q which does not have any outgoing transition is called final. If q
has both sending and receiving outgoing transitions, q is called mixed. We say q is directed if it contains only
sending (resp. receiving) actions to (resp. from) the same (identical) participant. A path in M is a finite sequence
of q0, . . . ,qn (n� 1) such that (qi,` ,qi+1) 2 d (0 i n�1), and we write q `�!q0 if (q,` ,q0) 2 d. M is connected
if for every state q 6= q0, there is a path from q0 to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,d) is deterministic if for all states q 2 Q and all actions `, (q,` ,q0),(q,` ,q00) 2 d
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imply q0 = q00.1

Definition 2 (CS). A (communicating) system S is a tuple S =(Mp)p2P of CFSMs such that Mp =(Qp,C,q0p,A,dp).

For Mp = (Qp,C,q0p,A,dp), we define a configuration of S = (Mp)p2P to be a tuple s = (~q;~w) where~q = (qp)p2P
with qp 2 Qp and where ~w = (wpq)p 6=q2P with wpq 2 A⇤. The element ~q is called a control state and q 2 Qp is the
local state of machine Mp.

Definition 3 (reachable state). Let S be a communicating system. A configuration s0 = (~q0;~w0) is reachable from
another configuration s = (~q;~w) by the firing of the transition t, written s �! s0 or s t�!s0, if there exists a 2 A such
that either: (1) t = (qp,pq!a,q0p) 2 dp and (a) q0p0 = qp0 for all p0 6= p; and (b) w0pq = wpq.a and w0p0q0 = wp0q0 for all
p0q0 6= pq; or (2) t = (qq,pq?a,q0q) 2 dq and (a) q0p0 = qp0 for all p0 6= q; and (b) wpq = a.w0pq and w0p0q0 = wp0q0 for
all p0q0 6= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content a from a channel pq.
The reflexive and transitive closure of ! is !⇤. For a transition t = (s,` ,s0), we refer to ` by act(t). We write
s1

t1 · · · tm���!sm+1 for s1
t1�!s2 · · · tm�!sm+1 and use j to denote t1 · · · tm. We extend act to these sequences: act(t1 · · · tn) =

act(t1) · · ·act(tn).
The initial configuration of a system is s0 = (~q0;~e) with ~q0 = (q0p)p2P. A final configuration of the system is

s f = (~q;~e) with all qp 2~q final. A configuration s is reachable if s0!⇤ s and we define the reachable set of S as
RS(S) = {s | s0!⇤ s}. We define the traces of a system S to be Tr(S) = {act(j) | 9s 2 RS(S),s0

j�!s}.
We now define several properties about communicating systems and their configurations. These properties will

be used in § 4 to characterise the systems that correspond to multiparty session types. Let S be a communicating
system, t one of its transitions and s = (~q;~w) one of its configurations. The following definitions of configuration
properties follow [6, Definition 12].

1. s is stable if all its buffers are empty, i.e., ~w =~e.

2. s is a deadlock configuration if s is not final, and ~w =~e and each qp is a receiving state, i.e. all machines are
blocked, waiting for messages.

3. s is an orphan message configuration if all qp 2~q are final but ~w 6= /0, i.e. there is at least an orphan message
in a buffer.

4. s is an unspecified reception configuration if there exists q2Psuch that qq is a receiving state and (qq,pq?a,q0q)2
d implies that |wpq| > 0 and wpq 62 aA⇤, i.e qq is prevented from receiving any message from buffer pq.

A sequence of transitions is said to be k-bounded if no channel of any intermediate configuration si contains more
than k messages. We define the k-reachability set of S to be the largest subset RSk(S) of RS(S) within which each
configuration s can be reached by a k-bounded execution from s0. Note that, given a communicating system S, for
every integer k, the set RSk(S) is finite and computable. We say that a trace j is n-bound, written bound(j) = n, if
the number of send actions in j never exceeds the number of receive actions by n. We then define the equivalences:
(1) S⇡ S0 is 8j, j 2 Tr(S), j 2 Tr(S0); and (2) S⇡n S0 is 8j, bound(j) n) (j 2 Tr(S), j 2 Tr(S0)).

The following key properties will be examined throughout the paper as properties that multiparty session type
can enforce. They are undecidable in general CFSMs.

Definition 4 (safety and liveness). (1) A communicating system S is deadlock-free (resp. orphan message-free,
reception error-free) if for all s 2 RS(S), s is not a deadlock (resp. orphan message, unspecified reception) config-
uration. (2) S satisfies the liveness property if for all s 2 RS(S), there exists s�!⇤ s0 such that s0 is final.

3 Global and local types: the LTSs and translations
This section presents multiparty session types, our main object of study. For the syntax of types, we follow [2]
which is the most widely used syntax in the literature. We introduce two labelled transition systems, for local types
and for global types, and show the equivalence between local types and communicating automata.
Syntax A global type, written G,G0, .., describes the whole conversation scenario of a multiparty session as a

1“Deterministic” often means the same channel should carry a unique value, i.e. if (q,c!a,q0) 2 d and (q,c!a0,q00) 2 d then a = a0 and
q0 = q00. Here we follow a different definition [6] in order to represent branching type constructs.
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type signature, and a local type, written by T,T 0, .., type-abstract sessions from each end-point’s view. p,q, · · ·2 P
denote participants (see § 2 for conventions). The syntax of types is given as:

G ::= p! p0 : {a j.G j} j2J | µt.G | t | end

T ::= p?{ai.Ti}i2I | p!{ai.Ti}i2I | µt.T | t | end

a j 2 A corresponds to the usual message label in session type theory. We omit the mention of the carried types
from the syntax in this paper, as we are not directly concerned by typing processes. Global branching type p!
p0 : {a j.G j} j2J states that participant p can send a message with one of the ai labels to participant p0 and that
interactions described in G j follow. We require p 6= p0 to prevent self-sent messages and ai 6= ak for all i 6= k 2 J.
Recursive type µt.G is for recursive protocols, assuming that type variables (t, t0, . . . ) are guarded in the standard
way, i.e. they only occur under branchings. Type end represents session termination (often omitted). p 2 G means
that p appears in G.

