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1 Executive Summary

This deliverable presents the design of Scalable Distributed (SD) Erlang: a set of language-level changes
that aims to enable Distributed Erlang to scale for server applications on commodity hardware with at
most 105 cores. We cover a number of aspects, specifically anticipated architecture, anticipated failures,
scalable data structures, and scalable computation. Other two components that guided us in the design
of SD Erlang are design principles and typical Erlang applications. The design principles summarise
the type of modifications we aim to allow Erlang scalability. Erlang exemplars help us to identify the
main Erlang scalability issues and hypothetically validate the SD Erlang design.

We start by giving an overview of hardware architectures to get an idea of the type of typical
hardware architectures we may expect in the next 4-5 years. We expect it to be a NUMA architecture
where cores are grouped in modules of 32-64 cores, and each host has 4-6 such modules. A server will
consist of ≈ 100 hosts, and a cloud will consist of 2-5 servers (Section 4). Then we analyse failures
that may happen during SD Erlang program execution. The anticipated failures have an impact on
the design decisions we take for SD Erlang (Section 5).

To scale a language must provide scalable in-memory data structures, scalable persistent data
structures, and a scalable computation model. We analyse ETS tables as the main Erlang in-memory
data structures. The results show that ETS tables may have scalability problems, however, it is too
soon to draw any conclusions as there were no yet real experiments with SD Erlang. As ETS tables are
a part of Erlang Virtual Machine (VM) the results of the analysis were passed to WP2, and if scalability
problems will arise the group will address them (Section 7.1). For the persistent data structures we
analyse Mnesia, CoachDB, Casandra, and Riak. The analysis of the database properties shows that
such DataBase Management Systems (DBMSs) as Riak and Casandra will be able to provide essential
scalability (Section 7.2).

SD Erlang’s scalable computation model has two parts. The first part answers the question ‘How to
scale a network of Erlang nodes?’. Currently, Distributed Erlang has a fully connected network of nodes
with transitive connections. We propose to change that and add scalable groups (s groups). In s groups
nodes have transitive connections with nodes of the same s group and non-transitive connections with
other nodes. The idea of s groups is similar to Distributed Erlang hidden global groups. S groups differ
from global groups in that nodes can belong to a multiple number of s groups or do not belong to an
s group at all, and information about nodes is not global, i.e. in s groups nodes collect information
about nodes of the same s group but they do not share this information with nodes of other s groups
(Section 6.1).

The second part of the SD Erlang design answers the question ‘How to manage a scaled number of
Erlang nodes?’. As the number of Erlang nodes scale it is hard for a programmer to know the exact
position of all nodes. Therefore we propose a semi-explicit placement. Currently, when a process is
spawned the target node must be identified explicitly. In the semi-explicit placement the target node
will be chosen by a decision making process using restrictions specified by the programmer, e.g. s groups,
or types of s groups, or communicating distances on which the target node is located from the initial
node (Section 6.2).

Finally, we provide an overview of typical Erlang applications and summarise their requirements
to the SD Erlang (Section 8). We also discuss Erlang VM implications and outline WP3 future work
(Section 9).

2 Introduction

The objectives of Task 3.1 are to “design a reliable Scalable Distributed (SD) Erlang. Promising ideas
are to minimise connections between Erlang nodes and to provide abstract process placement control
to maintain locality (affinity) and to distribute work”. The lead participant is Heriot-Watt University.
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The document presents the SD Erlang design and justification of the design decisions. The design
is informed by the scalability requirements of the set of distributed exemplars in Section 8. For Erlang
to scale we have considered the following key aspects.

1. Hardware architecture trends. To identify programmer requirements to the Erlang language we
need to understand the target hardware architectures that we may expect in the next 4-5 years
(Section 4).

2. Anticipated failures. Erlang has a very good reliability model, to preserve it we need to be aware
of failures that may occur during program execution (Section 5).

3. Scalable computation. To understand Erlang scalability limitations we have analysed typical
Erlang applications (Section 8). The results showed that the main scalability issue is transitive
connections, e.g. a Riak users are already looking for ways to increase the number of Erlang nodes
beyond a hundred. There is also a need of semi-explicit placement. Such applications as Sim-
Diasca build their own tools to support semi-explicit placement. We believe that rather making
developers to build their own tools it is better to build one that can be reusable (Section 6).

4. Scalable in-memory and persistent data structures. To build scalable applications programmers
require support from in-memory and persistent data structures. The data structures need to be
able to scale together with the application. Therefore, we have analysed in-memory and persistent
data structures that can be used in Erlang applications (Section 7).

Partner Contribution to WP3. The Ericsson team contributed to the design of the language,
identifying relevant libraries, describing VM level (WP2) implications of various design options, cri-
tiquing the design, and providing a constructive feedback. The Kent team critiqued the design and
provided information on the profiling options and implications of design decisions. Erlang Solutions
team provided feedback on the hypothetical validation of SD Erlang and implication of grouping and
semi-explicit placement design decisions. We had a series of teleconferences with Ericsson, EDF, Basho,
University of Kent, and Erlang Solutions. There were three multi-partner face-to-face meetings two of
which were in Stockholm, Sweden and one in St Andrews, UK.

We start with design principles in Section 3. An overview of hardware architecture trends is pre-
sented in Section 4, and possible failures are covered in Section 5. A scalable computation model and
scalable data structures are discussed in Sections 6 and 7 respectively. Exemplars are discussed in
Section 8. We conclude with discussion on the Virtual Machine (VM) and OTP implication, and future
work package plans in Section 9.

3 Design Principles

The following principles guide the design of SD Erlang.

1. General:

• Preserving the Erlang philosophy and programming idioms.

• Minimal language changes, i.e. minimizing the number of new constructs but rather reusing
of existing constructs.

• Working at Erlang level rather than VM level as far as possible.

2. Reliable Scalability:

• Avoiding global sharing, e.g. global names, bottlenecks, and using groups instead of fully
connected networks.
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• Introducing an abstract notion of communication architecture, e.g. locality/affinity and send-
ing disjoint work to remote hosts.

• Avoiding explicit prescription, e.g. replacing spawning on named node with spawning on
group of nodes, and automating load management.

• Keeping the Erlang reliability model unchanged as far as possible, i.e. linking, monitoring,
supervision.

4 Architecture Trends

Currently energy consumption, cooling, and memory size/bandwidth are considered to be the main
factors that shape trends in computer architectures.

• As the number of cores goes up the memory bandwidth goes down, and the larger number of cores
share the same memory the larger memory is required. DRAM-based main memory systems
are about to reach the power and cost limit. Currently, the main two candidates to replace
DRAM are Flash memory and Phase Change Memory (PCM). Both types are much slower than
DRAM, i.e. 211 and 217 processor cycles respectively for a 4GHz processor in comparison with 29

processor cycles of DRAM, but the new technologies provide a higher density in comparison with
DRAM [QSR09].

• Energy consumption and cooling are the main constrains for the high core density. Moreover,
the cooling is also a limitation of the silicon technology scaling [War11]. To save energy and
maximize compute performance supercomputers exploit small and simple cores apposed to large
cores. Many architectures, especially HPC architectures, exploit GPUs [BC11]. GPUs accelerate
regular floating point matrix/vector operations. The high throughput servers that RELEASE
targets do not match this pattern of computation, and GPUs are not exploited in the server
architectures we target. The air cooling might be replaced by one of the following technologies: 2D
and 3D micro-channel cooling [HSG+10], phase-change cooling [MJN03], spot cooling [WZJ+04],
or thermal-electric couple cooling [SSA+06].

