
Scalable SD Erlang Computation Model

Natalia Chechina, Huiqing Li,
Phil Trinder, and Amir Ghaffari

School of Computing Science
The University of Glasgow

Glasgow G12 8QQ
UK

Technical Report TR-2014-003

December 23, 2014

Abstract

The technical report presents implementation of s groups and semi-explicit
placement of the Scalable Distributed (SD) Erlang [CTG+14]. The imple-
mentation is done on the basis of Erlang/OTP 17.4. The source code can be
found in https://github.com/release-project/otp/tree/17.4-rebased.

We start with a discussion of differences between distributed Erlang
global groups and SD Erlang s groups (Chapter 1). Then we discuss the
implementation of s groups and the features of sixteen functions that were
modified and introduced in global and s group modules (Chapter 2). After
that we discuss semi-explicit placement, node attributes and choose node/1

function (Chapter 3). These functions were unit tested (Chapter 4). Finally,
we discuss future work (Chapter 5).

Contents

1 Introduction 2

2 S group Implementation Design 5
2.1 Why S groups? . 5
2.2 Overview . 6
2.3 S group Functions . 8
2.4 Registered Name Functions 11

3 Semi-explicit Placement 17

4 Preliminary Validation 19

5 Implications and Future Work 23

1

Chapter 1

Introduction

The objectives of this technical report are to implement and validate a scal-
able computation model for Scalable Distributed (SD) Erlang using a com-
bination of layering, controlling connection locality, and high-level process
placement control.

SD Erlang is implemented as a small conservative extension of dis-
tributed Erlang [CTG+14]. In distributed Erlang node connections and
namespace are defined by both the node belonging to a global group and
by the node type, i.e. hidden or normal. A namespace is a set of names
replicated on a group of nodes and treated as global in that group. Thus, if
a node is free, i.e. it does not belong to a global group, the connections and
namespace only depend on the node type. A free normal node has transitive
connections and common namespace with all other free normal nodes. A
free hidden node has non-transitive connections with all other nodes and
every hidden node has its own namespace. A global group node can be-
long to only one global group and has transitive connections and common
namespace with nodes that belong to the same global group. The type of
a global group node – normal or hidden – only defines the types of connec-
tions with nodes outside its own global group. Thus, a normal global group
node forms non-transitive visible connections with other nodes, and a hid-
den global group node forms non-transitive hidden connections with other
nodes. A global group can also be one of the following two types: normal
or hidden. Global groups of both types may have normal and hidden nodes;
however, in a hidden global group all nodes act as hidden independently
of the type they were started with. For example, in Figure 1.1 nodes N1,
N2, N3, N5, N7, N8 are normal, and nodes H4, H6, H9 are hidden. Nodes
N1, N2, N3 are in global group G1, nodes H4, N5, H6 are in global group
G2, and nodes N7, N8, H9 are free. The lines between the nodes represent
different types of connections, i.e. a solid line denotes a visible transitive
connection, a wavy line denotes a non-transtitive visible connection, and a
dotted line denotes a non-transitive hidden connection.

2

No. Grouping Type of Connections Namespace

Distributed Erlang

1 No grouping All-to-all connections Common

2 Global groups Transitive connections within a global group,
non-transitive connections with other nodes

Partitioned

Scalable Distributed Erlang

3 No grouping All-to-all connections Common

4 S groups Transitive connections within an s group, non-
transitive connections with other nodes

Overlapping

Table 1.1: Types of Connections and Namespace

The type of connection between two nodes is recorded in net kernel

module when the connection is established. To view the types of connec-
tions of the connected nodes the following functions are used: nodes()

function returns a list of connected nodes with visible type of connection,
and nodes(hidden) returns a list of nodes with hidden type of connection.

