
European Cooperation
		 in the field of Scientific

		 and Technical Research
		 - COST -

--
Secretariat

Brussels, 30 January 2012

Full proposal reference oc-2011-2-10054 for a COST new Action
Subject: Full proposal for a new COST Action:

BETTY: Behavioural Types for Reliable Large-Scale Software Systems

Proposer: Dr. Simon GAY
University of Glasgow
School of Computing Science
Sir Alwyn Williams Building
18 Lilybank Gardens
Glasgow - UK
Simon.Gay@glasgow.ac.uk

National Coordinator: [*]

Domain Committee: Information and Communication Technologies

[*] Will be completed by the COST Office

Open Call Full Proposal oc-2011-2-10054
Page 1/38

DRAFT
MEMORANDUM OF UNDERSTANDING

For the implementation of a European Concerted Research Action
designated as

COST Action

BETTY: Behavioural Types for Reliable Large-Scale Software Systems

The signatories to this "Memorandum of Understanding", declaring their common intention to
participate in the concerted Action referred to above and described in the "Technical Annex to the
Memorandum", have reached the following understanding:

1. The Action will be carried out in accordance with the provisions of document COST 299/06
"Rules and Procedures for Implementing COST Actions", or in any new document amending or
replacing it, the contents of which the Signatories are fully aware of.

2. The main objective of the Action is [*]

3. The economic dimension of the activities carried out under the Action has been estimated, on
the basis of information available during the planning of the Action, at [*] Euro [*] million in [*]
prices.

4. The Memorandum of Understanding will take effect on being signed by at least five Signatories.

5. The Memorandum of Understanding will remain in force for a period of years, calculated from
the date of the first meeting of the Management Committee, unless the duration of the Action is
modified according to the provisions of Chapter V of the document referred to in Point 1 above.

[*] Will be completed by the COST Office

Open Call Full Proposal oc-2011-2-10054
Page 2/38

A. ABSTRACT & KEYWORDS

A.1 ABSTRACT

Modern society is increasingly dependent on large-scale software systems that are distributed, collaborative

and communication-centred. Correctness and reliability of such systems depend on compatibility between

components and services that are newly developed or may already exist. The consequences of failure are

severe, including security breaches and unavailability of essential services. Current software development

technology is not well suited to producing these large-scale systems, because of the lack of high-level

structuring abstractions for complex communication behaviour.

This Action will use behavioural type theory as the basis for new foundations, programming languages, and

software development methods for communication-intensive distributed systems. Behavioural type theory

encompasses concepts such as interfaces, communication protocols, contracts, and choreography. As a

unifying structural principle it will transform the theory and practice of distributed software development.

The significance of behavioural types has been recognised world-wide during the last five years. European

researchers are internationally leading. There is an urgent need for European co-ordination to avoid

duplication of effort, facilitate interactions among research groups, and ensure that the field proceeds

efficiently from academic research to industrial practice. This Action will provide the co-ordination layer and

leverage the efforts of European researchers, to increase the competitiveness of the European software

industry.

A.2 Keywords

distributed software infrastructure, software development methodology, foundations of programming

languages, service-oriented computing, behavioural types

B. BACKGROUND

B.1 General background

Modern software systems operate on a large scale. They are distributed, collaborative and

communication-centred, and are an essential part of the technological infrastructure of society. Many critical

services are offered via the Internet and depend on other network technologies such as Clouds. These services

include commercial operations such as banking, e-commerce, social networking and document sharing

applications, as well as public-sector systems such as infrastructures for local, national and trans-national

e-governments, e-healthcare and e-science. They are long-lived and run continuously, constantly collecting

Open Call Full Proposal oc-2011-2-10054
Page 3/38

information and dynamically acquiring new functionalities, while network-aware devices that access these

services, including mobile phones and tablets, adapt dynamically to their environment.

Recent years have seen the development of a new paradigm for the development of distributed software

systems, based on the internalisation of the concept of a distributed service, often called service-oriented

computing. In this paradigm, the computational behaviour of a system is organised into a collection of

services, which run concurrently and interact with each other, instead of being organised into a collection of

functions which run sequentially. This collection of services implements another service. For example, a login

service for a popular web portal is usually implemented by multiple distributed components realising more

specialised functions, such as an external identity provider, a browser, an internal identity registry, and an

internal authentication service.

How can improper, undesired behaviour be prevented in complex and socially critical distributed applications?

Protocol incompatibilities, malicious resource usage, security breaches and deadlock/livelock can have

wide-ranging consequences, from temporary service outage to information leakage to exploitation of security

vulnerability by criminal organisations, affecting a large number of users.

In traditional sequential programming, the systematic and rigorous application of data types and type checking

has yielded huge improvements in software reliability and programmers' productivity. The pinnacles, so far, of

type theory in mainstream programming languages are the sophisticated generic type systems of Java and C#,

where programming abstractions are built in at a fundamental level. Data types abstract and specify the

behaviour of permittedoperations on data. Even if types are not used for static checking, they often play a

fundamental role in runtime checking (as in Python, a language widely used for server-side applications).

Because data types offer basic abstraction of programs' behaviour, cutting edge logical verification tools such

as Java Modelling Language (based on Java) and Spec# (based on C#) articulate their logical assertions for

programs by building on the type abstractions of the respective programming languages.

Thus data types offer an effective basis of programming and verification for sequential data processing. For

building distributed, service-oriented computing software, a corresponding structural view requires

behavioural types, which specify the permitted interaction within a distributed system. The behavioural type

of a service specifies its expected patterns of interaction using a simple, expressive type language, in a way

that can be used to determine automatically whether a service interacts correctly with other applications. At

present, although there is a significant body of theoretical work on behavioural types and a growing collection

of prototype programming language designs, it is not yet possible for industrial software developers to exploit

behavioural types in the design, analysis and implementation of service-oriented computing systems.

The goal of this Action is to transform the theory and practice of service-oriented software development by the

systematic application and unification of behavioural type systems. The result will be new foundations for

service-oriented systems, new programming languages whose designs are informed by behavioural types, new

program analysis tools based on behavioural types, and new software development methodologies based on

these foundations, languages and tools.

Open Call Full Proposal oc-2011-2-10054
Page 4/38

In order to achieve this goal, significant research challenges need be tackled.

 • How can mathematical theories of behavioural types be unified, capturing different aspects of software

behaviour at levels ranging from bare protocols to more refined properties such as security policies, and

together offering a consistent, comprehensive foundation for the large-scale distributed infrastructure

which constitutes global service-oriented computing?
• How can behavioural types be integrated into fully-fledged language designs, compilers and tools, both

as new production-level programming languages and as enhancements of widely used programming

languages, so that software developers can effectively structure their code around behavioural types?
• How can behavioural types be used in practice as a basis for specifying and verifying the correctness of

software components in large-scale, long-lived distributed systems, both at development time and at

runtime, so that effective validation of components and services is possible?

Recently there has been a rapid growth of activity in the field, and an accelerated expansion of the research

community. There is a danger that a proliferation of alternative and incompatible approaches will lead to

duplication of effort, hindering the transition from foundational theories and prototype programming

languages to industrial-strength tools and methodologies. There is therefore a need for direction and

co-ordination. On the basis of a large number of research groups and many national research projects, these

activities will reach a tipping point towards their practical world-wide adoption by having a supporting

structure within which to organise the community, with funding for strategic meetings and scientific

exchanges. A COST Action is an excellent mechanism for this purpose.

B.2 Current state of knowledge

B.2.1 Current best-practice in industry

Some of the better known existing large-scale distributed infrastructures include the backends of Amazon, Google and
Microsoft Windows Live. Widely-practised methods for building distributed services in such large-scale infrastructures
include:

 • Remote procedural call (RPC), or its object-oriented variant, remote method invocation (RMI). For
example, a major part of Google's backend is implemented in C++ with RPC, together with the
serialisation formats of Google Protocol Buffer.

• Web service technologies through HTTP/SOAP (Simple Object Access Protocol), which often use
WSDL (Web Service Decription Language, a simple interface language). While the shape of interactions
is essentially the same as RPC, all resources are accessible through HTTP, a single application-level
protocol.

• Messaging, which often uses messaging brokers, centring on a publish-subscribe model. This is based
on asynchronous message passing and is especially useful when rapid and reliable dissemination of data
is necessary.

Open Call Full Proposal oc-2011-2-10054
Page 5/38

Another traditional method for integrating distributed components is to have implicit data flow through shared
state. However, the explicit communication-based frameworks listed above have the merit that the
infrastructure is clearly divided into distributed components with explicit interfaces; this makes it easier to
export services, change service interfaces, and transplant a system into a new computing environment such as
clouds. For example, during the last decade Amazon converted all of the software components in its
infrastructure so that they are based on explict communication interfaces centring on RPC/RMI, HTTP/SOAP
and messaging. The framework Amazon has achieved is commercially known as SOA (Service Oriented
Architecture).

RPC, RMI and HTTP are all based on the request-reply interaction pattern, which is a distributed version of a
function call to data structures and objects. The restriction to the request-reply pattern causes several problems
when, like Amazon, one imposes strict communication interfaces among distributed components. These
problems include the lack of description or abstraction for overall interaction patterns (e.g. a sequence of
interactions constituting a workflow is divided into numerous request-reply interactions) and latency due to
the waiting time needed in request-reply. They are closely related to the lack of uniform programming
abstractions capturing, among others, the above three forms of communication interfaces and beyond, and the
lack of clean programming language support for distributed computing.

B.2.2 Production-level programming languages for building distributed services

In major programming languages usable for production-level application development, such as Java, C#, Python,
Javascript and C++, there is no language-level support for distributed communication except as libraries (APIs). An
exception is remote method invocation (RMI), which is part of the language specification in Java and C#, but this is one
of the lowest-level communication primitives. This lack of language-level support means that communication patterns
are not easily visible to the compiler or to program analysis tools. For example, implementing a login service requires a
complex sequence of RMIs on constituent services. If this sequence is represented only as a series of API calls, with no
explicitly-defined high-level structure, then programming errors are easy to make and difficult to detect.

The only relatively widely-used production-level programming language which centres on message passing is
Erlang, which is roughly based on Hewitt's actor model. The main programming-level abstraction is the queue,
which concerns only messages to a single actor. Another widely-used system, especially in scientific
computing, is MPI (Message-Passing Interface). MPI is provided as an API (procedure library) for standard
languages such as C and Fortran, and so it suffers from the lack of high-level abstractions mentioned above in
relation to RMI. Furthermore, the MPI libraries are tailored for typical computational patterns in scientific
number-crunching and are unsuitable for general-purpose distributed programming. Finally, although it is a
research programming language, Occam-Pi is highly efficient but is again essentially based on synchronous
handshake communication.