From the above we anticipate the following typical server hardware architecture. A host will contain
∼4–6 SMP core modules where each module will have ∼32–64 cores. Analysis of the Top 500 supercom-
puters that always lead the computer industry illuminating the next 4–5 year computer architecture
trends allows us to assume that ∼100 hosts will be grouped in a cluster, and ∼1–5 clusters will form
a cloud. Therefore, the trends are towards a NUMA architecture. The architecture is presented in
Figure 1.

Assumptions. Each host may have a single or a multiple number of IP addresses. A host may have
a multiple number of Operating System (OS) instances. An OS instance may have a multiple number
of Erlang nodes, and be executed on a multiple number of cores.

5 Anticipated Failures

To build a scalable and fault tolerant system it is important to identify types of failures and their
impact on Erlang performance. Recall that Erlang approach to failures is ‘Let it crash and another
process will correct the error ’ [Arm10].
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Erlang nodes and processes may fail for various reasons. Table 1 presents a list of failures that
may occur (columns Type and Subtype), and the sides responsible for handling the failures. Column
MTTF/BF indicates the Mean Time To Failures/ Before Failures. Column Implication discusses
aftereffects of the failures. Columns Handling and Responsibility provide information how the failures
are dealt with and which side is responsible for the recovery. Here, by ‘Erlang’ and ‘SD Erlang’ we
mean that the language should provide means to detect failures and recover from them. Column Present
indicates whether a handling mechanism is already implemented in Erlang. In general we identify four
types of failures:

• Hardware failures include core, communication link, hard disk, and RAM failures. When a hard
disk or a RAM stops working and requires to be replaced, or a core fails we assume that we lose
the whole host together with all Erlang nodes on that host. In this case the node failures must
be discovered on remote hosts. When a minor hardware failure occurs it is handled by either an
OS and/or a DBMS. When a node or a group of nodes become isolated from other nodes of the
same group due to communication link failures Erlang provides means to treat the disconnected
nodes as failed.

• By supporting software we mean software that is not necessarily written in Erlang but is strongly
connected to a successful Erlang program operating, e.g. OS and DBMS. In case of a major OS
failure the whole host fails. Thus, the node failure must be discovered on remote hosts. In case we
consider to use Riak DBMS with Bitcask backend we also need to consider the following. Bitcask
requires keydir directory that stores Bitcask key information to be kept in a RAM. However,
as the number of cores grows the number of processes and the size of hard disks will grow as
well. This in turn may lead to two possible failures: 1) a process bottleneck in attempt to access
keydirs in RAM, and 2) incompatibility of RAM and keydir sizes. Further discussion on scalable
persistent data structures is presented in Section 7.2. We assume that the remaining failures are
resolved on the level of supporting software without disruption of Erlang programs.

• By Erlang components we mean the following: a group of nodes, a node, a group of processes,
a process, and ETS tables. Erlang component failures are caused by internal component errors.
To accelerate the recovery process the component failures should be discovered locally. Thus, it
is preferably that a process failure is picked up by another process of the same group or the same
node, and a node failure is picked by another node of the same group or on the same host. A
discussion on ETS tables is provided in Section 7.1.

• In other failures we include failures which are out of scope for the current project due to a very
small probability and a very large scale of the events. These are cases, for example, when a whole
server or a cloud fails.

For the current project the main interest is in the failures handled by Erlang and Erlang users.
Table 1 shows that Erlang already provides the means to support the majority of the failures. However,
as we introduce new properties to SD Erlang, such as a notion of scalable groups of nodes the design of
these schemes will depend on the architecture and group functionality that we introduce. ETS tables
may also require some modifications to support consistency in the environment of higher magnitude of
cores, nodes, and processes.
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6 Scalable Computation

In this section we discuss how distributed Erlang can be extended to SD Erlang to effectively operate
when the number of hosts, cores, nodes, and processes are scaled. We start by introducing scalable
groups (s groups) in Section 6.1 and semi-explicit placement in Section 6.2. Then we discuss high
level abstractions in Section 6.3. Finally, SD Erlang security issues in LANs and WANs are covered in
Section 6.4.

6.1 Network Scalability

To allow scalability of networks of nodes the existing scheme of transitive connection sharing should be
changed as it is not feasible for a node to maintain connections to tens of thousands of nodes, i.e. the
larger the network of Erlang nodes the more ’expensive’ it becomes on each node to keep up-to-date
replications of global names and global states, and periodic checking of connected nodes. Instead we
propose to use partial connections where nodes would have transitive connections within their scalable
group (s group) and non-transitive connections with nodes of other s groups. Collections of s groups
may be presented by one of the following schemes:

• hierarchical (or recursive) scheme allows subgroups but does not allow direct communication
between nodes from different s groups and different levels. The scheme presupposes that all
communications happen via gateway nodes unless the nodes are directly connected ang belong to
the same s group.

• overlapping scheme seems the one that is both the most flexible and the best fitting with the
Erlang philosophy, i.e. any node can directly connect to any other node. Another advantage of
the overlapping scheme is that it can also be used to construct both partition and hierarchical
structures.

• partition scheme is not flexible, and is a particular case of the overlapping scheme when nodes
are allowed to belong to only one s group.

Below we discuss overlapping s groups and essential functions to support them.

6.1.1 Overlapping s groups

The s grouping implies that a node has transitive connections with nodes of the same s group, and
non-transitive connections with other nodes. In the overlap s grouping the nodes can belong to more
than one s group. This will allow the following properties.

• A node can have diverse roles towards other nodes, e.g. a node may be an executing node in one
s group and a gateway in another s group.

• A node can have diverse connectivity, i.e. some nodes may have more connections than then
others. In case a node belongs to a local s group and to a cloud s group depending on the amount
of process work the node may spawn processes to a local node or to a node in a cloud.

• Nodes can be dynamically added and removed from an s group, e.g. when certain conditions are
met nodes are registered as s group members and processes can be spawned those nodes.

• A network may have only transitive connections when all nodes belong to a single s group or only
non-transitive connections when each node belongs to a separate s group.

• A network of nodes may be structured in a hierarchical, partition, or overlapping manner. Ex-
amples are discussed in Section 8.
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Nodes with no asserted s group membership will belong to a notional group G0 that will allow
backward compatibility with Distributed Erlang. We believe that for compatibility reasons group G0
should not be an s group and thus should follow Distributed Erlang rules. Therefore, s groups are
not compulsory but rather a tool a programmer may use to allow network of nodes scalability. By
the backward compatibility we mean that when nodes run the same VM version they may use or not
use s groups and still be able to communicate with each other. If a node belongs to an s group it
follows s group rules, i.e. has transitive connections with nodes of the same s group and non-transitive
connections with other nodes. If a node does not belong to an s group it follows Distributed Erlang rules,
i.e. has transitive connections with nodes that also do not belong to any s group, and non-transitive
connections with other nodes.

When a node leaves group G0 or an s group the node connections can be either kept or lost.

• Losing connections. As soon as a node becomes a member of at least one s group it looses a
membership and all connections with nodes of group G0, and establishes new connections in its
s group. The same way when a node leaves an s group it looses connections with nodes of that
s group. In case the node does not belong to any other s group it becomes a member of group
G0 and establishes new connections with the group nodes.

• Keeping connections. When a node becomes a member of at least one s group it does not loose
connections with nodes of group G0, rather from transitive the connections become direct. The
same way when a node leaves an s group all connections remain but become direct.

We propose to implement the keeping connection alternative.
Evidently, global names and global locks cannot be kept in SD Erlang. Therefore, we propose to

transform them into s group names and s group locks. To avoid a collision of s group names with the
same name Name on node A that belongs to s groups G1 and G2 we propose the s group names to
consist of two parts: a name and an s group name. Then node A will treat names as Name@G1 and
Name@G2.

