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This report extends work on the Mungo lan-
guage with behavioural separation. Mungo
is an object-oriented calculus that employs
typestates with a behavioural type system
to ensure the absence of null-dereferencing.
The typestates are expressed with usages,
which are protocols that specify the admis-
sible sequences of method calls on objects.
Previous type systems for Mungo have all
had a linearity constraint on objects. We
lessen this constraint by extending the us-
age specifications with a parallel usage con-
struct, where the parallel constituents de-
scribe separate local behaviour. We use the
parallel usage to reason about aliasing, as
a parallel usage describes a separation of
the heap where we can reason about each
constituent in isolation. Furthermore, par-
allel usages allow for arbitrary interleaving
of local protocols, solving a problem of ex-
ponential growth of the size of usages, for
unrelated linear fields in classes. We show
that the new type system, with support for
behavioural separation, retains the proper-
ties of previously presented type systems for
Mungo, namely the safety and progress re-
sults, as well as protocol fidelity. Finally,
we present an implementation of the Mungo
language with support for parallel usages,
along with a suite of examples.
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Summary

In this thesis, we present work on a behavioural type system for the object-oriented calculus
Mungo, which was originally presented by Kouzapas et. al [KDPG16] and has been further
explored by Bravetti et. al [BFG+20] and Golovanov et. al [GJK19, GJK20]. Based on the
concept of typestates introduced by Strom & Yemini [SY86], object types in Mungo are composed
of a class name and a usage describing the admissible sequences of method invocations on the
object. We analyse different approaches to typestates in object-oriented programming languages
and compare the approaches of Mungo, Plaid [BBA09] and Fugue [DF04].

A weakness of current type systems for Mungo, compared to the other approaches, is its
inability to concisely express unrelated operations in usages, leading to exponential size protocol
specifications. Furthermore, a shared weakness between all of the analysed approaches, and
a common weakness amongst many other behavioural type systems is the need for a linear
typing discipline, where aliasing is disallowed. Reasoning about aliased objects is difficult in a
behavioural type system, as types evolve during their lifetime, and changes in one alias can affect
the others. Therefore, a common solution is to disallow aliasing completely and instead apply a
linear type system, where only a single reference to an object is allowed at a given time. This,
however, is in contrast to common practice in object-oriented programming, where aliasing is
commonplace. List iteration, linked lists, and shared resources are just some examples of where
aliasing occurs in practice.

We analyse multiple approaches for lessening this linearity constraint. One approach is partic-
ularly interesting, namely that of behavioural separation as described by Caires & Seco [CS13].
Based on separation logic, behavioural separation seeks to reason about interference in a be-
havioural type system, where aliasing is one type of interference. They do so by allowing the
memory to be partitioned according to the types in the program, to reason locally about changes
in the memory, rather than requiring a global view of the program. One of the constructs they
use is a parallel construct describing how a value can be split into two constituents and used
separately.

We extend the usages of Mungo with a parallel construct (u1 | u2).u3 describing how an
object can be split into two aliases, each with a local protocol of u1 and u2 respectively, and
after completing the local protocols, it can be merged back into a single reference with protocol
u3. We draw upon behavioural separation to reason about multiple references to the same object
and allow a limited form of aliasing in method calls, where the same objects can be referenced
by multiple parameters. Furthermore, even without aliasing, the introduction of parallel usages
solves the earlier mentioned issue of unrelated operations, as the local protocols u1 and u2 can
be followed in any order, hence a parallel usage concisely describes that u1 and u2 are unrelated,
without enumerating all interleavings of following the two protocols.

Two run-time semantics were created, a big-step semantics and a small-step semantics, to be
able to naturally express and show results for the type system. We show that for terminating
programs, the two semantics are equivalent, and as such the properties shown for these programs
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can be applied to either of the two semantics. Furthermore, we present a type system and show
that properties shown for Mungo in previous work, also hold for this new type system. These
properties include protocol fidelity, safety and progress. A consequence of the progress result is
that null-dereferencing cannot occur at runtime. To further illustrate the strengths of the type
system, an implementation of the Mungo language is presented, and a suite of program examples
is available at https://mungotypesystem.github.io/MungoBehaviouralSeparation. These
examples show how parallel usages can express real-life protocols, and how the type system helps
ensure that the protocols are followed.

Finally, we conclude that the extension of the Mungo language solves many of the issues
discovered with Mungo, while preserving the guarantees and strengths of the Mungo approach
to type-state declarations.

iii
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Chapter 1

Introduction

As software systems become increasingly complex, reasoning about the behaviour of the systems
becomes harder. Type systems ensure that operations are only allowed for values of the correct
types, and strongly typed languages even provide compile-time guarantees that type-related
runtime-errors cannot occur. Common for most of these type systems is that they only capture
the static type information, and does not capture the dynamic nature of values in a program. This
is particularly noticeable in object-oriented programming languages. Objects can encode complex
structures, and will often require that methods are called in a specific order. For example, in
objects of a class modelling a database, it is important that the connection is initialised, before
attempting to extract data from the database.

Despite the nature of these objects, the type systems for the most widely used object-oriented
languages such as Java or C# does not allow the programmers to express the dynamic properties
of a class, and programmers must instead resolve to informal specifications, not verified by the
type systems.

Type systems for dynamic properties are not a new phenomenon. Typestates were originally
a concept developed by Strom and Yemini [SY86], as an extension to the concept of a type. The
static type information such as int, string or float is now extended with a state, describing the
current protocol of a value. Through typestate tracking a type system can statically ensure that
the dynamic properties expressed in the protocol are followed at run-time.

In this thesis, we work with the object-oriented language Mungo presented by Kouzapas et. al
[KDPG16]. In particular, this thesis is a continuation of the line of research started by Bravetti
et. al [BFHR19, BFG+20] and continued by Golovanov et al [GJK19, GJK20]. In Mungo, a class
is annotated with a usage U , describing the permitted method sequences for an object of that
class. The type system then ensures the following: (i) the defined usage for a class is followed by
all instances, (ii) all protocols will be terminated, and (iii) following the usage will not result in
null-dereferencing. This is achieved with typestate tracking, where objects in the language have
types C[U ] and where the usage U is updated throughout the lifetime of an object and specifies
the currently available operations.

A common problem with behavioural type systems is the need for linearity. As types of
objects in Java are immutable, objects can be freely aliased, as operations on one alias do not
impact the type of the other aliases. This is not the case when working with behavioural types, as
types can now change as operations are performed. So to ensure that the types of all aliases are
consistent, a linear typing discipline is often employed, where only a single reference to an object
is allowed. This has been the approach of previous type systems for Mungo. In the following
sections, we explore ways to lessen this constraint.
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1.1 Typestates
In 1986, Strom & Yemini introduced the concept of typestates where they use Hoare triplets
to define the operations that are available to variables based on its state [SY86]. Each variable
is assigned a type which contains a partially ordered set of typestates that define sequences
of allowed operations on that type. For example, we can specify that a variable must have
a value assigned to it before it can be used in an operation or that a file must be opened
before being read etc. Originally, the work of Strom & Yemini was established for a procedural
language but since then, several approaches have been proposed for object-oriented languages
[BBA09, SNS+11, CV11, KDPG16, BFG+20, DF04]. In this section, we focus on Fugue [DF04],
Plaid [SNS+11], and Mungo [KDPG16, BFG+20] since they represent three distinct approaches
to typestates, namely, pre and post conditions, splitting objects into hierarchies of states, and
globally specifying the allowed sequences of method calls.

The following examples are based on a HouseController class that controls a light switch,
temperature device and door lock of a house. In the examples, we only include the methods
associated with light control, in order to keep the examples brief, unless including some of the
other methods is necessary for illustrating a specific strength or weakness. The protocol for the
LightController part of the HouseController class is displayed in Figure 1.1. The protocol
is presented as a labelled transition system. The state ⊥ is the initial state, the transitions
originating from states are annotated with an allowed method call, finally, the state end describes
the completed protocol.

⊥ LightOff LightOn end
initLC

lightOn

lightOff

adjustLightDown

turnOff

Figure 1.1: Shows LightController part of the protocol graph for the HouseController class.

Fugue

Fugue is an example of a modular analysis tool developed for object-oriented languages that
compile to the Common Language Runtime (CLR) [DF04]. Fugue allows programmers to spec-
ify state-machine protocols as pre and post conditions and Fugue can then check that all method
invocations are correct in relation to avoiding null-dereferencing and following the specified pro-
tocol. In Fugue, pre and post conditions are specified using custom attributes that are associated
with each method declaration and the possible states are enumerated and associated with the
class declaration. For example, we can specify that a File object can be either open or closed as
WithProtocol(”Open”, ”Closed”). In order to define the pre and post conditions we use the follow-
ing attributes: Creates(”Open”) defines the initial state, ChangeState(”Open”, ”Closed”) defines
a transition from the open to the closed state and InState(”Open”) specifies that the object must
be in the open state.

The previously mentioned attributes work on symbolic state names; however, naming each
distinct state can be problematic in large state spaces. Fugue, therefore, allows Custom States
where fields are types that can be used as attribute parameters in pre and post conditions. The
example in Listing 1.1 uses custom states since there is an exponential number of states related
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to the various states of fields lc, tc, and dc; and their combinations. When using custom states,
the attributes are slightly different from the ones presented but follows the same concept.
1 class HouseCon t ro l l e rS t a t e : CustomState {
2 bool LightOn;
3 bool TempOn;
4 bool DoorOpen;
5 }
6
7 [WithProtoco l(CustomState=typeof(HouseCon t ro l l e rS t a t e))]
8 class HouseController {
9

10 LightController lc;
11 TempController tc;
12 DoorController dc;
13
14 [Creates ,
15 OutHouseCont ro l l e rS ta te(
16 LightOn=false,
17 TempOn=false,
18 DoorOpen=false)]
19 public void initLightController(){
20 lc = new LightController();
21 }
22
23 ...
24
25 [ I n H o u s e C o n t r o l l e r S t a t e(LightOn=false),
26 OutHouseCont ro l l e rS ta te(LightOn=true)]
27 public void lightOn(){lc.on()}
28
29 [ I n H o u s e C o n t r o l l e r S t a t e(LightOn=true)]
30 public void adjustLightDown(){lc.down(1)}
31
32 [ I n H o u s e C o n t r o l l e r S t a t e(LightOn=true),
33 OutHouseCont ro l l e rS ta te(LightOn=false)]
34 public void lightOff(){lc.off()}
35
36 ...
37 }

Listing 1.1: An example of the HouseController class in Fugue

The advantage of the typestate approach Fugue uses is that pre and post conditions, in small
programs, are straightforward. Furthermore, since Fugue is compiled to CLR and uses class
attributes to make assertions, it supports typestates in multiple practical languages. The down-
sides are mainly related to readability and reasoning about protocols in large programs. For
example, classes with a large number of distinct states, that use custom states, can become
unreadable if many field states are considered in the attributes of each method. Furthermore,
by distributing the protocol information across various methods it can be hard to reason about
large and complex protocols. Finally, Fugue does not have a way to specify an end state, hence
protocol completion cannot be guaranteed for a terminating program.
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Plaid

Plaid is a dynamically typed programming language that allows specification of protocols by
dividing a class into a hierarchy of states and associating the allowed methods and variables with
each state [SNS+11]. Methods can then update the global state of an object by assigning a new
state from the hierarchy. In Plaid, the case of keyword specifies inclusion in a state dimensions.
For example, Open case of File tell us that the Open state is in the File state dimension.
Plaid also allows and-states using the with keyword; the with keyword specifies that a state
must include all states part of the with-expression and they must be from separate dimensions.
For example, state Open case of File = Status with ContentType which tell us that the
state Open is in the File dimension and includes both state Status and state ContentType.
Finally, Plaid allows or-states by declaring that two states are part of the same dimension, we
can specify that the parent state is one of the two using case of. Plaid handles exponential
state-spaces in the update rule by only updating the parts that are mutually exclusive with the
new state.
1 val houseController = new HouseCont ro l l e r @
2 L i g h t U n i n i t i a l s e d with TempUnin i t i a l s ed with D o o r U n i n i t i a l s e d;
3
4 state HouseCont ro l l e r { }
5
6 state L i g h t U n i n i t i a l s e d case of HouseCont ro l l e r {
7 method initLightController(){
8 lc = new LightController();
9 this <- L igh tOf f;

10 }
11 }
12
13 state L igh tOf f case of HouseCont ro l l e r {
14 method lightOn(){
15 lc.on();
16 this <- LightOn;
17 }
18 }
19
20 state LightOn case of HouseCont ro l l e r {
21 method adjustLightDown(){
22 lc.down(1);
23 }
24 method lightOff(){
25 lc.off();
26 this <- L igh tOf f;
27 }
28 }
29
30 ...

Listing 1.2: An example of the HouseController definition in Plaid

Plaid represents a new typestate-oriented programming paradigm as an extension to object-
oriented programming where the focus is on object states and their transitions. The Plaid
project is fairly well-developed in the sense that it supports both gradual typing and some forms
of aliasing; also more involved program examples have been written in Plaid. That said, there
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are a number of disadvantages. Plaid does not suffer from the same issues of readability as
custom states from Fugue, but state transitions are still distributed across methods and various
states, for example in Listing 1.2 at lines 9, 16, and 26 which can result in protocols being hard
to reason about. Furthermore, Plaid also does not include a way to define a final state or specify
an initial state in the state declarations.

Mungo

Mungo is a tool that was originally developed to allow typestate definitions in Java [KDPG16].
Later work was presented for a core calculus also named Mungo [BFG+20], in which we will
present the following example. Typestate definitions in Mungo are specified for each class dec-
laration as sequences of allowed method calls. The typestate definitions in Mungo are called
usages and are significantly different from the previous approaches since a usage in Mungo is
specified globally for a single class instead of being distributed across each method. A usage is
defined using three forms of behaviours: branching of the form {mi;wi}i∈I where a method out
of several can be selected, choices of the form 〈l : ul〉l∈L where a usage is chosen based on the
return value li of a method, and recursion of the form u

#         »
X= u where whenever X is encountered

in u, it is replaced by its associated usage thereby allowing recursion.
1 class HouseController {
2
3 {initLightController; L igh tOf f
4 initTempController; TempOff
5 initDoorController; DoorLocked}
6 [
7 L igh tOf f = {lightOn; LightOn
8 turnOff; end
9 initTempController; LightOffTempOff

10 initDoorController; LightOffDoorLocked},
11 LightOn = {adjustLight; LightOn
12 lightOff; L igh tOf f},
13 ...
14 ]
15
16 LightController lc;
17 TempController tc;
18 DoorController dc;
19
20 void initLightController(){
21 lc = new LightController()
22 }
23
24 ...
25
26 void lightOn(){lc.on()}
27
28 void adjustLightDown(){lc.down(1)}
29
30 void lightOff(){lc.off()}
31
32 ...

5



33 }

Listing 1.3: An example of the HouseController class in Mungo

Usages are in a sense separated from the method implementation since usage transitions are
entirely managed by the type system in contrast to manual transitions and annotations. Hence
method implementations are simplified by not including protocol logic like Fugue and Plaid.
Additionally, Mungo includes an end state which allows Mungo to ensure protocol completion
for terminating programs. A downside of Mungo is that usage specification does not handle
exponential state-spaces and in some cases, we are forced to enumerate all possible combinations
of states in the usages. For example, in Listing 1.3 initialisation of the fields lc, tc, and
dc may occur in any order which results in large usages with many distinct states. This is
illustrated on line 9 and 10 where the resulting usage, after calling either initTempController
or initDoorController, should include the behaviour of a newly initialised field and the

previously initialised field lc which results in two new recursive variables LightOffTempOff and
LightOffDoorLocked.

1.2 Aliasing
One of the central challenges encountered, when developing a modular type system with types-
tates, is that of handling aliases. Tracking the state of objects requires the type system to reason
about object states which is complicated in a modular type system when aliasing is allowed.
Example 1. Consider type checking the code in Listing 1.4. The method useFiles takes as
arguments two file objects that have not been opened and open them. When type checking
the method call on Line 11, the type of f1 is File[Closed], hence both arguments matches
the type of the formal parameters. However, when the method is evaluated, then after opening
the file referenced by x1, the call to open on x2 is no longer valid, hence the call should not be
well-typed. On line 14 we see a call to the same method, with two different objects as arguments.
The types are exactly the same, the method will execute correctly, and the method call should
be well-typed.
1 void useFiles(File[Closed] x1, File[Closed] x2) {
2 x1.open();
3 x2.open();
4 }
5 [...]
6
7 f1 = new File();
8 f2 = new File();
9

10 // Should fail
11 useFiles(f1, f1);
12
13 // Should work
14 useFiles(f1, f2);

Listing 1.4: Illustrates the challenges of reasoning about aliases
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To circumvent this problem, aliasing is often disallowed by using a linear type system. However,
several approaches have been proposed to reduce the restrictions on aliasing that comes with
using a linear type system.

Adaption and Focus

Fähndrich & DeLine developed two constructs, for creating aliases of linear objects in the Vault
programming language, called Adoption and Focus [FD02]. Vault is a programming language
that supports tracking protocols of objects via typestates by using pre and post conditions to
define protocols. Aliasing control works by allowing a linear type to be allocated to a nonlinear
container by using Adoption and then within a limited scope tracking statements on it with
Focus. Focus is inferred around statements that work on linear types and in a Focus scope
statements on potential aliases of the linear object, that is currently in focus, are prohibited.
Potential aliases are specified by annotating nonlinear container objects with guards.

Capabilities

In part inspired by Adoption and Focus, an approach was presented by Voinea et al. Here a
capability-based method is used to handle aliasing in the context of concurrent multiparty session
types [VDG19]. A session is split into a nonlinear channel and a linear capability. The session
channel can only be used when it has the associated capability, hence reasoning about protocols
with concurrency becomes similar to ensuring mutual exclusion with locks. An advantage of
this approach compared with Adoption and Focus is that potential aliases do not have to be
annotated.

Permission Borrowing

Naden et al. developed a type system capable of handling some forms of aliasing by using
permission borrowing [NBAB12]. Permissions tell a pointer variable the operations it is allowed
to perform on a linear object. They present three forms of permissions: unique representing
a variable that is not aliased, immutable that allows a variable to be aliased but not mutated,
and shared that allows both aliasing and mutation. In this work, two forms of permission
manipulation are facilitated in order to enable aliasing: splitting and borrowing. Permission
borrowing is similar to the capabilities approach where a permission to a field variable can be
temporarily borrowed in order to access its members. Permission splitting allows a permission
to be converted into a multiple of other permissions; for example, an unique permission can be
split into multiple immutable permissions.

1.3 Separation Logic
Separation logic was originally developed as a way to reason about programs that mutate data
in the presence of aliasing by extending Hoare Logic [O’H12, Rey00]. The basic idea is similar to
pre and post conditions where assertions are inserted at various program points and correctness
is proved by ensuring these inserted assertions are correct. In addition to Hoare logic, separation
logic includes a separation conjunction which is central to separation logic since it represents a
request to partition the memory such that the involved assertions are satisfied. The separation
conjunction allows us to localise changes to variables and thereby avoid having to consider all
possibly aliased variables to create valid assertions in Hoare logic.

7



Behavioural Separation

Behavioural separation builds upon separation logic but focuses on separation for behavioural
types rather than data held in memory. Caires & Seco presented a type system with behavioural
separation that is able to handle various forms of aliasing, manipulation of linked-lists and con-
currency [CS13]. The purpose of behavioural separation is managing the interference of different
sub-usages from the same object and thereby ensuring safety in the presence of concurrency and
aliasing. They extend usage specification with, for example, (U1 | U2) which describes a parallel
usage where both usages can be performed without interfering with the other. ◦U describes
an isolated usage that is not dependent on global constraints. Finally, shared usages !U allow
unbounded splitting into parallel usages or in other words unbounded aliasing. These usages
combined with usages similar to the ones presented for Mungo, allow us to define type assertions
that describe behavioural dependencies. The type system then ensures that only safe interference
occurs by using principles from separation logic to reason about the effects of expressions while
preserving modularity.

Separation with Typestates

Militão et al. presented a typestate oriented language with behavioural separation [MaAC10].
In this language, a class is composed of views, view equations and methods. Views are collections
of fields and define the current state of an object. For example, a class EmptyPair could contain
the views Left, Right and Pair indicating states where either some or all data has been initialised.
View equations then define how the behavioural separation can be used on a class. If a object
of class EmptyPair is viewed as a Pair, then by the view equation Pair = Left ∗ Right it can be
decomposed into the two views Left and Right. Where the two new views will only have access
to the left or right element of the pair respectively. Militão et al. distinguishes between linear
views and unbounded views. For linear views, the fields mentioned in a decomposition must be
disjoint, so that a field cannot be used by two different aliases at the same time. For unbounded
views, which can be aliased arbitrarily many times, it is required that the fields are read-only.

The behavioural separation is handled by a subtyping relation on the typing environment,
and the splitting operator ∗ is lifted to environments, allowing the environments to be split
according to the view equations of the fields. These environments allow multiple bindings of the
same variable so that a field f can be bound to both Right and Left at the same time, indicating
that the same object (bound to f) has been aliased according to the views equations.

1.4 Problem Statement
In this chapter, we have outlined challenges for object-oriented programming languages. We
have seen that the presented approaches, Fugue, Plaid, and Mungo, employ different methods
for working with typestates.

We have described multiple approaches to lessening the linearity constraint for behavioural
type systems. Both in terms of handling aliasing, or more generally handling interference with
separation logic.

We have seen that using custom states in Fugue and and-states in Plaid, it is possible to
abstract over exponential-size state spaces when expressing type states. In the current work on
Mungo however, no such abstraction is possible. We hypothesise that behavioural separation can
be used to both lessen the linearity constraint and abstract over exponential state-spaces and
propose the following problem statement for the remainder of the report.
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Can behavioural separation be used to reason about aliasing and exponential state
spaces in the Mungo language, while preserving modularity in type checking?

The remainder of the report is structured as follows. Chapter 2 presents an overview of our
solution to both aliasing and exponential state spaces and presents the formal core calculus for
our version of Mungo. In Chapter 3 we present the type system for the calculus and present
soundness results. An implementation is presented in Chapter 4 through multiple program
examples written in Mungo, highlighting features of the implementation and in turn the type
system itself. Here we also present a time complexity analysis of the implementation. Finally in
Chapter 5 we discuss our findings and propose further work.
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Chapter 2

The Language

In this chapter we provide an overview of our solution to the problem statement, describe the
version of the Mungo language we are working with, and present two semantics that are equivalent
for terminating programs, modelling the run-time behaviour of the language.

2.1 Introducing Parallel Usages
There are some similarities between the types defined by Caires & Seco and the usages employed
in Mungo, so this work expands on this similarity by introducing concepts from behavioural
separation to the Mungo language to express new types of behaviour. Inspired by the work by
Militão et al. [MaAC10] we wish to allow the separation of objects according to the fields they
access. However, instead of doing this with views, we wish to enforce this through the usages
directly.

The usage constructs used in the previous research on Mungo were branching, choice and
recursion. A branching usage {mi;wi}i∈I describes a protocol where a method mj (j ∈ I) can
be called, and the object will continue with the remaining usage wj . A choice usage 〈l : ul〉l∈L

describes that based on a return value of a method (a label in the enumeration type L), the cor-
responding usage ul is chosen. We introduce the concept of parallel usages (u1|u2).u3 describing
how an object can be decomposed into two objects with the usages u1 and u2 respectively, and
composed back into a single object with usage u3 after completion of the two local protocols.
This construction encodes both the parallel and sequential types presented by Caires & Seco
[CS13]. The parallel usage construct describes the behavioural separation where an object can
safely be aliased since the two parallel usages cannot interact with the same linear fields. This
restriction is similar to the restriction for view equations previously mentioned. This property
will be formally defined as well-formed usages later. So while behavioural separation was initially
introduced to manage interference in a concurrent language, we apply them to parallel protocols
in an object-oriented language.