The SD Erlang s groups are similar to the distributed Erlang hidden
global groups in the following: 1) each s group has its own namespace; 2)
transitive connections are only with nodes of the same s group. The dif-
ferences with hidden global groups are in that 1) a node can belong to an
unlimited number of s groups, and 2) information about s groups and nodes
is not globally collected and shared [CTG+14, Section 6.1]. Table 1.1 pro-
vides a summary of types of connections and a division of the namespaces
in distributed Erlang and SD Erlang. In SD Erlang behaviour and function-
ality of free nodes remains the same as in distributed Erlang.

Partner Contributions to D3.2. The University of Kent contributed
to the implementation of SD Erlang. The Ericsson team contributed to the
identifying of the main components in Erlang/OTP responsible for connec-

Figure 1.1: Types of Connections between Different Types of Nodes in
distributed Erlang

3

tions and namespace in distributed Erlang. ESL and ICCS contributed to
the review of the implementation design. We had a series of teleconferences
with Ericsson, University of Kent, and Erlang Solutions, and a week visit to
the University of Kent. There were two multi-partner face-to-face meetings
in Denmark and Greece.

We discuss the implementation design of s groups in Chapter 2 and semi-
explicit placement in Chapter 3. The validation of the functions is discussed
in Chapter 4. The conclusion and future work are covered in Chapter 5.

4

Chapter 2

S group Implementation
Design

2.1 Why S groups?

The main reason we have introduced s groups is to reduce the number of
connections a node has, and reduce the size of name spaces, i.e. replication
of information to a smaller number of nodes [CTG+14]. Before introducing
grouping nodes in s groups we had considered the following approaches: dis-
tributed hash tables, hierarchical structure, partitioning, and overlapping.
When deciding on the approach we followed the following principles.

� Present the distributed Erlang philosophy, i.e. any node can be directly
connected to any other node.

� Adding and removing nodes from groups should be dynamic.

� Nodes should be able to belong to multiple groups.

� The mechanism should be simple.

Grouping nodes according to their hash values is a dynamic approach,
but it would contradict the Erlang philosophy that states that any node can
be connected to any other node. It would also become complicated for a
node to belong to multiple groups, and node leaving an s group would mean
changing of its hash value. A hierarchical approach also prevents a node to
be a member of different groups and to have direct connections between the
nodes. Therefore, we decided to implement overlapping s groups as they
seem to satisfy the Erlang philosophy and our goals the best. Furthermore,
using overlapping s groups all the above structures can be implemented.

5

No. ETS Table Distributed Erlang SD Erlang

1 global names {Name, Pid, Method,
RPid, Ref}

{{SGroupName, Name}, Pid,
Method, RPid, Ref}

2 global names ext {Name, Pid, RegNode} {{SGroupName, Name}, Pid,
RegNode}

3 global pid names {Pid, Name} {Pid, {SGroupName, Name}}
{Ref, Name} {Ref, {SGroupName, Name}}

Table 2.1: Modifications in ETS Tables of global name server Process

2.2 Overview

S groups are implemented on the basis of global groups of Erlang/OTP
R15B03. Modifications are made in the following files:

� lib/kernel/src/global.erl

� lib/kernel/src/global search.erl

� lib/kernel/src/kernel.erl

� lib/kernel/src/net kernel.erl

In SD Erlang connections and data replication between nodes that be-
long to the same s group are handled on all nodes by the following two
processes: global name server and s group. The processes are started
at the node launch. S group process is started from s group module and
is responsible for keeping information about s groups the node belongs to.
Global name server process is started from global module, and is respon-
sible for keeping connections and common data on the nodes identified by
s group process.

Global name server process keeps s group registered names in a num-
ber of ETS tables, e.g. global names, global pid names. In SD Erlang
the types of all global name server ETS tables are the same as in dis-
tributed Erlang but entry Name was replaced by {Name, SGroupName} in
the following ETS tables: global names, global names ext, global pid names

(Table 2.1). This was done to support overlapping of s group namespaces.
Thus, a name registered on a free node has SGroupName= ′undefined′. On
free nodes the functionality of functions from module global was preserved.