In distributed Erlang hidden global groups have visible (transitive) connections with the nodes of
the same global group, and hidden (non-transitive) connections with nodes of other global groups. The
idea of s groups is similar to the idea of hidden global groups in the following: 1) each s group has its
own name space; 2) transitive connections are only with nodes of the same s group. The differences
with hidden global groups are in that 1) a node can belong to an unlimited number of s groups, and
2) information about s groups and nodes is not globally collected and shared.

6.1.2 Types of s groups

To allow programmers flexibility and provide an assistance in grouping nodes we propose s groups to be
of different types, i.e. when an s group is created a programmer may specify parameters against which
a new s group member candidate can be checked. If a new node satisfies an s group restrictions then
the node becomes the s group member, otherwise the membership is refused. The following parameters
can be taken into account: communication distance, security, available code, specific hardware and
software requirements. We may consider the following options for the proposed types of s groups.

1. Security:

(a) only an s group leader node may add nodes to the s group.

(b) member nodes may belong to only one s group and cannot initiate an s group themselves.

(c) s group members can only be connected to the nodes of the same s group.

2. Locality:
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Type of Information Description

Node information node name and a list of s group names to which the node belongs to

s group information s group name and a list of nodes that belong to the s group

s group list information a list of s groups

Table 3: Types of Global Information

(a) only a node within a particular communication distance can be a member of an s group
(distance can be calculated from the s group leader node or from all currently participating
nodes).

3. Special hardware:

(a) whether the location of the new member of the s group satisfies a particular hardware con-
figuration.

4. Special software:

(a) whether a particular software or code is available on the new node.

The information about specific resources can be collected by introducing node self awareness, i.e. a
node is aware of its execution environment and publishes this information to other nodes. A programmer
may also introduce his/her own s group types on the basis of some personal preferences. Communication
distance can be measured in a number of ways, i.e. from a particular node such as a leader s group
node or a node that performs the connection, or from every node of the s group. The design chosen for
SD Erlang implements only custom s group types.

Table 3 presents information that we are interested to maintain to exploit s group advantages in SD
Erlang: node information, s group information, and s group list information. Obviously for scalability
reasons nodes cannot maintain node and s group information about every other node and s group.
Therefore, one the following approaches can be implemented.

• P2P distribution. Each node maintains global s group list information and node information about
nodes of the same s groups. The disadvantage of this option is that although information is not
renewed often it is required to be replicated on all 105 nodes. Another possible problem can be in
that all nodes maintain global information, i.e. there may be a surge of global s group information
update in the beginning when new s groups are formed and the information is replicated between
the nodes. However, after the initial stabilising there should not be many updates between the
nodes.

• Gateway-based distribution. Each node maintains node information about nodes of the same
s groups, and s group leader nodes also maintain s group list information. The advantage of this
method is that there is no globally shared information. The difficulty with the option is that
it requires replication mechanisms for the gateway nodes to prevent s group isolation in case
some gateway nodes fail. It also requires an additional effort from the programmers to ensure
that gateway nodes are sufficiently connected to each other to support s group list information
distribution and to avoid network partition.

We propose to implement an optional P2P distribution approach, i.e. initially the programmer specifies
whether global information is collected or is not collected for the network of nodes. Despite the side
effects an implementation of the P2P distribution approach is relatively easy, the s group information
after stabilising is not changed often, and no effort from a programmer is required to ensure the
information distribution.
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Communication between nodes that belong to different s groups may be implemented in the follow-
ing ways.

• A node establishes connection with the target node. In this case nodes may have a large number
of connections with nodes from outside of their s groups. To eliminate the problem we propose
to introduce short lived connections.

• A node passes messages via s group leader nodes. In this case we keep the number of connections
unchanged but this is against the Erlang philosophy that any node may connect to any other node.
This also implies an additional load on the s group leader nodes as all intergroup communication
will pass through them.

The design chosen for SD Erlang is as follows. A node can establish a direct connection with any other
node and introduce short lived connections. The number of nodes per host will be unrestricted, and we
do not consider any language constructs to provide programmers any level of control over cores, i.e. the
lowest level a programmer may control in terms where a process will be spawned is a node.

6.1.3 s group Functions

We propose the following functions to support s group employment. These functions may be changed
during the development. The final impelemntation will be decided during actual SD Erlang code writing
and will depend on which functions programmers find useful.

1. Creating a new s group, e.g.
new s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}

2. Deleting an s group, e.g.
del s group(S GroupName) -> ok | {error, ErrorMsg}

3. Adding new nodes to an existing s group, e.g.
add node s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}

4. Removing nodes from an existing s group, e.g.
remove node s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}

5. Monitoring all nodes of an s group, e.g.
monitor s group(S GroupName) -> ok | {error, ErrorMsg}

6. Sending a message to all nodes of an s group, e.g.
send s group(S GroupName, Msg) -> Pid | {badarg, Msg} | {error, ErrorMsg}

7. Listing nodes of a particular s group, e.g.
s group nodes(S GroupName) -> [Node] | {error, ErrorMsg}

8. Listing s groups that a particular node belongs to, e.g.
node s group info(Node) -> [S GroupName]

9. Connect to all nodes of a particular s group, e.g.
connect s group(S GroupName) -> [boolean() | ignored]

10. Disconnect from all nodes of a particular s group, e.g.
disconnect s group(S GroupName) -> boolean() | ignored

Using the above functions merging and splitting of s groups may be also implemented.
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Example: Assume we start six nodes A, B, C, D, E, F , and initially the nodes belong to no s group.
Therefore, all these nodes belong to notional group G0 (Figure 2(a)). First, on node A we create a new
s group G1 that consists of nodes A, B, and C, i.e. new s group(G1, [A, B, C]). Note that a
node belongs to group G0 only when this node does not belong to any s group. When nodes A, B, and C
become members of an s group they may still keep connections with nodes D, E, F but now connections
with these nodes are non-transitive. If connections between nodes of s group G1 and group G0 are time
limited then the non-transitive connections will be lost over some time (Figure 2(b)). Then on node C
we create s group G2 that consists of nodes C, D, and E. Nodes D, and E that now have non-transitive
connections with node F may disconnect from the node using function disconnect s group(G0).
Figure 2(c) shows that node C does not share information about nodes A and B with nodes D and E.
Similarly, when nodes B and E establish a connection they do not share connection information with
each other (Figure 2(d)).

6.1.4 Summary

To enable scalability of network of nodes we have proposed the following modifications.

• Grouping nodes in s groups where s groups can be of different types, and nodes can belong to
many s groups.

• Transitive connections between nodes of the same s group and non-transitive connections with
all other nodes. Direct non-transitive connections are optionally short lived, e.g. time limited.

• Optional global s group list information.

• Replacing global names with s group names where each s group names consists of two parts: a
name and an s group name, e.g. Name@Group.

6.2 Semi-explicit Placement

For some problems, like matrix manipulations, optimal performance can be obtained on a specific archi-
tecture by explicitly placing threads within the architecture. However, many problems do not exhibit
this regularity. Moreover, explicit placement prevents performance portability: the program must be
rewritten for a new architecture, a crucial deficiency in the presence of fast-evolving architectures. We
propose a dynamic semi-explicit and architecture aware process placement mechanism. The mecha-
nism does not support the migration of processes between Erlang nodes. The semi-explicit placement
is influenced by Sim-Diasca (Section 8.1) process placement and architecture aware models [ATL]. In
Sim-Diasca a computing load is induced by a simulation and needs to be balanced over a set of nodes.
By default, model instances employed by Erlang processes are dispatched to computing nodes using
a round-robin policy. The policy proved to be sufficient for most basic uses, i.e. a large number of
instances allows an even distribution over nodes. However, due to bandwidth and latency for some
specifically coupled groups of instances it is preferable for a message exchange to occur inside the same
VM rather than between distant nodes. In this case, a developer may specify a placement hint when
requesting a creation of instances. Usually, placement hints are atoms. The placement guarantees that
all model instances created with the same placement hint are placed on the same node. This allows
the following: 1) to co-allocate groups of model instances that are known to be tightly coupled, 2) to
preserve an overall balancing, and 3) to avoid model level knowledge of the computing architecture.