Concerning local types, the branching type p?{ai.Ti}i2I specifies the reception of a message from p with a label
among the ai. The selection type p!{ai.Ti}i2I is its dual. The remaining type constructors are the same as global
types. When branching is a singleton, we write p! p0 : a.G0 for global, and p!a.T or p?a.T for local.
Projection The relation between global and local types is formalised by projection. Instead of the restricted
original projection [2], we use the extension with the merging operator ./ from [7]: it allows each branch of the
global type to actually contain different interaction patterns. The projection of G onto p (written G �p) is defined
as:

p! p0 : {a j.G j} j2J � q=

8
><

>:

p!{a j.G j � q} j2J q = p

p?{a j.G j � q} j2J q = p0

t j2JG j � q otherwise
(µt.G) � p=

(
µt.G � p G � p 6= t

end otherwise

t � p = t end � p = end

The mergeability relation ./ is the smallest congruence relation over local types such that:

8i 2 (K\ J).Ti ./ T 0i 8k 2 (K \ J),8 j 2 (J \K).ak 6= a j

p?{ak.Tk}k2K ./ p?{a j.T 0j} j2J

When T1 ./ T2 holds, we define the operationt as a partial commutative operator over two types such that T tT = T
for all types and that:
p?{ak.Tk}k2K tp?{a j.T 0j} j2J = p?({ak.(Tk tT 0k )}k2K\J [{ak.Tk}k2K\J [{a j.T 0j} j2J\K)

and homomorphic for other types (i.e. C [T1]tC [T2] = C [T1tT2] where C is a context for local types). We say that
G is well-formed if for all p 2P, G � p is defined.

Example 1 (Commit). The global type for the commit protocol in § 1 is:
µt.A! B :{act.B! C :{sig.A! C :commit.t}, quit.B! C :{save.A! C :finish.end}}
Then C’s local type is: µt.B?{sig.A?{commit.t}, save.A?{finish.end}}.

We now present labelled transition relations (LTS) for global and local types and their sound and complete
correspondence.
LTS over global types We first designate the observables (`,` 0, ...). We choose here to follow the definition of
actions for CFSMs where a label ` denotes the sending or the reception of a message of label a from p to p0:
` ::= pp0!a | pp0?a

In order to define an LTS for global types, we need to represent intermediate states in the execution. For this
reason, we introduce in the grammar of G the construct p p0 : j {ai.Gi}i2I to represent the fact that a j has been
sent but not yet received.

Definition 5 (LTS over global types). The relation G `�! G0 is defined as (subj(`) is defined in § 2):

[GR1] p! p0 : {ai.Gi}i2I
pp0!a j���! p p0 : j {ai.Gi}i2I ( j 2 I)

[GR2] p p0 : j {ai.Gi}i2I
pp0?a j����! G j [GR3] G[µt.G/t] `�! G0

µt.G `�! G0

[GR4]
8 j 2 I G j

`�! G0j p,q 62 subj(`)

p! q : {ai.Gi}i2I
`�! p! q : {ai.G0i}i2I

[GR5]
G j

`�! G0j q 62 subj(`) 8i 2 I \ j,G0i = Gi

p q : j {ai.Gi}i2I
`�! p q : j {ai.G0i}i2I
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[GR1] represents the emission of a message while [GR2] describes the reception of a message. [GR3] governs
recursive types. [GR4,5] define the asynchronous semantics of global types, where the syntactic order of messages
is enforced only for the participants that are involved. For example, when the participants of two consecutive
communications are disjoint, as in: G1 = A! B : a.C! D : b.end, we can observe the emission (and possibly the
reception) of b before the interactions of a (by [GR4]).

A more interesting example is: G2 = A! B : a.A! C : b.end. We write `1 = AB!a, `2 = AB?a, `3 = AC!b and
`4 = AC?b. The LTS allows the following three sequences:

G2
`1�! A B : a.A! C : b.end

`2�! A! C : b.end

`3�! A C : b.end

`4�! end

G2
`1�! A B : a.A! C : b.end

`3�! A B : a.A C : b.end

`2�! A C : b.end

`4�! end

G2
`1�! A B : a.A! C : b.end

`3�! A B : a.A C : b.end

`4�! A B : a.end

`2�! end

The last sequence is the most interesting: the sender A has to follow the syntactic order but the receiver C can get
the message b before B receives a. The respect of these constraints is enforced by the conditions p,q 62 subj(`) and
q 62 subj(`) in rules [GR4,5].
LTS over local types We define the LTS over local types. This is done in two steps, following the model of
CFSMs, where the semantics is given first for individual automata and then extended to communicating systems.
We use the same labels (`,` 0, ...) as the ones for CFSMs.

Definition 6 (LTS over local types). The relation T `�! T 0, for the local type of role p, is defined as:

[LR1] q!{ai.Ti}i2I
pq!ai���! Ti [LR2] q?{ai.Ti}i2I

qp?a j���! Tj [LR3] T [µt.T/t] `�! T 0

µt.T `�! T 0

The semantics of a local type follows the intuition that every action of the local type should obey the syntactic
order. We define the LTS for collections of local types.

Definition 7 (LTS over collections of local types). A configuration s = (~T ;~w) of a system of local types {Tp}p2P is
a pair with ~T = (Tp)p2P and ~w = (wpq)p 6=q2P with wpq 2A⇤. We then define the transition system for configurations.

For a configuration sT = (~T ;~w), the visible transitions of sT
`�! s0T = (~T 0;~w0) are defined as: (1) Tp

pq!a��! T 0p and (a)

T 0p0 = Tp0 for all p0 6= p; and (b) w0pq = wpq ·a and w0p0q0 = wp0q0 for all p0q0 6= pq; or (2) Tq
pq?a��! T 0q and (a) T 0p0 = Tp0

for all p0 6= q; and (b) wpq = a ·w0pq and w0p0q0 = wp0q0 for all p0q0 6= pq.

The semantics of local types is therefore defined over configurations, following the definition of the semantics
of CFSMs. wpq represents the FIFO queue at channel pq. We write Tr(G) to denote the set of the visible traces
that can be obtained by reducing G. Similarly for Tr(T ) and Tr(S). We extend the trace equivalences ⇡ and ⇡n in
§ 2 to global types and configurations of local types.

We now state the soundness and completeness of projection w.r.t. the LTSs.

Theorem 1 (soundness and completeness). 2 Let G be a global type with participantsPand let ~T = {G � p}p2P be
the local types projected from G. Then G⇡ (~T ;~e).

Local types and CFSMs Next we show how to algorithmically go from local types to CFSMs and back while
preserving the trace semantics. We start by translating local types into CFSMs.