Recently Google has been developing two general-purpose programming languages based on its analysis of
internal large-scale distributed software development. The Go programming language (http://golang.org/) is a
system-level, garbage-collected, type-safe programming language which incorporates handshake
communication. It is intended as an advance from the C programming language. Dart (
http://www.dartlang.org/) is a class-based object-oriented language with pluggable static typing and with
actor-like queue-based message passing communication. It is intended as an advance from Javascript, and is
being developed as part of a large programming environment project. In both languages, communication is
provided by language primitives, not by libraries. The underlying communication model used by Dart, based
on asynchronous communication, is close to the lower-level communication model adopted in many languages
based on behavioural types (see below).

Go and Dart show that in the context of the development of large-scale distributed applications, engineers

Open Call Full Proposal oc-2011-2-10054
Page 6/38

http://golang.org/
http://www.dartlang.org/

have started to realise the need to treat communication seriously. But even in these latest programming
languages, there is no language-level abstraction or specification mechanism for communication patterns
beyond handshake or request-reply.

B.2.3 Origins of behavioural types

Types articulate computation in a given paradigm. The traditional notion of types offers abstractions for data, objects
and operations on them, which are the key building blocks of computation in traditional programming languages. The
basic form of behavioural types, specifying interaction patterns in distributed services, articulates the ways in which
interactions are programmed and performed. From this basis, it is possible to specify more refined behavioural types and
logical assertions. Thus behavioural types are not only a basis for verification, but also a way to organise computation in
service-oriented, distributed computing systems. By centring on interaction, behavioural types are often automatically
compositional. The strategy is to first verify whether or not the interactions of each service satisfy their behavioural
types. After that, the behavioural type of a composite service, built from interactions between components, can be
verified without re-examining the components.

Type theories for distributed computing systems are a new field largely initiated by the study of behavioural
types. They are built on the formal foundations provided by process calculi, such as ACP, CSP, CCS,
pi-calculus, and higher-order pi-calculus. Process calculi offer a rigorous mathematical basis upon which
communication behaviours of software systems are represented, reasoned about and analysed. Combined with
other formalisms such as Petri Nets, they offer a general framework in which to mathematically capture
diverse forms of interaction, rigorously and in a distilled form, including synchronous, asynchronous, untimed,
timed, and others.

For theories of behavioural types, process calculi with channel passing capability, starting from pi-calculus
and higher-order pi-calculus, play a central role. They offer a rich basis for behavioural types because their
tiny syntax (a fully expressive asynchronous version of the pi-calculus can be defined by a standard BNF-style
grammar in six lines) can nevertheless express fully the whole range of interactional behaviours realisable by
programming languages, thus serving as a rich basis for investigation.

However, calculi and programming languages differ in that the latter also need to offer programming
abstractions (structuring principles for software) and efficient executions, among other pragmatic concerns.
Calculi offer a basis upon which these ideas can be formally expressed and examined, but it is also necessary
to build a comprehensive programming framework which offers effective structuring principles and other
foundations for building distributed, service-oriented computation.

Research into behavioural types and the associated programming primitives has been addressing these
concerns.

B.2.4 State-of-the-art in behavioural types

Representative technical approaches to behavioural types include:

 • Types for sessions (session types), which are based on the idea that interactions among distributed
components and services can naturally be divided into multiple conversations (sessions), each with a
specific protocol. The division into sessions enables tractable type-abstraction, making it easy to specify
protocols and validate programs.

• Contracts for interactions, which give fine-grained specifications stipulating reciprocal responsibilities
among interacting parties, often using labelled transition relations. Contracts can be combined using

Open Call Full Proposal oc-2011-2-10054
Page 7/38

various algebraic operators to obtain larger contracts.
• Behavioural security specifications, where security properties are specified as behavioural types, often

elaborating simpler notions of behavioural types. This enables an explicit specification of information
flow as reciprocal responsibilities among communicating parties in a conversation, offering a uniform
framework to specify distinct security properties such as secure information flow and access control,
centring on types for interaction.

There are diverse sub-approaches in each domain: for example, conversation types offer an alternative way to
describe sessions, as a set of interactions inside a scope, giving an abstraction of interaction in a common
medium. There are also many notions of contract, capturing diverse behavioural properties. Note that contracts
differ from simply specifying (say) temporal logical formulae for interactions. They are specified as reciprocal
responsibilities among communicating parties, and this global form of contract can be related to individual
responsibilities by a process known as projection, which is also used in session types for more than two
participants.

Thus behavioural types and their associated theories offer a new shape of specification languages centring on
interactions and reciprocal responsibilities. But they also enjoy a rich linkage with traditional theories.
Contracts are closely related to existing temporal and modal logics, as well as their ramifications. The type
structure of a session type is related to an automaton for communicating systems, since it specifies a series of
actions among two or more parties. Furthermore, behavioural types give rise to the diversity of type structures
cultivated in logics and programming theories, such as polymorphism and dependent types.

All approaches to behavioural types have commonality in that they are closely associated with programming
primitives. This is also a key factor for the effective validation of programs against specifications given by
behavioural types because the programming primitives offer linkage between programs and type
specifications. For example, session types are associated with primitives to initiate a session, communicate
through sessions, receive through sessions, and so on. This linkage then leads to a type discipline (a method to
validate programs against given types), and its key properties such as principal typing and type/protocol safety
(i.e. interactions follow a stipulated protocol), is established. The development of type disciplines closely
follows that of traditional typed lambda-calculi and programming languages such as ML and Java. Contracts
and logical specifications can then offer richer specifications by elaborating the base type disciplines, which
may also make use of spatial localities and their composition for modular specifications.

Many of these studies were initiated in the context of the Sensoria project (Software Engineering for
Service-Oriented Overlay Computers), which ran from 2005 to 2010 as part of the EU FP6. The Sensoria
Consortium consisted of 14 universities, 1 research institute and 4 companies from 7 countries: Italy,
Germany, United Kingdom, Portugal, Denmark, Hungary and Poland. Several of its members are also
participants in this Action.

B.2.5 Programming languages and tool development based on behavioural types

These studies give a foundation for the design of new programming languages based on and supporting behavioural
types, and for an enhancement of traditional programming languages with behavioural types. From the development
viewpoint, the key merits of using behavioural types may be summarised as follows.

 • Clean and general structuring principles for implementing, composing and managing communicating
distributed systems (distributed services). Given the nature of distributed programming, this aspect
covers not only a source program for each endpoint but a configuration of many components, which may
be written in different programming languages.

Open Call Full Proposal oc-2011-2-10054
Page 8/38

• Suggestions for the design of execution machinery (runtime system) for programming languages for
distributed services, through the linkage between programming primitives and behavioural types.

• Simple and intuitive specifications of key properties, which are validated either statically (at compilation
time) or dynamically (at runtime), the latter enabling a change of specifications over time. Both static
and dynamic validation can make use of efficient algorithms whose correctness is established through
the underlying theories.

In recent years, several research projects have started to develop new prototype programming languages based
on behavioural types, as well as extensions to existing programming languages. In the latter thread, the
languages being extended include Java (the SJ project), ML, BPEL, Scala (the Session Scala project) and C.
Microsoft has developed the language Sing#, which uses elements of behavioural types (session types) for
systems level programming in the Singularity operating system.

Research prototype languages are often equipped with a full type checker, as well as a lightweight runtime
system. Reflecting their experimental nature, runtime and tool support is often elementary. However, through
their development, many important results have been obtained regarding, among others: programmability;
type checking and type inference algorithms; runtime design; integration of behavioural types with traditional
programming language constructs and their validation methods; dynamic validation mechanisms; and design
and development experience. Some of these experiments are being further developed to offer more robust
production-level support of safety assurance based on behavioural types, often associated with existing
frameworks and languages, such as SOA, BPEL, and messaging infrastructure.

B.3 Reasons for the Action

Society is becoming dependent on large-scale distributed software systems, and there is an urgent economic
and societal need for improved technologies and methodologies for designing, analysing and building such
systems. These technologies and methodologies must be based on a sound theoretical foundation. Many
foundational theories and technologies are in place, but delivering them to the software industry and achieving
the goal of more reliable large-scale distributed systems will require a co-ordinated effort to ensure a flow of
results from foundations to programming languages to applications.

Specific objectives of the Action, at the co-ordination level, include:

 • Developing a clear picture of where particular expertise is located, in order to be able to link problems
with solutions.

• Supporting short-term scientific missions, especially for PhD students and early-career researchers, in
order to facilitate the development of lasting research collaborations which can be supported by national
funding.

• Organising scientific meetings and workshops.
• Maximising the value of existing industrial collaborators by putting them into contact with a wider range

of participants in the Action.

The networking activities of the Action will result in a strengthened and consolidated European research
community with effective working practices to ensure that foundational research informs and is incorporated
into effective programming languages and tools, which are in turn delivered to the software industry for use in
practical projects.

Open Call Full Proposal oc-2011-2-10054
Page 9/38

B.4 Complementarity with other research programmes

The Action will co-ordinate research that is taking place in around 20 current nationally-funded projects in
various European countries.

Three current EU FP7 projects have concerns that are connected with those of this Action to some extent.

 • ANIKETOS (Secure Development of Trustworthy Composable Services, 2010 - 2014)

ANIKETOS has a very practical focus on the security of service-oriented systems. Its consortium does not
include any of the participants who have been involved in planning this Action. It is likely that the Action will
be able to offer appropriate theory to support some of the work of ANIKETOS; conversely, the industrial
members of the ANIKETOS consortium should be a good source of practical case studies and potential
application areas for the results of this Action. It will therefore be important to develop a relationship between
this Action and the ANIKETOS project.

 • ASCENS (Autonomic Service-Component Ensembles, 2010 - 2014)

The ASCENS project aims to design methodologies to build “ensembles” of components in which there is a
strong emphasis on both service-oriented architectures and a high degree of autonomy, self-awareness and
adaptability on the part of components. The project includes the development of theoretical foundations and
formal verification techniques, and these goals are very much in line with those of this Action. In particular,
there is a clear possibility of applying behavioural type theory to the application domains considered by
ASCENS. Some of the participants in this Action are also members of the ASCENS project. It will be useful
to build on this connection in order to develop mutually beneficial collaboration.