To limit the communication costs for small computations, or to preserve data locality, [ATL] pro-
poses to introduce communication levels and specify the maximum distance in the communication
hierarchy that the computation may be located. So sending a process to level 0 means the computation
may not leave the core, level 1 means a process may be located within the shared memory node, level
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Figure 2: Connections in s groups
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2 means that process may be located to another node in a Beowulf cluster, and level 3 means that a
process may be located freely to any core in the machine.

For the SD Erlang we propose that a process could be spawned either to an s group, to s groups
of a particular type, or to nodes on a given distance. From a range of nodes the target node can be
picked either randomly or on the basis of load information. Thus, a programmer will have the following
options to spawn a process.

1. An explicit placement, i.e. a programmer will specify a particular node.

2. A semi-explicit placement where either an s group, s group type, or distance are defined.

(a) When an s group is defined the process will be spawned to a node of a particular s group.

(b) When an s group type is defined the process will be spawned to a node of an s group of a
particular type.

(c) When a distance is defined the process will be spawned to a connected node within a certain
distance.

Initially, we do not plan to implement the case when both s group/s group type and a distance are
defined.

An s group leader node by default is the node that creates a corresponding s group. The s group
leader nodes can be changed. The leader nodes have the following responsibilities.

1. Representing an s group in the s group list. As nodes cannot collect information about every other
node in the network all nodes will know information about s groups, i.e. s group names. But to
be able to reach an s group the information about s group leader nodes will be also provided.

2. Responding to distant s group spawn requests. When an s group leader node receives a spawning
request from a distant node it will respond with the list of s group members that satisfy the
request conditions.

Communication Distances. We distinguish relative and communication distances. A small relative
distance implies that nodes are in the same s group, and a small communication distance implies that
nodes are on the same host. Thus, nodes that have a small relative distance (i.e. are in the same
s group) may have a large communication distance (e.g. are placed in different clouds), and vice versa.

Figure 3: Load Manager and Processes within a Node
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We have discussed relative distances in Section 6.1. The communication distances can be expressed
using communication levels, i.e. numbers from 0 to the adopted number of levels. We propose to
distinguish levels from one another on the basis of communication time where communication levels
are defined by latencies of some small messages, i.e. the messages will be sent between the nodes and
depending on the message latencies it will be decided on which communication levels the nodes are sit-
uated from each other. The method will allow compatibility of different systems because independently
of a network architecture communication levels will stay the same.

A difficulty may arise in communicating the idea of distances to programmers to help them to decide
to which levels they would like to spawn their processes. However, if carefully measured, calculated,
and documented, this method seems to be the most promising due to its portability. In the future if
smaller communication time will be introduced in comparison to the initial level 0 either levels -1, -2,...
may be introduced or the table may be shifted to the right allowing values of level 0 to be smaller.

Another issue to consider is whether the levels should be introduced uniformly and built-in in the
load manager or programmers should be allowed to set their own communication levels.

• In case a level calculation is built-in then programs can be easily transferred from one hardware
architecture to another, i.e. be independent from the underlying hardware. But at the same time
predefined communication levels will restrict programmers to the levels that we think are right
independently of the particular architectures they are working on.

• On the other hand if each programmer decides to set his/her own communication levels programs
built in SD Erlang become non-portable, as every time the program moves from one architecture
to another the levels should be adjusted. Even more headache will be caused by a system that
consists of a few parts where each part was built on a different architecture from the merging one.

We propose to implement communication distances using communication levels where levels are calcu-
lated on the basis of communication time. We also propose to provide calculated level measurements
and document them in an intuitive and easily understandable way but to allow users to change these
parameters if needed notifying about problems the changes may cause.

Load Management. When a node is picked on the basis of load an important design decision is
the interaction between two main load management components, i.e. information collection component
and decision making component. The components can be either merged together and implemented as
one element or implemented independently from each other. We propose to implement information
collection and decision making as one element, i.e. a load server. Its responsibility will be collecting
information from the connected nodes and deciding where a process can be spawned to when a corre-
sponding request arrives. It seems that one load server per node is the right number for SD Erlang. In

Figure 4: Node Connections Using s groups
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this case the decisions are made within the node (apposed to one load server per s group, a host, and
a group of hosts) and load information redundancy level is not too high (apposed to one per group of
processes and a multiple number of load servers per node). A high level representation of a node is
shown in Figure 3 where P1, P2,..., PN, and Load Manager are processes.

In Table 4 we present information that may be collect in the load manager of node C (Figure 4). Col-
umn S Groups indicates common s groups between the current node and node@host node, columnLevel
indicates communication distance, column Host Load keeps information about the load of the host on
which node@host node is located, and column Timestamp shows the time of the last update.

6.2.1 choose node

We propose to introduce a new function choose node/1 that will return a node ID where a process
should be spawned. For example, a programmer can indicate the following parameters: s groups,
s group types, and minimum/maximum/ideal communication distances.

The function can be written in SD Erlang as follows.

choose node(Restrictions) -> node()
Restrictions = [Restriction]
Restriction = {s group name, S GroupName}
| {s group type, S GroupType}
| {min dist, MinDist :: integer() >= 0}
| {max dist, MaxDist :: integer() >= 0}
| {ideal dist, IdealDist :: integer() >= 0}

We deliberatly introduce Restrictions as a list of tuples. This is done to allow the list of
restrictions to be extended in the future. A process spawning may look as follows:

start() ->
TargetNode = choose node([{s group, S Group}, {ideal dist, IdealDist}]),
spawn(TargetNode, fun() -> loop() end).

6.2.2 Summary

To enable semi-explicit placement and load management we propose the following constructs.

• Function choose node(Restrictions) -> node() where the choice of a node can be re-
stricted by a number of parameters, such as s groups, s group types, and communication distances.

• The nodes may be picked randomly or on the basis of load.

• Communication levels on the basis of communication time.

node@host S Groups Level Host Load Timestamp

A G1 1 32 processes per node

B G1 1 12 processes per node

D G2 2 14 processes per node

E G2 3 27 processes per node

Table 4: Load Information
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Node Collects information about nodes

A B, C

B A, C, E

C A, B, D, E

D C, E

E B, C, D

Table 5: Information Collection (Figure 4)

Assumptions. We assume when a process is spawned using semi-explicit placement it is a program-
mer responsibility to ensure that the prospective target node has the required code. If the code is
missing an error is returned.

6.3 Scalable Distribution Abstractions

Erlang follows a functional programming idiom of having a few primitives and building powerful ab-
stractions over them. Examples of such abstractions are algorithm skeletons [Col89] that abstract
common patterns of parallelism, and behaviour abstractions [Arm03] that abstract common patterns
of distribution.

Later in WP3 “as part of D3.4 we shall develop SD Erlang behaviour abstractions” over primitives
presented in Sections 6.1 and 6.2. For example, s group supervision and master/slave behaviours. In
the s group supervision abstraction a leaf may be represented by an s group, and an s group may
supervise another s group or a number of s groups. The supervision behaviour may also include such
abstractions as taking over a failed s group or monitoring s group leaders and replacing them if needed.
In the s group master/slave behaviour a master s group may dispatch work to an s group or a number
of s group slaves.

