
ICT-287510
RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D3.2 (WP3): Scalable SD Erlang Computation Model

Due date of deliverable: 31st July 2013
Actual submission date: 8th August 2013

Start date of project: 1st October 2011 Duration: 36 months

Lead contractor: The University of Glasgow Revision: 2.0

Purpose: To implement and validate a scalable computation model and a high-level process placement
control for Scalable Distributed (SD) Erlang.

Results: The main results of this deliverable are as follows.

� To improve the scalability of distributed Erlang we have split the global namespace and reduced
the number of connections following the design presented in deliverable D3.1. That is we group
Erlang nodes into s groups where each s group has its own namespace.

� We have implemented sixteen functions to support node grouping and name registration.

� To support semi-explicit placement we have added node attribute parameter and implemented
choose nodes/1 function. The function returns a list of nodes that satisfy given restrictions.

Conclusion: We have implemented and started the validation of a scalable computation model and a
high-level process placement control for SD Erlang.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination Level

PU Public >
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) 20th August 2013 1

Scalable SD Erlang Computation Model

Contents

1 Executive Summary 1

2 Introduction 1

3 S group Implementation Design 3
3.1 Why S groups? . 3
3.2 Overview . 3
3.3 S group Functions . 5
3.4 Registered Name Functions . 9

4 Semi-explicit Placement 11

5 Preliminary Validation 12

6 Implications and Future Work 15

1 Executive Summary

The deliverable presents implementation of s groups and semi-explicit placement of the Scalable Dis-
tributed (SD) Erlang introduced in D3.1 The Design of Scalable Distributed Erlang deliverable. The
implementation is done on the basis of Erlang/OTP R15B03. The source code can be found in
https://github.com/natalia-chechina/otp. The first version of D3.2 deliverable, i.e. an
implementation and validation of a scalable computation model, was delivered in month 18.

We start with a discussion of differences between distributed Erlang global groups and SD Erlang
s groups (Section 2). Then we discuss the implementation of s groups and the features of sixteen
functions that were modified and introduced in global and s group modules (Section 3). After that
we discuss semi-explicit placement, node attributes and choose node/1 function (Section 4). The
functions were unit tested, and their demonstration will be presented at the yearly review (Section 5).
Finally, we discuss future work (Section 6).

2 Introduction

The objectives of Task 3.2 are to “implement and validate a scalable computation model for Scalable
Distributed (SD) Erlang using a combination of layering, controlling connection locality, and high-level
process placement control”. The lead participant is the University of Glasgow.

SD Erlang is implemented as a small conservative extension of distributed Erlang [REL12]. In
distributed Erlang node connections and namespace are defined by both the node belonging to a
global group and by the node type, i.e. hidden or normal. A namespace is a set of names replicated on
a group of nodes and treated as global in that group. Thus, if a node is free, i.e. it does not belong to
a global group, the connections and namespace only depend on the node type. A free normal node has
transitive connections and common namespace with all other free normal nodes. A free hidden node
has non-transitive connections with all other nodes and every hidden node has its own namespace. A

ICT-287510 (RELEASE) 20th August 2013 2

No. Grouping Type of Connections Namespace

Distributed Erlang

1 No grouping All-to-all connections Common

2 Global groups Transitive connections within a global group, non-transitive connections
with other nodes

Partitioned

Scalable Distributed Erlang

3 No grouping All-to-all connections Common

4 S groups Transitive connections within an s group, non-transitive connections with
other nodes

Overlapping

Table 1: Types of Connections and Namespace

global group node can belong to only one global group and has transitive connections and common
namespace with nodes that belong to the same global group. The type of a global group node – normal
or hidden – only defines the types of connections with nodes outside its own global group. Thus,
a normal global group node forms non-transitive visible connections with other nodes, and a hidden
global group node forms non-transitive hidden connections with other nodes. A global group can also
be one of the following two types: normal or hidden. Global groups of both types may have normal and
hidden nodes; however, in a hidden global group all nodes act as hidden independently of the type they
were started with. For example, in Figure 1 nodes N1, N2, N3, N5, N7, N8 are normal, and nodes H4,
H6, H9 are hidden. Nodes N1, N2, N3 are in global group G1, nodes H4, N5, H6 are in global group G2,
and nodes N7, N8, H9 are free. The lines between the nodes represent different types of connections,
i.e. a solid line denotes a visible transitive connection, a wavy line denotes a non-transtitive visible
connection, and a dotted line denotes a non-transitive hidden connection.