 • HATS (Highly Adaptable and Trustworthy Software using Formal Models, 2009 - 2013)

HATS also aims to improve the reliability of large-scale software systems. Its approach is to develop a
rigorous foundation for informal software engineering practices based around the concept of software product
families. Behavioural specification formalisms, and tools based on them are important aspects of this project,
but it contrasts with the approach of this Action: it does not propose behavioural types as a new structuring
concept for programs. Some members of the HATS consortium are participants in this Action, and this will be
helpful in understanding the results of HATS during the initial stages of this Action.

COST Action IC0901 (Rich Model Toolkit - An Infrastructure for Reliable Computer Systems, 2009 - 2013)
aims to improve the reliability of computer systems by developing new frameworks for automated system
analysis. In broad terms, the goal of improved reliability is similar to that of this Action. The difference is that
this Action has a strong focus on developing new programming languages, whereas COST IC0901 develops
external tools to be used with existing programming languages. Nevertheless, it will be useful to establish
contact with COST IC0901.

Open Call Full Proposal oc-2011-2-10054
Page 10/38

C. OBJECTIVES AND BENEFITS

C.1 Aim

The aim of the Action is to use behavioural type theory as a basis for improved programming languages and
tools for the implementation of reliable large-scale distributed software systems.

C.2 Objectives

The main objective of this Action is to develop the domain of certified software for global services, providing
languages and tools for automatically checking behavioural properties of concurrent and distributed software
systems, specified with simple yet expressive type languages. Successful research in this area will have a deep
and broad impact on the practice of software development, and on the scientific theories underlying our
understanding of distributed computing systems.

The Action has the following sub-objectives:

O1. Co-ordinate European research activity on the theory and application of behavioural type systems, and the
deployment of programming languages and tools based on them, organized into the following themes which
will each have a Working Group.

 • Theoretical Foundations
• Security
• Programming Languages
• Tools and Applications

O2. Build an effective working community of European researchers in this area, by means of the following
activities:

 • Regular meetings of the Management Committee and the Working Groups
• Annual workshops (following a successful workshop in April 2011)
• Training schools for PhD students and early-career researchers
• Short-term scientific missions between institutions, especially for PhD students and early-career

researchers
• Encourage the use of bi-national joint PhD programmes between institutions in the Action.
• Actively seeking to increase the membership of the Action

O3. Encourage the industrial adoption of advanced programming languages and tools, by working with
existing industrial contacts and developing new ones.

Open Call Full Proposal oc-2011-2-10054
Page 11/38

C.3 How networking within the Action will yield the objectives?

The scientific objectives will be achieved through close collaboration between the participants in the Action.
This will include exchange of PhD students and researchers through Short-Term Scientific Missions, and
annual workshops that will report on the latest research results and initiate new collaboration activities. The
Action will enable PhD students and early-career researchers to develop and share their expertise, and will
contribute to creating new connections between established researchers.

The following specific objectives, with quantitative targets where appropriate, are planned. The targets will be
used by the Management Committee to monitor the progress of the Action.

At Action level:

 1. The Action will involve at least 36 academic and research institutions in 14 countries (30 institutions in
12 countries have already expressed interest in this Action).

2. The activities of the Action will include participation by at least 9 industrial collaborators (6 companies
have already expressed interest) and a large-scale academic development project. Several of the
industrial collaborators are actively engaged in the deployment of behavioural types technologies in
their development projects.

3. At least 6 collaborative, transnational projects on specific topics relating to the Action will be submitted
to national and European programmes.

4. Management Committee meetings will be held every 6 months.
5. A project website listing upcoming and past activities, paper abstracts and presentations will be

prepared by the Action participants.
6. There will be an annual workshop which serves as a meeting for all Action participants and as a

peer-reviewed symposium.
7. There will be a total of at least 100 publications in international peer reviewed journals and conference

proceedings as a result of the scientific projects and annual workshops of the Action.
8. There will be at least 120 Short-Term Scientific Missions within the Action.
9. There will be a final report that describes the outcomes and successes of the Action.

At the level of Working Groups:

 1. Working Group meetings will be held annually, in conjunction with the annual workshops.
2. Each Working Group will produce a state-of-the-art report during the first year of the Action, and

thereafter an annual progress report.
3. Working groups will organise special sessions, for example tutorials or focussed discussion meetings, at

international conferences.

C.4 Potential impact of the Action

This Action will co-ordinate European research in the field of behavioural types for concurrent and distributed
software systems. It will facilitate collaboration and knowledge exchange between research centres across
Europe, thus maximising the benefits of various national research programmes. This in turn will consolidate
the internationally leading position of the European research community in this area.

The software industry (including the open source community), for which programming communication and

Open Call Full Proposal oc-2011-2-10054
Page 12/38

concurrency is one of the largest challenges at present and in the near future, will benefit from improved
theories, programming languages, methodologies and tools, which will make it easier to develop correct and
safety-assured software systems that rely on concurrency, distribution and communication. This benefit will
be seen at a range of scales, from single applications running on multi-core chips through to global
service-oriented systems.

Teaching programmes at the participating institutions will benefit from the possibility of offering advanced
courses based on the latest research in the topics of the Action. This includes the potential for academic staff
to deliver courses at other institutions, based on contacts developed through the Action and taking advantage
of existing academic exchange schemes such as Erasmus.

Society will benefit from increased reliability of the essential technological infrastructure represented by
concurrent and distributed computing systems.

C.5 Target groups/end users

The benefits of the Action, described in the previous section, will be felt by the following groups and end
users.

 • The scientific community
• The software industry
• Society as a whole

This proposal has been prepared by members of the scientific community, in consultation with representatives
of the software industry who are already actively involved in collaborative projects with participants in the
Action.

D. SCIENTIFIC PROGRAMME

D.1 Scientific focus

The following specific aims provide a focus for research aimed at addressing the challenges presented by
large-scale distributed software systems.

 • Develop further theories of behavioural types so that behavioural types wich treat different properties
(such as interaction patterns, safety, liveness, information flow) can be uniformly specified, integrated
and assured.

• Develop meta-theories of behavioural types, enabling description of the features and relationships of a
range of theories without duplication of effort.

• Extend behavioural type theory with quantitative features, to allow specification and analysis of
non-functional properties such as response time or resource cost, giving a uniform basis for policy
specifications and enforcement including service-level agreements.

• Further develop theoretical and practical understanding of sessions, roles and relationships, generalising
from an identity-based view to a role-based view of the behaviour of session participants, so that theories
can offer solid foundations of a broad range of programming language methodologies.

Open Call Full Proposal oc-2011-2-10054
Page 13/38

• Develop theories, tools and methodologies for the specification and implementation of fault tolerance
and error recovery, which are essential in service-oriented distributed systems.

• Further develop theories, programming methodologies and tools based on choreography, orchestration
and global types, to specify, analyse and assure properties of the collective interaction among software
components.

• Develop theories and tools for the analysis of fairness and liveness properties in service-oriented
systems.

• Develop theories and tools for the integrated specifications of security properties including secure
information flow in a broad sense, and access control based on behavioural types, so that it enables
effective runtime verifications.

• Design, develop and examine the dynamic runtime enforcement mechanism for behavioural types, so
that we can specify new properties for distributed services at runtime and they can be enforced, with a
formal assurance coming from theories of behavioural types.

• Develop mechanisms for negotiation, adaptation, extension and evolution of behavioural contracts and
policies within long-lived environments for service-oriented software.

• Develop new production-level programming languages and programming environments based on
behavioural types, building on the preceding experiments on prototype programming languages, with
formal support for safety assurance and with emphasis on efficiency and scalability.

• Improve support for service-oriented programming in traditional programming paradigms, in particular
object-oriented programming languages.

The Action is structured into four themes, each with a Working Group to co-ordinate its activity. These
themes are (1) Foundations, (2) Security, (3) Languages, (4) Tools & Applications. Most of the aims listed
above need to be addressed in relation to every theme, and the WGs will communicate to ensure that each
topic is treated in a consistent way across all themes. The specific tasks of each WG, described in Section D.2,
target these aims. Significant scientific innovations are expected through a close collaboration of the best
experts in the field, in unification of foundational theories and their transfer into practical technologies and
tools for software development.

D.2 Scientific work plan - methods and means

As mentioned above, the scientific work of the Action will be co-ordinated by four Working Groups. Each
WG will promote its theme, ensure consistency and avoid duplication of effort, and form links across themes
and with industry.

Working Group 1: Foundations

Communication-centred software and service-oriented computing raise new theoretical challenges, involving different
research fields and cultural experiences. One of the central issues is the need to specify and validate systems whose
components are developed and maintained by third parties who are not necessarily trustworthy, which are dynamically
searched and assembled, and which evolve in time. Another central point is the nature of the properties users and
administrators wish to ensure for such systems, which are often interactional, reciprocal and global in nature (e.g.
developers wish to build a distributed application whose individually developed components interact without deadlock;
or users wish to maintain fair and safe usage of a service as a whole).

These problems have been attacked on the basis of several different theories, mainly process algebras, logic

Open Call Full Proposal oc-2011-2-10054
Page 14/38

and type theory. The main issue of the WG is that of putting on the same footing apparently heterogeneous
aspects of software development and verification, including concurrent and distributed programming
disciplines, specification and verification of software components, static and dynamic checking of protocol
and policy compliance.

The concepts of session, conversation and choreography have emerged as structuring principles for concurrent
and distributed systems. Behavioural types merge ideas from process algebras and type theories, so that they
provide a common foundation for structured software development and automatic verification, both statically
and dynamically, which are well-suited to concurrent and dynamic systems. The tasks of this WG include:

 1. To develop the theory of behavioural types clarifying how abstract process descriptions should be used
as computational invariants and module interfaces.

2. To face the problem of expressivity of type languages w.r.t. safety, liveness and fairness of systems, in
the context of both theoretical calculi and programming languages, investigated by WG3 of this Action,
while keeping the effectiveness and efficiency of the verification procedures (including type systems)
through which we can ensure such properties.

3. To define a theory of quantitative behavioural types, viewed as an abstract operational model
accounting for non-functional aspects of the system's behaviour.

The present state of the art shows a plethora of formalisms, often sharing the same roots but with significant
theoretical differences. The WG will aim at developing a common formal framework, allowing for
comparison and study of different approaches currently developed by the participating teams. By focusing on
the conceptual and technical problems emerging in the activity of the other WGs, WG1 is aimed at the
integration and further development of different domain specific approaches, especially with respect to
qualitative and quantitative aspects of system behaviour, and the development of new solutions taking
advantage of their strengths in the respective domains of application.