As we develop case studies in WP4 and WP6 we shall seek scalable distribution abstractions. The
work has a strong connection with the ParaPhrase project which is developing algorithmic skeletons
for Erlang.

6.4 Security

The proposal explicitly does not address security issues. However, applications such as Moebius (Sec-
tion 8.4) and Riak (Section 8.5) even in a small scale need to spread nodes over a wide area network
(WAN) where connections cannot be supported by the Erlang VM due to security issues. The scale
of the security problems can be divided into a LAN scale and a WAN scale. In a LAN the target
application is behind a firewall; therefore, security can be handled by cookies or on the TCP level by
opening dedicated ports. Over specific connections data can be sent encrypted. In a WAN the parts of
an application are behind different firewalls.

Currently, Riak and Moebius provide their own security mechanisms. Riak’s RESTful is a REpre-
sentational State Transfer web service. The RESTful parameters are free-format text and are carried
via HTTP POST request. RESTful web services normally do not include service-level security mech-
anisms but rely on standard defences like firewall to filter critical HTTP requests. [For09] discusses
web-security architecture model and REST arguing that caching mechanisms may cause security prob-
lems. To overcome the problem the authors introduces a design of hierarchical content protection
keys.
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7 Scalable Data Structures

In this section we discuss scalable data structures. Scalable in-memory data structures are covered in
Sections 7.1 and scalable persistent data structures are covered in Section 7.2.

7.1 Scalable In-memory Data Structures

For scalability the primary Erlang in-memory data structure is ETS tables.

7.1.1 ETS

Erlang Term Storage (ETS) is a data structure to associate keys with values, and is a collection of
Erlang tuples, i.e. tuples are inserted and extracted from an ETS table based on the key. An ETS is
memory resident and provides large key-value lookup tables. Data stored in the tables is transient.
ETS tables are implemented in the underline runtime system as a BIF inside the Erlang VM, and are
not garbage collected.

ETS tables can be either ordered or unordered. Access time for tables with ordered and unordered
keys are O(logN) and O(1) respectively where N is the number of objects stored in the table. An
unordered ETS table is implemented using a linear hash bucket array. Internally, ordered sets are
represented by balanced binary trees, and the remaining types are represented by hash tables. An ETS
may also have such data structures as Judy, AVL balanced binary trees, B-trees, resizable linear hash
tables [Fri03]. Currently only resizable linear hash tables and AVL balanced binary trees are supported.

ETS tables are stored in a separate storage area not associated with normal Erlang process memory.
The size of ETS tables depends on the size of a RAM. An ETS table is owned by the process that has
created it and is deleted when a process terminates. The process can transfer the table ownership to
another local process. The table can have the following read/write access [CS10]:

• private: only the owner can read and write the table.

• public: any process can read and write the table. In this case it is the user responsibility to ensure
that table reading and writing are performed consistently.

• protected : any process can read the table but only the owner can write it.

“ETS tables provide very limited support for concurrent updates” [CT09]. That is writing a new
element may cause a rehash of entire table; when a number of processes write or delete elements
concurrently from the table the following outcomes are possible: a runtime error, bad arg error, or
undefined behaviour, i.e. any element may be returned.

Another scalability obstacle can be a BIF operation match that is executed atomically. The op-
eration extracts elements from the table by pattern matching. On a large table match operation can
stop other processes from executing until the whole table has been traversed.

The only guarantees provided by ETS tables are as follows:

• All table updates are atomic and isolated. An atomic update implies that updating of a single
object either succeeds or fails with no effect, and an isolated update implies that intermediate
results are not available to other processes.

• Function safe fixtable/2 allows to call first/1 and next/2 and traverse the table without
errors visiting each object only once.

An ETS table can have write concurrency (read concurrency) options being set. The op-
tions give exclusive access to the operation that performs a corresponding update of the table blocking
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other concurrent access to the same table until writing (reading) is finished. The options are espe-
cially useful on runtime systems with SMP support when large concurrent write (read) bursts are
common. However, if a few reading operations interleave with a few writing operations the options
should be used carefully as the cost of the switching operation may exceed write concurrency
(read concurrency) gain.

A process or a number of processes can fix an ETS table calling safe fixtable. This will
guarantee that a sequence of first/1 and next/2 will traverse the table without errors and all objects
will be visited exactly once even if objects are added to, or deleted from, the table simultaneously. The
table remains fixed until all processes have released it or terminated. If a process fixes a table and
never releases it the memory by the deleted object will never be free.

7.1.2 Summary

As the number of SMP cores increases the number of Erlang nodes and processes also increase. This
can lead to either a bottleneck if the table is private/protected or undefined outcomes if the table is
public. ETS tables are implemented in the VM, and hence any scalability issues will be addressed in
WP2.

7.2 Scalable Persistent Data Structures

This section covers scalable persistent data structures. Firstly, we propose general principles of a
scalable persistent storage (Section 7.2.1). These principles are defined based on the target architecture
(Figure 1). Then we presents a survey of scalable DataBase Management Systems (DBMSs), and discuss
their technologies and suitability for the target scale (Section 7.2.2). Finally, we summarize the findings
(Section 7.2.3).

7.2.1 General Principles

Since the target architecture is loosely coupled, failures in such large-scale system are not an exception.
Therefore, we aim to define features and principles of a highly available and scalable database.

• Fragmenting data across distributed nodes with respect to the following aspects:

1. Decentralized model: Data is fragmented among nodes without any central coordination.
Decentralized approaches show a better throughput by spreading the loads over a large
number of servers and increases availability by removing a single point of failure.

2. Load balancing: Fragmenting data evenly among the nodes. A desirable load balancing
mechanism should take load balancing off the shoulders of developers.

3. Location transparency: In large scale systems placing fragments in the most suitable location
is very difficult to manage. Thus, the preferable method of fragment placement should be
carried out systematically and automatically.

4. Scalability: A node departure or arrival should only affect the node immediate neighbours
whereas other nodes remain unaffected.

• Replicating data across distributed nodes with respect to following aspects:

1. Decentralized model: Data is replicated among nodes without using a concept of a master.
A P2P model is desirable because each node is able to coordinate the replication.

2. Location transparency: The placement of replicas should be handled systematically and
automatically.



ICT-287510 (RELEASE) 18th July 2012 21

3. Asynchronous replication: Consistency is sacrificed to achieve more availability.

• Partition tolerance: System continues to operate despite loss of connection between some nodes.
The CAP theorem [HJK+07] states a database cannot simultaneously guarantee the consistency,
availability, and partition-tolerance. We anticipate the target architecture to be loosely coupled;
therefore, partition failures are highly expected. By putting stress on availability we must sacrifice
strong consistency to achieve partition-tolerance and availability.

7.2.2 Initial Evaluation

In this section we discuss the most popular data storage systems in Erlang community.

Mnesia is a DBMS written in Erlang for industrial telecommunications applications [AB12]. A
schema is a definition of all tables in a database. A Mnesia database can reside in RAM. In this case
stored information is not persistent and tables need to be created again after restarting the system.
A memory-only database which is kept in RAM doesn’t need schema. Mnesia data model consists of
tables of records and attributes of each record can store arbitrary Erlang terms.

Mnesia provides Atomicity, Consistency, Isolation and Durability (ACID) transaction which means
either all operations in a transaction are applied to all nodes successfully, or in case of a failure the
operations do not have any effect on the nodes. In addition Mnesia guarantees that transactions which
manipulate the same data records do not interfere with each other. To read and write from/to a table
through transaction Mnesia sets and releases locks automatically.