Parallel protocols offer other benefits than just aliasing. Inspired by parallel processes, we
allow parallel usages to advance the two local usages separately, meaning that for a field f
with usage ({m; end} | {n; end}).u, both f.m() and f.n() will be valid method calls leading to
usages (end | {n; end}).u or ({m; end} | end).u respectively. This neatly solves the problem of
exponential usage sizes in Mungo programs, that was described in Section 1.1. Methods that
modify a single linear field can now be placed in parallel with other such methods, and no longer
requires an enumeration of all possible sequences of the method calls. In fact, this treatment of
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parallel usages is similar to the with-states of Plaid, as each parallel constituent can be thought
of as a separate dimension of the object, from the other.
Example 2. Consider the task of modelling a home automation system. For each subsystem
in the house, a controller class is defined. These controllers are then aggregated into con-
trollers for larger subsystems. The HouseController class below aggregates three controllers
for smaller subsystems. For simplicity, we ignore the initialisation of the fields in this exam-
ple. This aggregation results in a class with unrelated linear fields. Locking the doors should
not impact what methods are available for controlling the lights. In previous work on Mungo
this resulted in large usages for the wrapper class, where all possible method sequences on the
fields should be encoded in the usage for the wrapper class, as was illustrated in Section 1.1.
Employing parallel usages, however, gives us the ability to express that that the methods are
unrelated, and can be called in any order. For an instance hc of the class, the method sequences
hc.toggleLight();hc.setTemperature();hc.lockDoors() and hc.setTemperature();hc

.toggleLight();hc.lockDoors() will both be allowed (as will any other permutation of the
method sequence).
1 class HouseController {
2 U=({toggleLight;end}|{setTemperature;end}|{lockDoors;end}).end
3
4 LightController lc
5 TempController tc
6 DoorController dc
7
8
9 void toggleLight(){if (lc.isOn()){lc.off()} else {lc.on()}}

10 void setTemperature(){tc.setTemp(22)}
11 void lockDoors(){dc.lock()}
12 }

The behavioural separation is apparent in the modularity it allows on method parameters. For
the method below which states that the formal parameter should have usage {toggleLight

; end}, an object with usage U, defined on line 2, is a valid parameter. The type system
allows for the parallel usages to be split into its component, and that each component is treated
separately. This means that the actual parameter of type HouseController[U] can be split
into three objects with types HouseController[{toggleLight; end}], HouseController[{
setTemperature;end}], and HouseController[{lockDoors;end}] and then the method can
be called with the correct type.
1 void controlLights(HouseController[{toggleLight; end}] −→
2 HouseController[end] x) {
3 x.toggleLight()
4 }

After a method call, the usage of the actual parameter is updated according to the method
signature, and the usages can be composed back into a parallel usage, as illustrated below.
1 // Usage is ({toggleLight; end} | {setTemperature; end} | {lockDoors; end

}).end
2 hc = new HouseController;
3 controlLights(hc)
4 //Usage is now (end | {setTemperature; end} | {lockDoors; end}).end
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2.2 Syntax
In this section we present the syntax for a version of the Mungo calculus. The syntax is given in
Figure 2.1 and Figure 2.2 with run-time parts of the syntax highlighted in grey. The syntax is
based on the Mungo calculus presented by Bravetti et. al [BFG+20] with minor simplifications
and extended with parallel usages.

2.2.1 Classes, Expressions and Values
A program declaration in the Mungo calculus is a set of class declarations #»

D. A class declaration
defines a class C with usage U , a set of field declarations #»

F , and a set of method declarations # »

M .
Method declarations are of the form t5 m(t1 → t2 x1, t3 → t4 x2) {e} where t5 denotes the return
type, the parameters of the form t→ t′ x specify that an argument x has type t before the method
body is evaluated and afterwards it has type t′. Finally, the body of method m is an expression
e. The declarations for methods have been extended with a second argument, compared with
earlier versions of Mungo, to allow aliasing on method arguments. With this notation for method
parameters, we now require both pre and post conditions on method parameters. The reason for
this requirement is that there is no longer a linearity assumption, hence changes to parameters
in a method call can induce changes in a field of the caller. The post condition allows the type
system to track these changes and update the field accordingly.

(FNames) f

(PNames) x

(MNames) m

(CNames) C

(Locations) o

(Declarations) D ::= class C {U , #»

F ,
# »

M}
(Fields) F ::= z f

(Methods) M ::= t m(t→ t⊥ x, t→ t⊥ x) {e}
(References) r ::= f | x
(Expressions) e ::= e; e | f = e | r.m(v, v) | v | new C |

if r (r.m(v, v)) {e} else {e} | k : e | continue k

returnr.m(v,v){e}

(Values) v ::= b | r | o
(BValues) b ::= unit | null | true | false

Figure 2.1: Syntax of Mungo

Expressions e include typical imperative statements as well as values. A difference between
this version of Mungo and the version presented by Bravetti et al. [BFG+20] is that switch-
expressions along with enumeration types have been removed. The switch expression would,
based on an enumeration type, choose the corresponding expression, and follow that branch in a
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usage as well. We simplify this by using the if -expression to choose a branch based on a returned
boolean from a method and update the choice-usage of the callee according to the boolean as
well. As we can encode switch-expressions using this if-expression, we do not consider them
integral to the language and omit them for simplicity. Iterations are expressed as jumps where
a label is given to an expression k : e and by writing continue k we jump back to expression e.
The remaining user (non-runtime) expresssions are sequential composition e; e, field assignments
f = e, method calls r.m(v, v), values v and object initialisations new C. Finally we have the
return-expression returnr.m(v,v){e}, annotated with a method call. This is used in the small-step
semantics to wrap the method body during an evaluation, to know when to pop the call-stack,
and the method call is used to determine the callee to update the usage accordingly.

2.2.2 Well-Formed Continue Expressions
As we treat control structures as expressions, we introduce well-formedness for expression, where
we require a correct placement of continue expressions. The rules in Table 2.1 ensures the
following:

• Expressions continue x; e are disallowed

• Free occurrences of labels are disallowed

• There is always a terminating branch in loops

As we handle loops with unfolding, continue x; e would result in nonsensical behaviour where
e would be evaluated for each loop iteration, in spite of continue x clearly indicating a jump back
to the labelled expression. The last requirement is mostly technical, as it allows us to always be
able to reason about a loop. It is not required that the terminating branch is ever chosen. In
programs, we require that for all methods t m(t→ t⊥ x, t→ t⊥ x) {e} we have ∅ ` e a θ where
> ∈ θ.

(Seq)
θ ` e a θ′ ∪ {>} θ ` e′ a θ′′

θ ` e; e′ a θ′′
(Call)

θ ` r.m(v1, v2) a {>}

(If)

θ ` e1 ` θ′

θ ` e2 ` θ′′ > ∈ θ′ ∪ θ′′

θ ` ifr (r.m(v, v)) {e} else {e′} a {>} (Assign)
∅ ` e a θ ∪ {>}
θ ` f = e a {>}

(Val)
θ ` v a {>}

(New)
θ ` new C a {>}

(Lab)
θ ∪ {k} ` e a θ′ ∪ {>}

θ ` k : e a {>}
(Con) k ∈ θ

θ ` continue k a {k}

Table 2.1: Well-formed continue expression judgments

2.2.3 Types
Types t in the language can be either base types bool, void or a typestate C[U ] composed of a
class name C and a usage U . Furthermore, we introduce the special type ⊥ to describe the
type of null. We write t⊥ in the syntax where it is allowed to use ⊥ in the user syntax. This
is only allowed in the post conditions for method parameters, to indicate that a parameter was
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consumed (linearly read) in the method. Field types can be base types or a class name, meaning
that a field can hold an object of class C no matter the current usage and it can also contain the
null-value.

(FTypes) z ::= bool | void | C
(Types) t ::= C[U ] | bool | ⊥ | void
(Usages) U ::= us | u?

u ::= µX.u | {mi;wi}i∈I | (u1 | u2).u3 | end | ⊚
w ::= 〈u1, u2〉 | u
s ::= s · l | s · r | ϵ

Figure 2.2: Syntax of types in Mungo

The syntax for recursive usages µX.u, matches closely to the syntax of labelled expressions.
Choice usages 〈u1, u2〉 correspond to the two branches of an if-expression, u1 describing the
true-branch and u2 describing the false-branch. Branch usages {mi;wi}i∈I remain unchanged
from the earlier work on Mungo. We then introduce the parallel usages (u1 | u2).u3 to support
behavioural separation. The goal is to use each side of the usage disjointly, so we introduce a
runtime usage ⊚ to indicate a hole in parallel usages. For example, (⊚ | u2).u3 indicates that a
usage is missing from the parallel usage. This placeholder is used to retain the parallel structure
of usages, even when splitting an object reference. As ⊚ does not describe any behaviour, an
object with usage (⊚ | ⊚).u3 cannot perform the behaviour described by u3 before the holes
in the usage have been filled. Finally, the end usage describes a terminated protocol, where no
operations are permitted. Even though neither ⊚ nor end allow any operations they are not
equivalent. end describes a terminated protocol, whereas ⊚ describes a (potentially unfinished)
missing protocol.

The syntax for usages U are on the form us, where u is the protocol and s is used to keep
track of usage splits. A usage that has not been split is tagged with ϵ. During a split of
the usage (u1 | u2).u

s
3, the constituents are tagged such that their initial configuration can be

reconstructed, hence a split would result in the following usages us·l
1 , us·r

2 and (⊚ | ⊚).us
3. Usages

in class definitions are always implicitly on the form uϵ, as instantiating an object is always the
full object. Usage for method parameters are always annotated as u?. As methods are invariant
to the particular split of an object, the wildcard ? is only instantiated with a split s during the
type-checking of the call.

Terminated Types

In previous versions of Mungo [BFG+20, KDPG16] linear type systems were used to track changes
in object states. In the linear type systems the notion of linearity defined that objects with a
usages different from end are linear and linear values cannot be overwritten. This notion of
linearity, among other things, is important to protocol completion since we can use it to check
whether an object is linear and ensure we do not lose references to objects with incomplete
protocols. Similarly, in our present work we want to ensure protocol completion; however, we
are not employing a strictly linear type system and therefore define a notion called terminated
instead. A type is considered to be terminated if it is a base type or if the type is a typestate
where the usage is end. The predicate term is used to test whether an object is terminated
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to handle destructive reads in the semantics and in the type system ensure references to non-
terminated objects are not lost during sequential expressions and assignments. We retain the
notion that a type is linear, if it is not terminated.
Definition 1 (Terminated type). For a type t we say that t is terminated written term(t) with
the following predicate:

term(bool) term(void) term(⊥) term(C[ends])

2.2.4 Usage Transitions
Usages describe a labelled transition system. The transition rules are shown in Table 2.2. Rule
(Branch) describes that usages of the form {mi;wi}i∈I allow any method mj , where j ∈ I, to
be called and the usage continues as the associated usage wj . Rule (Rec) describes transitions
for recursive usages of the form µX.us m−→ u′s where X is a recursion variable mapped to usage
u. The rule tells us that occurrences of variable X in usage u are unfolded when performing a
transition. Rules (SelTrue) and (SelFalse) specify that choice usages of the form 〈u1, u2〉s
either continue as u1 or u2 depending on a boolean value. Notice that parallel usages have
no transition rules. We argue that parallel usages do not describe behaviour directly, but only
describe how an object is perceived. The behaviour of a parallel usage is only implicitly described
by each branch of the parallel usage. So instead of treating an object as having a parallel usage,
we should treat an object as having either one of the two sides of the parallel usage instead. A
further description of this will follow in the next section. Finally, we define that two end usages
in a parallel usage are congruent with the succeeding usage, as illustrated below. This allows us
to continue from a parallel usage into the succeeding usage, precisely when both local protocols
have finished.

(end | end).us ≡ us

(Branch) j ∈ I

{mi;wi}si∈I

mj−−→ ws
j

(SelTrue) 〈u1, u2〉s
true−−→ us

1

(SelFalse) 〈u1, u2〉s
false−−→ us

2 (Rec)
(u{µX.u/X})s m−→ u′s

µX.us m−→ u′s

Table 2.2: Labelled transitions for usages

2.2.5 Usage Well-Formedness
As parallel usages represent a behavioural separation, we must ensure that that each parallel
constituent can be treated separately. The first step of ensuring this, is on a syntactical level,
with well-formed usages. Figure 2.3 illustrates the desired property. An object with a parallel
usage can be split into disjoint parts of the whole. To achieve this separation, we must ensure
that operations on one part, do not impact any other.
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C[(u1 | (u2 | u3).u4).u
s
5] <:> C[us·l

1 ]

C[us·r·l
2 ]

C[us·r·r
3 ]

Figure 2.3: Illustration of parallel usages

(Par)

fields(C, u1) ∩ fields(C, u2) = ∅
methods(u1) ∩methods(u2) = ∅

∅, C ` u1 ok ∅, C ` u2 ok θ, C ` u3 ok
θ, C ` (u1 | u2).u3 ok

(Br) ∀i ∈ I.θ, C ` wi ok
θ, C ` {mi;wi}i∈I ok

(Sel) θ, C ` u1 ok θ, C ` u2 ok
θ, C ` 〈u1, u2〉 ok

(Rec)
θ ∪ {X}, C ` u ok
θ, C ` µX.u ok

(Var)
θ ∪ {X}, C ` X ok

(En)
θ, C ` end ok

Table 2.3: Well-formed usage judgments for parallel usages

Table 2.3 shows the conditions for a usage being well-formed. The most interesting rule
is (Par), which states that the methods and fields mentioned in the parallel constituents are
disjoint. The methods and fields functions are defined to extract the methods a usage mention
and the fields accessed in those methods, respectively. The cases omitted from the presentation
are the obvious definitions of recursively calling the function on subusages or subexpressions.
The mbody function extracts the method body of a method m from a class C.

methods({mi;wi}i∈I) =
⋃
i∈I

{mi} ∪methods(wi)

fields(C, u) =
⋃

m∈methods(u)
fields(mbody(C,m))

fields(f = e) = fields(e) ∪ {f}
fields(f) = {f}

The next set of judgments for usage well-formedness requires protocols to always be able
to terminate. That is, we disallow infinite behaviour such as µX.{m;X}, but do allow the
behaviour µX.{m;X n; end}. The reason for this requirement is mostly technical. When following
an infinite usage, we cannot reason about the resulting typing environment as it can never be
reached. By requiring the usage to be able to terminate, we can reason about the resulting
environment, in the case where the loop is terminated. It is important to note that we do not
disallow infinite programs, it is still possible to create an infinite loop, we only require protocols
to be able to terminate at some point in the future. The judgments for well-formedness are shown
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in Table 2.4 and works by collecting the possible end-states, which are either recursion variables
or the end usage. We require for a well-formed usage u where ∅ ` u a θ, that end ∈ θ.

(Par)

θ ` u3 a θ′

∅ ` u1 a θ1 ∪ {end}
∅ ` u2 a θ2 ∪ {end}
θ ` (u1|u2).u3 a θ′

(Bra) ∀i ∈ I.θ ` wi a θi
θ ` {mi;wi}i∈I a

⋃
i∈I θi

(Sel) θ ` u1 a θ1 θ ` u2 a θ2
θ ` 〈u1, u2〉 a θ1 ∪ θ2

(Rec)
θ ∪ {X} ` u a θ′ ∪ {end}

θ ` µX.u a {end}

(Var) X ∈ θ
θ ` X a {X}

(End)
θ ` end a {end}

Table 2.4: Well-formed usage judgments for termination

We require that usages defined in the program text are well-formed, and as well-formedness is
preserved by the usage transitions presented in Table 2.2, all usages encountered during execution
will be well-formed.

2.2.6 Expressive Power of Usages
We now explore the expressive power of usages. To do so, we analyse the language class of the
traces of usages, that is, the operation sequences they can describe. We write L(U) to describe
the language of method traces of U . This treatment is simplified by assuming the existence of
the ordinary transition rules for parallel constructs, where each side can advance individually.
While not present in the transition rules described in Table 2.2, the behaviour is simulated in
the type systems, as will be illustrated later.

To illustrate the language class of usages traces, consider the following usage:

U = µX.{m;X n; end}

We see that the usage allows any number of method calls to m, but terminates after a call to
n, hence the strings generated by the regular expression m∗n are in the language L(U), but as
no termination is required the infinite sequence of calling m is also allowed, hence mω ∈ L(U).
As usages generate both finite and infinite strings, we see directly that the languages are neither
regular nor ω-regular. But if we construct an automaton, that for finite strings accepts as a
NFA, and for infinite strings accepts as a Büchi automaton, we see that in fact the language of a
usage with transition labels Σ is L(U) ⊆ Σ∞ where, following the definition by Thomas [Tho91],
Σ∞ = Σ∗ ∪ Σω.

For a usage U , we define the following two automatas as a 5-tuples: (Q,Σ, δ, q0, FNFA), and
(Q,Σ, δ, q0, FBüchi) for recognising the traces of U . The automatas recognise the finite and infinite
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traces of U respectively.

Q = {U ′ | U −→∗ U ′}
Σ = methods(U) ∪ {true, false}

δ(U ′, a) = {U ′′ | U ′ a−→ U ′′}
q0 = U

FNFA = {end}
FBüchi = Q

We argue that for a finite usage U , both Q and Σ are finite. Σ is finite since we can only
mention finitely many method names in a finite usage, and by inspection of the transition rules
for usages, we see that only a single unfolding of recursive usage definitions are enough to reach
all usage states by the transition relation. We see that the definitions follow that of an NFA or
a Büchi automaton, hence based on the acceptance criteria we will accept regular or ω-regular
languages. The set of acceptance states are different depending on the input is a finite or infinite
traces. For finite traces, the usage must terminate in end. For infinite traces, we allow all infinite
behaviour specified by the usage, hence FBüchi = Q.

2.3 Semantics
In this section, we present both a big-step and a small-step operational semantics for the presented
version of Mungo. The purpose of presenting both semantics is to simplify proving and stating
properties about the type system. The small-step semantics is used to prove temporal properties
such as protocol fidelity and the big-step semantics simplifies proving properties about type
safety.

Previous work on Mungo only employed a small-step semantics. Proving soundness for the
type system then entailed showing that the type system is an approximation of the small-step
semantics. This made for some unwieldy proofs, where the properties could not be naturally
expressed. We seek to remedy this by introducing big-step semantics for the language and show
that a big-step transition can be matched by a terminating sequence of small-step semantics and
vice versa. This equivalence result lets us express the desired properties in a natural way, and
apply the result to both semantics.

2.3.1 Configurations
The big-step and small-step semantics both use the environment-store binding model. Values v,
which are stored in the environments can be base values b or locations o.

Values = Locations ∪BValues
Locations, are only references to objects and do not store any information about the object

itself. The information about the fields and the type information is stored in a heap h, which
maps object references to a typestate for the object, as well as the field environment envf which
stores the values of the fields.

EnvF = FNames ⇀ Values

Heap = P(Locations ⇀ Typestates×EnvF)
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As can be seen in the definition of Heap, a heap can contain multiple bindings of an object
o, as heaps are sets of partial functions. We use this to handle parallel usages, where each
constituent of the parallel usage is stored as a binding of o. Syntactically, we describe heaps with
multiple bindings using heap separation with the operator ∗. A heap h can be separated, using
heap subtyping, into h′ ∗ h′′, where bindings of an object o can appear in both h′ and h′′. When
extracting a value from a separated heap (h′ ∗ h′′)(o) we allow the value to be extracted from
either h′ or h′′. Due to the well-formedness condition on usages, there is only one binding of o
that makes sense in a given context. For example, if a method call of method m occurs, and the
binding of o should be updated to reflect the usage, then only one binding of o will have a usage
that allows a m-transition.

We use the following notation when updating bindings in the heap: We write h[o.usage 7→ U ′]
which specifies that we choose an o in h and the usage of o is updated to U ′. Additionally, we
write h[o.f 7→ v] to update a field in the object referenced by o. Given that multiple occurrences
of o is allowed in h a choice need to be made concerning which o to update, this is straightforward
due to usage well-formedness since there is only one o that contains f . We write h, h′ to denote
the heap containing the bindings of both h and h′. If there are overlapping bindings of fields
in h and h′, then the separation should be such that every separated heap contains at most
one binding of a particular object, and all bindings from h and h′ are contained in h, h′. For
example, consider the heap h = {o1 7→ (C1[U1], envf 1)} ∗ {o2 7→ (C2[U2], envf 2)}, then h, o1 7→
(C1[U3], envf 3) = {o1 7→ (C1[U1], envf 1)} ∗ {o2 7→ (C2[U2], envf 2), o1 7→ (C1[U3], envf 3)}. We
use this notation to extract and insert values in the heap.

We assume that the static information about classes such as methods can be accessed directly
on the class, such that for a class definition class C{U , #»

F ,
# »

M} we have that C.methods ≜ # »

M ,
C.fields ≜ #»

F and C.usage ≜ U . For extracting information from the heap, we define the following:

(C[U ], envf ).type ≜ C[U ] (C[U ], envf ).usage ≜ U
(C[U ], envf ).fields ≜ envf (C[U ], envf ).f ≜ envf (f)

(C[U ], envf ).class ≜ C

The configuration in both semantics keep track of the active object, which is the topmost
object of the call-stack. Furthermore, they both use a parameter environment envP to track the
parameter bindings for the method that is being evaluated.

EnvP = PNames ⇀ Values

While it is enough to keep track of the current active object and the current parameter
bindings in the big-step semantics, it is necessary to model the entire call-stack in the small-step
semantics. So for configurations in the small-step semantics, we introduce a stack environment
envS . The stack environment is a sequence of elements (o, envP ) where o is the active object and
envP is the related parameter environment. Each element in the stack corresponds to a nested
method call of the current expression, and as such corresponds to the number of nested returns
in the expression.

EnvS =
#                                              »Locations×EnvP

Heap subtyping

We introduce behavioural separation to the heap with a subtyping relation. The goal of the
subtyping relation is to split the objects in the heap according to their usage and allow multiple
bindings of the same object names. Table 2.5 shows the subtyping relation <:. In the (ParL)

19



and (ParR) rules we create additional bindings of the object o, according to the parallel usage.
Notice that we add the placeholder usage ⊚ to the place that was previously occupied by the
extracted usage. This ensures that the only way the continuation usage us

3 can be used, is by
merging the bindings of o back into the parallel usage, to reach the usage (end | end).us

3 which
by definition is the same as us

3, and o now has a type of C[us
3]. This ensures that evaluation of

the operations in us
3 can only start when all aliases introduced by the parallel usage have been

reobtained. The transitivity property (by rule (Trans)) allows the subtyping relation to extract
and merge arbitrarily deeply nested parallel components.

(ParL)
envf = env′f · env′′f

h, o 7→ 〈C[(u1 | u2).u3], envf 〉 <:> h, o 7→ 〈C[(⊚ | u2).u
s
3], env

′
f 〉∗

{o 7→ 〈C[us·l
1 ], env′′f 〉}

(ParR)
envf = env′f · env′′f

h, o 7→ 〈C[(u1 | u2).u3], envf 〉 <:> h, o 7→ 〈C[(u1 | ⊚).us
3], env

′
f 〉∗

{o 7→ 〈C[us·r
2 ], env′′f 〉}

(Concat)
dom(h1) ∩ dom(h2) = ∅

h1, h2 <:> h1 ∗ h2
(Id)

h ∗ ∅ <:> h <:> ∅ ∗ h

(Trans) h <: h′ h′ <: h′′

h <: h′′

Table 2.5: Heap subtyping

In the rules (ParL) and (ParR) we make use of a context-split operation, inspired by the
work of Thiemann & Vasconcelos [TV16], on the field environment envf . The operations are
defined in Table 2.6 and distributes the field environment between the two objects. Since the
usage is well-formed, we know that the two aliases will access a disjoint set of fields, so we know
that a split exists, such that all accessed fields will be available to both bindings of o in the heap.

(SplitR)
envf = envf 1 · envf 2

envf , f 7→ v = envf 1, f 7→ v · envf 2

(SplitL)
envf = envf 1 · envf 2

envf , f 7→ v = f 7→ v · envf 1, envf 2

(Base)
envf = envf · ∅ = ∅ · envf

Table 2.6: Field environment split

Method Traces

Method traces are sequences of method calls along with the invoking object. We let A be the
set of method invocations o.m and branch selections o.b where b is true or false. Then a method
trace α is an element of the free monoid A∗.
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A = {o.m | o ∈ Locations,m ∈MNames} ∪ {o.b | o ∈ Locations, b ∈ {true, false}}

An example of a method trace could be 〈o.init · o.isValid · o.true · o.save〉, indicating the
method sequence for the object o as well as the branches selected in if-cases. There is a strong
similarity between method traces and usage transitions as defined in Section 2.2. In fact, method
traces form the basis for establishing protocol fidelity for the big-step semantics, as they allow
us to inspect the ordering of method calls, even if they all happen in a single transition.