Definition 8 (translation from local types to CFSMs). Write T 0 2 T if T 0 occurs in T . Let T0 be the local type
of participant p projected from G. The automaton corresponding to T0 is A(T0) = (Q,C,q0,A,d) where: (1)
Q = {T 0 | T 0 2 T0, T 0 6= t,T 0 6= µt.T}; (2) q0 = T 00 with T0 = µ~t.T 00 and T 00 2 Q; (3) C = {pq | p,q 2 G}; (4) A is
the set of {a 2 G}; and (5) d is defined as:

If T = p0!{a j.Tj} j2J 2 Q, then

(
(T,(pp0!a j),Tj) 2 d Tj 6= t

(T,(pp0!a j),T 0) 2 d Tj = t, µt

~
t.T 0 2 T0,T 0 2 Q

If T = p0?{a j.Tj} j2J 2 Q, then

(
(T,(p0p?a j),Tj) 2 d Tj 6= t

(T,(p0p?a j),T 0) 2 d Tj = t, µt

~
t.T 0 2 T0,T 0 2 Q

2The local type abstracts the behaviour of multiparty typed processes as proved in the subject reduction theorem in [13]. Hence this
theorem implies that processes typed by global type G by the typing system in [13, 2] follow the LTS of G.
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The definition says that the set of states Q are the suboccurrences of branching or selection or end in the local
type; the initial state q0 is the occurrence of (the recursion body of) T0; the channels and alphabets correspond to
those in T0; and the transition is defined from the state T to its body Tj with the action pp0!a j for the output and
pp0?a j for the input. If Tj is a recursive type variable t, it points the state of the body of the corresponding recursive
type. As an example, see C’s local type in Example 1 and its corresponding automaton in § 1.

Proposition 1 (local types to CFSMs). Assume Tp is a local type. Then A(Tp) is deterministic, directed and has
no mixed states.

We say that a CFSM is basic if it is deterministic, directed and has no mixed states. Any basic CFSM can be
translated into a local type.

Definition 9 (translation from a basic CFSM to a local type). From a basic Mp = (Q,C,q0,A,d), we define the
translation T(Mp) such that T(Mp) = Te(q0) where Tq̃(q) is defined as:

(1) Tq̃(q) = µtq.p0!{a j.T�q̃·q(q j)} j2J if (q,pp0!a j,q j) 2 d;

(2) Tq̃(q) = µtq.p0?{a j.T�q̃·q(q j)} j2J if (q,p0p?a j,q j) 2 d;

(3) T�q̃(q) = Te(q) = end if q is final; (4) T�q̃(q) = tqk if (q,` ,qk) 2 d and qk 2 q̃; and

(5) T�q̃(q) = Tq̃(q) otherwise.

Finally, we replace µt.T by T if t is not in T .

In Tq̃, q̃ records visited states; (1,2) translate the receiving and sending states to branching and selection types,
respectively; (3) translates the final state to end; and (4) is the case of a recursion: since qk was visited, ` is dropped
and replaced by the type variable.

The following proposition states that these translations preserve the semantics.

Proposition 2 (translations between CFSMs and local types). If a CFSM M is basic, then M ⇡ T(M). If T is a
local type, then T ⇡A(T ).

4 Completeness and synthesis
This section studies the synthesis and sound and complete characterisation of multiparty session types as com-
municating automata. A first idea would be to restrict basic CFSMs to the natural generalisation of half-duplex
systems [6, § 4.1.1], in which each pair of machines linked by two channels, one in each direction, communicates
in a half-duplex way. In this class, the safety properties of Definition 4 are however undecidable [6, Theorem 36].
We therefore need a stronger (and decidable) property to force basic CFSMs to behave as if they were the result of
a projection from global types.
Multiparty compatibility In the two machines case, there exists a sound and complete condition called com-
patible [11]. Let us define the isomorphism F : (C⇥ {!,?}⇥A)⇤ �! (C⇥ {!,?}⇥A)⇤ such that F( j?a) = j!a,
F( j!a) = j?a, F(e) = e, F(t1 · · · tn) = F(t1) · · ·F(tn). F exchanges a sending action with the corresponding receiv-
ing one and vice versa. The compatibility of two machines can be immediately defined as Tr(M1) = F(Tr(M2))
(i.e. the traces of M1 are exactly the set of dual traces of M2). The idea of the extension to the multiparty case comes
from the observation that from the viewpoint of the participant p, the rest of all the machines (Mq)q2P\p should
behave as if they were one CFSM which offers compatible traces F(Tr(Mp)), up to internal synchronisations (i.e.
1-bounded executions). Below we define a way to group CFSMs.

Definition 10 (Definition 37, [6]). Let Mi = (Qi,Ci,q0i,Ai,di). The associated CFSM of a system S = (M1, ..,Mn)
is M = (Q,C,q0,A,d) such that: Q = Q1⇥Q2⇥ · · ·⇥Qn, q0 = (q01, . . . ,q0n); C = [iCi; A = [iAi; and d is the
smallest relation for which: if (qi,` ,q0i) 2 di (1 i n), then ((q1, ...,qi, ...,qn),` ,(q1, ...,q0i, ...,qn)) 2 d.

We now define a notion of compatibility extended to more than two CFSMs. We say that j is an alternation if
j is an alternation of sending and corresponding receive actions (i.e. the action pq!a is immediately followed by
pq?a).
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Definition 11 (multiparty compatible system). A system S = (M1, ..,Mn) (n� 2) is multiparty compatible if for any
1-bounded reachable stable state s 2 RS1(S), for any sending action ` and for at least one receiving action ` from
s in Mi, there exists a sequence of transitions j · t from s in a CFSM corresponding to S�i = (M1, . . . ,Mi�1,Mi+1,
. . . ,Mn) where j is either empty or an alternation and ` = F(act(t)) and i 62 act(j) (i.e. j does not contain actions
to or from channel i).

The above definition states that for each Mi, the rest of machines S�i can produce the compatible (dual) actions
by executing alternations in S�i. From Mi, these intermediate alternations can be seen as non-observable internal
actions.

Example 2 (multiparty compatibility). As an example, we can test the multiparty compatibility property on the
commit example in § 1.We only detail here how to check the compatibility from the point of view of A. To check
the compatibility for the actions act(t1 · t2) = AB!quit ·AC!finish, the only possible action is F(act(t1)) = AB?quit
from B, then a 1-bounded execution is BC!save · BC?save, and F(act(t2)) = AC?finish from C. To check the
compatibility for the actions act(t3 · t4) = AB!act ·AC!commit, F(act(t3)) = AB?act from B, the 1-bound execution
is BC!sig ·BC?sig, and F(act(t4)) = AC?commit from C.