Working Group 2: Security

Enforcement of security properties is an important application domain of behavioural types. In particular, analysis of
information flow, which is an essential aspect of both data confidentiality and data integrity and requires a dependency
analysis, can greatly benefit from the use of behavioural types, since these also allow for a direct description of the
causal dependencies in interprocess communication and the order in which data will flow between processes. From a
different viewpoint, instead of specifying safety properties for individual, disparate messages, their specifications
become much more amenable in terms of specifiability and effective validations when they are given based on protocols.

Applications of behavioural types to concrete case studies and development of type theories that target specific
application domains are among the concrete results and unifying themes of the Action. They are therefore also
the focus of this WG. The Action will achieve its objectives through the joint development of theoretical
foundations and tools.

The activities include:

 1. The development of type theories that make it possible to reason about security properties such as
secrecy, authenticity, confidentiality and integrity for communication protocols, and the identification
of other forms of security properties that are amenable to type-based analyses using new type theories.

2. The development of algorithmic techniques for type-based analyses of such security properties, for both
static and dynamic validations.

Open Call Full Proposal oc-2011-2-10054
Page 15/38

The type theories and resulting algorithmic techniques should apply both to mathematical models of
computation (such as process calculi) and to existing programming and specification languages.

The working group will build on experience gained from the following past successes of its experts:

 • leading major efforts in the development of type theories for security issues;
• developing specialized tools for reasoning using types to reason about security issues.

The Action is therefore in a unique position to develop type theories of this kind and to foster collaboration
within the community. It is important that WG2 coordinates its activities with the other WGs of the Action;
this will happen through joint meetings and via the involvement of working group members in other working
groups.

The infrastructure of WG2 will consist of a repository of type theories for security properties. These type
theories will be applied and validated by tool development and case studies within WG4.

Working Group 3: Languages

The study and development of behavioural type theories aims at the integration of behavioural types into mainstream
programming languages and at their use as a guideline to design new languages that incorporate them. The working
group focuses on research in which we develop theories, principles and key runtime mechanisms for programming with
behavioural type systems as intrinsic structures. Actual development of programming environments and tool chains
which can be used by developers is covered by WG4 described below. The Languages working group will pursue two
distinct lines of research, aimed at the integration of behavioural types in:

 1. Mainstream, general-purpose languages
2. Domain-specific languages.

Concerning mainstream languages, it is necessary to consider two orthogonal aspects, namely the
programming paradigm and the degree of integration of behavioural types within the languages.

Regarding the former, this WG will target different programming paradigms, including, but not restricted to,
object-oriented languages and functional languages. As programs are meant to manipulate data, of particular
interest to WG3 are the XML and the JSON data formats.

 • Object-oriented languages are relevant for their widespread adoption in the current development of
software, for the wealth and popularity of tools that are available, and because objects nicely fit a
distribution model to which behavioural types can be applied naturally.

• Functional languages are relevant for their qualities of being easily endowed with high-level
type-theoretic and concurrent extensions, for their natural support to parallelism, and since they permit
rapid prototyping.

• XML/JSON/YAML data formats are interesting for the role of XML and JSON as the de facto standard
exchange paradigms in distributed, service-oriented computing, and need to be integrated as part of
description languages for protocols and other global properties.

Within each of these programming paradigms, the WG will investigate the following, increasingly invasive
ways to integrate the support for behavioural types:

Open Call Full Proposal oc-2011-2-10054
Page 16/38

 • By means of explicit code annotations in the form of comments or pragma directives. In this way,
(fragments of) behavioural type disciplines can be plugged into existing languages without requiring
unreasonable changes to their syntax and semantics. Tools can then be developed for analysing and
processing explicitly annotated code, in a similar way to what currently happens with many IDEs for
program development. In order to minimise the amount of information provided by the programmer, it
may be desirable to confine the use of explicit annotations to APIs dedicated to communication and
synchronisation, and to devise suitable type inference techniques for automatically deriving type
information in code that uses the APIs.

• By means of syntax extensions to be handled by pre-processing. In this way, high-level programming
constructs (for communication, synchronisation, coordination) are more easily associated with high-level
type information than the corresponding implementations in terms of low-level communication
primitives.

• By means of conservative extensions of existing languages. Extensions of core research-oriented
languages such as, for object-oriented programming, Featherweight Java, will be considered first. Then,
results will be validated in fully-featured languages.

Regarding the first point, note that the applicability of behavioural types to traditional languages includes both
statically and dynamically typed languages; in the latter case, for example Python, through runtime
verification.

Concerning domain-specific languages (DSLs), the WG will follow two distinct research tracks:

 • The adoption of behavioural types within existing DSLs designed for application areas and use-cases to
which behavioural types naturally apply, such as service-oriented programming, distributed security
protocols, distributed queries for semi-structured data.

• The development of new domain specific languages explicitly targeted at exploiting the characteristics of
behavioural types and aimed at the coordination and/or orchestration of wide-area distributed services.

Working Group 4: Tools & Applications

This WG will co-ordinate work in two directions.

 1. The development of software tools including programming language environments, as a linkage
between behavioural type theories and development practice for large-scale distributed systems.

2. The organisation of case studies to apply theories, languages, methodologies and tools developed
throughout the Action, to the practice of large-scale software development, centring on the above
mentioned software tools.

The aim is to develop tools with which developers can build, analyse and maintain systems incorporating
behavioural types. They include analysis tools that are applicable to already running applications built with
standard languages and development methods e.g by automatically deriving and annotating code with type
information in communication APIs as described in WG3 above. They also include tools for extensions of
existing languages and new domain specific languages developed in WG3. Concrete examples of such
software tools include:

 • A concrete embodiment of developed programming principles as concrete programming environments.
This includes, if it is a new programming language, production-level language processors (parsers) and
runtime; or, if it is for existing programming languages, as APIs and runtime libraries. These

Open Call Full Proposal oc-2011-2-10054
Page 17/38

environments include bindings to major communication transports such as TCP, UDP, HTTP, AMQP
and 0MQ, as well as messaging formats such as XML, JSON and Google protocol buffer.

• A tool chain in which a developer can specify contracts for inter-component communications, project
such a contract onto each endpoint through projection algorithms, and, through multiple language
bindings, use these endpoint constraints to validate source code written in a concrete programming
language, to ensure that, when these components are executed and interact with each other, they conform
to the original contract.

• A complementary tool chain for regulating behaviours of distributed applications, which enables
specifications of behavioural constraints at various levels, from bare protocols to more complex policies.
This will generate data for runtime monitoring of the interaction behaviour of applications, in order to
check compliance with the specified contracts.

The central point of having these software tools is to make it possible for developers to effectively benefit
from the safety and liveness guarantees for the constructed software systems provided by the theories of
behavioral types without having to deal with the complexity of understanding the theories themselves.

Regarding point (2) above, we will first identify the main strengths and application areas of the tools
developed in research projects lead by members of the Action. This effort will produce a suite of case-studies
emphasising the benefits of the various tools, at the same time contrasting and comparing them. Afterwards,
we will organise use-case explorations, development/industrial experiments and feedback from industry,
through the contacts that have been cultivated by participants in the Action during their own nationally-funded
research projects during the last several years. Involving these development partners in the Action, via the
activities of this WG, will maximise the benefit for them and for the Action, by putting them into contact with
a broader group of researchers that will provide valuable feedback on each existing application and/or tool.
The programming languages developed or adapted by WG3, and the tools and software development
environments developed by this WG, will be channelled towards the industrial partners for trial in suitable
case studies and large-scale explorations. Conversely, the requirements of application domains such as
healthcare, financial services, e-science and development of large-scale distributed software infrastructure,
will be fed into the activities of all WGs in order to maintain a focus on the needs of end-users.

E. ORGANISATION

E.1 Coordination and organisation

The Action will be co-ordinated by the Management Committee (MC), which as usual will have a Chair, a
Vice-Chair and representatives from the participating countries. The scientific work of the Action will be
overseen by four Working Groups (WGs), as described in Sections D.1 and D.2. Each WG will have a
co-ordinator who will participate in the MC meetings in order to report on progress. There will also be a
website manager and a co-ordinator of Short-Term Scientific Missions (STSMs).

Management Committee

The main responsibilities of the MC are:

 • election of the Chair and Vice-Chair, and appointment of the WG co-ordinators, the website manager

Open Call Full Proposal oc-2011-2-10054
Page 18/38

and the STSM co-ordinator
• ensuring that the planned activities of the Action (MC meetings, WG meetings, STSMs, workshops,

training schools) take place in such a way as to meet the objectives of the Action
• producing the annual reports and final report of the Action
• ensuring that the activities of the WGs are co-ordinated
• ensuring that the scientific results of the Action are disseminated appropriately, including via the website

The MC will have an annual meeting, which will be part of the annual workshop of the Action (see below).
The website of the Action will have a discussion forum for the MC, which will be used for continuous
discussion of the progress, direction and activities of the Action. At half-year points, between the annual
meetings, the MC will have a tele-conference for more formal discussion of any necessary business.

Working Group Meetings

Each WG will use a continuous process of discussion, led by its co-ordinator, in order to achieve its objectives. This
discussion will take place in a forum on the Action's website, by email, and by Skype audio/video calls. Also, at the
annual workshop of the Action, there will be discussion sessions related to the theme of each WG, and a more formal
meeting of the members of each WG.

Workshops

There will be an annual workshop of the Action, at which all participants will meet to exchange ideas, report on progress
and plan further collaboration. The workshops will also be open to participation by any interested people.

Training Schools

The Action will organise two training schools, in Years 2 and 4. These will be aimed mainly at PhD students and junior
researchers. Courses will be contributed largely, but not exclusively, by participants in the Action.

Short-Term Scientific Missions

STSMs are an important part of the activity of the Action. They will consist of short visits, typically of one or two weeks
but exceptionally of longer duration, between participating sites. STSMs are primarily intended for PhD students and
early-career researchers to visit other research groups in order to acquire new expertise or to contribute their expertise to
particular projects. They will facilitate the exchange of ideas between participating institutions and will help PhD
students and early-career researchers to develop contacts and collaborators which will be of benefit to their later careers.

Website

The website of the Action will be set up at an early stage, and will be used extensively for discussion in a collection of
forum areas for the MC and each WG. The website will also be essential for dissemination of the results of the Action,
as described in Section H.