In SD Erlang an s group has the following parameters: a name, a list of
nodes, and a list of registered names [CTG+14]. A node can be a member of
a number of s groups. When s groups are started statically, i.e. an s group
configuration is defined at the launch of a node, the s group configuration
can be either common or individual. For example, we start eight nodes
grouped in three s groups as it is shown in Figure 2.1. Nodes N1, N3, N5,
N6 are normal, and nodes H2, H4, H7, H8 are hidden. A common configu-
ration contains information about all s groups (Listing 2.1), and individual

6

Figure 2.1: Connections and Namespace between Overlapping S group
Nodes

configuration contains information about some s groups, e.g. s groups the
current node belongs to (Listing 2.2). In both cases nodes run and com-
municate successfully. An advantage of nodes having information about
the configuration of other s groups is that it is possible to send messages
to names and find names of processes which are not registered in the own
s groups. A drawback is that information about remote s groups is currently
static and is not renewed in case a remote s group is deleted or its members
are changed.

Listing 2.1: Common S group Configuration – commonconf.config

[{kernel, [{s_groups,
[{group1, normal,

[’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,
’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’]},

{group2, normal,
[’node3@glasgow.ac.uk’,’node5@glasgow.ac.uk’,
’node6@glasgow.ac.uk’]},

{group3, normal,
[’node4@glasgow.ac.uk’,’node7@glasgow.ac.uk’,
’node8@glasgow.ac.uk’]}]}]}].

7

Listing 2.2: Individual S group Configuration for Node H4 – individ-
conf.config

[{kernel, [{s_groups,
[{group1, normal,

[’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,
’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’]},

{group3, normal,
[’node4@glasgow.ac.uk’, ’node7@glasgow.ac.uk’,
’node8@glasgow.ac.uk’]}]}]}].

Static s groups are started at the launch of the nodes using flag ’-config’,
e.g.
erl -name node1@glasgow.ac.uk -config groupconf

where groupconf is a .config file either from Listing 2.1 or 2.2.
A summary of the functions we discuss in Sections 2.3 and 2.4 is pre-

sented in Table 2.2.

2.3 S group Functions

In this section we discuss s group functions that include functions related to
grouping Erlang nodes into s groups, such as creating a new s group, deleting
an s group, adding nodes to an s group, removing nodes from an s group,
listing own and known s groups, synchronisation of nodes, and providing
node information. The data types of arguments in the functions are as fol-
lows [Eri13]: Name::term(), Pid::pid(), Node::node(), SGroupName

::group name(), Reason::term(), Msg::term().

Creating an S group. Function s group:new s group/2 is used to cre-
ate new s groups dynamically (Listing 2.3). The function creates a new
s group on the initiating node and then adds remaining nodes. In case the
initiating node either is not included in the list of s group nodes or is already
a member of the defined s group the function fails and a corresponding error
is returned.

Listing 2.3: New S Group

s_group:new_s_group(SGroupName,[Node])->{SGroupName,[Node]}|
{’error’, Reason}

When a node becomes a member of an s group the node keeps its existing
connections and the global group keeps its registered names. For example,
there are four interconnected free normal nodes N1, N2, N3, and N4 (Fig-
ure 2.2(a)). Globally registered process P1 with name M1 is on node N1.
After becoming members of s group G1 nodes N1 and N2 unregister name
M1 (Figure 2.2(b)), but the remaining free nodes N3 and N4 keep the name
and share the connection to node N2 with other free nodes until process P1

8

(a) Free Normal Nodes (b) Adding an S group

(c) Adding a Free Normal Node

Figure 2.2: Connections when Creating a New S group

is registered and alive. Thus, new free normal node N5 after connecting to
nodes N3 and N4 and getting globally registered names is also connected
to node N1 (Figure 2.2(c)). However, this connection to node N1 is not
transitive, i.e. node N1 does not share its connection to node N2 with node
N5. If a node has no globally registered processes then after it becomes a
member of an s group free nodes do not share a connection to it with new
free nodes, e.g. node N2 has no globally registered processes (Figure 2.2(b)),
therefore, free nodes N3 and N4 do not share the connection to node N2
with new free node N5 (Figure 2.2(c)).