Remark 1. In Definition 11, we check the compatibility from any 1-bounded reachable stable state in the case one
branch is selected by different senders. Consider the following machines:

A!/.-,()*+ BA?a //

BA?b ✏✏

/.-,()*+ CA?c ///.-,()*+���⌧⇠⇡⇢�/.-,()*+ CA?d ///.-,()*+���⌧⇠⇡⇢� B!/.-,()*+ BA!a //

BA!b ✏✏

/.-,()*+���⌧⇠⇡⇢�/.-,()*+���⌧⇠⇡⇢� C!/.-,()*+ CA!c //

CA!d ✏✏

/.-,()*+���⌧⇠⇡⇢�/.-,()*+���⌧⇠⇡⇢� A0 !/.-,()*+ BA?a
((

BA?b
77/.-,()*+ CA?c //

CA?d %%JJ
JJ

JJ
/.-,()*+���⌧⇠⇡⇢�/.-,()*+���⌧⇠⇡⇢�

In A, B and C, each action in each machine has its dual but they do not satisfy multiparty compatibility. For example,
if BA!a ·BA?a is executed, CA!d does not have a dual action (hence they do not satisfy the safety properties). On
the other hand, the machines A0, B and C satisfy the multiparty compatibility.

Theorem 2. Assume S = (Mp)p2P is basic and multiparty compatible. Then S satisfies the three safety properties
in Definition 4. Further, if there exists at least one Mq which includes a final state, then S satisfies the liveness
property.

Proposition 3. If all the CFSMs Mp (p2P) are basic, there is an algorithm to check whether (Mp)p2P is multiparty
compatible.

The proof of Theorem 2 is non-trivial, using a detailed analysis of causal relations. The proof of Proposition 3
comes from the finiteness of RS1(S). See [17] for details.
Synthesis Below we state the lemma which will be crucial for the proof of synthesis and completeness. The
lemma comes from the intuition that the transitions of multiparty compatible systems are always permutations of
one-bounded executions as it is the case in multiparty session types. See [17] for the proof.

Lemma 1 (1-buffer equivalence). Suppose S1 and S2 are two basic and multiparty compatible communicating
systems such that S1 ⇡1 S2, then S1 ⇡ S2.

Theorem 3 (synthesis). Suppose S is a basic system and multiparty compatible. Then there is an algorithm which
successfully builds well-formed G such that S⇡ G if such G exists, and otherwise terminates.

Proof. We assume S = (Mp)p2P. The algorithm starts from the initial states of all machines (qp1 0, ...,qpn 0). We
take a pair of the initial states which is a sending state qp0 and a receiving state qq0 from p to q. We note that by
directness, if there are more than two pairs, the participants in two pairs are disjoint, and by [G4] in Definition
5, the order does not matter. We apply the algorithm with the invariant that all buffers are empty and that we
repeatedly pick up one pair such that qp (sending state) and qq (receiving state). We define G(q1, ...,qn) where
(qp,qq 2 {q1, ...,qn}) as follows:

• if (q1, ...,qn) has already been examined and if all participants have been involved since then (or the ones that
have not are in their final state), we set G(q1, ...,qn) to be tq1,...,qn . Otherwise, we select a pair sender/receiver
from two participants that have not been involved (and are not final) and go to the next step;

• otherwise, in qp, from machine p, we know that all the transitions are sending actions towards p0 (by direct-
edness), i.e. of the form (qp,pq!ai,qi) 2 dp for i 2 I.
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– we check that machine q is in a receiving state qq such that (qq,pq?a j,q0j) 2 dp0 with j 2 J and I ✓ J.
– we set µtq1,...,qn .p! q : {ai.G(q1, ...,qp qi, ...,qq q0i, ...,qn)}i2I (we replace qp and qq by qi and q0i,

respectively) and continue by recursive calls.
– if all sending states in q1, ...,qn become final, then we set G(q1, ...,qn) = end.

• we erase unnecessary µt if t 62 G.

Since the algorithm only explores 1-bounded executions, the reconstructed G satisfies G⇡1 S. By Theorem 1, we
know that G ⇡ ({G � p}p2P;~e). Hence, by Proposition 2, we have G ⇡ S0 where S0 is the communicating system
translated from the projected local types {G � p}p2P of G. By Lemma 1, S⇡ S0 and therefore S⇡ G. ⇤

The algorithm can generate the global type in Example 1 from CFSMs in § 1and the global type B! A{a : C!
A : {c : end,d : end},b : C! A : {c : end,d : end}} from A0, B and C in Remark 1. Note that B! A{a : C! A : {c :
end},b : C! A : {d : end}} generated by A, B and C in Remark 1 is not projectable, hence not well-formed.

With Theorems 1 and 2, and Proposition 2, we can now conclude:

Theorem 4 (soundness and completeness). Suppose S is basic and multiparty compatible. Then there exists G
such that S ⇡ G. Conversely, if G is well-formed, then there exists a basic and multiparty compatible system S
which satisfies the three safety properties in Definition 4 such that S⇡ G.

5 Conclusion and related work
This paper investigated the sound and complete characterisation of multiparty session types into CFSMs and devel-
oped a decidable synthesis algorithm from basic CFSMs. The main tool we used is a new extension to multiparty
interactions of the duality condition for binary session types, called multiparty compatibility. The basic condition
(coming from binary session types) and the multiparty compatibility property are a necessary and sufficient con-
dition to obtain safe global types. Our aim is to offer a duality notion which would be applicable to extend other
theoretical foundations such as the Curry-Howard correspondence with linear logics [4, 20] to multiparty commu-
nications. Basic multiparty compatible CFSMs also define one of the few non-trivial decidable subclass of CFSMs
which satisfy deadlock-freedom. The methods proposed here are palatable to a wide range of applications based
on choreography protocol models and more widely, finite state machines. Multiparty compatibility is applicable
for extending the synthesis algorithm to build more expressive graph-based global types (general global types [8])
which feature fork and join primitives [9].

Our previous work [8] presented the first translation from global and local types into CFSMs. It only analysed
the properties of the automata resulting from such a translation. The complete characterisation of global types
independently from the projected local types was left open, as was synthesis. This present paper closes this open
problem. There are a large number of paper that can be found in the literature about the synthesis of CFSMs.
See [16] for a summary of recent results. The main distinction with CFSM synthesis is, apart from the formal
setting (i.e. types), about the kind of the target specifications to be generated (global types in our case). Not only
our synthesis is concerned about trace properties (languages) like the standard synthesis of CFSMs (the problem
of the closed synthesis of CFSMs is usually defined as the construction from a regular language L of a machine
satisfying certain conditions related to buffer boundedness, deadlock-freedom and words swapping), but we also
generate concrete syntax or choreography descriptions as types of programs or software. Hence they are directly
applicable to programming languages and can be straightforwardly integrated into the existing frameworks that are
based on session types.

