Comparing Recent Shared
Memory Concurrency Models

lvan Valkov
Supervisors: Professor Phil Trinder, Dr Natalia Chechina



Introduction

* Servers must deal with many concurrent requests

* The programming language used is important

-
* |t must support massive concurrency \/

* Erlang, Go, and Scala with Akka are compared in this context

Ivan Valkov | 2017



electing Languages to Compare

Computation Coordination Compilation Popularity
Language Model Typing Abstraction Model Abstraction Determinism Runtime env TIOBE The Red Monk June
Sep 2016 2016

Java (e]6] Strong High Explicit High N JVM 1 2
Static

C + OpenMP Procedural Weak Low Annotation High N Native 2 9
Static

C + PThreads Procedural Weak Low Explicit Low N Native 2 9
Static

Haskell Pure Functional Strong High Eval Strat High Y Native/ GHCi 40 16
Static

Erlang Functional Strong High Actors High N Erlang VM 42 26
Dynamic

Scala + AKKA Functional/OO Strong High Actors High N JVM 32 14
Static

Go Procedural Strong High CSP High N Native 19 15
Static

Elixir Functional Strong High Actors High N Erlang VM 50+ ~40
Dynamic

Clojure Functional Strong High STM/Agents High N JVM 50 20
Dynamic

Rust Procedural Strong High Explicit High N Native 45 ~40
Static

F# Functional/ OO Strong High Explicit High N Native 29 ~40
Static

C# (e]6) Strong High Explicit High N Native 4 5
Static

Ivan Valkov | 2017




elected Langua

€S

Computation Coordination Compilation Popularity
Language Model Typing Abstraction Model Abstraction Determinism Runtime env TIOBE The Red Monk June
Sep 2016 2016

Erlang Functional Strong High Actors High N Erlang VM 42 26

Dynamic
Scala + AKKA Functional/OO Strong High Actors High N JVM 32 14

Static
Go Procedural Strong High CSP High N Native 19 15

Static

Elens

Ivan Valkov | 2017




Benchmarks (1/3) — Process Communication
Latency

* Design based on Intel’s MPI Benchmark PingPing
* Measures time to exchange data between two processes

* Important in systems with high number of messages, such as servers

Data X

Process B
Data X

Ivan Valkov | 2017



Benchmarks (2/3) — Process Creation Latency

* Measures time to spawn N processes

* Given a big enough N, the maximum number processes is found

* Important in systems where:
* alot of processes are constantly being spawned

* a lot of processes need to be supported

Ivan Valkov | 2017



Benchmarks (3/3) — Concurrent Processes
Throughput

e Examines a closer to real world scenario

* Measures throughput in a system of multiple process pairs
exchanging messages

* Important in systems utilizing high level of concurrency

Creat
Main process Start while(true) while(true) while(true) !
send ping send ping send ping - R
Ask for message
count after 60 secs
Agaregator <
Report every

10000 messeges

Ivan Valkov | 2017



Process Communication Latency Results

* Ran on Windows 10, 2 cores (Intel Core i5-
3230M CPU 2.60GHz), 8Gb RAM

PingPing- 10 kB
* Erlang and Go perform similarly :

e Scala with Akka trails behind

Time Insecs

A A PP L AL
uuuuuuuuuuuuuuuuuuuuuuuu

Repetitions

Ivan Valkov | 2017



160

140

120
100

W

& 80

(5]

@

60

20

Process Creation Latency Results

e Ran on Windows 10, 2 cores (Intel Core i5-3230M CPU 2.60GHz), 8Gb RAM
* Scala with Akka spawns the most processes — 11 million

* Erlang and Go have faster spawn time of up to 100,000 processes

0 2000000

Time to spawn up to maximum supported processes

4000000

6000000

Number of processes

8000000

10000000

Time to spawn up to 100 000 processes
1.4

1.2

208
c

0.4

0.2

12000000 0 20000 40000 60000

Number of processes

80000 100000

Ivan Valkov | 2017

120000



Concurrent Processes Throughput Results

e Ran on Scientific Linux 6, 16 cores (2 * Erlang — quickly reaches peak, but a
Intel Xeon E5-2640 2GHz), 64Gb RAM sudden decay in performance follows

 Scala with Akka — slowly but steadily
improves performance with
introduction of more processes

Concurrent Processes Throughput Benchmark - 8 cores

* Go — best performance; quickly
reaches peak and maintains it

300000000

250000000

J:}
£ 200000000
E

= .
2 150000000 N erlang
®

i &
£ 100000000 | f : . : sl
= ~

50000000 4

i g
0 20 40 60 80 100 120 140
Number of process pairs

Ivan Valkov | 2017



Conclusion

If you need:
* Minimising of message latency — Erlang/Go

e Support of many dormant processes — Scala with Akka
* Fast creation time of up to 100,000 processes — Erlang/Go

* High level of concurrency — Go

Ivan Valkov | 2017