The type of connection between two nodes is recorded in net kernel module when the connec-
tion is established. To view the types of connections of the connected nodes the following functions
are used: nodes() function returns a list of connected nodes with visible type of connection, and
nodes(hidden) returns a list of nodes with hidden type of connection.

The SD Erlang s groups are similar to the distributed Erlang hidden global groups in the follow-
ing: 1) each s group has its own namespace; 2) transitive connections are only with nodes of the same
s group. The differences with hidden global groups are in that 1) a node can belong to an unlim-
ited number of s groups, and 2) information about s groups and nodes is not globally collected and
shared [REL12, Section 6.1]. Table 1 provides a summary of types of connections and a division of the
namespaces in distributed Erlang and SD Erlang. In SD Erlang behaviour and functionality of free
nodes remains the same as in distributed Erlang.

Figure 1: Types of Connections between Different Types of Nodes in distributed Erlang

ICT-287510 (RELEASE) 20th August 2013 3

Partner Contributions to D3.2. The University of Kent contributed to the implementation of SD
Erlang. The Ericsson team contributed to the identifying of the main components in Erlang/OTP
responsible for connections and namespace in distributed Erlang. ESL and ICCS contributed to the
review of the implementation design. We had a series of teleconferences with Ericsson, University of
Kent, and Erlang Solutions, and a week visit to the University of Kent. There were two multi-partner
face-to-face meetings in Denmark and Greece.

We discuss the implementation design of s groups in Section 3 and semi-explicit placement in
Section 4. The validation of the functions is discussed in Section 5. The conclusion and future work
are covered in Section 6.

3 S group Implementation Design

3.1 Why S groups?

The main reason we have introduced s groups is to reduce the number of connections a node has, and
reduce the size of name spaces, i.e. replication of information to a smaller number of nodes [REL12].
Before introducing grouping nodes in s groups we had considered the following approaches: distributed
hash tables, hierarchical structure, partitioning, and overlapping. When deciding on the approach we
followed the following principles.

� Present the distributed Erlang philosophy, i.e. any node can be directly connected to any other
node.

� Adding and removing nodes from groups should be dynamic.

� Nodes should be able to belong to multiple groups.

� The mechanism should be simple.

Grouping nodes according to their hash values is a dynamic approach, but it would contradict the
Erlang philosophy that states that any node can be connected to any other node. It would also become
complicated for a node to belong to multiple groups, and node leaving an s group would mean changing
of its hash value. A hierarchical approach also prevents a node to be a member of different groups and
to have direct connections between the nodes. Therefore, we decided to implement overlapping s groups
as they seem to satisfy the Erlang philosophy and our goals the best. Furthermore, using overlapping
s groups all the above structures can be implemented.

3.2 Overview

S groups are implemented on the basis of global groups of Erlang/OTP R15B03. Modifications are
made in the following files:

� lib/kernel/src/global.erl

� lib/kernel/src/global search.erl

� lib/kernel/src/kernel.erl

� lib/kernel/src/net kernel.erl

In SD Erlang connections and data replication between nodes that belong to the same s group
are handled on all nodes by the following two processes: global name server and s group. The
processes are started at the node launch. S group process is started from s group module and is

ICT-287510 (RELEASE) 20th August 2013 4

No. ETS Table Distributed Erlang SD Erlang

1 global names {Name, Pid, Method, RPid, Ref} {{SGroupName, Name}, Pid, Method, RPid, Ref}
2 global names ext {Name, Pid, RegNode} {{SGroupName, Name}, Pid, RegNode}
3 global pid names {Pid, Name} {Pid, {SGroupName, Name}}

{Ref, Name} {Ref, {SGroupName, Name}}

Table 2: Modifications in ETS Tables of global name server Process

responsible for keeping information about s groups the node belongs to. Global name server process
is started from global module, and is responsible for keeping connections and common data on the
nodes identified by s group process.

Global name server process keeps s group registered names in a number of ETS tables, e.g.
global names, global pid names. In SD Erlang the types of all global name server ETS
tables are the same as in distributed Erlang but entry Name was replaced by {Name, SGroupName}
in the following ETS tables: global names, global names ext, global pid names (Table 2).
This was done to support overlapping of s group namespaces. Thus, a name registered on a free node
has SGroupName= ′undefined′. On free nodes the functionality of functions from module global
was preserved.