Within the context of multiparty session types, [15] first studied the reconstruction of a global type from its
projected local types up to asynchronous subtyping and [14] recently offers a typing system to synthesise global
types from local types. Our synthesis based on CFSMs is more general since CFSMs do not depend on the syntax.
For example, [15, 14] cannot treat the synthesis for A0, B and C in Remark 1. These works also do not study
the completeness (i.e. they build a global type from a set of projected local types (up to subtyping), and do not
investigate necessary and sufficient conditions to build a well-formed global type). A difficulty of the completeness
result is that it is generally unknown if the global type constructed by the synthesis can simulate executions with
arbitrary buffer bounds since the synthesis only directly looks at 1-bounded executions. In this paper, we proved
Lemma 1 and bridged this gap towards the complete characterisation. Recent work by [5, 1] focus on proving
the semantic correspondence between global and local descriptions (see [8] for more detailed comparison), but no
synthesis algorithm is studied.
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Towards static deadlock resolution

in the ⇡-calculus

Marco Giunti and António Ravara

CITI and DI-FCT, Universidade Nova de Lisboa, Portugal

Background. Session types allow a concise description of protocols by detailing
the sequence of messages involved in each particular run of the protocol [10, 11,
14]. Static analysis techniques based on session types discern concurrent pro-
grams that are type-safe, i. e., well-typed programs cannot go wrong in the sense
that they do not reach neither the usual data errors nor communication errors,
as those generated by two parallel programs waiting for an in input on the same
session channel, or sending in output on the same session channel.1

A drawback of most of these systems is accepting processes that exhibit var-
ious forms of deadlocks — although they guarantee type safety, they do not
guarantee deadlock-freedom. For that aim, several proposals appeared, guaran-
teeing progress by inspecting causality dependencies in the processes [2, 3, 15].
Not surprisingly, these systems reduce the set of typed processes, namely reject-
ing (as usual in static analysis, which is not complete) deadlock-free processes.

Aim of this work. Distributed programming is known to be very hard and one
makes mistakes by not taking into consideration all possible executions of the
code. Therefore, to assist in the software developing process, instead of simply
rejecting a process that may contain a resource self-holding deadlock (input and
output on the same channel occur in sequence in a given thread, an instance of
Wait For deadlocks [4, 12]), we devise an algorithm that produces a “fix” for
this kind of deadlocked processes.

This situation is easy to spot in a simple process, but it is not so obvious
when the two co-actions (input and output) occur far away from each other in the
code, or end up in the same thread due to reduction. Assisting the programmer
in finding and solving these errors may lead to spare time when debugging.

Contribution. Herein, we propose a first step towards a compromise solution to
the identified drawback: rather than require stronger conditions for the analysis
and type less processes, we devise a procedure that detects synchronisation er-
rors leading to self-holding deadlocked processes, while automatically generating
type-safe, deadlock-free, code that faithfully represents the intended protocol of
the original process, as described by the session types. The mechanism crucially
relies on the help of types to infer this kind of errors. Following the behaviour of
a process as specified by a session type environment, the algorithm uses a process
typing and transformation function that puts in parallel threaded sequences of
input/output in the same channels, releasing deadlocks.

1 The interested reader may have look at a recent overview [5].
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The framework is the standard ⇡-calculus (supporting session delegation as
the ⇡-calculus communication) equipped with the Giunti and Vasconcelos session
type system [8, 9]; other type-disciplines based on session [6, 11] and linear [13]
types can be embedded in the framework.

Further information. This procedure may help the software development pro-
cess: the typing algorithm detects a deadlock, but instead of rejecting the code,
fixes it by looking into the session types and producing new safe code that obeys
the protocols and is deadlock-free. The synthetised code can be submitted to
the programmer that decides if the ”fix makes sense”.

We implemented the algorithm (in Standard ML), and analysed several ex-
amples [1]. This work was presented at the Symposium on Trustworthy Global
Computing (TGC’13), being part of the post-proceedings [7].
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Distributed Governance with Scribble

Raymond Hu, Rumyana Neykova and Nobuko Yoshida

Imperial College London

Abstract

Scribble is a multiparty session-based specification language for modelling application-level
protocols. Scribble protocols enjoy safety and liveness properties such as deadlock-freedom
and progress between distributed endpoints. To use our language for describing choreo-
graphic communications in a large cyberinfrastucture for the oceanography, we have been
working with an NSF project, Ocean Observatories Initiative over four years. Our aim
is to identify a major class of communication patterns via their use cases, and specify
them in Scribble. We demonstrate our experiences that Scribble enables to easily specify
industrial-scale protocols, ensuring essential properties for distributed governance in dis-
tributed systems.

Note: The part of this paper is based on Kohei Honda’s last paper, Structuring Commu-
nication with Session Types, which will appear in the proceeding of Concurrent Objects
and Beyond. In the Beat workshop, we plan to give a tutorial of the updated Scribble and
demonstrations how we have integrated our tool to the OOI governance architectures.

1 Writing Protocols in Scribble

Session types describe a way, or a pattern, in which interactions can take place in sessions. Ses-
sion types have been called protocols for many years in network and other engineering disciplines
which need to treat such patterns. For this reason, and because session types are su�ciently
di↵erent in nature from data types, we know in sequential computing (although the former
share the key principle from data types as we shall discuss later), hereafter we often use the
term “protocols” instead of “session types” when discussing their use for programming.

One of the key ingredients of session-based programming is the use of protocols as an es-
sential element of design and programming, because a clear understanding of an interaction
scenario is an essential ingredient of communications programming. For this reason, one of the
key features of programming with sessions is a protocol description language, the language with
which engineers read and write their protocols. They are close to types in sequential program-
ming: like data and function types, there is a tight linkage to language primitive. Like data and
function types, protocols may be inferred from programs or declared by programmers so that
programs may be checked against them. A di↵erence is that a protocol describes interactions
for a session, and that, for this reason, each session involves a sequence of interactions (which
may not necessarily be contiguous, since interactions in other sessions or internal computation
may interleave).
A Simple Protocol. To illustrate how we can specify a protocol, we take a simple scenario,
and show how the corresponding protocol can be specified using an experimental protocol
description language we are developing, called Scribble [7, 11, 10] (the name comes from our
desire to create an e↵ective tool for architects, designers and developers alike to quickly and
accurately write down protocols).