Deleting an S group. Function s group:delete s group/1 is used to
dynamically delete an existing s group (Listing 2.4). The function is similar
to s group:remove nodes/2 function when all nodes are removed from the
s group. A node can only delete s groups it is a member of.

Listing 2.4: Deleting an S group

s_group:delete_s_group(SGroupName) -> ’ok’

Adding Nodes to an S group. Function s group:add nodes/2 is used
to dynamically add nodes to an existing s group (Listing 2.5). In case the

9

current node does not belong to the given s group an error is returned. The
function is similar to s group:new s group/2 function.

Listing 2.5: Adding Nodes to an S group

s_group:add_nodes(SGroupName, [Node]) -> {SGroupName, [Node]} |
{’error’, Reason}

Removing Nodes from an S group. Function s group:remove nodes/2

is used to dynamically remove nodes from an existing s group (Listing 2.6).
The initiating node should be a member of the given s group, and a node
cannot remove itself from an s group.

Listing 2.6: Removing Nodes from an S group

s_group:remove_nodes(SGroupName, [Node]) -> ’ok’

After leaving an s group the node unregisters the s group names. In
case the node belongs to no other s groups it becomes free. The free node
type, i.e. hidden or normal, depends on the flag with which the node was
launched. If the node becomes a free hidden node then it just keeps its
existing connections. If the node becomes a free normal node then apart
from keeping existing connections the node synchronises with other free
normal nodes with which it has connections and shares their name space.
In case the node has a process registered in the s group it left, other new
s group members will be also connected to the node while the process is
registered and alive.

Listing S groups. Function s group:s groups/0 is used to list s groups
the node is aware of (Listing 2.7). When called on an s group node the
function returns two lists: a list of s groups the current node belongs to and
a list of other known s groups. When the function is called on a free node
’undefined’ is returned.

Listing 2.7: List of Own and Known S Groups

s_group:s_groups() -> {[OwnSGroupName], [OtherSGroupName]} |
’undefined’

Listing Own S groups. Function s group:own s groups/0 is used to
list the node’s own s groups together with their nodes (Listing 2.8). On an
s group node the function returns a list of SGroupTuples, i.e. an s group
name together with a list of nodes from that s group. On a free node the
function returns an empty list.

10

Listing 2.8: List of Own S groups with Nodes

s_group:own_s_groups() -> [{SGroupName, [Node]}]

Listing Own Nodes. Functions s group:own nodes/1,2 are used to
list nodes with which the current node shares namespaces (Listing 2.9).
On an s group node function s group:own nodes() returns nodes from all
s groups the current node belongs to including the current node. On a free
node the function returns a list of nodes with which the current node shares
a namespace.

Listing 2.9: List of Own Nodes

s_group:own_nodes() -> [Node]
s_group:own_nodes(SGroupName) -> [Node]

Function s group:own nodes(SGroupName) returns a list of nodes of
s group SGroupName. In case the current node does not belong to s group
SGroupName an empty list is returned. On a free node the function also
returns an empty list.

Synchronisation. To synchronise nodes and update name spaces global:
sync/0 and s group:sync/0 functions are used (Listing 2.10). On a free
node function global:sync() synchronises the node with all other known
free nodes, and on an s group node the function returns an error. On
an s group node function s group:sync() synchronises the node with all
s group nodes the current node belongs to, and on a free node no synchro-
nisation occurs.

Listing 2.10: List of Own S groups with Nodes

global:sync() -> ’ok’ | {’error’, Reason}
s_group:sync() -> ’ok’ | {’error’, Reason}

Node Information. Functions global:info/0 and s group:info/0 pro-
vide node state information. The functions work on both s group and free
nodes.

2.4 Registered Name Functions

In this section we discuss registered name functions that include functions
related to manipulating registered names, such as name registration, re-
registration, and unregistration, listing registered names, search for regis-
tered names, and sending messages to names.