Milestones

Open Call Full Proposal oc-2011-2-10054
Page 19/38

The reports produced by the WGs and the MC, and the published material from the annual workshops and the training
schools, constitute a series of milestones for the Action. Specifically:

 • M1 (end of Year 1): State-of-the-art reports by each WG. First Annual Report by each WG. First Annual
Report of the Action. Published proceedings of the first workshop.

• M2 (end of Year 2): Second Annual Report by each WG. Second Annual Report of the Action.
Published proceedings of the second workshop. Published tutorial material from the first Training
School.

• M3 (end of Year 3): Third Annual Report by each WG. Third Annual Report of the Action. Published
proceedings of the third workshop.

• M4 (end of Year 4): Final report by each WG. Final report of the Action. Published proceedings of the
fourth workshop. Published tutorial material from the second Training School.

These milestones will enable the MC to monitor the progress of the Action towards the achievement of its
objectives, and to plan changes in the work programme if necessary.

E.2 Working Groups

The Action will have four Working Groups, which are described in Sections D.1 and D.2. A co-ordinator for
each WG will be appointed by the MC. Membership of the WGs will be determined by the interests of the
participants in the Action. It is expected that many participants will belong to more than one WG, and this will
help to ensure compatibility between the directions being taken by the WGs.

E.3 Liaison and interaction with other research programmes

The Action will liaise with the EU FP7 projects mentioned in Section B.4. In the case of ASCENS and HATS,
which have participants in common with the Action, it will be straightforward to establish contact and propose
exploratory joint meetings. In the case of ANIKETOS, an initial approach will be made by the Chair of the
Management Committee and the co-ordinators of the Working Groups. Representatives of those projects, as
well as others that may be identified during the course of the Action, will be invited to participate in relevant
meetings and workshops of the Action. It is expected that the greatest benefit of interaction with the projects
mentioned in Section B.4 will come from access to a wider range of practical case studies and scenarios.

The Action will also develop links with COST Action IC0901, also mentioned in Section B.4. The open and
extensible nature of COST Actions means that mutual participation in workshops and working groups should
be straightforward.

E.4 Gender balance and involvement of early-stage researchers

This COST Action will respect an appropriate gender balance in all its activities and the Management
Committee will place this as a standard item on all its MC agendas. The Action will also be committed to
considerably involve early-stage researchers. This item will also be placed as a standard item on all MC
agendas.

Open Call Full Proposal oc-2011-2-10054
Page 20/38

This COST Action will respect an appropriate gender balance in all its activities and the Management
Committee will place this as a standard item on all its MC agendas. The Action will also be committed to
considerably involve early-stage researchers. This item will also be placed as a standard item on all MC
agendas.

It is well known that computer science does not have a good gender balance. This applies to every level from
undergraduate courses through PhD students and junior researchers to university faculty members and senior
researchers. However, the scientific community proposing this Action has a better gender balance than
computer science as a whole. The list of experts contains 12 female members from a total of 64, i.e. just under
20%, which compares favourably with a typical ratio of 15% or less among the faculty members of many
university departments. These female members include early-stage researchers, mid-career scientists and
senior researchers/professors. There are also a significant number of female PhD students among the research
groups participating in the Action. Building on this strong initial position, the Action will ensure that female
participants are actively involved in all areas, including membership of the MC and the WGs, participation in
Short-Term Scientific Missions, presentation of results at the annual workshop, and participation in the
Training Schools as both lecturers and participants.

The list of experts also contains many early-stage researchers, and all of the research groups involved in the
Action have PhD students who are likely to become post-doctoral researchers during the Action. This Action
will ensure that early-career researchers have the opportunity to participate fully in scientific meetings
associated with the Action. In particular, short-term scientific missions will benefit early-career researchers.
Training schools organised by the Action will benefit PhD students and early-career researchers as
participants. Also, when appropriate, early-career researchers will be invited to present courses at training
schools, which will benefit their career development. Similarly, active involvement in the WGs and in
preparation of their annual reports will be valuable experience for early-career researchers.

F. TIMETABLE

The duration of the Action will be 4 years.

The Action will begin with a kick-off meeting at which the MC will be elected. The MC will appoint
co-ordinators of the WGs, and the website manager and STSM manager.

There will be an annual workshop for all participants in the Action: years 1, 2, 3, 4.

There will be two training schools, combined with the workshops in years 2 and 4.

There will be an annual meeting of the MC, and annual meetings of the WGs, combined with the annual
workshops. The format of a WG/MC meeting will be half a day for the WGs to meet for discussion and for a
business meeting, and half a day for the MC meeting (including the co-ordinators of the WGs).

Time (Years)
1 2 3 4

Kick-off Meeting *
MC & WG Meeting * * * *
Workshop * * * *
Training School * *

Open Call Full Proposal oc-2011-2-10054
Page 21/38

G. ECONOMIC DIMENSION

The following 12 COST countries have actively participated in the preparation of the Action or otherwise
indicated their interest: Denmark, France, Germany, Ireland, Italy, Netherlands, Poland, Portugal, Romania,
Serbia, Sweden, United Kingdom. On the basis of national estimates, the economic dimension of the activities
to be carried out under the Action has been estimated at 48 Million € for the total duration of the Action. This
estimate is valid under the assumption that all the countries mentioned above but no other countries will
participate in the Action. Any departure from this will change the total cost accordingly.

H. DISSEMINATION PLAN

H.1 Who?

The results of this COST Action will be disseminated to the following target audiences:

 • Participants in the COST Action.
• Researchers in related fields of computer science.
• Software developers within the area of large-scale distributed systems.
• Computing researchers and practitioners more generally.
• The general public with an interest in technology.

H.2 What?

For participants in the Action, the following dissemination methods will be used.

 • An internal, protected website with description of completed, current and future activities. This includes
working documents, publications, reports from workshops and information about grant applications
involving members of the Action

• An internet-based communication network for interaction between participants, with special focus on the
needs of PhD students and early-career researchers.

• Short-Term Scientific Missions by PhD students and early-career researchers within the Action.
• Two training schools for PhD students and early-career researchers.
• An annual workshop which serves as a meeting for all Action participants and as a peer-reviewed

symposium.
• Publications in international peer reviewed journals and conference proceedings as a result of the

scientific projects and annual workshops of the Action.
• Annual reports by the Working Groups and by the Management Committee.
• A final report that describes the outcomes and successes of the Action.

For researchers in related fields of computer science, the following dissemination methods will be used.

Open Call Full Proposal oc-2011-2-10054
Page 22/38

 • Publication of state-of-the-art reports, annual reports, case study reports, workshop proceedings,
software documentation, and the final report.

• A public website with general information about the Action as well as a repository of publications by the
Action.

• The annual workshops, and the two training schools, organised by the Action.
• Contributions to other national and international conferences and symposia in the form of tutorials and

satellite events.
• Articles in peer-reviewed scientific and technical journals and conferences.

For software developers within the area of large-scale distributed systems, the following dissemination
methods will be used.

 • Invitation to participate in trials of novel programming languages, tools and methodologies developed by
the Action.

• Release of open-source software tools for system analysis, based on the research carried out by the
Action.

• Encouraging PhD students within the Action to apply for internships with companies who may benefit
from software produced by the Action.

• A public website with general information about the Action as well as a repository of publications by the
Action.

For computing researchers and practitioners in general, the following dissemination methods will be used.

 • Posting of general information on the public website.
• Less technical articles in general computer science publications such as Communications of the ACM,

IEEE Spectrum, and magazines of national computing societies.
• Articles in publications by national funding agencies.

For the general public, the following dissemination methods will be used.

 • Articles in general science and technology publications.
• Participation in events aimed at public understanding of science.
• Posting of information and non-technical articles on the public website.

H.3 How?

The dissemination methods used within the Action will be used to present the research insights obtained.
Research publications are a traditional form of disseminating knowledge both within a specific research
community and to a wider research setting. Apart from this form of dissemination,

 • The website will have a public part that will be used to present published papers and to support stable
citation and the correct attribution of work done. This public part will disseminate knowledge to the
wider research community. A password-protected part of the website will allow for communication of
ongoing research within the Action in the form of online discussion fora as well as draft manuscripts.

Open Call Full Proposal oc-2011-2-10054
Page 23/38

• The annual workshop will act as a forum in which members of the Action as well as other researchers
can present their work.

• The exchange visits by PhD students will, when seem as a means of disseminating knowledge, serve to
increase knowledge of work in progress.

• The final report will disseminate the results of the Action to the community as a whole.

Open Call Full Proposal oc-2011-2-10054
Page 24/38

Part II - Additional Information (This part will not be element of the MoU)

Part II-A . LIST OF EXPERTS

Total number of participants 64
Gender balance: female 12 of 64 (18.75%)

COST Participants

 DE - Germany

Prof. Jakob REHOF
Fraunhofer Institute for Software and Systems
Engineering
Director
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Prof. Peter THIEMANN
Universität Freiburg
Institut für Informatik
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 DK - Denmark

Mr Morten MARQUARD
Exformatics A/S
Chief Technology Officer
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Marco CARBONE
IT University of Copenhagen
Programming, Logic and Semantics
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Thomas HILDEBRANDT
IT University of Copenhagen
Programming, Logic and Semantics
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Hans HUTTEL
University of Aalborg
Department of Computer Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 FR - France

Dr Giuseppe CASTAGNA
CNRS & Université Paris 7
PPS Laboratory
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Marco GIUNTI
École Polytechnique
Laboratoire d'informatique (LIX)
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Daniel HIRSCHKOFF
ENS de Lyon
LIP Laboratory
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Nils GESBERT
Grenoble INP – Ensimag
laboratoire d’informatique de Grenoble
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Damien POUS
INRIA Rhône-Alpes

Open Call Full Proposal oc-2011-2-10054
Page 25/38

SARDES
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr James LEIFER
INRIA Rocquencourt
INRIA-MSR
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Ilaria CASTELLANI
INRIA Sophia Antipolis Méditerranée
INDES
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Pierre-Loïc GAROCHE
Onera, Centre Midi-Pyrénées
TIS/DTIM/ISC
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Samir CHOUALI
Université de Franche-Comté
LIFC
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Sebti MOUELHI
Université de Franche-Comté
LIFC
 [Proposal Participant] [WG Member]
Expertise: ICT

 IE - Ireland

Prof. Matthew HENNESSY
Trinity College Dublin
School of Computer Science and Statistics
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 IT - Italy