Fault-tolerance is provided in Mnesia by replicating tables on different Erlang nodes [AB12]. To
create a new table a programmer should specify the name of nodes, i.e. the placement of replicas should
be mentioned explicitly. This can be a very difficult to manage task for a programmer in a large-scale
architecture.

Listing 1: sample code which shows explicit placement of replicas

mnesia:create_table(student, [{disc_copies, [node1@mydomain, node2@mydomain,
node3@mydomain]},{type, set}, {attributes,[id,fname,lname,age]},{index,[fname]}]).

Generally, to read a record only one replica of that record is locked usually a local one, but to write
a record all replicas of that record are locked. Table replication brings two advantages [AB12]. First, in
terms of fault tolerance, the table is still available if one of the replicas fails. The second advantage is
an improvement in performance because all the nodes which have a table replica are able to read data
from that table without accessing the network. The replication can improve a performance during data
reading because network operations are considerably slower than local operations. However, replication
can become a disadvantage when frequent writing to the table is required. Since every write operation
must update all replicas it may be a time consuming task. To alleviate an overhead of transaction
processing Mnesia offers dirty operations that manipulate tables without transaction overhead. But in
this situation we lose atomicity and isolation properties of operations. Fortunately, in dirty operation
we have a certain level of consistency, i.e. each individual read and write operation on a single replica
is atomic.

Mnesia also has a limitation on the size of tables. The Mnesia design emphasises a memory-resident
database by offering ram copies and disc copies, because disc only copies tables are slow.
Thus, keeping big tables reduces the size of available memory. In addition, since Dets tables use 32 bit
integers for file offsets the largest possible Mnesia table is 2Gb.

To cope with large tables, Mnesia introduces a concept of table fragmentation. A large table can be
split into several smaller fragments. Mnesia uses a hash function to compute a hash value of a record



ICT-287510 (RELEASE) 18th July 2012 22

key. Then, the hash value is used to determine the name of the table fragment. In the fragmentation
the placement of fragments must be mentioned explicitly.

Listing 2: sample code which shows explicit placement of fragments

mnesia:change_table_frag(SampleTable, {add_frag, List_of_Nodes}).

In summary, there are some limitations in Mnesia for large-scale systems, such as:

• an explicit placement of replicas,

• an explicit placement of fragments,

• a limitation in the size of tables, and

• a lack of support for eventual consistency.

CouchDB (Cluster Of Unreliable Commodity Hardware) is a schema-free document-oriented database
written in Erlang [Len09]. Data in CouchDB is organised in a form of a document. Schema-less means
that each document can be made up of an arbitrary number of fields. A single CouchDB node employs
a B-tree storage engine that allows search, insertion, and deletion handled in logarithmic time. Instead
of traditional locking mechanisms for concurrent updates CouchDB uses Multi-Version Concurrency
Control (MVCC) to manage concurrent access to the database. MVCC makes it possible to run at full
speed all the time even when a large number of clients use the system concurrently. View creations
and aggregation reports are implemented by joining documents using a map/reduce technique.

A data fragmenting over nodes is handled by Lounge [ALS10]. Lounge is a proxy-based parti-
tioning/clustering framework for CouchDB. Lounge applies a hash function on the document’s ID to
identify a shard where the document is saved. A hash function is a consistent hash which balances
the storage loads evenly across the partitions. Lounge does not exist on all CouchDB nodes. In fact,
Lounge is a web proxy that distributes HTTP requests among CouchDB nodes. Thus, to remove single
points of failure we need to run multiple instances of the Lounge.

A CouchDBs replication system synchronizes all the copies of the same database by sending the last
changes to all the other replicas. Replication is a unidirectional process, i.e. the changed documents are
copied from one replica to the others but the reverse process is not automatic. The replicas placement
should be handled explicitly.

Listing 3: sample code which shows explicit placement of replicas

POST /_replicate HTTP/1.1
{"source":"http://localhost/database","target":"http://example.org/database", "

continuous":true}

In Listing 3 "continuous":truemeans that CouchDB will not stop the replication and automat-
ically send any new changes of the source to the target by listening to the CouchDBs changes API.
A conflict situation occurs when a document has different information on different replicas. CouchDB
does not attempt to merge the conflicting revision automatically and resolving the conflict should be
handled by the application. CouchDB has eventual consistency, i.e. document changes are periodically
copied between replicas. A synchronization between nodes within a cluster is possible by means of an
automatic conflict detection mechanism.

In summary, CouchDB has some limitations which could be a bottleneck for a large-scale systems,
such as:

• an explicit placement of replicas,
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• an explicit placement of fragments, and

• a multi-server model for coordinating fragmentation and replication.

Riak is a NoSQL, open source, distributed key/value data store primarily written in Erlang [Tec12].
Riak is highly scalable database suitable for large-scale distributed environments, such as a cloud. Riak
is fault-tolerant due to its master-less structure offering a no single point of failure design. Riak is
commercially proven and is being used by large companies and organisations such as Mozilla, Ask.com,
AOL, DotCloud , GitHub. In Riak data is organized into buckets, keys, and values. A key/value pair
is stored in a bucket, and values can be identified by their unique keys. Data fragmenting is handled by
means of a consistent hashing technique. The consistent hash distributes data over nodes dynamically
adapting as nodes join and leave the system. The fragment placement is implicit and a programmer
does not need to specify nodes explicitly inside the code.

Availability is provided by using a replication and a hand-off technique. By default each data bucket
is replicated to 3 different nodes. Number of replica, N , is a tunable parameter and can be set per each
bucket. Other tunable parameters are read quorum, R and write quorum, W . A quorum is a number
of replicas that must respond to a read or write request before it is considered successful. In a hand-
off technique when a node fails temporarily due to node failure or network partitioning neighbouring
nodes take over the failed node’s duties. When the failed node comes back up, Merkle tree is used to
determine records that need to be updated. Each node has its own Merkle tree for the hosted keys. The
Merkle trees reduce the data needed to be transferred to check inconsistencies among replicas. Riak
provides eventual consistency, i.e. an update is propagated to all replicas asynchronously. However,
under certain conditions, such as node failure or network partitions, updates may not reach to the all
replicas. Riak employs vector clocks to handle such inconsistencies by reconciling the older version and
the divergent version.

A default Riak backend storage is Bitcask. Although Bitcask provides a low latency, an easy backup,
a restore, and is robust in the face of crashes but it has one notable limitation – Bitcast keeps all keys
in RAM and thereby has some limitations as to how many values can be stored per node. For this
reason, Riak users apply other storage engines to store billions of records per node. LevelDB is a fast
key-value storage library written at Google, and has no Bitcask RAM limitations. LevelDB provides
an ordered mapping from keys to values whereas Bitcask is a hash table. LevelDB supports atomic
batch of updates. Batch of update may also be used to speed up large updates by placing them into the
same batch. There is one file system directory per each LevelDB database where all database content is
stored. A database may only be opened by one process at a time by acquiring a lock from the operating
system. Adjacent keys are located in the same block which improves the performance. A block is a unit
of transfer to and from persistent storage. Each block is individually compressed before being written
to persistent storage. It is possible to force checksum verification of all data that is read from the file
system. Eleveldb is an Erlang wrapper for LevelDB that is included in Riak, so there is no need to
separate installation. LevelDB’s read access can be slower in comparison with Bitcask because LevelDB
tables are organized into a sequence of levels. Each level stores approximately ten times as much data
as the level before it. For example if 10% of the database fits in memory, one seek is needed to reach
the last level. But if 1% fits in memory, LevelDB will need two seeks. So using Riak with LevelDB as
storage engine can provide a suitable data store for large data. Riak has the following features:

• an implicit placement of replicas,

• an implicit placement of fragments,

• Bitcask has limitations in size of tables but LevelDB has no such limitation,

• eventual consistency, and
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• no single point of failure.