11

Name Registration. A name can be registered using register name

functions presented in Listing 2.11. On free nodes names are registered us-
ing global:register name(Name, Pid), and on s group nodes names are
registered using s group:register name(SGroupName, Name, Pid). A
node can only register a name in a group the node belongs to. Therefore,
when a free node attempts to register a name using s group:register name

(SGroupName, Name, Pid) the function returns ’no’ because a free node
belongs to no s group; similarly, when an s group attempts to register a
name using global:register name(Name, Pid) the function also returns
’no’.

Listing 2.11: Name Registration

global:register_name(Name, Pid) -> ’yes’ | ’no’
s_group:register_name(SGroupName, Name, Pid) -> ’yes’ | ’no’

When registering a name register name function first checks whether
the node belongs to the defined group. If so the function checks whether
Name and Pid are already registered in that group. In case the name and
pid are new in that group the name is registered.

Name Re-registration. The purpose of re register name function is
to register a pid using the name that is already taken for a different pid in the
defined group. The name re-registration works similarly to the name reg-
istration. A name can be re-registered using re register name functions
presented in Listing 2.12. A node can only re-register a name in the group
the node belongs to. Therefore, when a free node attempts to re-register a
name using s group:register name(SGroupName, Name, Pid) the func-
tion returns ’no’ because a free node belongs to no s group; similarly, when
an s group attempts to re-register a name using global:register name(Name,

Pid) the function also returns ’no’.

Listing 2.12: Name Re-registration

global:re_register_name(Name, Pid) -> ’yes’ | ’no’
s_group:re_register_name(SGroupName, Name, Pid) -> ’yes’ | ’no’

The function first checks whether the node belongs to the given group.
In case the response is positive and the pid is not registered in the group the
name is re-registered. In case the pid is already registered under a different
name the re-registration fails.

Name Unregistration. A name can be unregistered from a group using
unregister name functions presented in Listing 2.13.

The function first checks whether the node belongs to the given group.
If so the name is unregistered from the group. If the name is not registered
in the group then ’ok’ is returned.

12

Listing 2.13: Name Unregistration

global:unregister_name(Name) -> ’ok’
s_group:unregister_name(SGroupName, Name) -> ’ok’

Listing Registered Names. A list of registered names can be accessed
by calling registered names functions presented in Listing 2.14. Function
global:registered names() works on both s group and free nodes, and
returns all names registered on the node, i.e. on a free node the function
returns a list of globally registered names, and on an s group node the func-
tion returns a list of names from all s groups the node belongs to. Function
s group:registered names({node, Node}) also works on both s group
and free nodes. It works similarly to global:registered names() but re-
turns all registered names from the target node Node. In case the current
node is not connected to node Node a new connection is established.

Listing 2.14: List of Registered Names

global:registered_names() -> [Name]
s_group:registered_names({node, Node}) -> [{SGroupName, Name}]
s_group:registered_names({s_group, SGroupName}) -> [{SGroupName

, Name}]

Function s group:registered names({s group, SGroupName}) returns
a list of registered names in s group SGroupName. The function returns
registered names only from s groups that the current node is aware of. In
case the current node is not a member of s group SGroupName the node
establishes a connection with one of the nodes of s group SGroupName.
In case the node is not aware of s group SGroupName an empty list is
returned.

Searching for a Name. A registered name can be found using whereis name

functions presented in Listing 2.15. The name search is done sequentially,
and as soon as the name is found its pid is returned. The functions first
check name Name in the node own registry. If the name is not found locally
then the name is searched in other known s groups by picking a node from
the defined s group SGroupName, then establishing a connection with that
node, and then checking whether name {SGroupName, Name} is registered
on that node.

Listing 2.15: Search of a Registered Name

global:whereis_name(Name) -> Pid | ’undefined’
s_group:whereis_name(SGroupName, Name) -> Pid | ’undefined’
s_group:whereis_name(Node, SGroupName, Name) -> Pid | ’

undefined’

13

Function global:whereis name(Name) returns a pid on a free node in
case the name is found, otherwise returns ’undefined’. Function s group:

whereis name(SGroupName, Name) returns a pid on an s group node if
the name is registered in the given SGroupName and the node is aware of
that s group; on a free node the function returns ’undefined’.