2.3.2 Big-Step Semantics
The transitions in the semantics are of the form envP , h ` 〈o, e〉

α−→ v a env′P , h
′ where h is a

heap, envP is a parameter environment, expression e is the expression being evaluated, v is the
resulting value, and α is the method trace of the evaluation. For readability of the rules we omit
writing α when α = ε.

We define a function extract to extract information from the heap and parameter environment.
The extract function is used in rules where method calls occur to extract information about passed
parameters and the callee of the method. Base values are simply returned, but for fields and
parameters, the object name of the corresponding environment is returned.

extract(v, h, envP , o) =


envP (x) if v = x

h(o).f if v = f

v otherwise

Control Structures

Table 2.7 shows the big-step transitions for control structures. They are for the most part
unsurprising, except for the rules for if-constructs which ensures that the usages are followed
and updates the method sequence to reflect the transition of either true or false. The if-rules are
further complicated by the fact that r can have a parallel usage, which is why we allow subtyping
on the heap to extract the correct binding of r to allow the transition.
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(SeqB)

envP , h ` 〈o, e〉
α−→ v′′ a env′′P , h

′′

env′′P , h
′′ ` 〈o, e′〉 α′

−→ v′ a env′P , h
′

envP , h ` 〈o, e; e′〉
α·α′

−−−→ v′ a env′P , h
′

(IfTrueB)

envP , h ` 〈o, r.m(v1, v2)〉
α−→ true a env′′P , h

′′

h′′′ <: h′′ h′′′(o′).usage true−−→ U h′′′′ <: h′′′[o′.usage 7→ U ]
env′′P , h

′′′′ ` 〈o, e1〉
α′

−→ v a env′P , h
′

envP , h ` 〈o, if (r.m(v1, v2)) {e1} else {e2}〉 α·o′.true·α′

−−−−−−−→ v a env′P , h
′

where o′ = extract(r, h, envP , o)

(IfFalseB)

envP , h ` 〈o, r.m(v1, v2)〉
α−→ false a env′′P , h

′′

h′′′ <: h′′ h′′(o′).usage false−−→ U h′′′′ <: h′′′[o′.usage 7→ U ]
env′′P , h

′′′′ ` 〈o, e1〉
α′

−→ v a env′P , h
′

envP , h ` 〈o, if (r.m(v1, v2)) {e1} else {e2}〉 α·o′.false·α′

−−−−−−−→ v a env′P , h
′

where o′ = extract(r, h, envP , o)

(LabB)
envP , h ` 〈o, e{continue k/k : e}〉 α−→ v a env′P , h

′

envP , h ` 〈o, k : e〉 α−→ v a env′P , h
′

Table 2.7: Big-step semantics for control structures

Method Calls

We define the function update below to update the heap and parameter environment with the
updated bindings after a method call. The function is used in the (CallB) rule in Table 2.8 to
improve readability.

update(v, varg, h, envP , o) =


h, envP [x 7→ v] if varg = x

h[o.f 7→ v], envP if varg = f

h, envP otherwise

To handle destructive reads of linear values as method parameters, methods are call-by-
reference. The (CallB) rule constructs a parameter environment using the method parameters,
and execute the method body with the active object set to the callee reference. Furthermore, the
subtyping relation is used on the heap when extracting parallel usages for use in the parameters
or as the callee. For example, the binding f 7→ 〈C[({m; end}|{n; end}).us

3], envf 〉 in the heap
would allow a method call m on f .
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(CallB)

h′′ <: h h′′(or).usage m−→ U
t m(t1 → t′1 x1, t2 → t′2 x2) {e} ∈ h′′(or).class.methods h′ <: h′′′′′

{x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ] ` 〈or, e〉 α−→ v a {x1 7→ v(3), x2 7→ v(4)}, h′′′′

envP , h ` 〈o, r.m(v1, v2)〉
or.m·α−−−−→ v a env′P , h

′

where v′ = extract(v1, h′′, envP , o),
v′′ = extract(v2, h′′, envP , o),
or = extract(r, h′′, envP , o),
h′′′, env′′P = update(v(3), v1, h′′′′, envP , o), and
h′′′′′, env′P = update(v(4), v2, h′′′, env′′P , o).

Table 2.8: Big-step semantics for method calls

Fields, Parameters, and Objects

Finally, Table 2.9 shows the big-step semantics for operations on fields, parameters, and objects.
Notice that in (LinRefPB) and (LinRefFB) the resulting environments have lost the binding
of the reference. This illustrates how references are treated as linear, and can only be aliased
through method calls, and not assignments. For terminated types, such as base values, the
rules (UnRefPB) and (UnRefFB) the binding is not removed upon reading, as the type cannot
evolve due to aliasing.

To access the type of a value in a heap, we use the getType function defined below:

getType(v, h) =


void if v = unit
bool if v ∈ {true, false}
null if v = null
h(o).type if v = o
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(AsgnB)
envP , h ` 〈o, e〉

α−→ v a env′P , h
′

envP , h ` 〈o, f = e〉 α−→ unit a env′P , h
′[o.f 7→ v]

(BValB)
envP , h ` 〈o, v〉 −→ v a envP , h

v ∈ {null, true, false, unit}

(LinRefPB)
¬term(getType(v, h)) envP (x) = v

envP , h ` 〈o, x〉 −→ v a envP [x 7→ null], h

(LinRefFB)
¬term(getType(v, h)) h(o).f = v

envP , h ` 〈o, f〉 −→ v a envP , h[o.f 7→ null]

(UnRefPB)
term(getType(v, h)) envP (x) = v

envP , h ` 〈o, x〉 −→ v a envP , h

(UnRefFB)
term(getType(v, h)) h(o).f = v

envP , h ` 〈o, f〉 −→ v a envP , h

(NewB)
o′ fresh

envP , h ` 〈o, new C〉 −→ o′ a envP , h[o
′ 7→ (C[C.usage], C.initvals)]

Table 2.9: Big-step semantics for method calls

2.3.3 Small-Step Semantics
The transition rules in the small-step semantics are of the form 〈envS , h, e〉

α
=⇒ 〈env′S , h′, e′〉

where envS is a parameter stack, h is a heap, e is the expression being evaluated, and α is the
method trace of the reduction. Furthermore, we define the small-step rules in terms of evaluation
contexts, defined by the following syntax.

E ::= [_] | E ; e | f = E | returnr.m(v1,v2){E} | if (E) {e1} else {e2}

The evaluation context defines the order of operations, and the (CtxS) rule drives the evalu-
ation according to the evaluation context. The remaining small-step rules handle the base-cases
where the updates to both the environments and the expression actually occurs.

(CtxS)
〈envS , h, e〉

α
=⇒ 〈env′S , h′, e′〉

〈envS , h, E [e]〉
α
=⇒ 〈env′S , h′, E [e′]〉

Control Structures

Table 2.10 shows the small-step rules for control structures. They are for the most part again
unsurprising. However for the if-expressions, we see that the expressions are tagged with a
reference r, which is the reference that was originally used for the method call. This is similar to
how the switch-construct was handled in previous work on Mungo [BFG+20]. The reference tag is
necessary since we need to know which reference should have its usage updated after the branch
is chosen in the if-case. Furthermore, similar to the big-step semantics, we allow subtyping on
the heap, to the correct binding of r.
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(Seq-bS) 〈envS , h, v; e′〉 =⇒ 〈envS , h, e′〉

(If-trueS)

envS = env′S · (o, envP )
h′′ <: h h′′(o′).usage true−−→ U h′ <: h′′[o′.usage 7→ U ]

〈envS , h, ifr (true) {e1} else {e2}〉 o′.true
===⇒ 〈envS , h′, e1〉

where o′ = extract(r, h, envP , o)

(If-falseS)

envS = env′S · (o, envP )
h′′ <: h h′′(o′).usage false−−→ U h′ <: h′′[o′.usage 7→ U ]

〈envS , h, ifr (false) {e1} else {e2}〉 o′.false
====⇒ 〈envS , h′, e2〉

where o′ = extract(r, h, envP , o)

(LblS) 〈envS , h, k : e〉 =⇒ 〈envS , h, e{continue k/k : e}〉

Table 2.10: Small-step semantics for control structures

Method Calls

Table 2.11 shows the small-step rules for method calls. Here we see a major difference between
the two semantics. In the small-step semantics, we introduce a new piece of syntax, the return-
expression. The expression encapsulates the method body of the called method, and it is tagged
with the original method call so that usages can be updated after the method call. Finally, we
append the parameter bindings and current object context to the parameter stack environment
and wrap the method body in a return evaluation context. In (Ret-bsS) we pop the stack as
the method body has been fully evaluated, and evaluation returns to the caller. The subtyping
on the heap, which was used in the call-rule for the big-step semantics is also allowed in the
small-step semantics, but split over the two rules (CallS) and (Ret-bS).
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(CallS)

envS = env′S · (o, envP ) h′ <: h h′(or).usage m−→ U
t m(t1 → t′1 x1, t2 → t′2 x2) {e} ∈ h′(or).class.methods

〈envS , h, r.m(v1, v2)〉
or.m===⇒ 〈envS · (or, {x1 7→ v′, x2 7→ v′′}),

h′[or.usage 7→ U ],
returnr.m(v1,v2){e}〉

where v′ = extract(v1, h′, envP , o),
v′′ = extract(v2, h′, envP , o), and
or = extract(r, h′, envP , o)

(Ret-bS)
envS = env′S · (o, envP ) · (or, {x1 7→ v′, x2 7→ v′′}) h′ <: h′′′

〈envS , h, returnr.m(v1,v2){v}〉 =⇒ 〈env′S · (o, env′P ), h′, v〉

where h′′, env′′P = update(v′, v1, h, envP , o) and
h′′′, env′P = update(v′′, v2, h′′, env′′P , o)

Table 2.11: Small-step semantics for method calls

Fields, Parameters, and Objects

Finally, we have the small-step rules for object operations. There are no surprises, and they are
all similar to the previously defined big-step rules.

(Asgn-bS)
envS = envS · (o, envP )

〈envS , h, f = v〉 =⇒ 〈envS , h[o.f 7→ v], unit〉

(LinFldS)
envS = env′S · (o, envP ) h(o).f = v ¬term(getType(v, h))

〈envS , h, f〉 =⇒ 〈envS , h[o.f 7→ null], v〉

(LinParS)
envS = env′S · (o, envP ) envP (x) = v ¬term(getType(v, h))

〈envS , h, x〉 =⇒ 〈env′S · (o, envP [x 7→ null]), h, v〉

(UnFldS)
envS = env′S · (o, envP ) h(o).f = v term(getType(v, h))

〈envS , h, f〉 =⇒ 〈envS , h, v〉

(UnParS)
envS = env′S · (o, envP ) envP (x) = v term(getType(v, h))

〈envS , h, x〉 =⇒ 〈env′S · (o, envP ), h, v〉

(NewS)
o fresh

〈envS , h, new C〉 =⇒ 〈envS , h[o 7→ (C[C.usage], C.initvals)], o〉

Table 2.12: Small-step semantics for fields and objects

2.3.4 Equivalence of the Two Semantics
In this section, we present an equivalence result showing that our two semantics are equivalent
for terminating programs, and will result in identical values and environments. This allows us
to apply results shown for one semantics, to the other and express the desired properties for our
language as naturally as possible, as we can choose the semantics that most naturally models
the property.
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We first show that we can extend expressions in the small-step semantics, and still evaluate the
original expression. This is useful in the rule for showing equivalence between the two semantics,
in the case for sequential expressions.
Lemma 2. If

〈envS , h, e〉
α
=⇒∗〈env′S , h′, v〉

then
〈envS , h, e; e′〉

α
=⇒∗〈env′S , h′, e′〉

Proof. By induction on the length of transition sequence k. The case for k = 0 is trivial since
no transitions of length k = 0 exist. We assume it holds for a k and consider a transition
sequence 〈envS , h, e〉

α
=⇒k+1〈envS , h′〉. We now have to show 〈envS , h, e; e′〉

α
=⇒k+1〈envS , h′, e′〉.

By applying the rule (CtxS) k times we see that we have 〈envS , h, e; e′〉
α
=⇒k〈envS , h′, v; e′〉. One

further application of (Seq-BS) shows that we have 〈envS , h, e; e′〉
α
=⇒k+1〈envS , h′, e′〉.

We can now prove the lemma that a big-step transition can be matched by a small-step
transition sequence.
Lemma 3 (Big-step equivalence). Let e be a user-expression. If

envP , h ` 〈o, e〉
α−→ v a env′P , h

′

then
〈envS · (o, envP ), h, e〉

α
=⇒∗〈envS · (o, env′P ), h′, v〉

Proof. By induction in the height of the derivation-tree. We show the case for method calls,
as the big-step semantics and the small-step differs the most here. The remaining cases can be
found in Appendix A.
Case (CallB): Assume envP , h ` 〈o, r.m(v1, v2)〉

or.m·α−−−−→ v a env′P , h
′. By (CallB) we

have h′′ <: h. Now let or = extract(r, h′′, envP , o), v′ = extract(v1, h′′, envP , o), and v′′ =
extract(v2, h′′, envP , o). By (CallB) we also have {x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ] `
〈or, e〉

α−→ v a {x1 7→ v(3), x2 7→ v(4)}, h′′′′ , where h′′′, env′′P = update(v(3), h′′′′, envP , o), and
h′′′′′, env′P = update(v(4), h′′′, env′′P , o). Finally from (CallB) we also know h′ <: h′′′′′. By IH we
have 〈envS · (o, envP ) · (or, {x1 7→ v′, x2 7→ v′′}), h′′[or.usage 7→ U ], e〉 α

=⇒∗〈envS · (o, envP ) ·
(or, {x1 7→ v(3), x2 7→ v(4)}), h′′′′, v〉. By Lemma 4 we have 〈envS · (o, envP ) · (or, {x1 7→
v′, x2 7→ v′′}), h′′[or.usage 7→ U ], returnr.m(v1,v2){e}〉

α
=⇒∗〈envS · (o, envP ) · (or, {x1 7→ v(3), x2 7→

v(4)}), h′′′′, returnr.m(v1,v2){v}〉. With (CallS) we can conclude 〈envS · (o, envP ), h, r.m(v1, v2)〉
o′.m
==⇒ 〈envS · (o, envP ) · (or, {x1 7→ v′, x2 7→ v′′}), h′′[or.usage 7→ U ], returnr.m(v1,v2){e}〉. Fi-
nally, using (Ret-BS), we can conclude that 〈envS · (o, envP ) · (or, {x1 7→ v(3), x2 7→ v(4)}), h′′′,
returnr.m(v1,v2){v}〉 =⇒ 〈envS · (o, env′P ), h′, v〉, hence in total we can conclude 〈envS · (o, envP ), h,
r.m(v1, v2)〉

α
=⇒∗〈envS · (o, env′P ), h′, v〉.

We must now prove the opposite direction, that a terminating transition sequence in the
small-step semantics can be matched by a big-step transition. First, we present a lemma stating
that expressions are evaluated according to an evaluation context. This lemma lets us establish
a correspondence between the evaluation of sub-expressions in the two sets of semantics.
Lemma 4.

〈envS , h, E [e]〉
α
=⇒k〈env′S , h′, E [v]〉
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iff
〈envS , h, e〉

α
=⇒k〈env′S , h′, v〉.

Proof. By induction in the length k of the transition sequence. We show one direction of the
proof, the other is similar.
Case k = 1: Assume 〈envS , h, e〉

α
=⇒ 〈env′S , h′, e′〉. Then by (CtxS) we have 〈envS , h, E [e]〉

α
=⇒

〈env′S , h′, E [e′]〉.

Case Inductive case: Assume lemma holds for 1 ≤ i ≤ k and show for k + 1. By definition
of =⇒k+1 we have that 〈envS , h, e〉

α′

=⇒ 〈env′′S , h′′, e′′〉 α′′

=⇒k〈env′S , h′, e′〉 where α = α′ · α′′. As
in the base case, we use (CtxS) to conclude 〈envS , h, E [e]〉

α
=⇒ 〈env′′S , h′′, E [e′′]〉. By IH we have

〈env′′S , h′′, E [e′′]〉 α′′

=⇒k〈env′S , h′, E [e′]〉 hence combined we have 〈envS , h, E [e]〉
α
=⇒k+1〈env′S , h′, E [e′]〉

Next, we present a lemma stating that a reduction of a user-expression only changes the
active object of the stack.
Lemma 5. Let e be a user-expression. If

〈envS · (o, envP ), h, e〉
α
=⇒∗〈env′S · (o′, env′P ), h′, v〉

then envS = env′S and o = o′.

Proof. By induction in the length of the transition sequence. No transitions exist for case k = 0.
Assume true for k and show for k + 1. The expression can be written as

〈envS · (o, envP ), h, e〉
α
=⇒〈env′′S · (o′′, env′′P ), h′′, e′〉 α

=⇒k〈env′S · (o′, env′P ), h′, v〉

By considering the rules that could have been used for transition 〈envS · (o, envP ), h, e〉
α
=⇒

〈env′′S · (o′′, env′′P ), h′′, e′〉 we see that in the small-step semantics, except the rules for method
calls, we only change the parameter environment in the top element of the stack. In the rules
for method calls, an element is appended to the stack, but the expression is wrapped in a return
statement, hence the top element will be removed again, when evaluating the return value.

We can now prove the opposite direction of our equivalence result, namely that a terminating
transition sequence in the small-step semantics can be matched by a single transition in the
big-step semantics.
Lemma 6 (Small-step equivalence). Let e be a user-expression. If

〈envS · (o, envP ), h, e〉
α
=⇒∗〈envS · (o, env′P ), h′, v〉

then
envP , h ` 〈o, e〉

α−→ v a env′P , h
′

Proof. By induction in the length of the transition sequence. We show the case for if-expressions.
The remaining cases are shown in Appendix A.
Case (CtxS) - If: Assume

〈envS · (o, envP ), h, if (r.m(v1, v2)) {e1} else {e2}〉 α
=⇒k〈envS · (o, env′P ), h′, v〉

We can rewrite this as follows
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〈envS · (o, envP ), h, ifr (r.m(v1, v2)) {e1} else {e2}〉
α′

=⇒k1〈envS · (o, env′′P ), h′′, ifr (v′) {e1} else {e2}〉
α′′

=⇒k2〈envS · (o, env′P ), h′, v〉

Lemma 4 tell us that 〈envS · (o, envP ), h, r.m(v1, v2)〉
α′

=⇒k1〈envS · (o, env′′P ), h′′, v′〉 where
v′ ∈ {true, false}. From the IH we have envP , h ` 〈o, r.m(v1, v2)〉 −→ v′ a env′′P , h

′′. We now
consider the case where v′ = true. The case for false is similar hence it will not be presented.
When v′ = true we know the following:

〈envS · (o, env′′P ), h′′, if (true) {e1} else {e2}〉 o′.true
===⇒ 〈envS · (o, env′′P ), h′′′, e1〉
α′′′

==⇒k2−1〈envS · (o, env′P ), h′, v〉

where h′′′′ <: h′′, h′′′′(o′.usage) true−−→ U , and h′′′ <: h′′′[o′.usage 7→ U ]. From the IH we
have that env′′P , h

′′′ ` 〈o, e1〉
α′′′

−−→ v a env′P , h
′ and with rule (IfTrueB) we can now conclude

envP , h ` 〈o, if (e) {e1} else {e2}〉 α′·o′.true·α′′′

−−−−−−−−→ v a env′P , h
′.

We now have both directions of equivalence, hence we can state our final equivalence theorem,
stating that for terminating programs the two semantics are equivalent.
Theorem 1 (Equivalence). Let e be a user-expression.

〈envS · (o, envP ), h, e〉
α
=⇒∗〈envS · (o, env′P ), h′, v〉

iff
envP , h ` 〈o, e〉

α−→ v a env′P , h
′

Proof. Direct consequence of Lemma 3 and Lemma 6.

Example 3. To illustrate the equivalence result, consider the expression f = true;x.m(true, unit)
where m is declared as void m(bool −→ bool x1, void −→ void x2){f ′ = x1}. We show that evaluat-
ing the expression in the small-step and big-step semantics using the same initial environments,
will result in the same terminal environments. The heap contains bindings of two objects, the
active object o, and the object bound to the parameter x:

h = {o 7→ 〈C[U ], {f 7→ false}〉, ox 7→ 〈C ′[{m;w}], {f ′ 7→ false}〉}
The current parameter bindings contain the object ox and a base value unit.

envP = {x 7→ ox, x
′ 7→ unit}

Evaluating the expression in the small-step semantics results in the following transition se-
quence:

〈h, (o, envP ), f = true;x.m(true, unit)〉
=⇒ 〈h[o.f 7→ true], (o, envP ), x.m(true, unit)〉
ox.m===⇒ 〈h[o.f 7→ true], (o, envP ) · (ox, {x1 7→ true, unit}), returnx.m(true,unit){f ′ = x1}}〉
=⇒ 〈h[o.f 7→ true, ox.f ′ 7→ true], (o, envP ) · (ox, {x1 7→ true, unit}), returnx.m(true,unit){unit}〉
=⇒ 〈h[o.f 7→ true, ox.f ′ 7→ true, ox.usage 7→ w], (o, envP ), unit〉
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The big-step derivation is shown in Figure 2.4, with some conditions omitted for simplicity.
We see that the resulting environments for both semantics are:

h′ = h[o.f 7→ true, ox.f ′ 7→ true, ox.usage 7→ w]

and

env′P = envP

2.3.5 Initial Configurations
So far we have discussed the execution of a program with both the big-step and small-step
semantics. However, we have only discussed the execution of an already initialised configuration.
In this section, we describe how the program is started from the definition #»

D.
Inspired by the main method of Java, and similar concepts in other object-oriented languages,

where the main method defines the entrypoint to the program, Mungo assumes the existence of
a class class Main{U , #»

F ,
# »

M} ∈ #»

D where:

1. U = {main; end}ϵ

2. # »

M = {void main(void −→ void x1, void −→ void x2){e}}

We can see from the usage that after evaluating the main method, the usage U is terminated,
and the program is finished. We can now define the initial configurations for both the big-step
and small-step semantics.

The heap should only contain information about the object of the class Main, hence we
can immediately define h = {omain 7→ 〈Main[U ], #»

F .initvals〉}. Similarly, as the parameters to
the method are both of type void, we define envP = {x1 7→ unit, x2 7→ unit}. Finally, the
active object is omain. With all initial environments defined, we can conclude that the initial
configurations for the big-step semantics is envP , h ` 〈omain, e〉, and the small-step configuration
is 〈(omain, envP ), h, e〉.

30



h
,en

v
P
`
〈o,f

=
true〉−→

unita
h
[o.f
7→

true],en
v
P

h
[o.f
7→

true],{
x
1
7→

true,x
2
7→

unit}
`
〈o

x
,f

′
=

x
1 〉

−→
unita

h
[o.f
7→

true,o
x
.f

′7→
true],{

x
1 true,x

2 unit}
h
[o.f
7→

true],en
v
P
`
〈o,x

.m
(true,unit)〉

o
x
.m

−−−→
unita

h
[o.f
7→

true,o
x
.f

′7→
true],en

v
P

h
,en

v
P
`
〈o,f

=
true;x

.m
(true,unit)〉

o
x
.m

−−−→
unita

h
[o.f
7→

true,o
x
.f

′7→
true,o

x
.usage

7→
w
],en

v
P
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Chapter 3

The Type System and its
Properties

In this chapter, the type system is introduced along with its properties. The type system is a
central contribution of this project. It is capable of reasoning about certain forms of aliasing
through the parallel usage construct that in addition, allows usages to be declared more efficiently.
Two important results are shown for the type system and the semantics: protocol fidelity which
tells us that usage declarations are followed in the semantics, and soundness. The soundness
result is composed of a safety result, which specifies that the type system is an over-approximation
of the semantics, and progress which tells us well-typed programs do not get stuck and by
extension that null-dereferencing does not occur.

3.1 Type System
The type system is inspired by the Mungo type system presented by Bravetti et. al [BFG+20].
It uses a modular approach, where each class can be checked independently. It deviates from the
Mungo type system by dropping the linearity requirement.

We start this section with an overview of the type system, before presenting the type judg-
ments.