Mr Cesare ACCOMAZZO
Etica s.r.l.
President
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Maria Grazia BUSCEMI
IMT Lucca Institute for Advanced Studies
Computer Science and Applications
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Gian Luca CATTANI
Maps S.p.A.
Software Engineer
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Mario BRAVETTI
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Elena GIACHINO
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Ivan LANESE
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Cosimo LANEVE
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Davide SANGIORGI
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Open Call Full Proposal oc-2011-2-10054
Page 26/38

Dr Gianluigi ZAVATTARO
Università di Bologna
Dipartimento di Scienze dell'Informazione
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Franco BARBANERA
Università di Catania
Dipartimento di Matematica e Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Lucia ACCIAI
Università di Firenze
Dipartimento di Sistemi e Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Michele BOREALE
Università di Firenze
Dipartimento di Sistemi e Informatica
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Roberto BRUNI
Università di Pisa
Dipartimento di Informatica
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Marco ALDINUCCI
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Viviana BONO
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Sara CAPECCHI
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Mario COPPO
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Ugo DE'LIGUORO
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Mariangiola DEZANI-CIANCAGLINI
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Luca PADOVANI
Università di Torino
Dipartimento di Informatica
 [Proposal Participant] [WG Member]
Expertise: ICT

 NL - Netherlands

Dr Peter WONG
Fredhopper
Research Software Engineer
 [Proposal Participant] [WG Member]
Expertise: ICT

 PL - Poland

Dr Pawel T WOJCIECHOWSKI
Poznan University of Technology
Institute of Computing Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Open Call Full Proposal oc-2011-2-10054
Page 27/38

 PT - Portugal

Dr Luís CAIRES
Universidade Nova de Lisboa
Departamento de Informática
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Carla FERREIRA
Universidade Nova de Lisboa
Departamento de Informática
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Jorge PEREZ
Universidade Nova de Lisboa
Departamento de Informática
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr António RAVARA
Universidade Nova de Lisboa
Departamento de Informática
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Hugo VIEIRA
Universidade Nova de Lisboa
Departamento de Informática
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Dimitris MOSTROUS
University of Lisbon
Departamento de Informática
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Vasco VASCONCELOS
University of Lisbon
Departamento de Informática
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 RO - Romania

Prof. Gabriel CIOBANU
“Alexandru Ioan Cuza” University of Iasi &
Institute of Computer Science
Faculty of Computer Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 RS - Serbia

Prof. Silvia GHILEZAN
University of Novi Sad
Centre for Mathematics and Statistics
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Prof. Jovanka PANTOVIC
University of Novi Sad
Centre for Mathematics and Statistics
 [Proposal Participant] [WG Member]
Expertise: ICT

 SE - Sweden

Dr Johannes BORGSTROM
University of Uppsala
Department of Information Technology
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Joachim PARROW
University of Uppsala
Department of Information Technology
 [Proposal Participant] [Potential MC Member]
[WG Member]

Open Call Full Proposal oc-2011-2-10054
Page 28/38

Expertise: ICT

Dr Björn VICTOR
University of Uppsala
Department of Information Technology
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

 UK - United Kingdom

Prof. Steve ROSS-TALBOT
Cognizant Technology Solutions Ltd.
European Technology Officer
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Pierre-Malo DENIELOU
Imperial College London
Department of Computing
 [Proposal Participant] [WG Member]
Expertise: ICT

Prof. Sophia DROSSOPOULOU
Imperial College London
Department of Computing
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Raymond HU
Imperial College London
Department of Computing
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Nobuko YOSHIDA
Imperial College London
Department of Computing
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Romain DEMANGEON
Queen Mary University of London
School of Electronic Engineering and Computer
Science
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Luca FOSSATI
Queen Mary University of London
School of Electronic Engineering and Computer
Science
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Kohei HONDA
Queen Mary University of London
School of Electronic Engineering and Computer
Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Aybek MUKHAMEDOV
Queen Mary University of London
School of Electronic Engineering and Computer
Science
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Gary BROWN
Red Hat Inc.
Senior Software Engineer
 [Proposal Participant] [WG Member]
Expertise: ICT

Dr Simon GAY
University of Glasgow
School of Computing Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Dr Emilio TUOSTO
University of Leicester
Department of Computer Science
 [Proposal Participant] [Potential MC Member]
[WG Member]
Expertise: ICT

Open Call Full Proposal oc-2011-2-10054
Page 29/38

Non-COST Participants

None

European Commission Participants

None

European Bodies Participants

None

Part II-B. HISTORY OF THE PROPOSAL

For several years, there had been increasing activity on the topic of behavioural types in distributed and
service-oriented systems. There were several research groups as well as a number of more isolated researchers.
Some links had developed between particular groups, but there was not a strong sense of an overall
community. A workshop was held in April 2011, which was very effective in bringing researchers together
and in identifying new researchers in the field as invitations spread via individual contacts. At the end of the
workshop there was a general desire to consolidate the community and develop a more coordinated approach
towards further research on this topic. This led to two initiatives: (1) a proposal for a special issue of a journal,
to focus on behavioural type systems; (2) the decision to apply for a COST Action.

The special journal issue is going ahead and at the time of writing, submissions are being reviewed. The call
for papers was distributed widely and resulted in submissions from authors who had not previously been in
contact with any participants of the workshop. Several of these authors are now potential participants in the
proposed Action. The preliminary proposal was developed during the summer, by a collaborative process in
which a small writing group produced drafts which were commented on by many members of the community.
The development of the full proposal has followed a similar process but with more people involved in writing;
again, drafts were reviewed by other potential participants in the Action.

The objectives of the Action were decided by a collaborative discussion, from which emerged a shared
understanding of the most important challenges facing the field of distributed service-oriented systems and the
most effective ways in which behavioural types can be applied.

Part II-C. PRELIMINARY WORK PROGRAMME

Relationships between the Working Groups

The sequence of Working Groups: WG1 (Foundations), WG3 (Languages) and WG4 (Tools & Applications) forms a
chain from theory to practice. As such, there will be significant interaction between WG1 and WG3, and between WG3
and WG4.

WG2 (Security) addresses a cross-cutting concern, and a result it will have significant interaction with the
other three Working Groups.

What this amounts to is strong interaction between every pair of Working Groups, with the exception that
WG1 (Foundations) will have less direct interaction with WG4 (Tools & Applications). Most of the
interaction between WG1 and WG4 will be mediated through WG2 (Security) and WG3 (Languages).

Open Call Full Proposal oc-2011-2-10054
Page 30/38

Work Programme and Schedule

WG1: Foundations

Year 1

During the first year of the Action, WG1 will prepare a state-of-the-art report on behavioural type theory and its existing
use as a foundation for programming languages. The report will provide a comprehensive picture of the research
community and its achievements to date, and identify areas in which different approaches to behavioural type theory are
conflicting, overlapping or deficient. This knowledge will be used both to plan further foundational research and as a
basis for responding to the needs of WG2 (Security) and WG3 (Languages), during subsequent years.

Year 2

The second year will be devoted to expressivity issues, by promoting a workshop on the themes of safety, liveness and
fairness properties of concurrent and mobile systems, as well as information flow analysis, and by discussing ideas about
how such properties can be expressed by means of behavioural types. This involves the question of how experience and
knowledge gathered by means of different models than process algebra and type theory, like true concurrency models
and model checking, can be imported in terms of behavioural types, and to what extent known problems from the world
of distributed computing can be faced in the setting of type systems.

At the end of the second year of the Action, the language designs developed in WG3, possibly applied to
important scenarios/case studies arising from WG4 (Tools), will be used as test beds to check the effectiveness
and suitability of the formal techniques developed in WG1. This will generate topics for WG1's activity during
the second half of the Action, e.g. modifications/extensions to the models considered or to the verification
techniques.

Year 3

The third year will be primarily dedicated to the problems of probabilistic and quantitative properties of concurrent and
distributed systems, and of their formalizations within the theory of behavioural types. The work will start with the
pereparation of a report on the most promising attempts at embodying such aspects into process algebras and
behavioural type systems, and will be concluded by a meeting on the same themes. Quantitative and probabilistic
analysis are relevant both to WG2 (Security) and to WG4 (Tools), giving the opportunity of testing the results from
WG1 against case studies and concrete applications.

Year 4

In the final year, WG1 will work towards an overall assessment of the results obtained both theoretically and practically.
This will lead to a final report surveying the achievements as well as collecting the most interesting open questions that
the scientific community working in the area should address in the future.

WG2: Security

Open Call Full Proposal oc-2011-2-10054
Page 31/38

Year 1

During the first year of the Action, WG2 will prepare a state-of-the-art report on security mechanisms for large-scale
distributed and service-oriented systems. The report will consider security from the perspective of each of the other three
Working Groups, in consultation with them: (1) what are the practical security issues in large service-oriented systems,
and how well are they handled at present? (2) how is security supported by the programming languages presently used
for large-scale distributed software development, and is this support considered to be adequate? (3) to what extent does
the theoretical basis for security analysis in large-scale distributed and service-oriented systems allow security to be
reliably certified? This report will form the basis for detailed planning of the activities of WG2 and its interaction with
the other Working Groups during subsequent years.

Year 2

In its study of new type theories for security properties, WG2 will build on the foundational work in WG1 and keep
interacting with WG1 throughout the project. Security properties such as authenticity and secrecy can be understood as
secure information-flow properties based on the notion of non-interference. There is already work on information flow
in the related area of control flow analysis and also type-based analyses that use correspondence assertions. Also, there
is a considerable body of work on the relationship between secure information flow and trust management. In the second
year of the Action and onwards, WG2 will therefore examine how behavioural types can be used to give more precise
analyses of the secure information flow properties that have been identified in Year 1. WG2 will also address security
issues that are not easily understood as information flow properties, and investigate how these they can be captured by
type theories. Finally, WG2 will relate its work on type theories to that pursued in WG1 and to existing work on security
analyses that use a type-like approach, including control flow analyses.

The practical usefulness of behavioural types for security will depend on their algorithmic properties. In Year
2 and onwards, WG2 will therefore interact with WG4 to determine how security properties can be checked
algorithmically. In particular, type checking must be decidable within reasonable complexity bounds and type
reconstruction should be possible.

Year 3

Security properties, and in particular those based on non-interference, are important in actual program development. In
Year 3, WG2 will therefore examine how behavioural types can be used to guarantee security properties in real
programming languages, both when designing new languages, which should be security-minded from their very
inception, and when extending existing ones. This work will benefit and interact with the work on type theories for
session calculi based on the pi-calculus or the psi-calculus. More specifically, WG2 will examine how behavioural types
can be used to guarantee security properties in real programming languages, both when designing new languages, which
should be security-minded from their very inception, and when extending existing ones. As such, the work of WG2 will
be strongly connected with that on programming language design developed by WG3, which takes correctness concerns
into consideration.