In SD Erlang an s group has the following parameters: a name, a list of nodes, and a list of
registered names [REL12]. A node can be a member of a number of s groups. When s groups are started
statically, i.e. an s group configuration is defined at the launch of a node, the s group configuration
can be either common or individual. For example, we start eight nodes grouped in three s groups as
it is shown in Figure 2. Nodes N1, N3, N5, N6 are normal, and nodes H2, H4, H7, H8 are hidden. A
common configuration contains information about all s groups (Listing 1), and individual configuration
contains information about some s groups, e.g. s groups the current node belongs to (Listing 2). In
both cases nodes run and communicate successfully. An advantage of nodes having information about
the configuration of other s groups is that it is possible to send messages to names and find names of

Figure 2: Connections and Namespace between Overlapping S group Nodes

ICT-287510 (RELEASE) 20th August 2013 5

processes which are not registered in the own s groups. A drawback is that information about remote
s groups is currently static and is not renewed in case a remote s group is deleted or its members are
changed.

Listing 1: Common S group Configuration – commonconf.config

[{kernel,
[{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,

’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’]},
{group2, normal, [’node3@glasgow.ac.uk’, ’node5@glasgow.ac.uk’,

’node6@glasgow.ac.uk’]},
{group3, normal, [’node4@glasgow.ac.uk’, ’node7@glasgow.ac.uk’,

’node8@glasgow.ac.uk’]}]}]}].

Listing 2: Individual S group Configuration for Node H4 – individconf.config

[{kernel,
[{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,

’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’]},
{group3, normal, [’node4@glasgow.ac.uk’, ’node7@glasgow.ac.uk’,

’node8@glasgow.ac.uk’]}]}]}].

Static s groups are started at the launch of the nodes using flag ’-config’, e.g.
erl -name node1@glasgow.ac.uk -config groupconf
where groupconf is a .config file either from Listing 1 or 2.

A summary of the functions we discuss in Sections 3.3 and 3.4 is presented in Table 3.

3.3 S group Functions

In this section we discuss s group functions that include functions related to grouping Erlang nodes into
s groups, such as creating a new s group, deleting an s group, adding nodes to an s group, removing
nodes from an s group, listing own and known s groups, synchronisation of nodes, and providing node
information. The data types of arguments in the functions are as follows [Eri13]: Name::term(),

Pid::pid(), Node::node(), SGroupName::group name(), Reason::term(), Msg::term().

Creating an S group. Function s group:new s group/2 is used to create new s groups dynam-
ically (Listing 3). The function creates a new s group on the initiating node and then adds remaining
nodes. In case the initiating node either is not included in the list of s group nodes or is already a
member of the defined s group the function fails and a corresponding error is returned.

Listing 3: New S Group

s_group:new_s_group(SGroupName, [Node]) -> {SGroupName, [Node]} | {’error’, Reason}

When a node becomes a member of an s group the node keeps its existing connections and the
global group keeps its registered names. For example, there are four interconnected free normal nodes
N1, N2, N3, and N4 (Figure 3(a)). Globally registered process P1 with name M1 is on node N1.
After becoming members of s group G1 nodes N1 and N2 unregister name M1 (Figure 3(b)), but the
remaining free nodes N3 and N4 keep the name and share the connection to node N2 with other free

ICT-287510 (RELEASE) 20th August 2013 6

global: s group:

S group Functions

new s group(SGroupName, [Node])
Creates a new s group

delete s group(SGroupName)
Deletes an s group

add nodes(SGroupName, [Node])
Adds nodes to an s group.

remove nodes(SGroupName, [Node])
Removes nodes from an s group.

s groups()
Returns a list of all s groups known to the node

own s groups()
Returns a list of s group tuples of the s groups the
node belongs to

own nodes()
Returns a list of nodes the node shares namespaces
with
own nodes(SGroupName)
Returns a list of nodes from the given s group

sync() sync()
Synchronises connected free normal nodes Synchronises s group nodes

info() info()
Returns global state information Returns s group state information

Registered Name Functions

register name(Name, Pid) register name(SGroupName, Name, Pid)
Registers a name on the connected free normal nodes Registers a name in the given s group

re register name(Name, Pid) re register name(SGroupName, Name, Pid)
Re-registers a name on the connected free normal
nodes