We continue Riak discussion in Section 8.5.

Other distributed DBMSs The Apache Cassandra is a high scalable database written in Java
recommended for commodity hardware or cloud infrastructures [Fou12]. Cassandra is in use at Twitter,
Cisco, OpenX, Digg, CloudKick, and other companies that have large data sets. Cassandra offers an
automatic, master-less and asynchronous mechanism for replication. Cassandra has a decentralized
structure where all nodes in a cluster are identical. Thus, there are no single points of failure and
no network bottlenecks. Cassandra provides a ColumnFamily-based data model richer than typical
key/value systems. Since both Riak and Cassandra are inspired by Amazon’s Dynamo paper [HJK+07],
their methods for load-balancing, replication, and fragmentation are roughly the same. So, we shall
nor repeat the details here. Erlang applications employ the Thrift API to use Cassandra. Cassandra
has such futures as:

• an implicit placement of replicas,

• an implicit placement of fragments,

• a columnFamily-based data model,

• eventual consistency, and

• no single point of failure.

7.2.3 Conclusion

In the following paragraphs we are going to be taking a look at a brief summary of each evaluation and
finally conclude the suitability of each system for the target architecture.

Mnesia: A fragment placement should be carried out explicitly in the code. Mnesia is not scalable
due to lack of a mechanism to handle load balancing when a new node joins the system or when a node
goes down. Mnesia provides strong consistency.

CouchDB: Fragmentation and replication are performed by a multi-server model. The placement
of replicas and fragments should be carried out explicitly in the source code. CouchDB offers a good
level of availability through a dynamic load balancing and asynchronous replication.

Riak: A fragment placement and replicas are automatic. Riak has a completely decentralized
architecture and has no single point of failure. Riak offers availability through a dynamic load-balancing,
systematic and asynchronous replication. Riak provides a tunable consistency, and uses Bitcask as a
default backstore. Due to Bitcask memory limitations Riak community uses LevelDB storage to deal
with a large amount of data.

We conclude that scalable persistent storage for SD Erlang can be provided by a distributed DBMS
with fragmentation, replication and eventual consistency such as Riak or Cassandra.

8 Exemplars

In this section we consider the challenges to implement five exemplars in SD Erlang: Sim-Diasca
(Section 8.1), Orbit (Section 8.2), Mandelbrot set (Section 8.3), Moebius (Section 8.4), and Riak
(Section 8.5).
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8.1 Sim-Diasca

Sim-Diasca (SIMulation of DIscrete systems of All SCAles) is a distributed engine for large scale discrete
simulations implemented in Erlang. The engine is able to handle more than one million relatively
complex model instances using a hundred of cores. Currently the maximum number of Erlang nodes
that was used is 32 on 256 cores.

Sim-Diasca has its own process placement (load balancer) and performance tracker applications.
In the process placement application the decisions are made on the basis of round robin mechanism or
a hint if the last is specified. The placement hint is an Erlang term (e.g. atom) that allows to create
actors on a particular node. The hints are used to improve performance, e.g. frequently communicating
processes are placed on the same node to reduce their communication costs. The performance tracker
is used to monitor the system. In particular the performance tracker traces the following: 1) memory
consumptions on all nodes, 2) the number of Erlang processes and instances overall and on each node,
3) the total and per-class instance count. The performance tracker is recommended to run on a user
node to simplify the analysis in case the simulation crashes.

Scalable Sim-Diasca can be built on the basis of locality (Figure 5), i.e. the nodes are grouped in
s groups depending on how far the nodes are located from each other. Therefore, a scalable distributed
Erlang Sim-Diasca may require the following.

1. The s groups are anticipated to be relatively static, i.e. once created they most probably will stay
unchanged with occasional node joining and leaving due to the node or communication failures.

2. The s groups may be created on the basis of communication locality.

3. A programmer may need to introduce new s group types.

4. The number of s groups most probably will be much less than the number of nodes.

5. A semi-explicit placement will help to place frequent communicating processes close to each other.

6. Global s group list information may be needed to connect distantly located nodes.

7. Short lived connections may help to prevent node attempts to interconnect communicating nodes
in a fully connected network.

8.2 Orbit

Orbit aims to calculate subset Q1 from set Q that is a set of natural numbers from 0 to N < ∞. The
program has one supervisor process, a distributed hash table, and initially one working process. The
hash table is initially empty and is distributed between all participating nodes. The supervisor process
is responsible for spawning the first worker process and for the program termination after all possible
numbers are explored.

The Orbit algorithm is as follows. A supervisor picks a random number from 0 to N and spawns
the first working process. The target node where the process is spawned to is defined by the hash of
the value. The worker process arrives to the target node and checks whether the value is already in
the table. If the value is in the table the process returns to the supervisor, provides statistics, and
terminates. Otherwise, the value is added to the table, and the worker process using a predefined
function generates a new list of values. Then for each value a new worker process is spawned and the
procedure is repeated.

The target node of a new worker process is predefined by its value. Therefore, the nodes can be
grouped in s groups in a hierarchical manner according to the part of the distributed table they store.
Figure 5 presents an example of such grouping. To sent a process from node A to node N node A may
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establish a direct connection with node N using global s group list information and information about
node N from node F . A scalable distributed Erlang Orbit may require the following.

1. The s groups may be created on the basis of hash table partition.

2. The s groups are anticipated to be relatively static.

3. The number of s groups probably will be much less than the number of nodes.

4. Global s group list information may be required to locate nodes and establish direct connections
with them.

5. Short lived connections may help to prevent node attempts to interconnect communicating nodes
in a fully connected network.

8.3 Mandelbrot Set

The exemplar presents escape time algorithm – the simplest representation of the Mandelbrot set. In
the current implementation a user initially defines the size of an image (in pixels) and the number of
processes that perform the same computations. Thus, the program can be scaled in two dimensions: 1)
scaling the size of images; 2) scaling the number of processes that perform the computation. Assume
that we start the program on node A. Then a process may be spawned to a node in s group G1, e.g. node
B. If a process does not escape before a certain number of iterations then it can be re-spawned to a
node in either s group G2 or G3 (after arriving to the target node the computation will start from the
beginning). S groups G1 and G2 may be in the same cloud and can be grouped depending on the types
of instances.

We may want to create an s group on the basis of locality, so we include nodes we trust but these
nodes may be nearby (the same LAN) and far away (in a cloud). Assume that we have one node (master
node) that generates processes (work). After generation the processes are immediately spawned to the
nearby nodes (levels 1-3) to unload the master node. On these nodes processes are executed for some
predefined time and if the processes do not terminate during that time they are sent to remote nodes
(levels 4-6). When the computation is finished the processes return results to the master node. A
scalable distributed Erlang Mandelbrot set may require the following.