A key feature of Scribble is that all of its constructs are fully founded on the formal theory
of multiparty session types, starting from the core language features for message passing, choice
and recursion [8, 1], to more advanced features, such as parallel [5], interrupts [2], sub-sessions
[4] and run-time monitoring [3], and studies relating session types to alternatives such as com-
municating automata [5]. The development of Scribble is a collaboration between researchers
and industry partners [10, 9]. Most of the examples presented in this section are supported
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1 type <ysd> "ListingFormat"

from "ListingFormat.ysd" as lf;

2

3 protocol ListResources(role client as cl,

role resource_registry as rr) {

4 request(resource:String) from cl to rr;

5 rec loop {

6 choice at rr {

7 response(element:lf) from rr

to cl;

8 continue loop;

9 } or {

10 completed() from rr to cl;

11 }}}

Figure 1: List Resources protocol

1 protocol ListResources

2 <type ListingFormat as lf>

3 (role client as cl,

4 role resource_registry as rr) {

5

6 request(resource:String) from cl to rr;

7 rec loop {

8 choice at rr {

9 response(element:lf) from rr

to cl;

10 continue loop;

11 } or {

12 completed() from rr to cl;

13 }}}

Figure 2: A refined List Resources protocol (1)

by the current working version of Scribble [11], with a few exceptions that we note as being
planned for future release.

The initial scenario we treat is called “List Resources”, where a Client obtains a list of
resources of some kind from a Resource Registry. This is a basic use case applicable to many
environments where a user may be provided with a variety of resources by the infrastructure, e.g.
remotely operable instruments or systems resources such as bandwidth. The scenario consists
of two steps:
Step 1: Client asks Registry to send her a resource list, specifying the kind of resources it is

interested in.
Step 2: Registry responds by sending the list of the resources of the kind specified, until the

list is exhausted.
It is a simple elaboration of a remote procedural call. Note, however, that Step 2 involves a
repetition of sending actions. This use case may be further elaborated in various ways, but this
simple version is su�cient for our first exercise.

Writing down a protocol goes through a natural flow, practised for decades in the networking
community. We first list the message formats, followed by the participating actors (and other
parameters). Then we scribble away the structure of the conversation between the actors. The
result for our mini use case is given in Figure 1.

Line 1 starts from importing an message type ListingFormat, specified in YAML (ysd), from
the external source (file) ListingFormat.ysd. This message type can then be referred to in this
Scribble protocol specification by the given alias lf. Message type imports allow Scribble to
be used in conjunction and orthogonally with externally defined message formats: here we are
using a YAML schema, but any data format given in a well-defined schema/type language may
be used as far as the protocol validator is notified. Data format is of course fundamental in
protocols to ensure interacting parties understand what the other is saying.

In Line 3, we give the name to the protocol, ListResources, followed by its parameters. The
parameters consist of the names of the two actors roles which participants can play, client

and resource registry, aliased as cl and rr (short names are often good for scribbling away
protocols). This completes the header of the protocol.

The remaining lines (Lines 4–11) constitute the protocol body, which describes the structured
flow of the conversation in a session. Line 4 is reminiscent of a method/function declaration
found in APIs and modules of high-level sequential programming languages: an interaction
signature is a symmetric, peer-to-peer version of the familiar notion of “interface” of functions
and objects. As such, Line 4 does not specify constraints on concrete values a message may
carry, but specifies only the type of an interaction. For this reason, we call the description in
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Line 4 as a whole, an interaction signature. Line 5 declares the recursion label loop that names
the recursion body starting from Line 6 and reaching Line 11. The recursion body consists of a
single choice statement.

Lines 7–8 and Line 10 are respectively two distinct branches of the choice, separated by or

on Line 9. In the first branch, Line 7 says that Registry sends a response message to Client,
with message content annotated as (list) element and typed as Format. Again we specify only
a sender, a receiver and a message signature. This is followed by Line 8, a recurrence denoted
by the continue keyword, which says that the protocol flow at this point returns to the start of
the recursion body labelled by loop, i.e. to Line 5.

The other branch consists of a single interaction, Line 10, where a completed message with
an empty payload is sent from Registry to Client, indicating the end of the list, i.e. the end of
the recursion – since there is no recurrence, the loop terminates if this branch is chosen. As
described in Step 2 above, at the level of the application logic, the repetition should terminate
only when all the resource data for the specified kind has been sent by Registry: our protocol
description again abstracts from exactly how this may be determined in the program logic
(although the protocol assertions we discuss later can constrain this behaviour in some way or
another). After this action, the flow exits the choice and the recursion, and (since no further
interactions are specified) the session terminates.
Elaborating Protocols. For protocols to assist computer software development, be it a newly
built system or an upgrade of an existing system, they had better be reusable, i.e. once you
author a protocol, it should be able to be used for many concrete applications. From this
viewpoint, the ListResources protocol in Figure 1 may not be fully satisfactory. In particular,
it works only for the message type defined in the specification by the concrete ListingFormat

YAML schema. Even if only one listing format is known now, new formats may arise later. Why
should we write di↵erent protocols for all di↵erent formats, given the structure of interactions
is identical? We use a basic technique from programming theory, parametrisation, to solve the
problem.

There are several di↵erent, and natural, ways we may employ parametericity in the protocol
of this example. The approach, supported in the current version of Scribble, is given in Figure 2.
Here, we directly abstract the message type as a parameter to the protocol. In Line 1, the
protocol has gotten an additional parameter, <type ListingFormat>, as well as dispensing with
the “import” statement. This additional parameter means, with the keyword <type>, that
ListingFormat (again aliased as Format) is now a type name to be instantiated each time this
protocol is instantiated as a whole into a run-time session. Later, in the response interaction
in Line 9, Registry is obliged to send the list elements according to the concrete type known at
run-time, while the Client should be ready to receive them. The protocol again gives a contract
among participants, while now flexibly catering for arbitrary data formats.
Nested protocols. Consider the protocol given in Figure 3. It has two actors, a Requester
and an Authority. In Lines 3, Requester sends a check message to query on whether a subject is
permitted to do an operation on a resource, carrying the identities of a subject and a resource,
the name of an operation, and the certificate of Requester (for authentication, possibly validated
via a separate protocol) in its payload. In Lines 4–10, Authority responds, saying the operation
is allowed or not, or else by saying other, to deal with cases when the answer cannot be delivered
for some reason, such as an unqualified Requester.