Starting in Year 3, WG2 will also work in close connection with WG4 to discover the security requirements of
specific application domains, and match these requirements with suitable formalisms for security. An
important activity will be to investigate concrete cases (including ones studied by WG4 in Year 2) and
determine how behavioural types can be used to reason about security properties for them.

Year 4

Open Call Full Proposal oc-2011-2-10054
Page 32/38

The final year of the Action will be devoted to developing software tools that make use of the algorithmic properties of
behavioural types. A litmus test for the usefulness of behavioural types for security will be the possibility of applying
them to the domains and case-studies studied in Year 3.

WG3: Languages

Year 1

During the first year of the Action, WG3 will prepare a state-of-the-art report on behavioural types in programming
languages. This will be approached from two directions: (1) a survey of current experiments and prototypes in adding
behavioural types to existing languages or designing new languages that incorporate behavioural types; (2) an
assessment of current practice in software development for distributed and service-oriented systems, in the absence of
support for behavioural types, and identification of the areas in which behavioural types are most likely to prove
beneficial. The report will provide a starting point for detailed planning of a strategy to exploit behavioural types in
practical programming languages during the remainder of the Action.

Year 2

In year 2, WG3 will explore non-invasive ways of enriching existing programming and domain-specific languages with
behavioural type disciplines allowing for a greater number of correctness properties to be automatically verified.
Non-invasive means that behavioural types will not, at this stage, be deeply integrated into programming languages;
rather, they will be handled at a pre-processing or external tool level. This work will include the study of program
annotations (in the form of comments or pragma directives), the definition of program macros to be expanded during
pre-processing, as well as the definition of APIs specialized to communication, synchronization, and co-ordination
making use of the augmented expressiveness given by behavioural type disciplines.

Year 3

During the third year, WG3 will elaborate on the experience of the previous year and on the feedback received from
WG4 regarding the application of behavioural type disciplines to the case studies. In doing so, it will identify the
expressiveness gap between the constructs available in current programming languages and the needs that have emerged
in the scenarios taken under consideration, and will devise high-level language constructs allowing, on the one hand, for
a higher level of abstraction in designing and developing distributed and/or cooperative applications and, on the other
hand, for more precise type checking.

Year 4

The final year of the Action will be devoted to studying conservative extensions of both general-purpose and
domain-specific languages, with a particular focus on the implementation of (possibly pluggable) components for
compilers and run-time environments. This work will also require the study of adapters and interfaces for inter-working
between legacy code and programs using these new constructs. The increased expressiveness and precision provided by
behavioural types will be exploited for the automatic or assisted generation of adapters and interfaces. The final report of
WG3 will summarise and reflect on progress, and indicate directions for future work by continuing projects in this area.

WG4: Tools & Applications

Open Call Full Proposal oc-2011-2-10054
Page 33/38

Year 1

During the first year of the Action, WG4 will prepare a report on potential case studies that can be undertaken in
collaboration with the industrial participants. This will begin with an assessment of real software systems and the
problems that companies face in developing them, and then identify a range of systems or sub-systems that exemplify
particular issues. If possible this will include case studies related to systems with a high social impact, such as integrated
European health services or voter management systems for electronic elections. The report will be used to plan
application-focused work during the remainder of the Action.

Year 2

During the second year, WG4 will select a few case studies based on systems identified during the first year, and try to
use the available languages (identified in the state-of-the-art report by WG3) and tools to re-implement or re-structure
them, or to implement exemplar systems that incorporate the key features, including security aspects, of the case studies.
The second year report will use this experience as the basis for a critique of the available programming languages and
tools for behavioural types, and will compile a wish-list for WG2 (Security) and WG3 (Languages) to work towards.

Year 3

By the beginning of year 3, WG3 will have produced designs for programming language extensions based on the idea of
using annotations or pragma directives to express behavioural typing properties. WG4 will spend the third year
developing compiler extensions and analysis tools based on these extensions. Towards the end of the year it will be
possible to test these compilers and tools on the same case studies used in the previous year's work, and assess their
effectiveness. The report at the end of this year will reach conclusions about the benefits and limitations of this
non-invasive approach.

Year 4

The final year will be devoted to the implementation of programming languages in which behavioural type systems are
an intrinsic aspect of the design. This stage will be closely connected to the results from WG3 during the third year, and
also to the ongoing work of WG3 during the final year. As far as possible, prototype programming languages will be
tested on the same case studies as before, and there will be considerable feedback from the experience of the case studies
into the design and implementation of libraries and APIs. The final report, when combined with that of WG3, will
present a comprehensive view of the experience of the design, implementation and test cycle for novel programming
languages incorporating behavioural type systems.

In this last year, WG4 will organise a workshop to present to industrial partners the solutions to the case
studies developed previously. This workshop will show how the tools and the language-based approaches
selected in the other WGs can address the real problems and software development challenges the industry
faces. Furthermore, WG4 will prepare joint pilot projects with the industrial partners to be developed in their
companies and project applications to funding agencies to pursue the work of the Action.

Open Call Full Proposal oc-2011-2-10054
Page 34/38

Part II-D. RECENT PUBLICATIONS

[AB09] L. Acciai and M. Boreale: Deciding safety properties in infinite-state pi-calculus via behavioural
types. Proc. ICALP'09. LNCS 5556:31-42, 2009.
 [ABZ10] L. Acciai, M. Boreale and G. Zavattaro: Behavioural contracts with request-response operations.
Proc. Coordination'10. LNCS 6116:16-30, 2010.
 [BBDL11] M. Boreale, R. Bruni, R. De Nicola and M. Loreti: CaSPiS: A Calculus of Sessions, Pipelines and
Services. To appear in MSCS, 2012.
 [BCCDC11] V. Bono, S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini: A Reputation System for
Multirole Sessions. Proc. TGC'11, LNCS, 2012. To appear.
 [BCDCM11] M. G. Buscemi, M. Coppo, M. Dezani-Ciancaglini, and U. Montanari: Constraints for Service
Contracts. Proc. TGC'11, LNCS, 2012. To appear.
 [BCDDDY08] L. Bettini, M. Coppo, L. D'Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida:
Global Progress in Dynamically Interleaved Multiparty Sessions. Proc. CONCUR'08, LNCS 5201:418-433,
2008.
 [BCDGV08] L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino, and B. Venneri: Session and Union
Types for Object Oriented Programming. In Concurrency, Graphs, and Models. LNCS 5065:659-680, 2008.
 [BCdL10] F. Barbanera, S. Capecchi, and U. de' Liguoro: Typing Asymmetric Client-Server Interaction.
Proc. FSEN'09, LNCS 5961:97-112, 2010.
 [BdL10] F. Barbanera and U. de' Liguoro: Two Notions of Sub-behaviour for Session-based Client/Server
Systems. Proc. PPDP'10, ACM SIGPLAN, 155-164, 2010.
 [BH12] G. Bernardi and M.Hennessy: Modelling Session Types using Contracts. Proc. 27th Symposium on
Applied Computing, 2012. To appear.
 [BHJRVÅP11] J. Borgström, S. Huang, M. Johansson, P. Raabjerg, B. Victor, J. Åman Pohjola, J. Parrow:
Broadcast Psi-calculi with an Application to Wireless Protocols. In G. Barthe, A. Pardo & G. Schneider (ed.)
Software Engineering and Formal Methods, pp74-89, Springer 2011.
 [BHTY10] L. Bocchi, K. Honda, E. Tuosto and N. Yoshida: A Theory of Design-by-Contract for Distributed
Multiparty Interactions, Proc. CONCUR'10, LNCS 6269:162-176, 2010.
 [BJPV09] J. Bengtson, M. Johansson, J. Parrow and B. Victor. Psi-calculi: Mobile processes, nominal data,
and logic. Proc. LICS, 2009.
 [BLZ08] M. Bravetti, I. Lanese, G. Zavattaro: Contract-Driven Implementation of Choreographies. Proc. of
TGC 2008: 1-18, 2008.
 [BM09] M. G. Buscemi and H. Melgratti: Abstract Processes in Orchestration Languages. Proc. ESOP 2009.
LNCS 5502:301-315, 2009.
 [BMP11] V. Bono, C. Messa, and L. Padovani: Typing Copyless Message Passing. Proc. of ESOP'11, LNCS
6602: 57-76, 2011.
 [BZ08] M. Bravetti, G. Zavattaro: A Foundational Theory of Contracts for Multi-party Service Composition.
Fundamenta Informaticae 89(4):451-478, 2008.
 [CBDHY11] T.-C. Chen, L. Bocchi, P.-M. Denielou, K. Honda and N. Yoshida: Asynchronous Distributed
Monitoring for Multiparty Session Enforcement. Proc. TGC'11, LNCS, 2012. To appear.
 [CCDCR10] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk: Session Types for Access and
Information Flow Control. Proc. CONCUR, LNCS 6269:237-252, 2010.
 [CCDDG09] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and E. Giachino:
Amalgamating Sessions and Methods in Object Oriented Languages with Generics. Theoret. Comp. Sci.
410:142-167, 2009.
 [CDC09] M. Coppo and M. Dezani-Ciancaglini: Structured Communications with Concurrent Constraints.
Proc. TGC'08, LNCS 5474:104-125, 2009.
 [CDCP11] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani: On Global Types and Multi-party Sessions.
Proc. FMOODS/FORTE, LNCS 6722:1-28, 2011.
 [CDG08] M. Coppo, M. Dezani-Ciancaglini, and E. Giovannetti. Types for Ambient and Process Mobility.
Math. Struct. Comp. Sci. 18:221-290, 2008.