1. The s groups are anticipated to be relatively static.

2. The s groups may be created on the basis of communication locality.

3. The number of s groups probably will be much less than the number of nodes.

4. A semi-explicit placement will help to place frequent communicating processes close to each other.

8.4 Moebius

Moebius is a continuous integration system recently developed by Erlang Solutions. Moebius aims to
provide users an automated access to various cloud providers such as Amazon EC2. The system has
two types of nodes: master node and moebius agents. The master node collects global information and
makes decisions to start and stop nodes. The moebius agents are located on the utilised nodes and
periodically send state information to the master node. Currently, moebius agents are only connected
to the master node via HTTP but in the future there are plans to move Moebius to SD Erlang and
build a hierarchical master structure.
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A top level Moebius algorithm is as follows. A user will be asked to indicate the requirements,
e.g. hardware configuration, software configuration, and a description on how the initial master node
should start the remaining nodes in the cloud (Figure 6). Thus, a hierarchical organization of nodes
can be easily set from top to bottom. Additional s groups from nodes of different levels can also be
formed if needed. A scalable distributed Erlang Moebius may require the following.

1. The s groups may be grouped on the basis of different factor such as communication locality,
security, and availability of a particular hardware or software. Therefore, custom s groups types
are required.

2. Nodes and s groups will dynamically appear and disappear depending on the user current re-
quirements.

3. Moebius master nodes most probably will be organised in a hierarchical manner, so nodes will not
need to directly communicate with each other and global s group list information is not required.

4. The number of s groups most probably will be much less than the number of nodes.

8.5 Riak

Riak is an open-source distributed database written in Erlang and C with a little JavaScript. Riak is
greatly influenced by the CAP (i.e. Consistency, Availability and Partition) Theorem of E. Brewer [FB99]
and Dynamo Storage system [HJK+07]. The system is focused on Availability and Partition, and has
eventual Consistency. Riak supports multiple back ends via an API that can be ’plugged in‘ as needed.
Currently, Riak supports the following back ends: Bitcask, Dets, ETS, Erlang balanced trees (gb trees),
writing directly to the file system, and Innostore [Tec12]. Bitcask is the default Riak backend. Bitcask
is a local key/value store that serves as low latency, high throughput storage back end [Tec12].

To ensure correct data replication Riak recommends to have one node per a physical server (host)
in a cluster. Thus, the number of hosts coincides with the number of nodes. A Riak cluster has a 160-
bit integer space that is divided into equal sizes, i.e. each node is responsible for 1

Num of physical nodes

of a ring. The number of virtual nodes (vnodes) on a node is determined as Num of partitions
Num of nodes . Data

inside Riak are organised by means of buckets and keys that are also called Riak objects [Tec12]. To
disseminate bucket information the system uses a gossip protocol [JHB01]. All nodes are equal and
each of them is fully capable to serve any client request [Tec12]. Riak uses consistent hashing to evenly
distribute data across a cluster; this allows a node to find the nodes that store required information.

Riak controls the number of data replicas N by using ’hinted handoff’ technique, i.e. neighbours
of a failed node in a cluster perform the work. A client can set W value that is the number of nodes
that return success message before update is considered to be complete. To detect causal ordering and
conflicts all updates to an object are tracked by a vector clock mechanism [Fid88] based on Lamport
timestamp algorithm [Lam84]. In Lamport timestamp algorithm when node B receives a message from
node A it increases its counter, CB, by one in case CB > CA, otherwise CB = CA + 1. However, Ci

bery quickly becomes very large, that therefore [Fid88] proposed to use time stamps instead, i.e. when
node B receives a message from node A it increases its timer, TB + ∆t, in case CB > CA, otherwise
CB = CA +∆t. The system has two types of conflict resolving: last modified and human-assisted (or
automated) action [Tec12].

The fastest way to fetch data out of Riak is by using data bucket and key values. Another way to
retrieve data is my means of link walking. Riak does not use schema, indexes are set on an object-
by-object basis. Indexing is real time and atomic, i.e. indexes are defined at the time when an object
is written. All indexing occurs on the partition where the object lives; thus, objects and indexes stay
synchronised [Tec12]. Riak supports horizontal scalability (i.e. adding more nodes to the system), and
vertical scalability (i.e. adding resources to a single node). The horizontal scalability is supported by
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means of automatic recalculation of partition of each node when nodes are added and removed. Vertical
scalability is supported by means of back end storage engine Bitcask [SS10].

Currently successful Riak applications utilise up to a hundred nodes, but there is a requirement from
customers to increase the number of nodes beyond a hundred of nodes. From a private communication
with Justin Sheehy a CTO at Basho Technologies we found that this is not feasible due to Distributed
Erlang transitive connections. One possible way of scaling Riak with SD Erlang is as follows. Each node
is a leader of an s group that includes nodes from the preference list. When the leader node terminates or
becomes off-line a number of options are possible to handle the issue. The group may either terminate,
or temporarily coincide with the s group of the neighbour node, or the leader responsibilities can be
handled to another node of the s group. A scalable distributed Erlang Riak may require the following.

1. The number of s groups will coincide or exceed the number of nodes, i.e. Riak nodes cannot
maintain global s group list information.

2. The s groups will constantly appear, disappear, and change leader nodes.

3. Riak nodes need to be able to send messages to other nodes that they do not have direct connec-
tions. This can be handled by Tapestry like overlay routing infrastructure [ZHS+04].

4. Riak will need short lived connections to avoid failures due to constant node attempts to maintain
all to all connections.

8.6 Summary

Table 6 provides a summary of the exemplar requirements for scalable implementations. Thus, s groups
may be static, i.e. once created nodes rarely leave and join their s groups or dynamic, i.e. nodes and
s groups are constantly created and deleted from the network. S groups may be formed on the basis of
locality (Sim-Diasca and Mandelbrot set), Hash table (Orbit), Preference list (Riak), or programmers’
and users’ preferences (Moebius). Some scalable exemplars also require custom s group types, global
s group list information, short lived connections, and semi-explicit placement. Such applications like
Riak may have the number of s groups compatible with the number of nodes.

No. Property Sim-Diasca Orbit Mandelbrot
set

Moebius Riak

s groups

1 Static/Dynamic Static Static Static Dynamic Dynamic

2 Grouping Locality Hash table Locality Multiple Preference list

3 Custom types Y N N Y N

4 Global s group list in-
formation

Y Y N N N

General

5 Number of nodes and
s groups

Ng << Nn Ng << Nn Ng << Nn Ng << Nn Ng >= Nn

6 Short lived connec-
tions

Y Y N N Y

7 Semi-explicit place-
ment

Y N Y N N

Table 6: Exemplar Summary
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9 Implications and Future

9.1 Conclusion

This deliverables presents the design of Scalable Distributed (SD) Erlang: a set of language-level
changes that aims to enable Distributed Erlang to scale for server applications on commodity hardware
with at most 105 cores. It outlines the anticipated server architectures and anticipated failures. The
core elements of the design are to provide scalable in-memory data structures, scalable persistent data
structures, and a scalable computation model. The scalable computation model has two main parts:
scaling networks of Erlang nodes and managing process placement on large numbers of nodes. To
tackle the first issue we have introduced s groups that have transitive connections with nodes of the
same s group and non-transitive connections with nodes of other s groups. To resolve the second issue
we have introduced semi-explicit placement and choose node/1 function. Unlike explicit placement
a programmer may spawn a process to a node from a range of nodes that satisfy predefined parameters,
such as s group, s group type, or communication distance. The next task in WP3 is to implement the
SD Erlang design.

9.2 VM & OTP Implications

1. ETS tables are implemented in the VM, and hence any scalability issues will be addressed in
WP2.

2. We may need the VM to provide interprocess messages. That is to provide secure (encrypt) data
transfer over a Wide Area Network (WAN), i.e. sending unencrypted messages within a cloud and
sending encrypted messages between clouds.

9.3 Later in the Project

Later in the project we may consider the following activities:

• Look at failure logs to see whether we can predict failures.

• Adapt Mnesia to make it scalable and partition tolerant.

• Look at developing reusable patterns expanding the connection and placement mechanisms out-
lined here.
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