Now consider the following elaboration of our original “List Resources” use case:
Step 1: Client asks Resource Registry to send a resource list (as before).
Step 2: Registry checks if Client has su�cient privileges.
Step 3: If everything is fine, the Registry replies by a sequence of data for resources of the

specified kind to Client.
This use case incorporates a privilege check as part of the protocol, as an extension to the
original use case. Note this use case composes two previous use cases, by nesting a protocol
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1 protocol CheckPrivileges(

role requester as req,

role authority as au) {

2 check(subject:URI, resource:URI,

3 operation:String, certificate:String)

from req to au;

4 choice at au {

5 allowed() from au to req;

6 } or {

7 not_allowed(reason:String) from au

to req;

8 } or {

9 other(reason:String) from au to req;

10 }}

Figure 3: Check Privileges protocol

1 protocol RequestResponse(role Client as cl,

role Server as sr) {

2 choice at cl {

3 GET() from cl to sr;

4 choice at sr {

5 sc200(s:String) from sr to cl;

6 } or {

7 sc500(reason:String) from sr to cl;

8 ...

9 } or {

10 POST() from cl to sr;

11 ...

12 ...

13 }

Figure 4: A HTTP-like protocol extract

inside another protocol. Can we realise such composite use cases as a protocol?
In Figure 5, we show how such a composition is done in Scribble, by combining the previously

specified CheckPrivileges and ListResources (the Figure 1 version). In Line 6, we use the
introduces keyword to indicate that Registry will “introduce” a new actor, authority. After
this preparation, the CheckPrivileges protocol is launched (spawn) by Registry (at rr) in Line 7.
Note the arguments include Authority which has just been introduced, as well as Registry (who
will play the requester role in the spawned session). We call the nested CheckPrivileges session
spawned during the execution of the ListResources protocol a child session, or a sub-session,
of the parent ListResources session. The lifetime of a child session is, in the standard run-time
semantics [4], dependent on its parent (e.g. if a parent session aborts, its child session(s) should
also abort). Where such causal dependency is not desired, these unrelated protocols may well
be specified separately, to be instantiated into distinct sessions at run-time.

Returning to Figure 5, after the CheckPrivileges sub-session is carried out, Registry, now
knowing the qualification of Client for this query, responds to Client with either an ok or an
error message with the reason (a String payload). When ok, the remainder of the protocol is
the same as in Figure 1 (and also Figures 2). Note that the result of running CheckPrivileges

is likely to be related to whether ok or error is selected at the application logic but, at this
type level, we do not specify such detailed constraints.

2 Writing Programs with Sessions

We next take a brief look at how we can use the proposed concept of protocols and sessions
to implement clear and understandable communication programs, taking a Python implemen-
tation of the List Resources protocol from Figure 1 as an example. We cannot give a full
implementation in its entirety here, but we hope the reader can get the flavour.
Preliminaries. Our session-oriented programs are constructed using “socket” abstractions
that can be seen as standard TCP sockets generalised for multiparty messaging. Explicit
structuring of conversation flows makes the description of multiple flows of interactions within an
endpoint implementation clear with regards to the dependencies within each flow and between
flows. Since interactions in a session are ensured to never violate the underlying protocol,
either by static checking [8, 1] or through run-time monitoring (by protocol machines) [3], each
endpoint knows what kinds of messages are coming from which other participants at each stage
of a conversation.

To demonstrate the description of multiple conversation flows, our example implementa-
tion shall integrate the List Resources protocol with a separately specified HTTP-like request-
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1 import Authentication.CheckPrivilege as

CheckPrivilege;

2

3 protocol ListResources(role client as cl,

role resource_registry as rr) {

4 request(resource_kind:String,

5 type ListingFormat) from cl

to rr;

6 rr introduces au;

7 spawn CheckPrivileges(rr as requester,

au as authority)

at rr;

8 choice at rr {

9 ok() from rr to cl;

10 rec loop {

11 choice at rr {

12 response(list:ListingFormat) from rr

to cl;

13 continue loop;

14 } or {

15 completed() from rr to cl;}}

16 } or {

17 error(reason:String) from rr to cl;}}

Figure 5: A refined List Resources protocol (2)

response protocol (simply called Request-Response). We first give the relevant part of the
Scribble for Request-Response in Figure 4 before proceeding to the code. In the figure, “sc” in
e.g. sc200 stands for the “status code” of a message.
Program. We now consider a Python program that uses the ListResources and RequestResponse

protocols (the latter for transparently receiving user requests) in combination. The program
is an implementation of a service proxy that obtains data from the Registry on behalf of the
User. We call this endpoint program simply “Proxy” from now on. Proxy needs to carry out
two kinds of conversations:

1. As a Request-Response server, it will engage in sessions with Users, accepting the User
query and returning the results from the Registry.

2. As a List Resources client, it will engage in sessions with the Registry, passing on the
User query and receiving the list of resources following Figure 1.

Proxy will return the results to User in HTML format, in a similar manner to a standard CGI
application. The main Python code for Proxy related to implementing these sessions is given
in Figure 6.

In Line 1, Proxy (receives and) accepts an invitation to interact in the Request-Response
session with User. The proxy uri object represents Proxy as a network principal, and may
roughly be considered as a conversation programming counterpart to a TCP server socket.
Proxy can then accept an invitation through this interface, with respect to the RequestResponse

protocol, playing the role of Server to User. Specifying the protocol and role for this endpoint
prescribes the local programming interface for c1, by which Proxy will interact with User.

In Line 2, through c1, Proxy receives from User (denoted by its role name Client in the
protocol), a message msg. The basic attributes of a session message include op, the operation
name for the message (i.e. the message label or header), and the value array, the message
payload. In Line 3, we check if the operation of msg is GET. We assume that the kind of
resources is specified by the message value, parsed by the parse query function and the result
stored in resource kind.

This example demonstrates the interleaving of multiple sessions in a single application. Here
we introduce a second session in which Proxy now acts as client according to ListResources.
In Line 5, we initialises a new session, using the class named Conversation. When creating a
session, we specify the protocol name ListResources (taken to be the simplest version presented
earlier, in Figure 1). In Line 6, after initialisation, Proxy “joins” the session as the client role
specified in the protocol.