Re-registers a name in the given s group

unregister name(Name) unregister name(SGroupName, Name)
Unregisters a name on the connected free normal
nodes

Unregisters a name in the given s group

registered names() registered names(node, Node)
Returns a list of all registered names on the node Returns a list of all registered names on the given

node
registered names(s group, SGroupName)
Returns a list of registered names in the given s group

whereis name(Name) whereis name(SGroupName, Name)
Returns the pid of a name registered on a free node Returns the pid of a name registered in the given

s group
whereis name(Node, SGroupName, Name)
Returns the pid of a name registered in the given
s group. The name is searched on the given node

send(Name, Msg) send(SGroupName, Name, Msg)
Sends a message to a name registered on a free node Sends a message to a name registered in the given

s group
send(Node, SGroupName, Name, Msg)
Sends a message to a name registered in the given
s group. The name is searched on the given node

Table 3: Summary of the New and Modified Functions from Sections 3.3 and 3.4

nodes until process P1 is registered and alive. Thus, new free normal node N5 after connecting to nodes
N3 and N4 and getting globally registered names is also connected to node N1 (Figure 3(c)). However,
this connection to node N1 is not transitive, i.e. node N1 does not share its connection to node N2
with node N5. If a node has no globally registered processes then after it becomes a member of an
s group free nodes do not share a connection to it with new free nodes, e.g. node N2 has no globally

ICT-287510 (RELEASE) 20th August 2013 7

(a) Free Normal Nodes (b) Adding an S group (c) Adding a Free Normal Node

Figure 3: Connections when Creating a New S group

registered processes (Figure 3(b)), therefore, free nodes N3 and N4 do not share the connection to
node N2 with new free node N5 (Figure 3(c)).

Deleting an S group. Function s group:delete s group/1 is used to dynamically delete an
existing s group (Listing 4). The function is similar to s group:remove nodes/2 function when all
nodes are removed from the s group. A node can only delete s groups it is a member of.

Listing 4: Deleting an S group

s_group:delete_s_group(SGroupName) -> ’ok’

Adding Nodes to an S group. Function s group:add nodes/2 is used to dynamically add nodes
to an existing s group (Listing 5). In case the current node does not belong to the given s group an
error is returned. The function is similar to s group:new s group/2 function.

Listing 5: Adding Nodes to an S group

s_group:add_nodes(SGroupName, [Node]) -> {SGroupName, [Node]} | {’error’, Reason}

Removing Nodes from an S group. Function s group:remove nodes/2 is used to dynamically
remove nodes from an existing s group (Listing 6). The initiating node should be a member of the
given s group, and a node cannot remove itself from an s group.

Listing 6: Removing Nodes from an S group

s_group:remove_nodes(SGroupName, [Node]) -> ’ok’

After leaving an s group the node unregisters the s group names. In case the node belongs to no
other s groups it becomes free. The free node type, i.e. hidden or normal, depends on the flag with
which the node was launched. If the node becomes a free hidden node then it just keeps its existing
connections. If the node becomes a free normal node then apart from keeping existing connections the
node synchronises with other free normal nodes with which it has connections and shares their name
space. In case the node has a process registered in the s group it left, other new s group members will
be also connected to the node while the process is registered and alive.

ICT-287510 (RELEASE) 20th August 2013 8

Listing S groups. Function s group:s groups/0 is used to list s groups the node is aware of
(Listing 7). When called on an s group node the function returns two lists: a list of s groups the
current node belongs to and a list of other known s groups. When the function is called on a free node
’undefined’ is returned.

Listing 7: List of Own and Known S Groups

s_group:s_groups() -> {[OwnSGroupName], [OtherSGroupName]} | ’undefined’

Listing Own S groups. Function s group:own s groups/0 is used to list the node’s own s groups
together with their nodes (Listing 8). On an s group node the function returns a list of SGroupTuples,
i.e. an s group name together with a list of nodes from that s group. On a free node the function
returns an empty list.

Listing 8: List of Own S groups with Nodes

s_group:own_s_groups() -> [{SGroupName, [Node]}]

Listing Own Nodes. Functions s group:own nodes/1,2 are used to list nodes with which the
current node shares namespaces (Listing 9). On an s group node function s group:own nodes()
returns nodes from all s groups the current node belongs to including the current node. On a free node
the function returns a list of nodes with which the current node shares a namespace.