3.1.1 Type Checking with Usages
A goal with the type system is to remain modular so that classes can be type checked in isolation.
This modularity is relatively simple to achieve when using a linear type system, as changes in
the fields of one object cannot affect fields in another. In this type system, we wish to allow
aliasing, while still preserving modularity. To accomplish this, we allow aliasing to be controlled
with parallel usages, where we know that the two constituents of the usage do not interfere. This
means that we introduce a limited form of aliasing, where aliasing can only be achieved through
method calls, and we still perform destructive reads on linear values.

In a type system without behavioural types, it is often sufficient with a single pass over each
method in a class to check if the static type information is consistent. In our setting, however,
the types of the fields of a class are ever evolving, so the first time a method is called it may be
consistent with the current field types, but not the next time. What the type system must ensure
is, that when following the usage of a class, then every method invocation allowed by the usage
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is consistent with the field types at that particular point in time. We do this by introducing
typing judgments for typestates, and by following the usage, check the method invocations each
time they appear in the usage. Only when a method name is mentioned in a branch usage, is the
method body type checked. To ensure protocol completion, the type system requires that when
reaching the end usage, the fields of the class are all terminated, so that no object is left with
an unfinished protocol. Protocol completion along with destructive reads ensures that aliasing
does not create problems. If one of the aliases is destructively read and stored in a field, then
the original parallel usages cannot continue, and cannot reach the end usage, hence the caller of
the method that performs the destructive read cannot be well-typed.

3.1.2 Environments
Type information for both fields and variables are collected in a typing environment Γ. Similar
to the heap, we allow multiple bindings of the same values in the typing environment. Again,
due to well-formedness of usage, only a single binding in Γ makes sense to extract in a given
context, as each duplicate binding in Γ corresponds to a split of a parallel usage.

Γ : P(Values ⇀ Types)

We write Γ,Γ′ to denote the typing environment that contains the bindings of both Γ and
Γ′. If Γ and Γ′ both contains bindings of the same values, the bindings of Γ′ must be placed
in separated parts of Γ, such that no bindings are lost. For example in the typing environment
Γ = {f 7→ t1} ∗ {x 7→ t2} we have Γ, f 7→ t = {f 7→ t1} ∗ {x 7→ t2, f 7→ t}.

We retain the idea of having a field typing environment Φ from earlier work on Mungo
[BFG+20], by doing so we ensure that Φ does not contain the parameters that are appended
in rule (TCBr); however, from the definition below it is easy to see that for a field typing
environment Φ, {Φ} is a Γ instance.

Φ : FNames ⇀ Types

To allow for behavioural separation we introduce subtyping on typing environments, as shown
in Table 3.1. Rule (Concat) allows us to extract values from the typing environments. This
is used to extract types that are not parallel or even types that are parallel but should not
be further divided. For example if a method parameter requires type C[(u1 | u2).u

s
3], then we

can use (Concat) to extract this type from the field environment. Conversely, the rule can
be used to combine separated environments back into a single typing environment, as long as
there are no overlapping bindings in the two separated values. The rules (ParL) and (ParR)
allow us to alias a value into two names, where each name only describes part of the object as
described earlier in the context of behavioural separation. This is done by separating the typing
environment into two, where the parallel constituent is placed in the newly created separated
typing environment, and the remaining usage is kept in the original typing environment. To
extract both sides of a parallel usage, one would apply each of the rules (ParL) and (ParR).
The rules can also be used to merge separated environments back into a single environment. For
example, this is used to remove aliases so that when only a single reference exists, the object can
continue with usage us

3.
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(ParL)
Γ, v 7→ C[(u1|u2).u

s
3] <:> (Γ, v 7→ C[(⊚|u2).u

s
3])∗

{v 7→ C[us·l
1 ]}

(ParR)
Γ, v 7→ C[(u1|u2).u

s
3] <:> (Γ, v 7→ C[(u1|⊚).us

3])∗
{v 7→ C[us·r

2 ]}

(Concat)
dom(Γ1) ∩ dom(Γ2) = ∅
(Γ1,Γ2) <:> Γ1 ∗ Γ2

(Id)
Γ ∗ ∅ <:> Γ <:> ∅ ∗ Γ

(Trans) Γ <: Γ′ Γ′ <: Γ′′

Γ <: Γ′′

Table 3.1: Subtyping on Environments

To type check a parallel usage, we must ensure that the two branches do not interact with
the same fields. This is achieved by introducing a split on field typing environments, similar to
the field environment split defined in Section 2.3.1. The field typing environment split is defined
in Table 3.2 and ensures that fields of objects with parallel usages are handled in a consistent
way between the type system and the semantics.

Φ = Φ1 ◦ Φ2

Φ, f : t = Φ1, f : t ◦ Φ2

Φ = Φ1 ◦ Φ2

Φ, f : t = Φ1 ◦ Φ2, f : t

Φ = Φ ◦ ∅ = ∅ ◦ Φ

Table 3.2: Field typing environment split

3.1.3 Typing Rules
In this section we define the typing rules for the language defined in Chapter 2.

Program Declarations

In Table 3.3 the typing rules for program and class declarations are defined. Rule (TProg) tell us
a program declaration is well-typed if all its class declarations are well-typed. A class declaration
is well-typed if its usage well-types the class and results in a field typing environment that is
terminated (TClass). The terminated predicate is the term predicate, introduced in Section
2.2.3, lifted to field typing environments such that Φ is terminated if ∀f ∈ dom(Φ).term(Φ(f)) By
requiring that the final field typing environment Φ is terminated we ensure protocol completion
where all fields of a terminated class are also terminated.
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(TProg) ∀D ∈ #»

D. ` D

` #»

D

(TClass)

∅; #»

F .inittypes ` C[U ] ▷ Φ
terminated(Φ)
` class {U , #»

F ,
# »

M}

Table 3.3: Program well-typedness

Branch and Choice Usages

In Table 3.4 we define the typing rules for branch and choice usages. The rule (TCBr) is central
to the type system, in the sense that this is the rule where updates to Φ happen. When type
checking a branch usage, we must ensure that all allowed method invocations are consistent
with the current field typing environment Φ, and that the resulting field typing environment Φ′′

after type checking the method body is consistent with the remaining usage. As this rule uses
the typing rules for expressions in the premise, we tie the type checking of classes to the type
checking of the individual methods in the class. (TCCh) requires that both branches of a choice
usage result in the same field typing environment Φ′, which means that no matter what branch
is chosen, finishing the protocol leaves the object in a consistent state. Finally, (TCEn) requires
no further type derivation, and the final field typing environment has been reached.

(TCBr)

∀i ∈ I.∃Φ′′.


ti mi(t

′
i → t′′i xi, t

′′′
i → t′′′′i x′

i) {ei} ∈ C.methods
{Φ, xi 7→ t′i, x

′
i 7→ t′′′i } ` ei : ti ▷ {Φ′′, xi 7→ t′′i , x

′
i 7→ t′′′′i }

Θ;Φ′′ ` C[us
i ] ▷ Φ

′

Θ;Φ ` C[{mi;ui}si∈I ] ▷ Φ
′

(TCCh)
Θ;Φ ` C[us

1] ▷ Φ
′ Θ;Φ ` C[us

2] ▷ Φ
′

Θ;Φ ` C[〈u1, u2〉s] ▷ Φ′

(TCEn)
Θ;Φ ` C[ends] ▷ Φ

Table 3.4: Typing rules for branch and choice usages

Recursive Usages

Table 3.5 contains the typing rules for recursive usages with the rules (TCRec) and (TCVar).
The idea for handling recursive usages is to keep track of the bound recursion variables along with
field typing environment Φ at the time of binding. When a recursion variable X is bound with
the usage µX.us the field typing environment is saved in Θ. Any occurrences of the recursion
variable in u are well-typed if the field typing environment is the same as the one originally saved
in Θ. Recursive usages are used to describe iterative behaviour, so we must ensure that each
iteration has the same initial environment, to ensure that the resulting environment is also the
same. The guarantee that the resulting environment is the same, is what allows the type system
to only check the recursive behaviour once, instead of arbitrarily many times. In (TCVar) the
resulting field typing environment can be any field environment Φ′. The reason is, that when
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we meet a recursion variable, the resulting environment must match the environment reached by
not iterating. We illustrate this with an example.
Example 4. If we have a field typing environment Φ where calling the method m leads to field
typing environment Φ′, and calling n remains in Φ. Then following the usage µX.{m; end n;X}
should result in the field typing environment Φ′. With the usage {m; end}, (TCBr) tells us that
the resulting environment is Φ′ but for {n;X} we do not know what the resulting environment is.
We solve this by allowing (TCVar) to choose any resulting environment, and since all branches
in a usage must result in the same environment, then only the choice of Φ′ would leave the class
well-typed.

(TCRec)
Θ, (X : Φ); Φ ` C[us] ▷ Φ′

Θ;Φ ` C[µX.us] ▷ Φ′

(TCVar)
Θ, (X : Φ); Φ ` C[Xs] ▷ Φ′

Table 3.5: Typing rules for recursive usages

Parallel Usages

The typing rules for parallel usages can be found in Table 3.6. Rule (TCPar) tell us that a
parallel usage (u1 | u2).u

s
3 is well-typed if we can split the context Φ = Φ1 ◦ Φ2 such that u1 is

typable in Φ1 and u2 is typable Φ2. In other words, we split the fields into two field environments
that do not overlap and ensure that each local protocol is well-typed in the corresponding field
typing environment. The rule (TCPlace) specifies that a placeholder ⊚ is well-typed. As
placeholders do not occur in user-specified usages, this rule will not be encountered while type
checking a program, but is useful when proving properties about the heap later on.

(TCPar)

Θ;Φ1 ` C[us·l
1 ] ▷ Φ′

1 Θ;Φ2 ` C[us·r
2 ] ▷ Φ′

2

Θ;Φ′
1 ◦ Φ′

2 ` C[us
3] ▷ Φ

′

Θ;Φ1 ◦ Φ2 ` C[(u1 | u2).u
s
3] ▷ Φ

′

(TCPlace)
Θ;Φ ` C[⊚s] ▷ Φ′

Table 3.6: Typing rules for parallel usages

Typing judgments for expressions are of the form Γ `Ω e : t ▷ Γ′, where e is the expression
currently being typed in environment Γ resulting in the type t and the environment Γ′. The
recursion environment Ω plays the same role for expressions as Θ played for typestates. It is
used for mapping labels to the initial typing environment. It is used in labelled expressions and
is omitted from most rules, as it is left unchanged.

Method Calls

In Table 3.7 we define the typing rule for call expressions. Rule (Call) handles method calls on a
reference r. Type checking a method call involves checking that parameters match the type given
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in the method declaration, as well as ensuring that the usage of r allows a method transition.
The rule is complicated by the fact that both r and the parameters v1 and v2 can have parallel
usages, where constituents should be extracted first. We require that we can extract the types
from Γ with the use of the subtyping relation, such that the usage of r has a m-transition and
the types of the actual parameters matches those of the formal parameters. As methods do not
distinguish types based on the current split of a usage, we use the inst predicate to instantiate
the split-placeholder in usages u?, to be the split of the actual parameters. Since we retain
the split values with the instantiation, we can use the subtyping relation to merge the parallel
constituents back into the original parallel structures in Γ′.

inst(C[u?], C[us], C[u′?], C[u′s]) inst(C[u?], C[us],⊥,⊥)
inst(b, b, b, b)

We allow some abuse of notation in the case that v1 or v2 are base values. In this case, we
assume that Γ(b) is the type of the base value and that we can separate them from the typing
environment.

(Call)

Γ′′ ∗ {r : C[U ]} ∗ {v1 : tp1} ∗ {v2 : tp2} <: Γ
Γ′ <: Γ′′ ∗ {r : C[U ′]} ∗ {v1 : t′p1

} ∗ {v2 : t′p2
}

t m(t1 → t′1 x1, t2 → t′2 x2) {e} ∈ C.methods U m−→ U ′

inst(t1, tp1
, t′1, t

′
p1
) inst(t2, tp2

, t′2, t
′
p2
)

Γ ` r.m(v1, v2) : t ▷ Γ
′

Table 3.7: Typing rules for method call expressions

Control Structures

In Table 3.8 we define the typing rules for control structures. The rule (Seq) is standard in the
sense that a sequential expression is well-typed if expression e1 is well-typed and its resulting
environment can be used to type expression e2. However, we also require that the type of e1 is
terminated, such that objects with non-terminated usages are not lost. if-expressions are used
to handle choice usages, hence the conditional expression is a method call on r, returning a bool
value and where the usage of r is a choice usage. As with the (Call) rule, the usage of r can be
a parallel usage, so we must allow subtyping on Γ′′ to extract the choice usage for r. And again
use subtyping to restore the original parallel structure before type checking the two branches of
the if-expression. Similar to the condition in (TCCh), we require that the two branches have
the same resulting typing environment. The typing rules (Lab) and (Con) checks continue-style
loops by using a similar approach as for recursive usages. The initial environment is saved in
Ω and then later when the label is encountered again in a continue-expression, we check that
the new environment matches the initial environment saved in Ω. Again we see that the typing
rule for continue-expression allows for an arbitrary resulting environment. This follows the same
reasoning that was presented for recursion variables in (TCVar).
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(Seq)
Γ ` e : t ▷ Γ′′ Γ′′ ` e′ : t′ ▷ Γ′ term(t)

Γ ` e; e′ : t′ ▷ Γ′

(If)

Γ ` r.m(v1, v2) : bool ▷ Γ′′ Γ′′′ ∗ {r : C[〈u1, u2〉s]} <: Γ′′

Γ′′′′ <: Γ′′′ ∗ {r : C[us
1]} Γ′′′′′ <: Γ′′′ ∗ {r : C[us

2]}
Γ′′′′ ` e′ : t ▷ Γ′ Γ′′′′′ ` e′′ : t ▷ Γ′

Γ ` if (r.m(v1, v2)) {e′} else {e′′} : t ▷ Γ′

(Lab)
Ω′ = Ω, (k : Γ) Γ `Ω′

e : void ▷ Γ′

Γ `Ω k : e : void ▷ Γ′

(Con)
Ω = Ω′, (k : Γ)

Γ `Ω continue k : void ▷ Γ′

Table 3.8: Typing rules for control structure expressions

Fields, Parameters, and Objects

In Table 3.9 we define the typing rules for field, parameters, and object expressions. Rule (Fld)
tells us that a field assignment is well-typed if the current type of the field is terminated, to not
lose a non-terminated object reference. Furthermore, we require that the field type of f agrees
with the type of the expression. The agree predicate is defined below.

agree(C,C[U ]) agree(C,⊥) agree(b, b)
Base values are typed using rule (Val) that specifies the type of a base value is found by

calling function btype defined below, which simply maps base values to their corresponding base
type.

btype(true) = bool
btype(unit) = void

btype(false) = bool
btype(null) = ⊥

Rule (New) states that creating an instance of class C results in an object with type
C[C.usage], which is the usage that is defined for the class in the program text. Rule (Lin-
Ref) is similar to destructive reads in a linear type system since we overwrite the reference with
⊥ after reading it in order to avoid aliasing. This is required, since we treat each alias of an object
as a linear value, hence reading the alias should be destructive, such that we only introduce new
aliases through method calls. Rule (UnRef) handles reads of terminated fields in which case
the reference is not overwritten in Γ. If f is mapped to a terminated object, then aliasing cannot
cause interference, as no operations that alter the type can be performed on the value.
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(Fld)
Γ ` e : t ▷ Γ′, f 7→ t′ agree(C.fields(f), t) term(t′)

Γ ` f = e : void ▷ Γ′, f 7→ t

where C is the class we are checking

(Val)
btype(b) = t

Γ ` b : t ▷ Γ

(LinRef)
¬term(t)

Γ, r 7→ t ` r : t ▷ Γ, r 7→ ⊥

(UnRef)
term(t)

Γ, r 7→ t ` r : t ▷ Γ, r 7→ t

(New)
Γ ` new C : C[C.usage] ▷ Γ

Table 3.9: Typing rules for field and object expressions

Example 5. We present two type derivations of the expressions f = true and x.m(true, unit) in
Figure 3.1. What we see is that the subtyping on the typing environment rule allows the type
system to use behavioural separation in method calls. The (Call) rule is a good example of how
the type system is invariant to the amount of nested parallel usages, as the subtyping relation
allows the type system to extract the specific component of the usage, no matter how deeply
nested in a parallel usage it is. So in a sense, the type system requires certain behaviour from
the usage, rather than a specific structure.

3.1.4 Slack in the Type System
As previously discussed, a class is well-typed if following the usage does not lead to problems.
This introduces some slack into the type system, as usages are overapproximations of the method
traces of the program. Usages describe all allowed method sequences of an object, while only
requiring the program text to follow one specific method sequence. On one hand, this introduces
a situation where the type system disallows programs that will never go wrong, as we will
illustrate shortly with an example. On the other hand, this is what allows the type system to
remain modular with respect to classes, as we check all method sequences when type checking
the classes, which means that any method sequences encountered in other classes are guaranteed
to be well-typed if they conform to the usage. We illustrate the slack with an example.
Example 6. Consider the class Err in Listing 3.1. We see that calling the method good on
a newly created object would not cause any problems while calling bad would result in null-
dereferencing on the field f. As the usage specifies that calling bad is allowed the class is not
well-typed. In spite of the class not being well-typed, the main method in the Main class would
not encounter problems at runtime, as the non-erroneous branch is chosen. Removing bad; end
from the usage on line 2 would make the class well-typed, and the run-time behaviour will be
exactly the same.
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Figure 3.1: Type derivations for Example 5
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1 class Err {
2 U = {good; end bad; end}
3
4 LinC f
5
6 void good(void −→ void x1, void −→ void x2) { unit }
7
8 void bad(void −→ void x1, void −→ void x2) {
9 f.m(unit, unit)

10 }
11 }
12 class Main {
13 U = {main; end}
14
15 Err e
16
17 void main(void −→ void x1, void −→ void x2) {
18 e = new Err;
19 e.good(unit, unit)
20 }
21 }

Listing 3.1: A program that is not well-typed, but does not go wrong

In the following sections, we explore properties of both the semantics and the type system, and
the correspondence between the two.

3.2 Protocol Fidelity
As usages form the basis for our type system, it is imperative to guarantee that usages are
respected in the semantics. That is, method calls in the semantics should follow the defined
usages of classes. In this section we present results for protocol fidelity, showing that operations
performed on objects follow the usage defined by their class.

Usages describe a temporal property of what operations are available at a given time. As
such, properties regarding usages are most naturally expressed using the small-step semantics.
First, we define two properties, based on the method traces defined in Section 2.3, stating that
method calls and branch selections follow the usages of a given object.
Lemma 7. If

〈envS , h, e〉
o.m
==⇒ 〈env′S , h′, e′〉

then there exists a h′′ <: h and a usage U such that

h′′(o).usage m−→ U

Proof. Case analysis on the small-step semantics rules. We see that o.m
==⇒ only happens in the

(CallS) rule where h′′ <: h and h′′(o).usage m−→ U is given in the premise.

Lemma 8. If
〈envS , h, e〉

o.v
=⇒ 〈env′S , h′, e′〉
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then there exists a h′′ <: h and a usage U such that

h′′(o).usage v−→ U

where v ∈ {true, false}

Proof. Case analysis on the small-step semantics rules. We see that o.v
=⇒ only happens in the rules

(If-trueS) and (If-falseS) rule where h′′ <: h and h′′(o).usage v−→ U is given in the premise.

We can now use these two results to state our protocol fidelity theorem.
Theorem 2 (Protocol Fidelity). If

〈envS1, h1, e1〉
α1=⇒ 〈envS2, h2, e2〉

α2=⇒ . . . 〈envSk, hk, ek〉

then ∀1 ≤ i < k if αi = o.m then there exists a heap h′ <: hi and a usage U such that
h′(o).usage m−→ U otherwise if αi = o.v then there exists a heap h′ <: hi and a usage U such that
h′(o).usage v−→ U where v ∈ {true, false}.

Proof. Induction in the length of the transition sequence.
Case Base case k = 2: Here we have 〈envS1, h1, e1〉

α1=⇒ 〈envS2, h2, e2〉. Assume α1 = o.m,
then by Lemma 7 we have that ∃h′,U s.t. h′(o).usage m−→ U . Now assume α1 = o.v where
v ∈ {true, false}, then by Lemma 8 we have ∃h′,U s.t. h′(o).usage v−→ U .

Case Inductive step: Assume the lemma holds for k ≤ i and show for i+ 1.

〈envS1, h1, e1〉
α1=⇒ . . . 〈envSi, hi, ei〉

αi+1
===⇒ 〈envSi+1, hi+1, ei+1〉

By IH we know that the lemma holds for 〈envS1, h1, e1〉
α1=⇒ . . . 〈envSi, hi, ei〉, so it only

remains to show that it holds for 〈envSi, hi, ei〉
αi+1
===⇒ 〈envSi+1, hi+1, ei+1〉. This, however, follows

the same structure as the base case. If αi+1 = o.m then it follows from Lemma 7 that ∃h′,U s.t.
h′(o).usage m−→ U and if αi+1 = o.v where v ∈ {true, true} it follows from Lemma 8 that ∃h′,U
s.t. h′(o).usage v−→ U .

Protocol fidelity has only been shown for the small-step semantics. But from Theorem 1 we
know that method traces in the two semantics are equivalent for terminating programs. Since
big-step transitions can be matched by a small-step transition sequence, for which the properties
hold, we must have that the order of operations for a big-step transition also follows the usages
for the classes. With protocol fidelity now shown to hold, we omit writing the method traces on
transitions in the remainder of the report.

3.3 Soundness
The next set of properties show that the type system is sound. The main results are one of safety
stating that the type system is an over-approximation of the runtime semantics, and progress
stating the well-typed programs will terminate without errors or loop forever.

In the proofs for soundness, we will need to show a correspondence between the type system
and semantics. To that end, we will also have to reason in the few areas where the type system
and semantics differs. The cases are for labelled expressions and method calls. For labelled
expressions, the semantics unfolds the loop and executes the body multiple times whereas the
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type system only type checks the body once. To establish the correspondence between the type
system and semantics, we introduce a lemma stating the expression remains well-typed after
unfolding.
Lemma 9 (Substitution). If

Γ ` k : e : void ▷ Γ′

then
Γ ` e{continue k/k : e} : void ▷ Γ′

Proof. Induction in the height of the derivation of Γ ` k : e : void ▷ Γ′. We present the case for
continue expressions. The full proof is in Appendix A.
Case (Con): We consider the case where e = continue k′. There are two sub-cases. First we treat
the case where k′ = k. Assume Γ `Ω k : e : void▷Γ′. Here we have that e{continue k/k : e} = k : e,
which is is well-typed due to our assumption. For the case where k′ 6= k it follows the same
structure as the other base cases. From (Lab) we know Γ `Ω′ continue k′ : void ▷ Γ′. From
(Con) we know that Ω′(k′) = Γ, but since k′ 6= k we must have that Ω(k′) = Γ. As no
substitution happens, we can conclude Γ `Ω e{continue k/k : e} : void ▷ Γ′.

The next difference between the semantics and the type system arises in the handling of
method calls. The type system remains modular, and trusts the method signature, as that
method will already have been checked, or will be checked later with the rule (TCBr). We can
do this, in the type system, since the field environment Γ only considers the fields of the active
object, hence changes introduced to other objects during a method call does not affect Γ. In the
semantics, however, the method body will be evaluated, potentially leading to even more method
calls. The issue is that we must establish a correspondence between the type system and the
active object, but also between the object that a method was called on, and a type environment
that we only know exists (due to the class being well-typed). Two things must be guaranteed
for method calls: (i) method calls only affect the fields of the active objects that are mentioned
in the parameters or as the callee, and (ii) the objects in the heap can be well-typed with their
current usage.