Function s group:whereis name(Node, SGroupName, Name) works on
both s group and free nodes and searches only {SGroupName, Name} regis-
tered on that node. In case the target node is free SGroupName should be
’undefined’. If initiating node N1 and target node N2 are not connected,
then the connection is established. In case the process actually resides on
node N3 no connection between nodes N1 and N3 is established.

Sending a Message. A message can be sent to a registered name using
send functions presented in Listing 2.16. From a free node a message can
be sent to name Name using global:send(Name, Msg). From an s group
node that has information about s group SGroupName a message can be
sent to any registeredName in that s group using s group:send(SGroupName,

Name, Msg). To send a message to {SGroupName,Name} registered on
node Node function s group:send(Node, SGroupName, Name, Msg) is
used. In case node Node is free a message to Name registered on that
node should be sent for an undefined s group, i.e. s group:send(Node,

’undefined’, Name, Msg).

Listing 2.16: Sending Messages

global:send(Name, Msg) -> Pid
s_group:send(SGroupName, Name, Msg) -> Pid | {’badarg’, Reason}
s_group:send(Node, SGroupName, Name, Msg) -> Pid | {’badarg’,

Reason}

When sending a message to an s group or a node from a remote node
a number of connections can be established. For example, we have two
s groups: {G1, [N1, N2]} and {G2, [N3, N4]} (Figure 2.3(a)). Assume that
we send a message from node N3 to name {Name,G1} on node N2, i.e.
s group:send(N2, G1, Name, Msg).

If Name registered in s group G1 actually resides on node N1 then node
N3 also establishes a connection with node N1 (Figure 2.3(b)). Thus, when
sending a message to a name on a node or in a remote s group the initial
node establishes a connection with both the defined node and with the node
where the process actually resides.

The difference between functions s group:send/3 and s group:send/4

is in the node that should maintain information about the target s group. In
case of s group:send/3 this is the initiating node, and in case of s group:send/4

this is the target node.

14

(a) Before (b) After

Figure 2.3: Connections when Sending a Message

15

global: s group:

S group Functions

new s group(SGroupName, [Node])
Creates a new s group

delete s group(SGroupName)
Deletes an s group

add nodes(SGroupName, [Node])
Adds nodes to an s group.

remove nodes(SGroupName, [Node])
Removes nodes from an s group.

s groups()
Returns a list of all s groups known to the node

own s groups()
Returns a list of s group tuples of the s groups the
node belongs to

own nodes()
Returns a list of nodes the node shares namespaces
with
own nodes(SGroupName)
Returns a list of nodes from the given s group

sync() sync()
Synchronises connected free normal nodes Synchronises s group nodes

info() info()
Returns global state information Returns s group state information

Registered Name Functions

register name(Name, Pid) register name(SGroupName, Name,
Pid)

Registers a name on the connected free normal nodes Registers a name in the given s group

re register name(Name, Pid) re register name(SGroupName, Name,
Pid)

Re-registers a name on the connected free normal
nodes

Re-registers a name in the given s group

unregister name(Name) unregister name(SGroupName, Name)
Unregisters a name on the connected free normal
nodes

Unregisters a name in the given s group

registered names() registered names(node, Node)
Returns a list of all registered names on the node Returns a list of all registered names on the given

node
registered names(s group,
SGroupName)
Returns a list of registered names in the given s group

whereis name(Name) whereis name(SGroupName, Name)
Returns the pid of a name registered on a free node Returns the pid of a name registered in the given

s group
whereis name(Node, SGroupName,
Name)
Returns the pid of a name registered in the given
s group. The name is searched on the given node

send(Name, Msg) send(SGroupName, Name, Msg)
Sends a message to a name registered on a free node Sends a message to a name registered in the given

s group
send(Node, SGroupName, Name, Msg)
Sends a message to a name registered in the given
s group. The name is searched on the given node

Table 2.2: Summary of the New and Modified Functions from Sections 2.3
and 2.4

16

Chapter 3

Semi-explicit Placement

We implement semi-explicit placement with function choose nodes/1 pre-
sented in Listing 3.1. The function returns a list of nodes that satisfy all
given criteria, i.e. intersection. In case no node satisfies the criteria the
function returns an empty list. The initial parameters include s groups and
attributes.