In Line 7, Proxy invites the remote registry uri principal to this newly created session (to
play the role resource registry). The method returns when an acknowledgement is returned
by the principal to accept the invitation. Now that both roles have joined, in Line 8, Proxy
sends to Registry (role name resource registry), a message with the request operation and the
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1 c1 = proxy_uri.accept("RequestResponse", "Server
")

2 msg = c1.receive("Client")
3 if msg.op == "GET":
4 resource_kind = parse_query(msg.value)
5 c2 = Conversation("ListResources")
6 c2.join("client")
7 registry_uri.invite(c2, "resource_registry")
8 c2.send("resource_registry", "request",

resource_kind)

20 def loop():
21 msg = c2.receive("resource_registry")
22 if msg.operator == "response":
23 # set the response string
24 loop()
25 elif msg.operator == "completed":
26 return
27 loop()
28 c1.send("Client", "sc200")
29 c2.close()
30 c1.close()

Figure 6: Conversation endpoint program for a service proxy program in Python (extract)

kind of resources it is interested in. Note the message format precisely follows the protocol.
The next part of the code gives a tail recursive routine for repeated data delivery, whose

flow exactly matches that in the ListResources protocol. Lines 20–26 define a function loop.
In its body, first in Line 21, the client receives a msg from Registry. Then we have two cases,
depending on the operation of the message:

• If the operation is response (Line 22), a HTML-formatted version of the original message
(which was specified in the protocol to have a YAML format) is appended to the string
(Line 23), and the recursion is enacted (Line 24).

• If the operation is completed, the recursion is terminated (Line 25).
Line 27 executes this recursive function, and Line 28 returns the HTML request to User. Finally,
Line 29-Line 30 close the sessions.

We have illustrated above a simple use of sessions in communications programming. The
use of sessions in programs makes it possible to build the application logic with a clear under-
standing on explicit conversation flows. These flows are clearly visible: by going through how
conversation channels are mentioned in a given program (the red part in Figure 6), one can
clearly capture these flows.

The resulting organisation of communication actions enable not only programs with a clear
presentation of interaction structures, but also static validation of conformance to the underly-
ing protocols through type checking; and its dynamic counterpart through finite state machine
based protocols monitors. In the latter (dynamic) validation, it is assumed that we can identify
the underlying session by inspecting a message, if that message belongs to a session. In this way
the runtime messages also get organised, dividing numerous message exchanges in distributed
computing environments into di↵erent chunks with a binding to underlying protocols. This is
how sessions structure communication-centred computing.

3 Using Scribble for End-to-end Cyberinfrastructure

Ocean Observatories Initiative [9], often abbreviated as OOI, is a large-scale NSF-funded project
to build a cyberinfrastructure for observing oceans in the United States and beyond, with
usage span of 30 years. It integrates real-time data acquisition, processing and data storage for
ocean research (e.g. sensor arrays, underwater gliders, high-resolution under-water cameras),
providing access for a wide ranging user community under di↵erent administrative domains.
It consists of multiple marine networks where we lay cables over a large area under the sea,
which are integrated by a distributed cyberinfrastructure. This cyberinfrastructure, called OOI
CI (CI for CyberInfrastructure), is itself a network, consisting of distributed infrastructural
services whose main sites are two large clouds but whose distributed components in the shape
of containers also reside all over its distributed sites residing in hundreds of universities and
marine institutions.
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A central features of the OOI CI is its end-to-end nature, in the sense that its design allows
and encourages scientists to register data (which often takes the form of real-time streaming
data from sensors over di↵erent time scales) and data products (which are derivatives from raw
data by application of models). Thus, in this system, multiple heterogeneous organisations and
individuals participate, run their software and we need to ensure a high-level quality of usage
One of the architectural decisions of OOI CI is to regulate the behaviours of heterogeneous
participants in the OOI CI by imposing high-level abstractions based on interaction patterns,
which are in turn regulated by high-level policies through runtime monitors. The catalogue of
interaction patterns will in turn assist developers to implement their distributed services with
ease and clarity. Thus we need a descriptive means to write down these interaction patterns
clearly and without ambiguity, use them for software development, and regulate communications
behaviour of participating endpoints at runtime through induced protocol machines, augmented
with regulation by policies on their basis. For the description of interaction patterns, the use
of session types is considered, building a framework to regulate interaction behaviour based
on policies on its basis. This policy-based regulation is called “governance” by the OOI CI
architects, centring on the notion of commitments [6]. To use session types as a basis of
regulating behaviour in this distributed computing platform, several technical challenges were
identified, which include (restricted to those proper to session types):

• Can we accurately describe interaction patterns which are and will potentially be used in
distributed applications in OOI CI?

• Can we ground them to programming? Can we help developers to build safe and robust
systems with ease?

• Can we have a simple and e�cient execution framework for these programs?
• Can we guarantee their communication safety at runtime? What would be a simplest
mechanism?

The research team on session types are contributing to the OOI CI development through the
following technical elements:

• A protocol description language, Scribble, and development/execution environments cen-
tring on this language.

• A tool chain for protocol validation, endpoint projection, FSM translations, APIs and
runtimes.

• Part of the monitor architecture based on the protocol machines (FSM) translated from
protocols.

The FSM translation is a direct application of the theory which links automata theory (com-
munication automata) and session types, recently introduced in [5], where a session type can
be directly translated into a communication automaton.

The development e↵orts are producing several interesting findings. For example, one of
the methods for facilitating the use of session types for developers who are not accustomed to
session types is to use the interface of the standard communication APIs such as RPC. These
libraries were independently developed in the OOI CI to support application development based
on traditional technologies: the idea is to replace them with distributed runtimes for session
types. What we found is that this approach, where we implement libraries using session prim-
itives, has rewarding practical merits in the tractability and transparency in engineering. For
instance, each library is now a short scripting code by using the underlying session machinery,
automatically monitored by the corresponding protocol. As one example, RPCs with diverse
signatures are now based on a single parametrised protocol, and its interactions are checked
by a generic monitor for general session types. This conversion is feasible because not even
a single line of application code needs be changed: the resulting behaviour is the same, we
can use the same interface file, with a formal foundation automatically assuring correctness of
interactions. The layer for typed sessions is called Conversation Layer in OOI CI. As well as
the extensive experiments on Conversation Layer itself, our development e↵orts are focusing on
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the governance functions to be realised on top of Conversation Layer.

Demonstrations

In the Beat Workshop, we plan to give a case-study-driven demonstration to outline how the
toolchain is integrated and used in the OOI infrastructure. We shall present the implementa-
tion of one of the main governance protocols, a negotiation protocol between an agent and a
management service for acquiring a resource. The request for permissions can be approved by
the management service or rejected based on the agent usage proposal. If rejected, the negotia-
tion (with a di↵erent proposal) continues until agreement is reached. First, we write the global
protocol in Scribble, emphasising errors that can be reported by the validation tool. Then we
show the projection facilities and how the local files are stored and integrated in the system.
Finally, we start the OOI services for agent and management, deployed on a separate machine
with the monitors in place. We show di↵erent fault implementations of the agent code and
observe how monitors are created, monitors are receiving events from the system, how errors
are detected and logged in the system.
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