3.3.1 Reachable Objects
To ensure (i) we introduce a function reach(envP , h, o), that given a parameter environment, a
heap, and an object, returns all possible objects in the heap that can be accessed by o or through
methods called on o. The objects are the fields of o, and recursively the objects that the fields
can access themselves as well as the objects that can be accessed through the parameters.

reach(envP , h, o) = range(envP ) ∪ reach(h, o) ∪
⋃

o′∈range(envP )

reach(h, o′)

reach(h, o) = range(h(o).fields) ∪
⋃

o′∈range(h(o).fields)
reach(h, o′)

Lemma 10. If envP , h ` 〈o, e〉 −→ v a env′P , h
′, then ∀o′ ∈ dom(h).o′ /∈ reach(envP , h, o) =⇒

h(o′) = h′(o′)

Proof. Induction in the height of the derivation tree of envP , h ` 〈o, e〉 −→ v a env′P , h
′. The full

proof can be found in Appendix A.
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To ensure (ii) we introduce a judgment ` h, o describing that a heap h is well-typed w.r.t an
object o. The judgment requires that all reachable objects from o are well-typed with the current
bindings of fields and the usage of the object.

(WTH)
∀o′ ∈ reach(h, o).∃Φ,Φ′.

{
Φ `h h(o′).fields
Φ ` h(o′).class[h(o′).usage] ▷ Φ′

` h, o

3.3.2 Well-Typed Configurations
We now formally define what we have previously described as a correspondence between the
semantics and the type system. The rules in Table 3.10 describe a well-typed configuration. In
such a configuration we ensure that the types of the fields in the field typing environment are the
same as the type in the field environment in the heap. Similarly for the parameters, their types
must match in the heap and Γ. We also require that the typing environment domains matches
the domain of the objects’ fields and the parameter bindings. Finally, we use the previously
defined rule (WTH) to ensure that the heap itself is well-typed.

(WTC-S) Γ1 ` envP , h1, o Γ2 ` envP , h2, o

Γ1 ∗ Γ2 ` envP , h1 ∗ h2, o

(WTC-B)

h 6= h′ ∗ h′′ Γ 6= Γ′ ∗ Γ′′

Γ `h envP Γ `h h(o).fields ` h, o
dom(Γ) \ {x1, x2} = dom(h(o).fields)

Γ ` envP , h, o

(WTP)
envP (x1) ∈ dom(h) =⇒ Γ(xi) = getType(envP (xi), h)

Γ `h envP

(WTF)
∀f ∈ envf getType(envf (f), h) = Γ(f)

Γ `h envf

Table 3.10: Well-typed configurations

Lemma 11 (Well-typed initial configuration). Let #»

D be a program with an initial configuration
envP , h ` 〈o, e〉. If ` #»

D then ∃Γ,Γ′.Γ ` e : t ▷ Γ′ and Γ ` envP , h, o

Proof. Per definition of the initial configurations in Section 2.3.5 we know that h = {o 7→
〈Main[{main; end}], #»

F .initvals〉} and envP = {x1 7→ unit, x2 7→ unit}.
By (TClass) we know that ∅; #»

F .inittypes ` Main[{main; end}] ▷ Φ, and by (TCBr) we
have #»

F .inittypes, x1 7→ void, x2 7→ void ` e : void ▷ Φ′′, x1 7→ void, x2 7→ void. So let Γ =
#»

F .inittypes, x1 7→ void, x2 7→ void and Γ′ = Φ′′, x1 7→ void, x2 7→ void.
It remains to be shown that Γ ` envP , h, o. We have that dom(Γ) = dom(h(o).fields) ∪

dom(envP ) since dom(Γ) = dom(
#»

F ) ∪ {x1, x2}, dom(h) = dom(
#»

F ), dom(envP ) = {x1, x2}.
To satisfy (WTP) we notice that Γ(x1) = void = getType(unit, h) as well as Γ(x2) = void =
getType(unit, h). The condition of ∀f ∈ h(o).fields . getType(h(o).f, h) = Γ(f) follows from the
definitions of #»

F .initvals and #»

F .inittypes. Finally ` h, o is trivially satisfied as reach(h, o) = ∅.
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3.3.3 Type System Correspondence
The final thing to show before establishing the correspondence between the semantics and the
type system is to show that behavioural separation in the semantics can be matched in the type
system. We show this, by introducing the following lemma for the subtyping relations.
Lemma 12 (Subtyping correspondence). If Γ ` envP , h, o then ∃h′ s.t. h′ <: h iff ∃Γ′ s.t.
Γ′ <: Γ and Γ′ ` envP , h

′, o.

Proof. By induction in the height of the subtyping judgments h′ <: h and Γ′ <: Γ. As most
subtyping rules are bidirectional we prove both directions. We also prove both directions of the
lemma itself. Here we only present the two directions of the (ParL) rule for subtyping in the
heap. The remaining cases can be found in Appendix A.
Case (ParL): We prove both directions of the rule. Assume Γ ` envP , h, o and h′ <: h was
concluded with (ParL), hence h′ = h′′, o′ 7→ (C[(⊚ | u2).u

s
3], env

′
f ) ∗ {o′ 7→ (C[us·l

1 ], env′′f )},
h = h′′, o′ 7→ (C[(u1 | u2).u

s
3], envf ), and envf = env′f · env′′f . If no f exists s.t. h(o).f = o′

then Γ ∗ ∅ ` envP , h
′, o, and with (Id) we conclude Γ ∗ ∅ <: Γ. If f does exist, then we know

that Γ(f) = getType(o′, h) = C[(u1 | u2).u
s
3], hence Γ = Γ′′, f 7→ C[(u1 | u2).u

s
3]. By (ParL)

we conclude Γ′ < Γ where Γ′ = Γ′′, f 7→ C[(⊚ | u2).u
s
3] ∗ {f 7→ C[us·l

1 ]}. Using (WTC-S) we
conclude Γ′ ` envP , h

′, o. We now prove the opposite direction. Assume Γ ` envP , h, o and
h′ <: h was concluded with (ParL), hence h′ = h′′, o′ 7→ (C[(u1 | u2).u

s
3], envf ), h = h′′, o′ 7→

(C[(⊚ | u2).u
s
3], env

′
f ) ∗ {o′ 7→ (C[us·l

1 ], env′′f )}, and envf = env′f · env′′f . If Γ ` envP , h, o then
by (WTC-S) we have Γ = Γ1 ∗ Γ2 where Γ1 ` envP , h

′′, o′ 7→ (C[(⊚ | u2).u
s
3], env

′
f ), o and Γ2 `

envP , {o′ 7→ (C[us·l
1 ], env′′f )}, o. From (WTC-B) we have dom(Γ2) \ {x1, x2} = dom(h(o).fields),

hence if no f exists s.t. h(o).f = o′ then dom(Γ2) = ∅, hence trivially we have Γ1 ` envP , h
′, o.

Otherwise, if f exists, then we know getType(o′, {o′ 7→ C[(us·l
1 )], env′′f }) = C[us·l

1 ] = Γ2(f) and
getType(o′, h′′, o′ 7→ C[(⊚ | u2).u

s
3], env

′
f ) = C[(⊚ | u2).u

s
3] = Γ1(f), hence Γ2 = {f 7→ C[us·l

1 ]}
and Γ1 = Γ′′, f 7→ C[(⊚ | u2).u

s
3]. With (ParL) we can conclude Γ′ = Γ′′, f 7→ C[(u1 | u2).u

s
3]

and finally Γ′ ` envP , h
′, o.

We now present our first soundness result, namely that of heap-safety, which ensures that
the resulting environments after a big-step transitions remain consistent with the type system.
Theorem 3 (Heap safety). If envP , h ` 〈o, e〉 −→ v a env′P , h

′, Γ ` e : t ▷ Γ′, and Γ ` envP , h, o
then Γ′ ` env′P , h

′, o and getType(v, h′) = t

Proof. Induction in the height of the derivation tree of envP , h ` 〈o, e〉 −→ v a env′P , h
′. The

proof can be found in Appendix A.

The next result is that of progress, stating that a well-typed program does not get stuck. In
a big-step semantics, this means showing that a well-typed program can perform a transition
and thereby finish evaluating. However, as our big-step semantics only allows for terminating
programs, while usages can describe infinite behaviour, we need the small-step semantics to
describe infinite programs.
Definition 13 (Infinite Evaluations). We say that a configuration is infinitely evaluating written
〈envS , h, e〉 =⇒ω if there exists a infinite transition sequence

〈envS , h, e〉 =⇒ 〈env′S , h′, e′〉 =⇒ 〈env′′S , h′′, e′′〉 =⇒ . . .
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Furthermore, we show some intuitive properties of infinitely evaluating programs. The first
property states that a finite transition sequence followed by an infinite transition sequence is in
itself an infinite sequence. The second property states, that an infinitely evaluating expression
can be wrapped in an evaluation context, and remain infinitely evaluating.
Lemma 14. If 〈envS , h, e〉 =⇒∗〈env′S , h′, e′〉 and 〈env′S , h′, e′〉 =⇒ω then 〈envS , h, e〉 =⇒ω.

Proof. By induction in the length of the transition sequence 〈envS , h, e〉 =⇒∗〈env′S , h′, e′〉.
Case k = 0: With k = 0, no transition occurs, hence we must have env′S = envS , h′ = h and
e′ = e, hence we have directly that 〈envS , h, e〉 =⇒ω.

Case k = 1: If 〈env′S , h′, e′〉 =⇒ω then a transition sequence

〈env′S , h′, e′〉 =⇒ 〈env′′S , h′′, e′′〉 =⇒ 〈env′′′S , h′′′, e′′′〉 =⇒ . . .

exists. Since k = 1 we have 〈envS , h, e〉 =⇒ 〈env′S , h′, e′〉. We must then have the transition
sequence

〈envS , h, e〉 =⇒ 〈env′S , h′, e′〉 =⇒ 〈env′′S , h′′, e′′〉 =⇒ 〈env′′′S , h′′′, e′′′〉 =⇒ . . .

hence by the definition of =⇒ω we have 〈envS , h, e〉 =⇒ω.

Case Inductive argument: assume the lemma holds for k and show for k+1. If 〈envS , h, e〉 =⇒k+1

〈env′S , h′, e′〉 then by definition we have 〈envS , h, e〉 =⇒ 〈env′′S , h′′, e′′〉 =⇒k〈env′S , h′, e′〉. By IH we
then have 〈env′′S , h′′, e′′〉 =⇒ω. Now we have 〈envS , h, e〉 =⇒ 〈env′′S , h′′, e′′〉 and 〈env′′S , h′′, e′′〉 =⇒ω,
hence we can conclude by IH that 〈envS , h, e〉 =⇒ω.

Lemma 15. If 〈envS , h, e〉 =⇒ω then 〈envS , h, E [e]〉 =⇒ω.

Proof. If 〈envS , h, e〉 =⇒ω then by definition we have a transition sequence

〈envS1, h1, e1〉 =⇒ 〈envS2, h2, e2〉 =⇒ 〈envS3, h3, e3〉 =⇒ . . .

Now let i > 0 be an arbitrary index in the transition sequence. We know from the transition
sequence that 〈envSi, hi, e

′
i〉 =⇒ 〈envSi+1, hi+1, ei+1〉. We can then conclude with (CtxS) that

〈envSi, hi, E [e′i]〉 =⇒ 〈envSi+1, hi+1, E [ei+1]〉. As this holds for every index we have the transition
sequence

〈envS1, h1, E [e1]〉 =⇒ 〈envS2, h2, E [e2]〉 =⇒ 〈envS3, h3, E [e3]〉 =⇒ . . .

Finally we can state the progress result that a well-typed program either terminates without
errors or is infinitely evaluating.
Theorem 4 (Progress). If Γ ` e : t ▷ Γ′ and Γ ` envP , h, o then either envP , h ` 〈o, e〉 −→ v a
env′P , h

′ or 〈(o, envP ), h, e〉 =⇒ω

Proof. Induction in the structure of e. We show the case for sequential composition. The full
proof is in Appendix A.
Case (Seq): Assume Γ ` e1; e2 : t ▷ Γ′ and Γ ` envP , h, o. From (Seq) we have Γ ` e1 : t′ ▷ Γ′′

and Γ′′ ` e2 : t ▷Γ′. By IH we have either envP , h ` 〈o, e1〉 −→ v′env′′P , h
′′ or 〈(o, envP ), h, e1〉 =⇒ω

and either env′′P , h
′′ ` 〈o, e2〉 −→ venv′P , h

′ or 〈(o, env′′P ), h′′, e2〉 =⇒ω.
If envP , h ` 〈o, e1〉 −→ v′ a env′′P , h

′′ and env′′P , h
′′ ` 〈o, e2〉 −→ v a env′P , h

′, then using (SeqB)
we conclude envP , h ` 〈o, e1; e2〉 −→ v a env′P , h

′.
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If 〈envS · (o, envP ), h, e1〉 =⇒ω then by Lemma 15 we have 〈envS · (o, envP ), h, e1; e2〉 =⇒ω.
Finally if envP , h ` 〈o, e1〉 −→ v′ a env′′P , h

′′ and 〈envS · (o, env′′P ), h′′, e2〉 =⇒ω. By The-
orem 1 we have 〈envS · (o, envP ), h, e1〉 =⇒ ∗〈envS · (o, env′′P ), h′′, v′〉. By Lemma 4 we have
〈envS · (o, envP ), h, e1; e2〉 =⇒ ∗〈envS · (o, env′′P ), h′′, v′; e2〉 and with (SeqS) we have 〈envS ·
(o, env′′P ), h

′′, v′; e2〉 =⇒ 〈envS · (o, env′′P ), h′′, e2〉. We now have 〈envS · (o, envP ), h, e1; e2〉 =⇒
∗〈envS · (o, env′′P ), h′′, e2〉 =⇒ω and by Lemma 14 conclude 〈envS · (o, envP ), h, e1; e2〉 =⇒ω.

With both progress and heap safety defined, we have shown that the type system is sound.
From progress, we know that well-typed programs do not get stuck and from heap safety, we
know that the types in the type system, correspond to the values in the semantics. Thus we can
conclude that well-typed programs do not “go wrong”, in the sense that the errors captured in the
type system, for example, null dereferencing, cannot occur during the execution of a well-typed
program.
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Chapter 4

The Implemented Version of
Mungo

In this chapter, we present our implementation of the Mungo programming language. Golovanov
et al. presented a tool mungoi, which implemented a version of the Mungo language with support
for usage inference [GJK20]. For the version of Mungo presented in this report, we created a
tool mungob with support for behavioural separation. We display the functionality of the tool
through examples in the Mungo language, that are type checked using the tool. The source
code of mungob, written in Haskell, can be found at https://mungotypesystem.github.io/
MungoBehaviouralSeparation/, which also includes full versions of the examples shown here.

The original work on Mungo by Kouzapas et. al resulted in the Mungo & StMungo toolchain
[KDPG16], a custom Java-compiler with support for protocols written in the protocol language
Scribble and translated into typestates with the tool StMungo (Scribble-To-Mungo). Only a sub-
set of Java is supported by the toolchain, and unsupported program segments including external
libraries are assumed to be well-typed. This is in contrast to mungoi which only implements
the core calculus. The major advantage of the Mungo & StMungo toolchain is that Java is a
production-ready language, while the core calculus of Mungo cannot be used for larger projects.
The advantage of mungoi and mungob on the other hand, is that the whole language is formalised,
and the programs are provably correct and are guaranteed to not exhibit the errors captured by
the type system.

A major difference going from mungoi to mungob was the decision to include run-time seman-
tics in the form of an interpreter. While mungoi only included the static phases of the compiler
with parsing and type checking, mungob was extended with an interpreter and simple I/O op-
erations. Including a runtime environment, allows us to write and run our example programs,
motivating the addition of typestates to mainstream programming languages.

4.1 Implemented Mungo Language
The language expected by the implementation is similar to the syntax defined in Chapter 2,
with minor changes to increase writability. In order to clearly express our examples, strings and
integers have been added as base values in the language, along with the base types string and
int, and operators for the new values. The typing rules for the operations on string and integers
are trivial and are omitted from our presentation of the language.

Listing 4.1 shows the syntax of class declarations As can be seen on line 2, the syntax follows
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the conventions of typestates C[U ] rather than the class C{U , #»

F ,
# »

M} syntax defined in Section
2.2. Field and method declarations can be interleaved, and the ⊥ type can be expressed with
the none keyword.
1 // Class declaration with initial usage
2 class C [({setF2; {getF2; end}} | rec X.{ add; X, total; end}).end] {
3 // Field declaration
4 D f
5 // Method declarations
6 void setF(D[{use; end}] -> none x) { f = x }
7 D[{use; end}] getF() { f }
8
9 // Field declaration

10 int count
11 // Method declarations
12 void add(int x) { count = count + x }
13 int total() { count }
14 }

The example highlights some of the syntactic transformations the implementation employs, to
heighten the writability of the language. In the method declarations, we see methods that specify
zero or one parameter, rather than the two parameters from the formal syntax. One syntactic
transformation is to assume parameters not specified are defined as void −→ void x. Another
transformation to method parameters is that types t x are transformed into t −→ t x. This is
useful for base types, whose types will not change during a method call.

4.2 Program Examples
In this section, we present small program examples written in the Mungo language and type
checked and executed with mungob. We use the examples to describe features of the imple-
mentation, along with showcasing the kinds of behaviour that can be expressed with usages.
A repository of program examples can be found on https://mungotypesystem.github.io/
MungoBehaviouralSeparation, and includes the full versions of the examples presented below.

File Example
We return to a common example of protocols in programming language, namely the file example
described in Chapter 1. On the website of the Mungo & StMungo toolchain, an implementation
of the file protocol is shown [DKPG]. Here we present a version of the file example which reads
a file one line at a time, while lines are available in the file. The protocol of a file object is
illustrated in Figure 4.1.
1 class File [{open; rec X.{isEmpty; <{close; end}, {read; X}>}}] {
2 bool isEmpty() { ... }
3 string read() { ... }
4 void close() { ... }
5 void open() { ... }
6 }

As the implementation does not support interfacing with the file system, we only provide the
skeleton of the File class, while providing the full implementation of the main class.
7 class Main [{main; end}] {
8 File f;
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Initial Opened Checked

Empty

Nonempty

Closed

open isEmpty

CloseYes

No

read

Figure 4.1: Illustration of File protocol

9 string line;
10 void main() {
11 f = new File;
12 f.open();
13 loop: if (f.isEmpty()) {
14 f.close();
15 } else {
16 line = f.read();
17 print(line);
18 continue loop;
19 }
20 }
21 }

In the example repository, one can find an implementation of the File class that reads input
from the terminal rather than from a file directly. This allows us to run the example above as
follows:

$ mungob exampleprograms/file.mg < datafile.txt
file
with
multiple
lines

Any call to isEmpty before calling open would not be accepted by the type system. Similarly,
calling read without calling isEmpty will also result in type errors.

Pair Example
We now present an example of the type of aliasing that is allowed in the presented type system.
This example is based on a similar example presented by Militão et. al [MaAC10]. Consider a
Pair-class with a left value and a right value. Both sides must be initialised before using the pair
as a whole, but the two fields themselves are unrelated. We can model the initialisation of both
sides as a parallel usage continued by the use of the combined pair. This is illustrated in the
protocol in Figure 4.2 The shaded regions indicate parallel constituents and the shaded arrows
indicate an implicit transition to multiple parallel states.

In Listing 4.1 the Pair class is shown. A pair contains two integers, that only after initiali-
sation can be summed.
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Initial

⊥ end

⊥ end

Initialised end
setLeft

setRight

sum

Figure 4.2: Protocol for Pair class

1 class Pair[({setLeft; end} | {setRight; end}).{sum; end}] {
2 int left
3 int right
4
5 void setLeft(int x) { left = x }
6 void setRight(int x) { right = x }
7 int sum() { left + right }
8 }

Listing 4.1: Pair class with parallel usage

Now consider the the class PairUser in Listing 4.2. the initialisation method takes as arguments
two pairs, one where the left side can be initialised and one where the right side can be initialised.
1 class PairUser[{initialise; end}] {
2 void initialise(Pair[{setLeft; end}] -> Pair[end] l,
3 Pair[{setRight; end}] -> Pair[end] r) {
4 l.setLeft(2);
5 r.setRight(5)
6 }
7 }

Listing 4.2: Class for initialising pairs

Finally, in the main class in Listing 4.3 we call the initialisation method with the same field
as both parameters on line 12, and introduce aliases for f . The subtyping relation allows the
uninitialised pair to be split into two objects, each matching the required type of the parameters
of the initialisation method. After the method call, the type of the pair is updated to reflect the
progression of both branches, and since both branches are end, the resulting usage is {sum; end}.
1 class main[{main; end}] {
2 Pair p
3 PairUser pu
4 int res
5
6 void main() {
7 //p : ⊥
8 p = new Pair;
9 //p : Pair[({setLeft; end} | {setRight; end}).{sum; end}]

10 pu = new PairUser;
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11 // p : Pair[(⊚ | ⊚).{sum; end}], p: Pair[{setLeft; end}], p: Pair
[{setRight; end}]

12 pu.initialise(p, p);
13 // p : Pair[(end | end).{sum; end}]
14 // p : Pair[{sum; end}]
15 res = p.sum();
16 // p : Pair[end]
17 print(res)
18 }
19 }

Listing 4.3: Main class that shows the use of aliasing

HouseController Example
We now return to the example of a house controller, as introduced in Chapter 1. We have
discussed how in the previous work on Mungo, unrelated linear fields could lead to exponential
size usages, and we have also discussed how this has been mitigated with behavioural separation.
Here we present a HouseController class, type checked by mungob, making use of parallel
usages to express unrelated operations. The language supports parallel usages with more than
two usages in parallel, with the translation (u1 | u2 | u3).u4 ≜ (u1 | (u2 | u3).end).u4, generalised
to any number of parallel usages. Figure 4.3 shows the protocol for the class.

Initial ⊥ on end

⊥ off on end

⊥ on end

end

initLC lightOn

adjustLight

turnOff

lightOff

initTC

setTemp

tempOff

initDC

lockDoors unlockDoors

doorsOff

Figure 4.3: Protocol for HouseController class

The local protocol for each linear field can then be represented separately. Take for example
the LightController class. The field is used in the methods setTemp, initTC, and tempOff,
We can derive the protocol {initTempController;µX.{setTemperature;X turnOff; end}}. The same
procedure is repeated for the remaining two fields, and combined into the parallel usage shown
in Listing 4.4.
1 class HouseController [
2 ({initLightController;
3 rec X.{lightOn;
4 rec Y. {adjustLight; Y, lightOff; X}} turnOff; end}} |
5 {initTempController;
6 rec X. {setTemperature; X, turnOff; end}} |
7 {initDoorController;
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8 rec X. {lockDoors; X, unlockDoors; X, turnOff; end}}).end
9 ] {

10
11 LightController lc
12 TempController tc
13 DoorController dc
14
15 void initLightController(){
16 lc = new LightController()
17 }
18
19 ...
20
21 void lightOn(){lc.on()}
22
23 void adjustLight(){lc.setIntensityHigh()}
24
25 void lightOff(){lc.off()}
26
27 ...
28 }

Listing 4.4: An example of the HouseController class in Mungo

Account Example
With this example, we introduce a syntactical transformation, that allows the programmer to
specify sequential usages u;u′s. Sequential behaviour is nothing new, the choice usage {mi;wi}i∈I

describes a method call m followed by a protocol w. What makes the sequential usage special,
is the fact that an object with type C[u;u′s] is treated as an object of type C[us] and only after
us has evolved to end, is the object treated as having type C[u′s].

Sequential usages are introduced with the syntactical transformation u;u′s ≜ (u | end).u′s.
We see that only after us has evolved to end do we have (end | end).u′s ≡ u′s.