Currently, only nodes from s groups the initiating node belongs to are
considered, i.e. when a parameter is {s group, SGroupName} in case the
initiating node belongs to s group SGroupName the function returns a list
of the s group nodes, otherwise an empty list is returned. When the parame-
ter is {attribute, AttributeName} the initiating node collects attributes
from all connected nodes, then returns a list of nodes that contain the given
attribute.

Attributes are a set of individual node characteristics. Attributes may
contain information about hardware and software specification, or a par-
ticular node responsibility. We have implemented attributes by adding a
corresponding parameter to a node global state. At the node launch the list
of attributes is empty. To manipulate node attributes we have implemented
the following functions: adding, deleting, and viewing attributes.

Listing 3.1: Selecting Nodes using Parameters

s_group:choose_nodes([Parameter]) -> [Node]
where

Parameter = {s_group, SGroupName} | {attribute,
AttributeName}

SGroupName = group_name()
AttributeName = term()

Adding attributes. Attributes can be added using functions presented
in Listing 3.2. Function global:add attribute/1 adds a list of attributes
to the own node, and function s group:add attribute/2 adds a list of
attributes to a set of nodes.

17

Listing 3.2: Adding Attributes

global:add_attribute([AttributeName]) -> ’ok’ | {error, Reason}
s_group:add_attribute([Node], [AttributeName]) -> ’ok’ | {error

, Reason}

Removing attributes. To remove attributes functions presented List-
ing 3.3 are used. Function global:remove attribute/1 removes attributes
from the own node, and function s group:remove attribute/2 removes
attributes from a list of nodes.

Listing 3.3: Removing Attributes

global:remove_attribute([AttributeName]) -> ’ok’
s_group:remove_attribute([Node], [AttributeName]) -> ’ok’

Listing attributes. To view own node attributes function global:registered

attributes() is used (Listing 3.4).

Listing 3.4: Listing Attributes

global:registered_attributes() -> [AttributeName]

18

Chapter 4

Preliminary Validation

The functions have been unit tested. The node state, connections, and
name spaces were analysed by combining the following parameters: static &
dynamic s groups, partitioned & overlapping s groups, common & individual
s group configuration on nodes. Individual function properties, such ‘a node
can register a name only in an s group the node belongs to’, discussed in
[CTG+14] were also tested. Table 4.1 provides a list of types of nodes we
considered in the unit tests for the functions discussed in Sections 2.3 and
2.4. We also use a feedback from the SD Erlang semantics that we currently
work on to modify and improve the functions.

We work on demonstrators to investigate performance benefits of SD Er-
lang compared to distributed Erlang. In the preliminary performance anal-
ysis we use DEbench as a benchmarking tool to measure the throughput
and the latency of distributed Erlang commands and SD Erlang commands
on a cluster. DEbench is a simplified version of open source Basho Bench
benchmarking tool [REL13]. Basho Bench was created to conduct perfor-
mance and stress tests, and to produce performance graphs [Bas13]. All
nodes participating in the experiments run their own copy of DEbench. An
example of conducted experiments using DEbench is presented below.

In the experiment we measure throughput and latency of the following
P2P and global commands.

� P2P commands: spawn and RPC.

� Global commands: registration, unregistration, and search of global
names.