Open Call Full Proposal oc-2011-2-10054
Page 35/38

 [CDGP09] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani: Foundations of Session
Types. Proc. PPDP, 2009.
 [CGY10] S. Capecchi, E. Giachino, and N. Yoshida: Global Escape in Multiparty Sessions. Proc. FSTTCS
2010. LIPIcs 8:338-351, 2010.
 [CK11] G. Ciobanu and M. Koutny: Timed Migration and Interaction with Access Permissions. Proc. FM,
LNCS 6664:293-307, 2011.
 [DCdL10] M. Dezani-Ciancaglini and U. de' Liguoro: Sessions and Session Types: an Overview. Proc.
WS-FM'09, LNCS 6194:1-28, 2010.
 [DCDMY09] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida: Session Types for
Object-Oriented Languages. Inf. and Comp. 207(5):595-641, 2009.
 [DCGJP11] M. Dezani-Ciancaglini, S. Ghilezan, S. Jaksic, and J. Pantovic: Types for Role-Based Access
Control of Dynamic Web Data. Proc. WFLP'10, LNCS 6559:1-29, 2011.
 [DCGPV08] M. Dezani-Ciancaglini, S. Ghilezan, J. Pantovic, and D. Varacca: Security Types for Dynamic
Web Data. Theoret. Comp. Sci. 402:156-171, 2008.
 [DGDY07] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, and N. Yoshida: Bounded session types
for object-oriented languages. Proc. FMCO. LNCS 4709:207-245, 2007.
 [DHS10] R. Demangeon, D. Hirschkoff, D. Sangiorgi: Termination in Impure Concurrent Languages. Proc.
CONCUR 2010, LNCS 6269:328-342, 2010
 [DY10] P.-M. Denielou and N. Yoshida: Buffered Communication Analysis in Distributed Multiparty
Sessions. Proc CONCUR'10, LNCS 6269: 343-357, 2010.
 [DY11] P.-M. Denielou and N. Yoshida: Dynamic multirole session types. Proc. POPL 2011, 435–446, 2011.
 [DY12] P.-M. Denielou and N. Yoshida: Multiparty Session Types Meet Communicating Automata. Proc.
ESOP 2012, LNCS, 2012. To appear.
 [GL11] E. Giachino and C. Laneve: Analysis of deadlocks in object groups. Proc. FMOODS/FORTE, LNCS
6722:168-182, 2011.
 [GLMZ09] C. Guidi, I. Lanese, F. Montesi, G. Zavattaro: Dynamic Error Handling in Service Oriented
Applications. Fundam. Inform. 95(1):73-102, 2009.
 [GV10] S. J. Gay and V. T. Vasconcelos: Linear Type Theory for Asynchronous Session Types. J. Func.
Prog. 20(1):19-50, 2010
 [GV10a] M. Giunti and V.T. Vasconcelos. A linear account of session types in the pi calculus. Proc.
CONCUR, LNCS 6269:237-252, 2010.
 [GVRGC10] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert and A. Z. Caldeira. Modular Session Types
for Distributed Object-Oriented Programming. Proc. POPL, 2010
 [H11] H. Hüttel: Typed Psi-Calculi. Proc. CONCUR, LNCS 6901, 2011.
 [HDKS11] H. Hüttel, M. Dahl, N. Kobayashi and Y. Sun: Type-Based Automated Verification of
Authenticity in Asymmetric Cryptographic Protocols. Proc. 9th International Symposium on Automated
Technology for Verification and Analysis. LNCS, 2011.
 [HKPYH10] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida and K. Honda: Type-Safe Eventful Sessions in Java,
Proc. ECOOP’10: LNCS 6183: 329-353, 2010.
 [HMBCY11] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen and N. Yoshida: Scribbling Interactions
with a Formal Foundation, Proc. ICDCIT’11: LNCS: 55-75, 2011.
 [HYC08] K. Honda, N. Yoshida and M. Carbone, Multiparty Asynchronous Session Types. Proc POPL’08,
273–284, 2008.
 [HYH08] R. Hu, N. Yoshida and K. Honda. Session-Based Distributed Programming in Java. Proc. ECOOP
2008. LNCS 5142: 516–541, 2008.
 [KS10] N. Kobayashi, D. Sangiorgi: A hybrid type system for lock-freedom of mobile processes. ACM
Trans. Prog. Lang. Syst. 32(5):1-49, 2010.
 [KYH11] D. Kouzapas, N. Yoshida and K. Honda: On Asynchronous Session Semantics. Proc.
FORTE/FMOODS'2011. LNCS 6722, 2011.
 [LGMZ08] I. Lanese, C. Guidi, F. Montesi, G. Zavattaro: Bridging the Gap between Interaction- and
Process-Oriented Choreographies. Proc. SEFM 2008:323-332, 2008.

Open Call Full Proposal oc-2011-2-10054
Page 36/38

 [LP10] H. A. Lopez and J. A. Perez: Time and Exceptional Behavior in Multiparty Structured Interactions.
Proc. WS-FM'11, LNCS, 2012.
 [MV11] D. Mostrous and V. T. Vasconcelos: Session typing for a featherweight Erlang. Proc. Coordination,
LNCS 6721:95-109, 2011.
 [MY09] D. Mostrous and N. Yoshida, Session-Based Communication Optimisation for Higher-Order Mobile
Processes, Proc. TLCA'09. LNCS 5608:203–218, 2009.
 [NYPHK11] N. Ng, N. Yoshida, O. Pernet, R. Hu and Y. Kryftis: Safe Parallel Programming with Session
Java. Proc. COORDINATION, LNCS 6721:110-126, 2011.
 [P10] L. Padovani: Contract-Based Discovery of Web Services Modulo Simple Orchestrators. Theoret.
Comp. Sci. 411:3328-3347, 2010.
 [P11] L. Padovani: Fair Subtyping for Multi-Party Session Types. Proc. Coordination, LNCS 6721:127-141,
2011.
 [PCPT12] J. A. Perez, L. Caires, F. Pfenning and B. Toninho: Linear Logical Relations for Session-Based
Concurrency. Proc. ESOP, LNCS, 2012. To appear.
 [V09] Vasco T. Vasconcelos: Session Types for Linear Multithreaded Functional Programming. Proc. PPDP,
2009.
 [YDBH10] N. Yoshida, P.-M. Denielou, A. Bejleri and R. Hu, Parameterised Multiparty Session Types. Proc.
FOSSACS 2010. LNCS 6014: 128-145, 2010.

Part II-E. FURTHER REMARKS

Early-Stage Researchers

As explained in Section I.E, the list of participants of this Action includes many early-stage researchers, and they will
have the opportunity to engage fully with all aspects of the Action. This includes: membership of Working Groups;
participation in Short-Term Scientific Missions; participation in Training Schools as attendees and, where appropriate,
lecturers; presentation of research results at the annual workshops; involvement in preparing the annual reports of the
Working Groups.

Gender Balance

As explained in Section I.E, the gender balance among the participants in this Action is better than that typically found
in a university computer science department. The Management Committee and Working Groups will constantly strive to
ensure a good gender balance in all activities of the Action.

Range of Countries

The list of participants includes experts from 12 countries, including several of the newer member states of the EU. This
means that already a significant proportion of the COST countries are included in the Action. The Management
Committee and the Working Group co-ordinators will actively seek to identify interested researchers in other COST
(and, if appropriate, non-COST) countries and encourage them to join the Action.

Monitoring and Evaluation of Objectives

Open Call Full Proposal oc-2011-2-10054
Page 37/38

Section I.C includes a detailed list of objectives, including, where appropriate, quantitative targets for the level of
activity. Progress towards the objectives, and measurement of outputs and activities against targets, will be monitored
continuously by the Working Group co-ordinators and formally checked by the Management Committee at its annual
meetings.

Section I.E includes a series of milestones, explicitly stating what the Management Committee expects to
receive each year from the Working Groups and as a result of the workshops and Training Schools.

Application and Exploitation of Results

The interaction between the Working Groups, set out in Section II.C, is designed to ensure a flow of results towards
their areas of application. For example, theoretical research carried out within WG1 (Foundations) will be planned to
address points identified by WG2 (Security) and WG3 (Languages). Similarly, programming language design work
carried out within WG3 (Languages) will be aimed at providing desirable language features and constructs identified by
WG2 (Security) and WG4 (Tools & Applications).

The ultimate application of the results of this Action will be to industrial software development methods and
processes. This application will be ensured by the involvement in the Action of several representatives of
software companies (see below). During the Action, the Management Committee and the Working Group
co-ordinators will actively look for additional software companies who might be interested in participating.

Industrial Involvement

The following companies have agreed to participate in the Action. Their representatives are included in the list of
experts.

Cognizant Technology Solutions Ltd. (UK)

Exformatics A/S (Denmark)

Etica s.r.l. (Italy)

Fredhopper (Netherlands)

Maps S.p.A. (Italy)

Red Hat, Inc. (UK)

Open Call Full Proposal oc-2011-2-10054
Page 38/38

	Information and Communication Technologies
	oc-2011-2-10054
	E. ORGANISATION
	E.2 Working Groups
	E.3 Liaison and interaction with other research programmes
	E.4 Gender balance and involvement of early-stage researchers

	F. TIMETABLE
	G. ECONOMIC DIMENSION
	H. DISSEMINATION PLAN
	H.1 Who?
	H.2 What?
	H.3 How?

	Part II - Additional Information (This part will not be element of the MoU)
	Part II-D. RECENT PUBLICATIONS
	Part II-E. FURTHER REMARKS

	b21_current_best-practice_in_industry (pg. 5)
	b22_production-level_programming_languages_for_building_distributed_services (pg. 6)
	b23_origins_of_behavioural_types (pg. 7)
	b24_state-of-the-art_in_behavioural_types (pg. 7)
	b25_programming_languages_and_tool_development_based_on_behavioural_types (pg. 8)
	working_group_1foundations (pg. 14)
	working_group_2security (pg. 15)
	working_group_3languages (pg. 16)
	wg4_tools_applications (pg. 17)
	management_committee (pg. 18)
	wg_meetings (pg. 19)
	workshops (pg. 19)
	training_schools (pg. 19)
	short-term_scientific_missions (pg. 19)
	short-term_scientific_missions (pg. 19)
	short-term_scientific_missions (pg. 19)
	relationships_between_the_working_groups (pg. 30)
	work_programme_and_schedule (pg. 30)
	wg1foundations (pg. 31)
	year_1 (pg. 31)
	year_2 (pg. 31)
	year_3 (pg. 31)
	year_4 (pg. 31)
	wg2security (pg. 31)
	year_11 (pg. 31)
	year_21 (pg. 32)
	year_31 (pg. 32)
	year_41 (pg. 32)
	wg3languages (pg. 33)
	year_12 (pg. 33)
	year_22 (pg. 33)
	year_32 (pg. 33)
	year_42 (pg. 33)
	wg4tools_applications (pg. 33)
	year_13 (pg. 33)
	year_23 (pg. 34)
	year_33 (pg. 34)
	year_43 (pg. 34)
	early-stage_researchers (pg. 37)
	gender_balance (pg. 37)
	range_of_countries (pg. 37)
	monitoring_and_evaluation_of_objectives (pg. 37)
	application_and_exploitation_of_results (pg. 38)
	industrial_involvement (pg. 38)