Initial Read Intermediate Updated end
getBalance addSalary applyInterest getBalance

Figure 4.4: Protocol for Account class

Consider a class modelling a bank account with the methods getBalance, addSalary, and apply-
Interest. A simplified protocol for such a class is illustrated in Figure 4.4. To ensure that the bal-
ance is always consistent, getBalance cannot be called after addSalary but before applyInterest. The
obvious way to model this protocol is {getBalance; {addSalary; {applyInterest; {getBalance; end}}}}.
Instead we propose to use sequential usages, as illustrated in Listing 4.5.
1 class Account [
2 {getBalance; end};{addSalary; {applyInterest; end}};{getBalance;

end}
3 ] {
4
5 int balance
6
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7 int getBalance() { balance }
8 void addSalary() { balance = (balance + 16000) }
9 void applyInterest() { balance = (balance + 30) }

10 }

Listing 4.5: Account class with sequential usage

We introduce a second class, a class which performs operations on bank accounts. For simplicity,
we illustrate this with a Printer class which simply prints the balance of a bank account. If
we used the obvious usage to model the Account class, the Printer class would require two
methods, as illustrated in Listing 4.6.
1 class Printer [rec X.{output; X, output2; X, finish; end}] {
2 int balance
3 void output(
4 Account[{getBalance; {addSalary; {applyInterest; {getBalance; end}}}}

->
5 Account[{addSalary; {applyInterest; {getBalance; end}}}] x]) {
6 balance = x.getBalance();
7 print(balance)
8 }
9

10 void output2(Account[{getBalance; end} -> Account[end] x]) {
11 balance = x.getBalance();
12 print(balance)
13 }
14 }

Listing 4.6: Printer class with duplicate methods

If we used the sequential usage instead we could use the Printer class illustrated in Listing 4.7,
relying on the subtyping relation to update the usage of the Account object correctly.
1 class Printer [rec X.{output; X finish; end}] {
2 int balance
3 void output(Account[{getBalance; end}] -> Account[end] x) {
4 balance = x.getBalance();
5 print(balance)
6 }
7 void finish() { unit }
8 }

Listing 4.7: Simpler Printer class

Finally, we show the entry point for the program in Listing 4.8. Notice that on lines 10 and 16
we call the output method, even though the usage of acc is different for each call.
1 class main [{main; end}] {
2 Account acc
3 Printer p
4
5 void main() {
6 // acc: ⊥
7 acc = new Account;
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8 // acc: {getBalance; end}; {addSalary; {applyInterest; end}}; {
getBalance; end}

9 p = new Printer;
10 p.output(acc);
11 // acc: {addSalary; {applyInterest; end}}; {getBalance; end}
12 acc.addSalary();
13 // acc: {applyInterest; end}; {getBalance; end}
14 acc.applyInterest();
15 // acc: {getBalance; end}
16 p.output(acc);
17 // acc: end
18 p.finish()
19 }
20 }

Listing 4.8: main class of Account example

4.3 Runtime Complexity of Type Checking
In this section, we analyse the time complexity of the type checking algorithm. We present the
algorithms for the interesting parts of the type checking process. The cases that are omitted are
bounded by the same complexity class as the presented cases.

4.3.1 Type Checking Algorithm
The implementation follows the structure presented in Chapter 3 where classes are type checked
by following the usage while keeping track of the current field bindings.

Function CheckUsage in Algorithm 1 implements the typing rules (TCBr) and (TCCh).
It maintains a frontier queue of unexplored pairs of usages and Φ environments. It then checks
all branch and choice usage transitions with respect to the associated Φ environment. The loop
starting on line 7 corresponds to rule (TCBr) and the loop on line 16 implements rule (TCCh).

On line 9 in Algorithm 1 method bodies are type checked, and we turn to type checking of
expressions instead of classes. An interesting case is that of type checking call expressions which
are shown in Algorithm 2. It is interesting because it uses the subtyping relation to find the
appropriate behavioural separation for the reference a method is called on and its arguments.

The main idea is to split parallel usages in order to find the usage that matches a parameter
type or allows a particular method transition. For each value, we extract the necessary binding
from the typing environment and continue the process for the remaining values in the remaining
typing environment. The extraction process removes the binding from the original typing envi-
ronment so that the same value cannot be extracted twice. With a parallel usage, this allows us
to extract both sides of a parallel usage, but not the same side twice.

CheckCall constructs the environment split for typing the method call. It extracts envi-
ronments for reference r, arguments v1 and v2 and the remaining environment containing the
unused parts of the original Γ. This corresponds to the typing environment Γ′′′ ∗ ΓR ∗ Γv1 ∗ Γv2.
CheckCall then proceeds to check that a method transition m is allowed on line 10 and that
the types of the parameters and arguments match on line 10. Finally, the typing environment
is updated with the resulting types and parallel usages are restored to their unsplit form. The
function SplitReference is similar to SplitValue except it matches usages that allows a
specified method transition instead of matching typestates.

Finally, we explore Algorithm 3 which implements the subtyping relation. The purpose of
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Algorithm 1 Usage checking

1: function CheckUsage(U , C)
2: explored ← ∅
3: frontier ← {(initFields(C), U)}
4: while frontier 6= ∅ do
5: (Φ,U ′) ← dequeue(frontier)
6: explored ← explored ∪ (Φ,U ′)

7: for all U ′ m−→ U ′′ do
8: if t m(t1 −→ t′1 x1, t2 −→ t′2 x2) ∈ C.methods then
9: if Φ, x1 7→ t1, x2 7→ t2 ` e : t a Φ′, x1 7→ t′1, x2 7→ t′2 then

10: if (Φ′,U ′′) 6∈ explored then
11: frontier ← frontier ∪ (Φ′,U ′′)

12: else
13: return false
14: else
15: return false
16: for all U ′ v−→ U ′′ do
17: if (Φ,U ′′) 6∈ explored then
18: frontier ← frontier ∪ (Φ,U ′′)

19: return true

the subtyping relation is to split parallel usages such that they match a particular target usage.
For example, SplitValue takes the formal and actual parameter of a method and then checks
that they match both in terms of class name and usage. If the actual parameter has a parallel
usage then SplitValue splits the parallel usage until it finds a matching usage or returns an
error if a correct usage cannot be found by splitting. Note, in the implementation SplitValue
also considers base values.

4.3.2 Complexity Analysis
We now analyse the time complexity of the algorithm. In this section, we denote the size of
usages with |U|, the number of fields with |F | and the size of an expressions with |e|.

We start by analysing environment splitting (Algorithm 3). In cases where U ′ is not parallel
only line 5 is interesting which checks usage equality in O(|U|) time. In cases where U ′ is a
parallel usage but its constituents are not parallel, the recursive calls to SplitValue on line 9
and 10 both require in the worst case O(|U|) time. Finally, when U ′ is a parallel usage and its
constituents are also parallel, the worst case is when the parallel usage is skewed to one side such
that we have the following input sizes to SplitValue (1+ |U|− 2)+ (1+ |U|− 4)+ · · ·+(1+1).
Since each usage comparison is linear in the size of the usages, we have that the time complexity
of environment splitting is O(|U|2).

We now consider the time complexity of type checking expressions (Algorithm 2). The call
SplitReference on line 4 is O(|U|2) and the calls to SplitValue on line 7 and 8 are similarly
O(|U|2) in the worst case. Lastly, on line 17 we call UnSplit, which has a time complexity of
O(|U|2) for each argument due to two nested loops over the usage constituents to rebuild a single
usage. The time complexity of type checking call is bounded by environment split and unsplit,
hence the time complexity of CheckCall is O(|U|2).

Lastly, we analyse the complexity of type checking a class (Algorithm 1). On line 4 we have
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Algorithm 2 Type checking call

1: function CheckCall(Γ, r,m, v1, v2)
2: if tr (t1 −→ t′1 x1, t2 −→ t′2 x2) {e} 6∈ Γ(r).class.methods then
3: return Error
4: ΓR ← SplitReference(r, m, tr)
5: Γ′ ← FilterGamma(r, Γ)
6:
7: (Γv1, Γ′′) ← SplitValue’(Γ′, v1, t1)
8: (Γv2, Γ′′′) ← SplitValue’(Γ′′, v2, t2)
9:

10: if ΓR(r).usage 6m−→ U ′ then
11: return Error
12:
13: if Γv1(v1) 6= t1 or Γv2(v2) 6= t2 then
14: return Error
15:
16: Γfinal ← Γ′′′ ∪ ΓR{r.usage 7→ U ′} ∪ Γv1{v1 7→ t′1} ∪ Γv2{v2 7→ t′2}
17: Γ ← unSplitGamma(Γfinal, r, v1, v2)
18: return (Γ, tr)
19: function FilterGamma(r, Γ)
20: Γnew ← ∅
21: for all (r′, t) ∈ Γ do
22: if r′ 6= r then
23: Γnew ← Γnew ∪ (r′, t)

24: return Γnew
25: function SplitValue’(Γ, v, t)
26: C[U ] ← t
27: C ′[U ′] ← Γ(v)
28: Γnew ← FilterGamma(v, Γ)
29: (Γ1,Γ2) ← SplitValue(C, U , v, C ′, U ′)
30: (Γval, Γ′) ← (Γ1,Γ2 ∪ Γnew)
31: return (Γval, Γ′)
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Algorithm 3 Environment splitting

1: function SplitValue(C, U , v, C ′, U ′)
2: if C 6= C ′ then
3: return Error
4: if U 6= U ′ then
5: if U ′ = (u1 | u2).u

s
3 then

6: Ul ← us·l
1

7: Ur ← us·r
2

8: Up ← {(⊚ | ⊚).us
3}

9: (Γ1,Γ
′
1) ← SplitValue(C, U , v, C ′, Ul)

10: (Γ2,Γ
′
2) ← SplitValue(C, U , v, C ′, Ur)

11: if Γ1 6= Error then
12: return (Γ1,Γ

′
1 ∪ {(v, C[Ur]), (v, C[Up])})

13: else if Γ2 6= Error then
14: return (Γ2,Γ

′
2 ∪ {(v, C[Ul]), (v, C[Up])})

15: else
16: return Error
17: else
18: return Error
19: else
20: return ((v, C[U ]), ∅)

a loop that is bounded by the unique typestate of all fields O(|F | · |U|). The loop on line 7 is
bounded by the number of transitions for a usage which gives us a worst-case of O(|U|) and line
9 is bounded by the time complexity of checking the expression O(|e| · |U|2). Additionally; since
we allow non-determinism in usages the final time complexity is O(2|F |·|U|4·|e|) to check a class.

The time complexity can be improved by disallowing non-determinism in usages. Disallowing
non-deterministic usages does not seem overly restrictive, as they were introduced in earlier work
on Mungo mainly to deal with repeating protocols in inferred usages [GJK20], which is not a
goal of this type system. By disallowing non-determinism in usages we get the time complexity
O(|F | · |U|4 · |e|) for type checking a class.
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Chapter 5

Conclusions

5.1 Results
In this project, we have presented a type system for Mungo that is capable of reasoning about
object states with aliases while preserving modularity. The type system is based on the work
done in the area of behavioural separation by Caires & Seco and Militão et al. where concepts
from separation logic and behavioural types are combined to reason about interference from
aliasing or concurrency. We extended the syntax of usages in Mungo with a parallel construct
that describes when an object can be safely decomposed and aliased.

Furthermore, by studying alternative approaches to typestates, a significant disadvantage in
the protocol specification of Mungo was described; specifically, concerning protocols involving in-
dependent field variables that result in large usages which Fugue and Plaid handle appropriately.
This problem with protocol specification in Mungo is solved by extending usage syntax which
now allows usages for independent fields to be specified as parallel usages, instead of enumerating
all combinations of field variable states and their transitions as described in Section 1.1.

In addition to the type system, we defined both a big-step and small-step semantics for Mungo,
and an equivalence proof showing the two semantics are equivalent for terminating expressions.
By including both a big-step and a small-step semantics certain proofs, that were previously
large and complicated, became more straightforward. For example, proving soundness using
a big-step semantics allows the properties of the type system to be expressed more naturally,
compared with using a small-step semantics. We have shown that key properties hold for the
type system, the most important of which is soundness. Soundness and protocol fidelity together
guarantees that null-dereferencing and protocol errors do not occur for well-typed programs;
furthermore, with the inclusion of behavioural separation, we ensure that aliasing does not result
in unsafe interference. Finally, we developed an implementation of the type system along with
an interpreter. The interpreter allows us to execute Mungo programs with simple I/O operations
and some primitive types.

By extending the Mungo calculus with parallel usages and the type system with behavioural
separation, along with proofs showing key properties concerning protocol fidelity and soundness;
we have demonstrated that it is possible to use behavioural separation to reason about some
forms of aliasing and solve the exponential state-space problem related to usage specification in
Mungo. Moreover, by implementing the type system and an interpreter, we have shown that it is
also practically feasible to use behavioural separation to reason about aliasing and exponential
usage state-spaces in Mungo.
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5.2 Discussion
In previous versions of Mungo [BFG+20, GJK20] a small-step operational semantics was defined
for the language and in many ways, it makes sense to do so, since following usages and ensuring
transitions are conforming to the specified protocols are inherently small-step properties. In this
report, we defined the operational semantics using a big-step semantics and included a small-step
version. While both semantics are equivalent for terminating programs and fairly simple on their
own they ultimately serve different purposes. The big-step semantics lets us naturally express
proofs and properties concerning the soundness of the type system since the type system and the
big-step semantics employ similar transitions. Using the small-step semantics to prove the type
system is sound would result in large and overly complex proofs since they involve showing that
type system is an approximation of the small-step semantics. This can be seen in the subject
reduction proof of [BFG+20].

Furthermore, by using a big-step semantics to prove properties about the type system we
avoid convoluted type rule definitions that are required when modelling the counterparts of a
small-step semantics. For example, the small-step semantics uses a stack hence a stack would
have to be modelled in the type system as well. The environments in the type system are therefore
relatively simple since we do not have to model the small-step environment counterparts. A clear
downside of using a big-step semantics to prove soundness is the fact that it cannot express non-
terminating execution since a big-step transition always results in a terminal configuration and
programs written Mungo can, in fact, be non-terminating. As a result, to prove properties where
non-terminating execution is relevant, for example, the progress property, both the small-step
and the big-step semantics are used to deal with possibly non-terminating execution.

Employing behavioural separation with parallel usages as described in this project does allow
some forms of aliasing in Mungo while guaranteeing only safe interference; however, we are
currently unable to express unlimited and direct aliasing, where values can be aliased any number
of times, or aliased through assignment respectively. It begs the question of whether aliasing
through method parameters is enough and if behavioural separation is the most appropriate
approach. Especially since we have seen other successful ways to reason about aliasing some of
which are described in Section 1.2. Our limited aliasing does not represent the final goal or entire
potential of behavioural separation in terms of reasoning about aliasing; furthermore, behavioural
separation is an approach to reason about interference in general and therefore extends beyond
borrowing approaches that reason about aliasing by exchanging a linear resource. Behavioural
separation let us naturally extend the existing language whereas introducing permissions or
capabilities would introduce significant changes where explicit permissions would be part of type
definitions.

Due to non-deterministic usages, the time-complexity of the implementation is exponential,
and as usages become more complex, type checking becomes slow or even infeasible. In pre-
vious work on Mungo [BFG+20] non-determinism in usages made it possible to infer usages
and facilitated usages that could either continue or terminate. The main problem with non-
determinism is its adverse effect on the time complexity of expression checking since we would
have to consider expressions in the context of whether a usage continues or terminates. Disallow-
ing non-determinism primarily affects usage inference and it is unclear whether usage inference
is even possible with parallel usages, hence restricting non-determinism in usages would not be
a considerable change at this stage. If non-deterministic usages are not specified in a program,
the time complexity of the implementation changes from exponential to polynomial.
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5.3 Future Work
In this section we outline some suggestions for future work in the context of Mungo and be-
havioural separation. Most notably, we identify three interesting directions: usage inference
with parallel usages, proving protocol termination, and extending the type system of Mungo to
support direct and unrestricted aliasing.

Usage Inference
In previous work on Mungo, Golovanov et. al presented usage inference for classes [GJK20]. The
inference algorithm guarantees that the inferred usage is the largest usage up to a simulation
ordering v, meaning that the usage covers all well-typed behaviour from the class. It is then
natural to ask whether or not usage inference remains possible in our new type system, with the
addition of parallel usages. We divide this question into two others: (i) can we infer the largest
usage of a class, and (ii) can we infer parallel usages?

The answer to (i) seems to be yes. The approach presented in [GJK20] defines a transition
system between field typing environments, The transition system represents the finite state au-
tomata recognising the regular and ω-regular languages defined by the most permissive usage for
the class. This approach still works for the updated type system, with the exception that the
usages generated are still exponential in size of the number of linear fields, and do not contain
parallel usages. All method call sequences described by parallel usages will still be covered by
the exponential size usage, hence the inferred usage can still simulate parallel usages.

The answer to (ii) is a question for further research. Usages extended with parallel behaviour
describe behaviour modelled by parallel finite automata introduced by Stotts & Pugh [SP94].
Beek et. al [TBK07] define a shuffle operation as: “[...] a shuffle of two words as an interleaving
of consecutive finite subwords of these words which stops (is finite) only if both words have
been used completely. Furthermore, one (infinite) word may prevail when the other word, from
some point onwards, contributes nothing but the trivial subword λ. [...] The shuffling of two
languages is defined element-wise.” To convert the exponential size finite state automata from the
inference algorithm into a parallel usage would require an un-shuffle operation on the language
recognised by the finite state automata. However, as noted by Estrada et. al [EPH06], this
un-shuffle operation is not trivial, and would require further investigation. This un-shuffling is
further complicated by the fact that usages also describe infinite behaviour hence requiring the
un-shuffle operation to work for both regular languages and ω-regular languages.

Protocol Termination Result
In our type system we require protocol completion. This is enforced first by well-formed usages
which requires that usages can never reach a point where they cannot terminate. Furthermore,
in the rule (TClass) we require that upon reaching the end usage, all fields must be terminated
as well, meaning that objects stored as a field of a terminated object, are terminated them-
selves. Finally, we ensure that we never lose a linear reference in field assignment or sequential
expressions.

However, it is not trivial to prove that the protocol termination is achieved in well-typed
programs. A result of protocol completion would state, that after a big-step transition of a well-
typed initial configuration, all objects in the heap are terminated. While we can reason about the
fields of the main object being terminated, using our knowledge of the initial configuration, it is
not trivial to lift this property to all objects in the heap. This seems to require some additional
annotation to the semantics, keeping track of when object become terminated, and then in the
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proof showing that this sequence of terminated objects are ordered such that all fields of an
object become terminated before the object itself.

Support for Additional Forms of Aliasing
As mentioned in Section 5.2 the current version of the type system only supports a limited
form of aliasing where aliases can only be created through parameters during method calls. In
mainstream object-oriented languages, we often encounter aliasing in the form of direct and
unrestricted aliasing. For example, injecting an object dependency through a setter method or
iterating a list of objects. Unrestricted aliasing refers to aliases of objects that can be created an
unbounded number of times. In a modular type system, the types of aliasing possible will always
be limited in some capacity since we cannot reason about global aliases between classes. The type
systems presented by Caires & Seco [CS13] and Militão et al. [MaAC10] incorporate a limited
form of unrestricted aliasing where the type system is still modular. Fields are associated with
a permission specifying whether the field is read-only or not. In an unrestricted view, the object
can only access read-only fields, so that aliases do not interfere. Additionally, in the work by
Militão et al. aliased objects are tracked to collect all splits of an aliased object before regaining
access to writable fields. Implementing a form of unrestricted aliasing in Mungo has proved to
be nontrivial especially considering the interaction between parallel and unrestricted usages. For
example, since context-split ensures that fields do not overlap when splitting parallel usages, it
becomes difficult to negotiate when to allow overlapping fields in the presence of unrestricted
aliasing.

A potential solution is to add read-only values to Mungo on which context-split is not per-
formed since read-only values do not interfere with the state of an object. This approach would
permit a form of unrestricted aliasing where the aliases only access read-only fields. However,
this approach is still rather limited in terms of matching the aliasing allowed in mainstream lan-
guages, since it does not allow direct aliasing. If we were to allow direct aliasing then we would
still experience issues concerning protocol termination since we cannot keep track of aliases in
multiple objects, while the type system remains modular and only checks one class at a time.
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Appendix A

Proofs

Proof of Lemma 3
Proof. Induction in the height h of the derivation tree. The base cases where h = 1 are (BValB),
(LinRefPB), (LinRefFB), (UnRefPB), (UnRefFB), and (NewB).

Case (BValB): This case is trivially shown, as zero transitions are needed.

Case (LinRefPB): Assume envP , h ` 〈o, x〉 −→ v a envP [x 7→ null], h. envP (x) = v as
well as ¬term(getType(v, h)) follows from (LinRefPB) hence with (ParS) we conclude 〈envS ·
(o, envP ), h, x〉 =⇒ 〈envS · (o, envP [x 7→ null]), h, v〉.

Case (LinRefFB): Assume envP , h ` 〈o, f〉 −→ v a envP , h[o.f 7→ null]. From (LinRefFB)
we know h(o).f = v and ¬term(getType(v, h)), hence we conclude using (LinFldS) 〈envS ·
(o, envP ), h, f〉 =⇒ 〈envS · (o, envP ), h[o.f 7→ null], v〉.

Case (UnRefPB): Assume envP , h ` 〈o, x〉 −→ v a envP , h. envP (x) = v follows from
(UnRefPB) as well as term(getType(v, h)) hence with (UnParS) we conclude 〈envS ·(o, envP ), h, x〉 =⇒
〈envS · (o, envP ), h, v〉.

Case (UnRefFB): Assume envP , h ` 〈o, f〉 −→ v a envP , h. From (UnRefFB) we know
h(o).f = v and term(getType(v, h)), hence we conclude using (UnFldS) 〈envS ·(o, envP ), h, f〉 =⇒
〈envS · (o, envP ), h, v〉.

Case (NewB): Assume envP , h ` 〈o, new C〉 −→ o′ a envP , h[o
′ 7→ (C[C.usage], C.initvals)].

From (NewB) we know that o′ is fresh for h, hence we conclude with (NewS) that 〈envS ·
(o, envP ), h, new C〉 =⇒ 〈envS · (o, envP ), h[o′ 7→ (C[C.usage], C.initvals)], o′〉.

The inductive cases where h > 1 are (SeqB), (IfTrueB), (IfFalseB), (LabB), (CallB), and
(SubB).

Case (SeqB): Assume envP , h ` 〈o, e1; e2〉
α−→ v a env′P , h

′. By (SeqB) we have envP , h `
〈o, e1〉

α1−→ v′ a env′′P , h
′′ and env′′P , h

′′ ` 〈o, e2〉
α2−→ v a env′P , h

′ where α = α1 · α2. By IH we
have 〈envS · (o, envP ), h, e1〉

α1=⇒∗〈envS · (o, env′′P ), h′′, v′〉 and 〈envS · (o, env′′P ), h, e2〉
α2=⇒∗〈envS ·
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(o, env′P ), h
′, v〉. From Lemma 2 we get 〈envS ·(o, envP ), h, e1; e2〉

α1=⇒∗〈envS ·(o, env′′P ), h′′, v′; e2〉.
From (SeqS) we have 〈envS · (o, env′′P ), h′′, v′; e2〉 =⇒ 〈envS · (o, env′′P ), h′′, e2〉. In total we have
〈envS · (o, envP ), h, e1; e2〉

α1·α2===⇒∗〈envS · (o, env′P ), h′, v〉.

Case (IfTrueB): Assume envP , h ` 〈o, ifr (r.m(v1, v2)) {e1} else {e2}〉 α1·o′.true·α2−−−−−−−−→ v a env′P , h
′.

Let o′ = extract(r, h, envP , o), by (IfTrueB) envP , h ` 〈o, r.m(v1, v2)〉
α1−→ true a env′′P , h

′′,
h′′′ <: h′′ ,h′′′(o′).usage true−−→ U , h′′′′ <: h′′′[o′.usage 7→ U ], and env′′P , h

′′′′ ` 〈o, e1〉
α2−→ v a

env′P , h
′. From IH we get 〈envS · (o, envP ), h, r.m(v1, v2)〉

α1=⇒∗〈envS · (o, env′′P ), h′′, true〉 and
〈envS ·(o, env′′P ), h′′′′, e1〉

α2=⇒ ∗〈envS ·(o, env′P ), h′, v〉. By Lemma 4 we have 〈envS ·(o, envP ), h, ifr
(r.m(v1, v2)) {e1} else {e2}〉 α1=⇒∗〈envS · (o, env′′P ), h′′, ifr (true) {e1} else {e2}〉. Using (IfTrueS)

we have 〈envS ·(o, env′′P ), h′′, ifr (true) {e1} else {e2}〉 o′.true
===⇒ 〈envS ·(o, env′′P ), h′′′′, e1〉, hence in to-

tal we have 〈envS ·(o, envP ), h, ifr (r.m(v1, v2)) {e1} else {e2}〉 α1·o′.true·α2========⇒∗〈envS ·(o, env′P ), h′, v〉.

Case (IfFalseB): Similar to the previous case.