The rate with which the commands are called we define in a configura-
tion file, e.g. one global command to a hundred of P2P commands. Each
node randomly selects a node and a command from the configuration file
and runs that command on the selected node. The experiment is run on
20 nodes for 5 minutes. In SD Erlang we partition the nodes in 5 s groups,

19

Functions Types of Nodes

all Free or s group nodes

1. Free node

2. S group node

(a) Belongs to a single s group

(b) Belongs to multiple s groups

Normal or hidden nodes

1. Normal node

2. Hidden node

new s group/2
add nodes/2

Connected or not connected to other nodes

1. Connected to other nodes

(a) Shares a name space with the nodes

i. After joining the new s group continues to
share a namespace with the nodes

ii. After joining the new s group does not
share a namespace with the nodes

(b) Does not share a name space with the nodes

2. Not connected to other nodes

delete s group/1
remove nodes/2

Becomes free or remains an s group node after leaving an
s group

1. Becomes a free node

(a) Connections with other free nodes

i. Connected to free nodes

ii. Not connected to free nodes

(b) Nodes from the same s group

i. No other nodes become free

ii. Other nodes also become free

2. Remains an s group node

Table 4.1: Types of Nodes Considered in the Unit Tests

and all s groups have 4 nodes. Thus, when registering a name in the exper-
iments with distribute Erlang the names are replicated on 20 nodes, and in
the experiments with SD Erlang the names are replicated on 4 nodes. In
commands spawn and RPC the size of an argument is 1000 bytes, and the
called function takes 200µs.

Figures 4.1(a) and 4.1(b) show the throughput of a 20-node Elang cluster
in experiments using distributed Erlang and SD Erlang respectively. The
experiments show that the throughput in SD Erlang experiments is larger in

20

comparison with distributed Erlang experiments, i.e. 500,000 operations/sec
vs. 200,000 operations/sec; whereas the latency of global operations in SD
Erlang experiments is smaller that in the distributed Erlang experiments,
i.e. 3,000µs vs. 15,000µs. Therefore, in comparison with distributed Er-
lang SD Erlang reduces the latency of global operations and increases the
throughput.

21

(a) Distributed Erlang

(b) SD Erlang

Figure 4.1: Throughput of 20 Nodes in DEbench Experiments
22

Chapter 5

Implications and Future
Work

The technical report presents the implementation of SD Erlang computa-
tion model and semi-explicit placement. We have discussed the main as-
pects of s group implementation and covered functionality of the following
sixteen functions from s group and global modules: creating and deleting
an s group, adding and removing nodes from an s group, listing own and
known s groups, synchronisation and monitoring of nodes, providing node
information, name registration, re-registration, and unregistration, listing
registered names, search of registered names, and sending messages. For
semi-explicit placement we have implemented choose nodes/1 function and
node attributes together with five additional function to manipulate those
attributes. All functions were unit tested.

We plan to build the following on the s group implementation.

1. Reliability Model includes mechanisms to ensure uniqueness of s group
names when no central information about s groups is collected and
restarting nodes in their s groups.

2. Semi-explicit Placement. We plan to add more parameters to choose node/1

function. Currently, we consider adding node’s load and communica-
tion distance parameters, i.e. collecting load information from con-
nected nodes to place processes on the least loaded nodes, and using
communication distances to decide how far we want to spawn a process
from the initiating node. We may also consider introducing a scalable
scheme to collect state information from remote s groups. This will
enable a node to consider placing processes not only on the nodes from
its own s group but also on nodes from remote s groups.

3. SD Erlang Semantics. Together with the Kent team of the RELEASE
project we work on the semantics of the basic SD Erlang functions,
such as register name/3 and new s group/2.

23

Bibliography

[Bas13] Basho Technologies. Basho Bench, 2013.
http://docs.basho.com/riak/latest/ops/building/benchmarking/.

[CTG+14] N. Chechina, P. Trinder, A. Ghaffari, R. Green, K. Lundin, and
R. Virding. Scalable reliable SD Erlang design. Technical Report
TR-2014-002, The University of Glasgow, December 2014.

[Eri13] Ericsson AB. Types and Function Specifications, 2013.
http://www.erlang.org/doc/reference manual/typespec.html.

[REL13] RELEASE Project. DEbench, 2013. https://github.com/release-
project/benchmarks/tree/master/DEbench.

24

