
Ivan Valkov | 2017

Comparing Recent Shared 
Memory Concurrency Models

Ivan Valkov
Supervisors: Professor Phil Trinder, Dr Natalia Chechina



Introduction

• Servers must deal with many concurrent requests

• The programming language used is important

• It must support massive concurrency 

• Erlang, Go, and Scala with Akka are compared in this context

Ivan Valkov | 2017



Selecting Languages to Compare
Computation Coordination Compilation Popularity

Language Model Typing Abstraction Model Abstraction Determinism Runtime env TIOBE
Sep 2016

The Red Monk June 
2016

Java OO Strong
Static

High Explicit High N JVM 1 2

C + OpenMP Procedural Weak
Static

Low Annotation High N Native 2 9

C + PThreads Procedural Weak
Static

Low Explicit Low N Native 2 9

Haskell Pure Functional Strong
Static

High Eval Strat High Y Native/ GHCi 40 16

Erlang Functional Strong
Dynamic

High Actors High N Erlang VM 42 26

Scala + AKKA Functional/OO Strong
Static

High Actors High N JVM 32 14

Go Procedural Strong
Static

High CSP High N Native 19 15

Elixir Functional Strong
Dynamic

High Actors High N Erlang VM 50+ ~40

Clojure Functional Strong
Dynamic

High STM/Agents High N JVM 50 20

Rust Procedural Strong
Static

High Explicit High N Native 45 ~40

F# Functional/ OO Strong
Static

High Explicit High N Native 29 ~40

C# OO Strong
Static

High Explicit High N Native 4 5

Ivan Valkov | 2017



Selected Languages
Computation Coordination Compilation Popularity

Language Model Typing Abstraction Model Abstraction Determinism Runtime env TIOBE
Sep 2016

The Red Monk June 
2016

Erlang Functional Strong
Dynamic

High Actors High N Erlang VM 42 26

Scala + AKKA Functional/OO Strong
Static

High Actors High N JVM 32 14

Go Procedural Strong
Static

High CSP High N Native 19 15

Ivan Valkov | 2017



Benchmarks (1/3) – Process Communication 
Latency
• Design based on Intel’s MPI Benchmark PingPing

• Measures time to exchange data between two processes

• Important in systems with high number of messages, such as servers

Ivan Valkov | 2017



Benchmarks (2/3) – Process Creation Latency

• Measures time to spawn N processes

• Given a big enough N, the maximum number processes is found

• Important in systems where:

• a lot of processes are constantly being spawned 

• a lot of processes need to be supported

Ivan Valkov | 2017



Benchmarks (3/3) – Concurrent Processes 
Throughput
• Examines a closer to real world scenario
• Measures throughput in a system of multiple process pairs 

exchanging messages
• Important in systems utilizing high level of concurrency

Ivan Valkov | 2017



Process Communication Latency Results

• Ran on Windows 10, 2 cores (Intel Core i5-
3230M CPU 2.60GHz), 8Gb RAM

• Erlang and Go perform similarly

• Scala with Akka trails behind

Ivan Valkov | 2017



Process Creation Latency Results

• Ran on Windows 10, 2 cores (Intel Core i5-3230M CPU 2.60GHz), 8Gb RAM
• Scala with Akka spawns the most processes – 11 million
• Erlang and Go have faster spawn time of up to 100,000 processes

Ivan Valkov | 2017



Concurrent Processes Throughput Results
• Erlang – quickly reaches peak, but a 

sudden decay in performance follows 

• Scala with Akka – slowly but steadily 
improves performance with 
introduction of more processes

Ivan Valkov | 2017

• Ran on Scientific Linux 6, 16 cores (2 
Intel Xeon E5-2640 2GHz), 64Gb RAM

• Go – best performance; quickly 
reaches peak and maintains it



Conclusion

If you need:
• Minimising of message latency – Erlang/Go

• Support of many dormant processes – Scala with Akka

• Fast creation time of up to 100,000 processes – Erlang/Go

• High level of concurrency – Go

Ivan Valkov | 2017