Case (LabB): Assume envP , h ` 〈o, k : e〉 α−→ v a env′P , h
′. By (LabB) we have envP , h `

〈o, e{continue k/k : e}〉 α−→ v a env′P , h
′ and by IH we have 〈envS · (o, envP ), h, e{continue k/k :

e}〉 α
=⇒ ∗〈envS · (o, env′P ), h′, v〉. From (LblS) we have 〈envS · (o, envP ), h, k : e〉 =⇒ 〈envS ·

(o, envP ), h, e{continue k/k : e}〉, hence in total we have 〈envS · (o, envP ), h, k : e〉 α
=⇒∗〈envS ·

(o, env′P ), h
′, v〉.

Case (CallB): Assume envP , h ` 〈o, r.m(v1, v2)〉
or.m·α−−−−→ v a env′P , h

′. By (CallB) we
have h′′ <: h. Now let or = extract(r, h′′, envP , o), v′ = extract(v1, h′′, envP , o), and v′′ =
extract(v2, h′′, envP , o). By (CallB) we also have {x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ] `
〈or, e〉

α−→ v a {x1 7→ v(3), x2 7→ v(4)}, h′′′′ , where h′′′, env′′P = update(v(3), h′′′′, envP , o), and
h′′′′′, env′P = update(v(4), h′′′, env′′P , o). Finally from (CallB) we also know h′ <: h′′′′′. By IH we
have 〈envS · (o, envP ) · (or, {x1 7→ v′, x2 7→ v′′}), h′′[or.usage 7→ U ], e〉 α

=⇒∗〈envS · (o, envP ) ·
(or, {x1 7→ v(3), x2 7→ v(4)}), h′′′′, v〉. By Lemma 4 we have 〈envS · (o, envP ) · (or, {x1 7→
v′, x2 7→ v′′}), h′′[or.usage 7→ U ], returnr.m(v1,v2){e}〉

α
=⇒∗〈envS · (o, envP ) · (or, {x1 7→ v(3), x2 7→

v(4)}), h′′′′, returnr.m(v1,v2){v}〉. With (CallS) we can conclude 〈envS · (o, envP ), h, r.m(v1, v2)〉
o′.m
==⇒ 〈envS · (o, envP ) · (or, {x1 7→ v′, x2 7→ v′′}), h′′[or.usage 7→ U ], returnr.m(v1,v2){e}〉. Fi-
nally, using (Ret-BS), we can conclude that 〈envS · (o, envP ) · (or, {x1 7→ v(3), x2 7→ v(4)}), h′′′,
returnr.m(v1,v2){v}〉 =⇒ 〈envS · (o, env′P ), h′, v〉, hence in total we can conclude 〈envS · (o, envP ), h,
r.m(v1, v2)〉

α
=⇒∗〈envS · (o, env′P ), h′, v〉.

Proof of Lemma 6
Proof. If 〈envS · (o, envP ), h, e〉

α
=⇒∗〈envS · (o, env′P ), h′, v〉 then by definition there exists a k such

that 〈envS · (o, envP ), h, e〉
α
=⇒k〈envS · (o, env′P ), h′, v〉. We prove this with induction in the length

of the transition sequence k. We use the strong induction principle, and assume that the theorem
holds for all k′ ≤ k and show that it holds for k + 1.
Base step k = 0: No transition sequences of length k = 0 exists, hence this case is trivially
satisfied.
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Assume for k′ ≤ k and show for k+1: we now have a transition sequence 〈envS ·(o, envP ), h, e〉
α
=⇒

k+1〈envS · (o, env′P ), h′, v〉 which we can write as

〈envS · (o, envP ), h, e〉
α′

=⇒ 〈envS · (o, env′′P ), h′′, e′〉
α′′

=⇒k+1〈envS · (o, env′P ), h′, v〉

The continuation of the proof depends on the first transition in the sequence, and will continue
as a case-analysis on the structure of e.
Case (Seq-BS): Assume 〈envS · (o, envP ), h, v′; e′〉

α
=⇒k+1〈envS · (o, env′P ), h′, v〉. We can rewrite

this as 〈envS · (o, envP ), h, v′; e′〉 =⇒ 〈envS · (o, envP ), h, e′〉
α
=⇒k〈envS · (o, env′P ), h′, v〉. Per our IH

we know envP , h ` 〈o, e′〉
α−→ v a env′P , h

′ and from (BValB) we can conclude envP , h ` 〈o, v〉 −→
v a envP , h. Finally using (SeqB) we can conclude envP , h, 〈o, v′; e′〉

α−→ v a env′P , h
′.

Case (Asgn-BS): Assume 〈envS · (o, envP ), h, f = v′〉 α
=⇒ k+1〈envS · (o, env′P ), h′, v〉. From

(Asgn-BS) we can directly see that k = 0 and that the transition must be 〈envS ·(o, envP ), h, f =
v′〉 =⇒ 〈envS · (o, envP ), h[o.f 7→ v′], unit〉. From (BValB) we know envP , h ` 〈o, v′〉 −→ v′ a
envP , h hence we can conclude using (AsgnB) that envP , h ` 〈o, f = v′〉 −→ unit a envP , h[o.f 7→
v′].

Case (LinParS): Assume 〈envS · (o, envP ), h, x〉 =⇒k+1〈envS · (o, env′P ), h′vi〉. We know from
(LinParS) that α = ε, k = 0 envP = {x1 7→ v1, x2 7→ v2}, h′ = h and env′P = envP [x 7→ null].
We can directly conclude with (LinRefPB) conclude envP , h ` 〈o, xi〉 −→ vi a env′P , h.

Case (LinFldS): Assume 〈envS · (o, envP ), h, f〉 =⇒k+1〈envS · (o, env′P ), h′, v〉. We know from
the premise of (LinFldS) that α = ε, k = 0, h(o).f = v, h′ = h[o.f 7→ null] and env′P = envP .
We can then conclude with (LinRefFB) that envP , h,` 〈o, f〉 −→ v a env′P , h

′.

Case (UnParS): Assume 〈envS · (o, envP ), h, x〉 =⇒k+1〈envS · (o, env′P ), h′v〉. We know from
(UnParS) that α = ε, k = 0, envP = {x1 7→ v1, x2 7→ v2}, h′ = h, env′P = envP , envP (x) =
v and term(getType(v, h)). We can directly conclude with (UnRefPB) conclude envP , h `
〈o, xi〉 −→ vi a env′P , h.

Case (UnFldS): Assume 〈envS · (o, envP ), h, f〉 =⇒k+1〈envS · (o, env′P ), h′, v〉. We know from
the premise of (LinFldS) that α = ε, k = 0, h(o).f = v, h′ = h, term(getType(v, h)) and
env′P = envP . We can then conclude with (UnRefFB) that envP , h,` 〈o, f〉 −→ v a env′P , h

′.

Case (NewS): Assume 〈envS ·(o, envP ), h, new C〉 α
=⇒k+1〈envS ·(o, env′P ), h, v〉. From (NewS) we

know that k = 0, α = ε, env′P = envP , v = o′ and h′ = h[o′ 7→ (C,C.initvals)] where o′ is a fresh
location in h. Then we can directly conclude with (NewB) envP , h ` 〈o, new C〉 −→ v a env′P , h

′.

Case (LblS): Assume 〈envS · (o, envP ), h, k : e〉 α
=⇒k+1〈envS · (o, env′P ), h′, v〉. We can split

this into 〈envS · (o, envP ), h, k : e〉 =⇒ 〈envS · (o, envP ), h, e{continue k/k : e}〉 α
=⇒ k〈envS ·

(o, env′P ), h
′, v〉. Per the IH we have envP , h ` 〈o, e{continue k/k : e}〉 α−→ v a env′P , h

′, hence we
can directly conclude using (LblB) envP , h ` 〈o, k : e〉 α−→ v a env′P , h

′.

Case (CallS): Assume 〈envS · (o, envP ), h, r.m(v1, v2)〉
α
=⇒k+1〈envS · (o, env′P ), h′, v〉. We can
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rewrite this as

〈envS · (o, envP ), h, r.m(v1, v2)〉
o′.m
==⇒ 〈envS · (o, envP ) · (o′, env′′P ), h′′′, return{e}〉
α′

=⇒k−1〈envS · (o, envP ) · (o′, env′′′P ), h′′′′, return{v}〉
=⇒ 〈envS · (o, env′P ), h′, v〉

where h′′ <: h, env′′P = {x1 7→ v′, x2 7→ v′′}, v′ = extract(v1, h′′, envP , o), v′′ = extract(v2, h′′,

envP , o), o′ = extract(r, h′′, envP , o), h′′′ = h′′[o′.usage 7→ U ], h(5), env
(4)
P = update(env′′′P (x1),

h′′′′, env′′′P , o), and h′, env′P = update(env(4)P (x2), h
(5), env

(4)
P , o). From Lemma 4 we get that

〈envS · (o, envP ) · (o′, env′′P ), h′′′, e〉 α′

=⇒k−1〈envS · (o, envP ) · (o′, env′′′P ), h′′′′, v〉. From our IH
we then have env′′P , h

′′ ` 〈o′, e〉 α′

−→ v a env′′′P , h′′′′. With (CallB) we can now conclude
envP , h ` 〈o, r.m(v1, v2)〉

o′.m·α′

−−−−−→ v a envP , h
′.

Case (CtxS) - Sequential composition:
Assume 〈envS · (o, envP ), h, e; e′〉

α
=⇒k+1〈envS · (o, env′P ), h′, v〉. We can rewrite this as:

〈envS · (o, envP ), h, e; e′〉
α′

=⇒k1〈envS · (o, env′′P ), h′′, v′; e′〉
=⇒ 〈envS · (o, env′′P ), h′′, e′〉
α′′

=⇒k2〈envS · (o, env′P ), h′, v〉

where k1 + 1 + k2 = k + 1. From Lemma 4 we know that 〈envS · (o, envP ), h, e〉
α′

=⇒
k1〈envS · (o, env′′P ), h′′, v′〉, hence per IH we can conclude both envP , h ` 〈o, e〉

α′

−→ v′ a env′′P , h
′′

and env′′P , h
′′ ` 〈o, e′〉 α′′

−−→ v a env′P , h
′. Now finally we can use (SeqB) to conclude envP , h `

〈o, e; e′〉 α′·α′′

−−−−→ v a env′P , h
′.

Case (CtxS) - Field assignment: Assume 〈envS ·(o, envP ), h, f = e〉 α
=⇒k+1〈envS ·(o, env′P ), h′, v〉.

We can rewrite this as

〈envS · (o, envP ), h, f = e〉 α
=⇒k〈envS · (o, env′P ), h′, f = v′〉
=⇒ 〈envS · (o, env′P ), h′[o.f 7→ v′], unit〉

With Lemma 4 we can conclude 〈envS · (o, envP ), h, e〉
α
=⇒k〈envS · (o, env′P ), h′, v′〉, hence

by our IH we know envP , h ` 〈o, e〉
α−→ v′ a env′P , h

′. With (AsgnB) we can then conclude
envP , h ` 〈o, f = e〉 α−→ unit a env′P , h

′[o.f 7→ v′].

Case (CtxS) - If:
Assume 〈envS · (o, envP ), h, if (r.m(v1, v2)) {e1} else {e2}〉 α

=⇒k〈envS · (o, env′P ), h′, v〉. We can
rewrite this as follows

〈envS · (o, envP ), h, ifr (r.m(v1, v2)) {e1} else {e2}〉
α′

=⇒k1〈envS · (o, env′′P ), h′′, ifr (v′) {e1} else {e2}〉
α′′

=⇒k2〈envS · (o, env′P ), h′, v〉
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Lemma 4 tell us that 〈envS · (o, envP ), h, r.m(v1, v2)〉
α′

=⇒k1〈envS · (o, env′′P ), h′′, v′〉 where
v′ ∈ {true, false}. From the IH we have envP , h ` 〈o, r.m(v1, v2)〉 −→ v′ a env′′P , h

′′. We now
consider the case where v′ = true. The case for false is similar hence it will not be presented.
When v′ = true we know the following:

〈envS · (o, env′′P ), h′′, if (true) {e1} else {e2}〉 o′.true
===⇒ 〈envS · (o, env′′P ), h′′′, e1〉
α′′′

==⇒k2−1〈envS · (o, env′P ), h′, v〉

where h′′′′ <: h′′, h′′′′(o′.usage) true−−→ U , and h′′′ <: h′′′[o′.usage 7→ U ]. From the IH we
have that env′′P , h

′′′ ` 〈o, e1〉
α′′′

−−→ v a env′P , h
′ and with rule (IfTrueB) we can now conclude

envP , h ` 〈o, if (e) {e1} else {e2}〉 α′·o′.true·α′′′

−−−−−−−−→ v a env′P , h
′.

Proof of Lemma 9
Proof. Induction in the height of the derivation of Γ ` e{continue k/k : e} : void ▷ Γ′.

Base cases where h = 0

If the derivation tree has height 0, then it must have been concluded using one of the following
rules: (Val), (Con), (New) and (Call), depending on the structure of e. The proofs for
(Val), (New) and (Call) are similar.

Case (Val), (New), (Call): For these cases, no substitution happens, and we have that
e = e{continue k/k : e}. From (Lab) we know Γ `Ω′

e : void ▷ Γ′ and for each rule we can see
that the value of Ω is not used, hence we also have that Γ `Ω e : void ▷ Γ′. Finally, since no
substitution happens, we can conclude Γ `Ω e{continue k/k : e} : void ▷ Γ′.

Case (Con): We consider the case where e = continue k′. There are two sub-cases. First we treat
the case where k′ = k. Assume Γ `Ω k : e : void▷Γ′. Here we have that e{continue k/k : e} = k : e,
which is is well-typed due to our assumption. For the case where k′ 6= k it follows the same
structure as the other base cases. From (Lab) we know Γ `Ω′ continue k′ : void ▷ Γ′. From
(Con) we know that Ω′(k′) = Γ, but since k′ 6= k we must have that Ω(k′) = Γ. As no
substitution happens, we can conclude Γ `Ω e{continue k/k : e} : void ▷ Γ′.

Inductive step where h > 0

Case (Seq): Assume Γ ` k : (e1; e2) : void ▷ Γ′ By IH we have Γ ` e1{continue k/k : e} : t ▷ Γ′′

and Γ′′ ` e2{continue k/k : e} : void ▷ Γ′. From our assumption we know that term(t) hence we
can conclude Γ ` (e1; e2){continue k/k : e} : void ▷ Γ′.

Case (Fld): Assume Γ ` k : f = e′ : void▷Γ′ By well-formedness continue k cannot appear in e′,
hence no substitution happens, and by our assumption we know that Γ ` f = e′{continue k/k :
e} : void ▷ Γ′.

Case If: Assume Γ ` k : if (r.m(v1, v2)) {e1} else {e2} : void ▷ Γ′. From (If) we know Γ′′′′ ` e1 :
void ▷ Γ′ and Γ′′′′′ ` e2 : void ▷ Γ′. Then from IH we have Γ′′′′ ` e1{continue k/k : e} : void ▷ Γ′
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and Γ′′′′′ ` e2{continue k/k : e} : void ▷ Γ′. Now we can directly conclude Γ ` k : if (r.m(v1, v2))
{e1} else {e2}{continue k/k : e} : void ▷ Γ′

Case (Lab): Assume Γ `Ω k : (k′ : e′) : void ▷ Γ′. For e to be well-formed, we must have
that k′ 6= k. From (Lab) we know that Γ `Ω′

k′ : e′ : void ▷ Γ′ and by applying (Lab) again
Γ `Ω′′

e′ : void ▷ Γ′. By the IH we have Γ `Ω′′
e′{continue k/k : e} : void ▷ Γ′ hence we can

conclude Γ `Ω k : (k′ : e′){continue k/k : e} : void ▷ Γ′.

Proof of Lemma 10
Proof. Case (AsgnB): Assume envP , h ` 〈o, f = e〉 −→ unit a env′P , h

′[o.f 7→ v]. From
premise of (AsgnB) we have envP , h ` 〈o, e〉 −→ v a env′P , h

′. By applying the IH we know
∀o′ ∈ h.o′ /∈ reach(envP , h, o) =⇒ h(o′) = h′(o′). By definition of reach we know that
o.f ∈ reach(o, h), hence we can conclude (AsgnB).

Case (BValB): Trivially true.

Case (LinRefPB): Assume envP , h ` 〈o, x〉 −→ v a envP [x 7→ null], h. By definition of reach we
know that x ∈ reach(envp, h, o), hence we can conclude (LinRefPB).

Case (LinRefFB): Assume envP , h ` 〈o, f〉 −→ v a envP , h[o.f 7→ null]. By definition of reach
we know that o.f ∈ reach(envp, h, o), hence we can conclude (LinRefPB).

Case (UnRefPB): Trivially true.

Case (UnRefPB): Trivially true.

Case (NewB): Assume envP , h ` 〈o, newC〉 −→ o′ a envP , h[o
′ 7→ (C[C.usage], C.initvals)]. From

(NewB) we know that o′ is fresh, hence we know that o′ /∈ dom(h). We can now conclude (NewB).

Case (SeqB): Assume envP , h ` 〈o, e; e′〉 −→ v′env′P , h
′. From premise of (CallB) we know

envP , h ` 〈o, e〉 −→ v′′ a env′′P , h
′′ and env′′P , h

′′ ` 〈o, e′〉 −→ v′ a env′P , h
′. By IH on envP , h `

〈o, e〉 −→ v′′ a env′′P , h
′′ we know ∀o′ ∈ dom(h).o′ /∈ reach(envP , h, o) =⇒ h(o′) = h′′(o′). By

IH on env′′P , h
′′ ` 〈o, e′〉 −→ v′ a env′P , h

′ we know ∀o′ ∈ dom(h′′).o′ /∈ reach(env′′P , h′′, o) =⇒
h′′(o′) = h′(o′). Hence we can conclude (SeqB).

Case (IfTrueB): Assume that envP , h ` 〈o, if (r.m(v1, v2)) {e1} else {e2}〉 −→ v a env′P , h
′.

From premise of assumption we know envP , h ` 〈o, r.m(v1, v2)〉 −→ true a env′′P , h
′′. By apply-

ing the IH we know ∀o′ ∈ dom(h).o′ /∈ reach(envP , h, o) =⇒ h(o′) = h′′(o′). From defini-
tion of extract we know that o′ ∈ reach(envP , h, o). From assumption we know env′′P , h

′′[o′ 7→
U ] ` 〈o, e1〉 −→ v a env′P , h

′. By applying the IH we know ∀o′′ ∈ dom(h′′[o′ 7→ U ]).o′′ /∈
reach(env′′P , h′′[o′ 7→ U ], o) =⇒ h′′[o′ 7→ U ](o′′) = h′(o′′). We can now conclude ∀o′dom(h).o′ /∈
reach(envP , h, o) =⇒ h(o′) = h′(o′). Hence we can conclude (IfTrueB)

Case (IfFalseB): Follows the same reasoning as (IfTrueB)

Case (LabB): Assume envP , h ` 〈o, k : e〉 −→ v a env′P , h
′. From premise of assumption

70



we know envP , h ` 〈o, e{continue k/k : e}〉 −→ v a env′P , h
′. By applying the IH we know

∀o′ ∈ dom(h).o′ /∈ reach(envP , h, o) =⇒ h(o′) = h′(o′). Hence we can conclude (LabB).

Case (CallB): Assume envP , h ` 〈o, r.m(v1, v2) −→ v a env′P , h
′. We have that h′′ <: h does

not touch unreachable objects. From the definition of extract, we know that v′, v′′ and r does
not change the heap and that they are in reach. From the definition of reach on or, we know
that reach({x1 7→ v′, x2 7→ v′′}, h[or.usage 7→ U ], or) ⊆ reach(env′′P , h[or.usage 7→ U ], o). From
IH we on {x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ] ` 〈or, e〉 −→ v a {x1 7→ v3, x2 7→ v4}, h′′′′ we
know ∀o′ ∈ dom(h′′[or.usage 7→ U ]).o′ /∈ reach({x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ], or) =⇒
h′′[or.usage 7→ U ](o′) = h′′′′(o′). By definition of update, we know that it can not change objects
which are not in h, when input is in dom(h). Hence we can conclude (CallB).

Proof of Lemma 12
We first show one direction of the proof: If Γ ` envP , h, o and ∃h′ s.t. h′ <: h then ∃Γ′ s.t.
Γ′ <: Γ and Γ′ ` envP , h

′, o.

Proof. By induction in the height of the judgment h′ <: h.
Case (Trans): Assume Γ ` envP , h, o and that h′ <: h has been concluded with (Trans).
From (Trans) we then know that ∃h′′ s.t. h′ <: h′′ and h′′ <: h. From the IH we know ∃Γ′′

s.t. Γ′′ <: Γ and Γ′′ ` envP , h
′′, o. Then by applying the IH again we have ∃Γ′ s.t. Γ′ <: Γ′′ and

Γ′ ` envP , h, o. Finally since both Γ′ <: Γ′′ and Γ′′ <: Γ we can conclude using (Trans) that
Γ′ <: Γ.

Case (ParL): We prove both directions of the rule. Assume Γ ` envP , h, o and h′ <: h was
concluded with (ParL), hence h′ = h′′, o′ 7→ (C[(⊚ | u2).u

s
3], env

′
f ) ∗ {o′ 7→ (C[us·l

1 ], env′′f )},
h = h′′, o′ 7→ (C[(u1 | u2).u

s
3], envf ), and envf = env′f · env′′f . If no f exists s.t. h(o).f = o′

then Γ ∗ ∅ ` envP , h
′, o, and with (Id) we conclude Γ ∗ ∅ <: Γ. If f does exist, then we know

that Γ(f) = getType(o′, h) = C[(u1 | u2).u
s
3], hence Γ = Γ′′, f 7→ C[(u1 | u2).u

s
3]. By (ParL)

we conclude Γ′ < Γ where Γ′ = Γ′′, f 7→ C[(⊚ | u2).u
s
3] ∗ {f 7→ C[us·l

1 ]}. Using (WTC-S) we
conclude Γ′ ` envP , h

′, o. We now prove the opposite direction. Assume Γ ` envP , h, o and
h′ <: h was concluded with (ParL), hence h′ = h′′, o′ 7→ (C[(u1 | u2).u

s
3], envf ), h = h′′, o′ 7→

(C[(⊚ | u2).u
s
3], env

′
f ) ∗ {o′ 7→ (C[us·l

1 ], env′′f )}, and envf = env′f · env′′f . If Γ ` envP , h, o then
by (WTC-S) we have Γ = Γ1 ∗ Γ2 where Γ1 ` envP , h

′′, o′ 7→ (C[(⊚ | u2).u
s
3], env

′
f ), o and Γ2 `

envP , {o′ 7→ (C[us·l
1 ], env′′f )}, o. From (WTC-B) we have dom(Γ2) \ {x1, x2} = dom(h(o).fields),

hence if no f exists s.t. h(o).f = o′ then dom(Γ2) = ∅, hence trivially we have Γ1 ` envP , h
′, o.

Otherwise, if f exists, then we know getType(o′, {o′ 7→ C[(us·l
1 )], env′′f }) = C[us·l

1 ] = Γ2(f) and
getType(o′, h′′, o′ 7→ C[(⊚ | u2).u

s
3], env

′
f ) = C[(⊚ | u2).u

s
3] = Γ1(f), hence Γ2 = {f 7→ C[us·l

1 ]}
and Γ1 = Γ′′, f 7→ C[(⊚ | u2).u

s
3]. With (ParL) we can conclude Γ′ = Γ′′, f 7→ C[(u1 | u2).u

s
3]

and finally Γ′ ` envP , h
′, o. The situation where o′ is a parameter is similar, and will be omitted.

Case (ParR): similar to (ParL).

Case (Id): Assume Γ ` envP , h, o and h′ <: h was concluded using (Id) with the rule ∅∗h <: h,
hence h′ = ∅ ∗ h. Now let Γ′ = ∅ ∗ Γ. ∅ ` envP , ∅, o is trivial, and by our assumption we know
Γ ` envP , h, o, hence we can conclude ∅ ∗ Γ ` envP , ∅ ∗ h, o.
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Assume Γ ` envP , h, o and h′ <: h was concluded using (Id) with the rule h <: ∅ ∗ h, hence
h = ∅∗h′′ and h′ = h′′. From (WTC-S) we know that Γ must be Γ = Γ1 ∗Γ2 s.t. Γ1 ` envP , ∅, o
and Γ2 ` envP , h

′′, o. Now let Γ′ = Γ2, then we have Γ′ ` envP , h
′, o.

The two remaining cases for (Id) are similar.

Case (Concat): Assume Γ ` envP , h, o and h′ <: h was concluded using (Concat) hence h′ =
h1, h2 and h = h1 ∗h2 where dom(h1)∩dom(h2) = ∅. From (WTC-S) we know that Γ = Γ1 ∗Γ2

s.t. Γ1 ` envP , h1, o and Γ2 ` envP , h2, o. From (WTC-B) we know that dom(Γ1)∩dom(Γ2) = ∅.
Now let Γ′ = Γ1,Γ2. We know that Γ′ ` envP , h

′, o and by (Concat) we have Γ′ <: Γ.
Assume Γ ` envP , h, o and h′ <: h was concluded using (Concat), hence h′ = h1 ∗ h2 and
h = h1, h2 where dom(h1)∩dom(h2) = ∅. Since Γ ` envP , (h1, h2), o there must be an ordering of
Γ = Γ1,Γ2 s.t. the bindings of Γ1 corresponds to the bindings of h1 and vice versa. Furthermore,
from (WTC-B) we know that dom(Γ1) ∩ dom(Γ2). Now let Γ′ = Γ1 ∗ Γ2. Using (WTC-S) we
see that Γ′ ` envP , h

′, o and from (Concat) we know that Γ′ <: Γ.

We now show the opposite direction: If Γ ` envP , h, o and ∃Γ′ s.t. Γ′ <: Γ then ∃h′ s.t.
h′ <: h and Γ′ ` envP , h

′, o.

Proof. By induction in the height of the judgment Γ′ <: Γ.
Case (Trans): Assume Γ ` envP , h, o and Γ′ <: Γ which have been conclude with (Trans).
From (Trans) we know ∃Γ′′ s.t. Γ′′ <: Γ and Γ′ <: Γ′′. From IH we know ∃h′′ s.t. h′′ <: h
and Γ′′ ` envP , h

′′, o. By appling IH again we know ∃h′ s.t. h′ <: h′′ and Γ′ ` envP , h
′, o. Using

(Trans) we can conclude (Trans).

Case (SplitL): We prove both directions of this rule. Assume Γ ` envP , h, o and Γ′ <: Γ which
have been concluded with (ParL), hence Γ = Γ′′, v 7→ C[(u1|u2).u

s
3] and Γ′ = (Γ′′, v 7→ C[ul∗s

1 ])∗
{v 7→ C[(⊚|u2).u

s
3}. if v = f then we know that Γ(v) = getType(h(o).f, h) = C[(u1|u2).u

s
3] and

h(o).f = o′, hence h = h′′, < o′ 7→ C[(u1|u2).u
s
3], envf > by (ParL) we conclude h′ <: h

with h′, o 7→< C[(⊚|u2).u
s
3], env

′
f > ∗{o 7→< C[ul∗s

1 ], env′′f >} where envf = env′f ∗ env′′f using
(WTC-S) we conclude Γ′ ` envP , h

′, o if v = x then we know that Γ(v) = getType(envP (v), h) =
C[(u1|u2).u

s
3] and envP (v) = o′ and o′ ∈ dom(h) hence h = h′′, < o′ 7→ C[(u1|u2).u

s
3], envf >

by (ParL) we conclude h′ <: h with h′, o 7→< C[(⊚|u2).u
s
3], env

′
f > ∗{o 7→< C[ul∗s

1 ], env′′f >}
where envf = env′f ∗ env′′f using (WTC-S) we conclude Γ′ ` envP , h

′, o
We now prove the other direction Assume Γ ` envP , h, o and Γ′ <: Γ which have been

concluded with (ParL), hence Γ′ = Γ′′, v 7→ C[(u1|u2).u
s
3] and Γ = (Γ′′, v 7→ C[ul∗s

1 ]) ∗ {v 7→
C[(⊚|u2).u

s
3]}. We know that from (WTS) we know that ∃h = h1 ∗ h2 s.t. (Γ′′, v 7→ [ur∗s

1 ]) `
envP , h1, o and {v 7→ C[(⊚|u2).u

s
3]} ` envP , h2, o. and we know ∃h′′ s.t Γ′′ ` envP , h

′′, o from
(ParL) we know that h′ = h′′, o′ 7→< C[(u1|u2).u

s
3], envf >. we get that getType(o′, h′) =

Γ′(v) = C[(u1|u2).u
s
3], hence we can conclude Γ′ ` envP , h

′, o.

Case (ParR): similar to (ParL).

Case (Id): Assume Γ ` envP , h, o and Γ′ <: Γ which have been concluded with (ID) with the
rule Γ <: Γ ∗ ∅ hence Γ′ = Γ ∗ ∅. From (WTC-S) we know that Γ ∗ ∅ ` envP , h, o and from
(WTC-B) we know Γ ` envP , h1, o and ∅ ` envP , h2, o. Now let h1 = h and h2 = ∅ we can
conclude Γ′ ` envP , h, o. The two remaining cases for (ID) are similar.

Case (Concat): Assume Γ ` envP , h, o and Γ′ <: Γ which have been concluded with (Concat),
hence Γ = Γ1 ∗ Γ2 and Γ′ = Γ1,Γ2 where dom(Γ1) ∩ dom(Γ2) = ∅. From (WTC-S) we know
that h = h1 ∗ h2 s.t. Γ1 ` envP , h1, o and Γ2 ` envP , h2, o. From (WTC-B) we know that
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dom(h1)∩dom(h2) = ∅. Now let h′ = (h1, h2), We know from (Concat) that h′ <: h, hence we
can conclude Γ′ ` envP , h

′, o
Assume Γ ` envP , h, o and Γ′ <: Γ which have been concluded with (Concat), hence Γ′ =

Γ1∗Γ2 and Γ = Γ1,Γ2 where dom(Γ1)∩dom(Γ2) = ∅. From (WTC-S) we know that h = (h1, h2)
s.t. Γ1 ` envP , h1, o and Γ2 ` envP , h2, o. From (WTC-B) we know that dom(h1)∩dom(h2) = ∅.
Now let h′ = h1 ∗ h2. We know from (Concat) that h′ <: h. We can now conclude (Concat)
for Γ′ ` envP , h

′, o

Proof of Theorem 3
Proof. Case (AsgnB): Assume envP , h ` 〈o, f = e〉 α−→ unit a env′P , h

′[o.f 7→ v], Γ ` f = e :
void▷Γ′, f 7→ t and Γ ` envP , h, o then from (Fld) we have Γ ` e : t▷Γ′, f 7→ t′. From premise of
(AssgnB) we have envP , h ` 〈o, e〉

α−→ v a env′P , h
′. From IH we have Γ′, f 7→ t′ ` env′P , h

′, o and
getType(v, h′) = t. By only updating f and by IH we know that Γ, f 7→ t ` env′P , h[o.f 7→ v], o
Hence we can conclude (AsgnB).

Case (BValB): Assume envP , h ` 〈o, v〉 −→ v a envP , h, Γ ` v : t ` Γ and Γ ` envP , h, o From
definition of getType we know getType(v, h) = t for base types. Hence we can conclude (BValB).

Case (LinRefPB): Assume envP , h ` 〈o, x〉 −→ v a envP [x 7→ null], h, Γ, x 7→ t ` x : t ▷Γ, x 7→ ⊥
and Γ, x 7→ t ` envP , h, o. We can conclude Γ[x 7→ ⊥] ` envP [x 7→ null], h, o as type of null is ⊥
and the rest follows from WTC. From WTC we know getType(v, h[x 7→ null]) = t. Hence we can
conclude (LinRefPB).

Case (LinRefFB): Assume envP , h ` 〈o, f〉 −→ v a envP , h[o.f 7→ null], Γ, f 7→ t ` f : t ▷Γ, f 7→
⊥ and Γ, f 7→ t ` envP , h, o. We can conclude that Γ[f 7→ ⊥](f) ` envP , h[o.f 7→ null], o as
the type of ⊥ is null and the rest follows from WTC. From WTC we know getType(v, h[o.f 7→
null]) = t. Hence we can conclude (LinRefFB).

Case (UnRefPB): Assume envP , h ` 〈o, x〉 −→ v a envP , h, Γ, x 7→ t ` x : t ▷ Γ, x 7→ t and
Γ, x 7→ t ` envP , h, o. From assumption we know Γ, x 7→ t ` envP , h, o and getType(v, h) = t.
Hence we can conclude (UnRefPB).

Case (UnRefFB): Assume envP , h ` 〈o, f〉 −→ v a envP , h, Γ, f 7→ t ` f : t ▷ Γ, f 7→ t and
Γ, f 7→ t ` envP , h, o. From assumption we know Γ, f 7→ t ` envP , h, o and getType(v, h) = t.
Hence we can conclude (UnRefFB).

Case (NewB): Assume envP , h ` 〈o, new C〉 −→ o′ a envP , h[o
′ 7→ (C[C.usage], C.initvals)],

Γ ` new C : C[C.usage] ▷ Γ and Γ ` envP , h, o. By assumption we know Γ ` envP , h, o and from
getType(o′, h[o′ 7→ (C[C.usage], C.initvals)]) = C[C.usage], hence we can conclude (NewB).

Case (SeqB): Assume envP , h ` 〈o, e; e′〉 −→ v′ a env′P , h
′, Γ ` e; e′ : t′ ▷ Γ′ and Γ ` envP , h, o.

From premise of (SeqB) we know envP , h ` 〈o, e〉 −→ v′′ a env′′P , h
′′ and env′′P , h

′′ ` 〈o, e′〉 −→ v′ `
env′P , h

′. From premise of (Seq) we know Γ ` e : t ▷ Γ′′ and Γ′′ ` e′ : t′ ▷ Γ′. By applying IH we
get Γ′′ ` env′′P , h

′′, o and getType(v, h′′) = t. By applying IH again we get Γ′ ` env′P , h
′, o and

getType(v, h′) = t′. Hence we can conclude (SeqB).

Case (IfTrueB): Assume envP , h ` 〈o, if (r.m(v1, v2)) {e} else {e′}〉 −→ v a env′P , h
′, Γ ` if
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(r.m(v1, v2)) {e} else {e′} : t ▷ Γ′ and Γ ` envP , h, o. From the premise of (IfTrueB) we
know envP , h ` 〈o, r.m(v1, v2) −→ true〉 a env′′P , h

′′ and from the premise of (If) we know Γ `
r.m(v1, v2) : bool ▷ Γ′′. By applying the IH we get that Γ′′ ` env′′P , h

′′, o and getType(true, h′′) =
bool. From Lemma 12 and Γ′′ ` env′′P , h

′′, o and h′′′ <: h′′ we know ∃Γ′′′ ∗ {r : C[〈U1,U2〉]} such
that Γ′′′ ∗ {r : C[〈U1,U2〉]} ` env′′P , h

′′′, o and Γ′′′ ∗ {r : C[〈U1,U2〉]} <: Γ. From (SelTrue) we
know U in (IfTrueBB) is the same as U1 in (If), hence we know Γ′′′∗{r : C[U1]} ` env′′P , h

′′′[o′ 7→
U ], o. From Lemma 12 and h′′′′ <: h′′′[o′ 7→ U ] we know ∃Γ′′′′ such that Γ′′′′ <: Γ′′′ ∗ {r : C[U1]}
and Γ′′′′ ` env′′P , h

′′′′, o. We know that Γ′′′′ ` e : t ▷ Γ′, env′′P , h′′′′ ` 〈o, e〉 −→ v a env′P , h
′ and

Γ′′′′ ` env′′P , h
′′′′, o. Then by the IH we can conclude (IfTrueB).

Case (IfFalseB): Follows the same reasoning as (IfTrueB).

Case (LabB): Assume that envP , h ` 〈o, k : e〉 −→ v a env′P , h
′, Γ `Ω k : e : void ▷ Γ′ and Γ `

envP , h, o. From premise of (LabB) we know envP , h ` 〈o, e{continue k/k : e}〉 −→ v a env′P , h
′

and from premise of (Lab) we know Γ `Ω′
e : void ▷ Γ′. From the IH we get Γ′ ` env′P , h

′, o and
getType(v, h′) = void Hence we can conclude (LabB).

Case (CallB): Assume envP , h ` 〈o, r.m(v1, v2)〉 −→ v a env′P , h
′, Γ ` r.m(v1, v2) : tΓ′ and

Γ ` envP , h, o. From (CallB) we know h′′ <: h, h′′(or).usage m−→ U , t m(t1 −→ t′1 x1, t2 −→ t′2 x2),
h′ <: h′′′′′ and {x 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ] ` 〈or, e〉 −→ v a {x1 7→ v3, x2 7→ v4}.
Using Lemma 12 on assumption and h′′ <: h we get ∃Γ′′ ∗ (r : C[U ], vi : ti) such that Γ′′ ∗ (r :
C[U ], vi : ti) <: Γ and Γ′′ ∗ (r : C[U ], vi : ti) ` envP , h

′′, o. From transitions we know that
U from (CallB) is the same as U1 from (Call). We know from (WTC) that v′ and v′′

matches the expected type. From TCBR we know that there ∃Γ3 such that Γ3 ` e : t ▷ Γ4.
We know that all transitions that happens in e can be done in the heap h′′[or.usage 7→ U ] and
Γ3, hence we must have Γ3 ` {x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ], or. From IH we now get
Γ4 ` {x1 7→ v3, x2 7→ v4}, h′′′′, or and getType(v, h′′′′) = t. From Lemma 10, we know the only
objects that can change in a call is or, v′ and v′′ which are updated using update, hence we can
conclude Γ′′ ∗ (r : C[U ′], vi : t

′
i) ` h′′′′′, o and h′ <: h′′′′′. Then by Lemma 12 and assumption

we know. ∃Γ′ such that Γ′ <: Γ′′ ∗ (r : C[U ′], vi : t
′
i) and Γ′ ` env′P , h

′, o hence we can conclude
(CallB).

Proof of Theorem 4
Proof. Induction in the structure of e.
Case (Seq): Assume Γ ` e1; e2 : t▷Γ′ and Γ ` envP , h, o. From (Seq) we have Γ ` e1 : t′▷Γ′′ and
Γ′′ ` e2 : t ▷ Γ′. By IH we have either envP , h ` 〈o, e1〉 −→ v′ a env′′P , h

′′ or 〈(o, envP ), h, e1〉 =⇒ω

and either env′′P , h
′′ ` 〈o, e2〉 −→ v a env′P , h

′ or 〈(o, env′′P ), h′′, e2〉 =⇒ω.
If envP , h ` 〈o, e1〉 −→ v′ a env′′P , h

′′ and env′′P , h
′′ ` 〈o, e2〉 −→ v a env′P , h

′, then using (SeqB)
we conclude envP , h ` 〈o, e1; e2〉 −→ v a env′P , h

′.
If 〈envS · (o, envP ), h, e1〉 =⇒ω then by Lemma 15 we have 〈envS · (o, envP ), h, e1; e2〉 =⇒ω.
Finally if envP , h ` 〈o, e1〉 −→ v′ a env′′P , h

′′ and 〈envS · (o, env′′P ), h′′, e2〉 =⇒ω. By The-
orem 1 we have 〈envS · (o, envP ), h, e1〉 =⇒ ∗〈envS · (o, env′′P ), h′′, v′〉. By Lemma 4 we have
〈envS · (o, envP ), h, e1; e2〉 =⇒ ∗〈envS · (o, env′′P ), h′′, v′; e2〉 and with (SeqS) we have 〈envS ·
(o, env′′P ), h

′′, v′; e2〉 =⇒ 〈envS · (o, env′′P ), h′′, e2〉. We now have 〈envS · (o, envP ), h, e1; e2〉 =⇒
∗〈envS · (o, env′′P ), h′′, e2〉 =⇒ω and by Lemma 14 conclude 〈envS · (o, envP ), h, e1; e2〉 =⇒ω.
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Case (Fld): Assume Γ ` f = e : void ▷ Γ′. By (Fld) we have Γ ` e : t ▷ Γ′, f 7→ t′. By IH we
have either envP , h ` 〈o, e〉 −→ v a env′P , h

′ or 〈envS · (o, envP ), h, e〉 =⇒ω.
If envP , h ` 〈o, e〉 −→ v a env′P , h

′ then we conclude with (AsgnB) envP , h ` 〈o, f = e〉 −→
unit a env′P , h

′[o.f 7→ v].
Otherwise if 〈envS · (o, envP ), h, e〉 =⇒ω then by Lemma 15 we have 〈envS · (o, envP ), h, f =

e〉 =⇒ω.

Case (Call): Assume Γ ` e : t ▷ Γ′. From we have Γ′′ <: Γ where Γ′′ = Γ′′′ ∗ {r : C[U ], vi : ti}
as well as t m(t1 −→ t′1 x1, t2 −→ t′2 x2){e} ∈ C.methods. Furthermore we have U m−→ U ′ and
Γ′ <: Γ′′′ ∗ {r : C[U ′], vi : t

′
i}.

From Lemma 12 we know ∃h′′ <: h s.t. Γ′′ a envP , h
′′, o. Let or = extract(r, h′′, envP , o), v′ =

extract(v1, h′′, envP , o), v′′ = extract(v2, h′′, envP , o). From (WTC) we know that h′′(or).usage =

U and hence h′′(or).usage m−→ U ′. From (WTC) we also have that ` h′′, o, and since or ∈
reach(h′′, o) we know ∃Φ,Φ′ s.t. Φ ` h′′(or).class[h′′(or).usage] a Φ′. Since we know U m−→ U ′ we
must have concluded using (TCBr) that Φ, x1 7→ t1, x2 7→ t2 ` e : t ▷ Φ′, x1 7→ t′1, x2 7→ t′2.

We must show that Φ, {x1 7→ t1, x2 7→ t2} ` {x1 7→ v′, x2 7→ v′′}, h′′, or. Φ, {x1 7→ t1, x2 7→
t2} ` {x1 7→ v′, x2 7→ v′′}, since we know that ti = Γ(vi), hence getType(v′, h′′) = t1 and
getType(v′′, h′′) = t2. The remaining premises follows from (WTH).

By IH we then conclude that {x1 7→ v′, x2 7→ v′′}, h′′[or.usage 7→ U ′] ` 〈or, e〉v a {x1 7→
v(3), x2 7→ v(4)}, h(5). Now let h(4), env′′P = update(v(3), v1, h(5), envP , o), h(3), env′P = update(v(4),
v2, h

(4), env′′P , o) and h′ <: h(3). Then we can conclude with (CallB) that envP , h ` 〈o, r.m(v1, v2)
−→ v a env′P , h

′〉.

Case (LinRef): Assume Γ, r 7→ t ` r : t ▷ Γ, r 7→ ⊥. From (LinRef) we know that ¬term(t).
First assume r = f , and let or = extract(f, h, envP , o). From Γ, r 7→ t ` envP , h, o we know
that getType(or, h) = t. Then we can conclude using (LinRefFB) that envP , h ` 〈o, f〉 −→
h(o).f a envP , h[o.f 7→ null]. Now assume r = x, and let or = extract(x, h, envP , o). From
Γ, r 7→ t ` envP , h, o we know that getType(or, h) = t. Then we can conclude using (LinRefPB)
that envP , h ` 〈o, x〉 −→ envP (x) a envP [x 7→ null], h.

Case (UnRef): Assume Γ, r 7→ t ` r : t ▷ Γ, r 7→ t. From (UnRef) we know that term(t).
First assume r = f , and let or = extract(f, h, envP , o). From Γ, r 7→ t ` envP , h, o we know that
getType(or, h) = t. Then we can conclude using (UnRefFB) that envP , h ` 〈o, f〉 −→ h(o).f a
envP , h. Now assume r = x, and let or = extract(x, h, envP , o). From Γ, r 7→ t ` envP , h, o we
know that getType(or, h) = t. Then we can conclude using (UnRefPB) that envP , h ` 〈o, x〉 −→
envP (x) a envP , h.

Case (Val): Assume Γ ` v : t ▷ Γ and Γ ` envP , h, o. From (Val) we know v ∈ {unit, null, false,
true}, hence we can directly conclude with (BValB) envP , h ` 〈o, v〉 −→ v a envP , h.

Case (New): Assume Γ ` new C : C[C.usage] ▷ Γ′ and Γ ` envP , h, o. Then we can directly
conclude with (NewB) envP , h ` 〈o, new C〉 −→ o′ a envP , h[o

′ 7→ 〈C[C.usage], C.initvals〉] where
o′ is fresh in h.

Case (If): Assume Γ ` if (r.m(v1, v2)) {e1} else {e2}▷Γ′ and Γ ` envP , h, o. From (If) we know
Γ ` r.m(v1, v2) : bool ▷Γ′ hence by IH we have either envP , h ` 〈o, r.m(v1, v2)〉 ▷ v′ a env′′P , h

′′ or
〈envS · (o, envP ), h, r.m(v1, v2)〉 =⇒ω.

If 〈envS · (o, envP ), h, r.m(v1, v2)〉 =⇒ω then by Lemma 15 we have 〈envS · (o, envP ), h, if
(r.m(v1, v2)) {e1} else {e2}〉 =⇒ω.
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Otherwise if envP , h ` 〈o, r.m(v1, v2)〉 ▷ v′ a env′′P , h
′′, then by Theorem 3 we have Γ′′ `

env′′P , h
′′, o and that v′ ∈ {true, false}. We assume v′ = true but the case for v′ = false is

similar. From (If) we have Γ′′′ ∗ {r : C[〈u1, u2〉]} <: Γ′′. By Lemma 12 we have ∃h′′′ s.t.
h′′′ <: h′′ and Γ′′′ ∗ {r : C[〈u1, u2〉]} ` env′′P , h

′′′, o. From (WTC-S) we have h′′′ = h(4) ∗ {o′ 7→
(C[〈u1, u2〉], envf )} where o′ = extract(r, envP , h, o). Directly we see that h′′′(o′).usage true−−→ u1.
Now let h(5) = h(4) ∗ {o′ 7→ (C[u1], envf )}. We see that Γ′′′ ∗ {r : C[u1]} ` env′′P , h

(5), o. Now let
Γ(4) <: Γ′′′ ∗ {r : C[u1]}. By Lemma 12 we know ∃h(6) s.t. h(6) <: h(5) and Γ(4) ` env′′P , h

(6), o.
By IH we then have either env′′P , h

(6) ` 〈o, e1〉 −→ v a env′P , h
′ or 〈env′′P , h(6), e1〉 =⇒ω.

If env′′P , h
(6) ` 〈o, e1〉 −→ v a env′P , h

′ then we conclude with (IfB) that envP , h ` 〈o, if
(r.m(v1, v2)) {e1} else {e2}〉 −→ v a env′P , h

′.
Otherwise if 〈env′′P , h(6), e1〉 =⇒ω. By Theorem 1 we have 〈envS · (o, envP ), h, r.m(v1, v2)〉 =⇒

∗〈envS · (o, env′′P ), h′′, v′〉. By Lemma 4 we have 〈envS · (o, envP ), h, if (r.m(v1, v2)) {e1} else
{e2}〉 =⇒∗〈envS ·(o, env′′P ), h′′, if (v′) {e1} else {e2}〉. By (If-TrueS) we have 〈envS ·(o, env′′P ), h′′, if
(v′) {e1} else {e2}〉 =⇒ 〈envS · (o, env′′P ), h(6), e1〉. Hence by Lemma 14 we conclude 〈envS ·
(o, envP ), h, if (r.m(v1, v2)) {e1} else {e2}〉 =⇒ω.

Case (Lab): Assume Γ ` k : e : void ▷ Γ′. From Lemma 9 we know Γ ` e{continue k/k : e} :
void ▷ Γ′. By our IH we know that either envP , h ` 〈o, e{continue k/k : e}〉 −→ v a env′P , h

′ or
〈envS · (o, envP ), h, e{continue k/k : e}〉 =⇒ω. If envP , h ` 〈o, e{continue k/k : e}〉 −→ v a env′P , h

′

then using (LabB) we conclude envP , h ` 〈o, k : e〉 −→ v a env′P , h
′.

Otherwise if 〈envS · (o, envP ), h, e{continue k/k : e}〉 =⇒ω then by (LabS) we have 〈envS ·
(o, envP ), h, k : e〉 =⇒ 〈envS · (o, envP ), h, e{continue k/k : e}〉 =⇒ω hence by Lemma 14 we have
〈envS · (o, envP ), h, k : e〉 =⇒ω.
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