Listing 9: List of Own Nodes

s_group:own_nodes() -> [Node]
s_group:own_nodes(SGroupName) -> [Node]

Function s group:own nodes(SGroupName) returns a list of nodes of s group SGroupName.
In case the current node does not belong to s group SGroupName an empty list is returned. On a free
node the function also returns an empty list.

Synchronisation. To synchronise nodes and update name spaces global:sync/0 and s group:
sync/0 functions are used (Listing 10). On a free node function global:sync() synchronises the
node with all other known free nodes, and on an s group node the function returns an error. On an
s group node function s group:sync() synchronises the node with all s group nodes the current node
belongs to, and on a free node no synchronisation occurs.

Listing 10: List of Own S groups with Nodes

global:sync() -> ’ok’ | {’error’, Reason}
s_group:sync() -> ’ok’ | {’error’, Reason}

Node Information. Functions global:info/0 and s group:info/0 provide node state infor-
mation. The functions work on both s group and free nodes.

ICT-287510 (RELEASE) 20th August 2013 9

3.4 Registered Name Functions

In this section we discuss registered name functions that include functions related to manipulating
registered names, such as name registration, re-registration, and unregistration, listing registered names,
search for registered names, and sending messages to names.

Name Registration. A name can be registered using register name functions presented in List-
ing 11. On free nodes names are registered using global:register name(Name, Pid), and on
s group nodes names are registered using s group:register name(SGroupName, Name, Pid).
A node can only register a name in a group the node belongs to. Therefore, when a free node attempts
to register a name using s group:register name(SGroupName, Name, Pid) the function re-
turns ’no’ because a free node belongs to no s group; similarly, when an s group attempts to register a
name using global:register name(Name, Pid) the function also returns ’no’.

Listing 11: Name Registration

global:register_name(Name, Pid) -> ’yes’ | ’no’
s_group:register_name(SGroupName, Name, Pid) -> ’yes’ | ’no’

When registering a name register name function first checks whether the node belongs to the
defined group. If so the function checks whether Name and Pid are already registered in that group.
In case the name and pid are new in that group the name is registered.

Name Re-registration. The purpose of re register name function is to register a pid using the
name that is already taken for a different pid in the defined group. The name re-registration works
similarly to the name registration. A name can be re-registered using re register name functions
presented in Listing 12. A node can only re-register a name in the group the node belongs to. Therefore,
when a free node attempts to re-register a name using s group:register name(SGroupName,
Name, Pid) the function returns ’no’ because a free node belongs to no s group; similarly, when an
s group attempts to re-register a name using global:register name(Name, Pid) the function
also returns ’no’.

Listing 12: Name Re-registration

global:re_register_name(Name, Pid) -> ’yes’ | ’no’
s_group:re_register_name(SGroupName, Name, Pid) -> ’yes’ | ’no’

The function first checks whether the node belongs to the given group. In case the response is
positive and the pid is not registered in the group the name is re-registered. In case the pid is already
registered under a different name the re-registration fails.

Name Unregistration. A name can be unregistered from a group using unregister name func-
tions presented in Listing 13.

Listing 13: Name Unregistration

global:unregister_name(Name) -> ’ok’
s_group:unregister_name(SGroupName, Name) -> ’ok’

The function first checks whether the node belongs to the given group. If so the name is unregistered
from the group. If the name is not registered in the group then ’ok’ is returned.

ICT-287510 (RELEASE) 20th August 2013 10

Listing Registered Names. A list of registered names can be accessed by calling registered names
functions presented in Listing 14. Function global:registered names() works on both s group
and free nodes, and returns all names registered on the node, i.e. on a free node the function returns a
list of globally registered names, and on an s group node the function returns a list of names from all
s groups the node belongs to. Function s group:registered names({node, Node}) also works
on both s group and free nodes. It works similarly to global:registered names() but returns all
registered names from the target node Node. In case the current node is not connected to node Node
a new connection is established.

Listing 14: List of Registered Names

global:registered_names() -> [Name]
s_group:registered_names({node, Node}) -> [{SGroupName, Name}]
s_group:registered_names({s_group, SGroupName}) -> [{SGroupName, Name}]

Function s group:registered names({s group, SGroupName}) returns a list of registered
names in s group SGroupName. The function returns registered names only from s groups that the
current node is aware of. In case the current node is not a member of s group SGroupName the node
establishes a connection with one of the nodes of s group SGroupName. In case the node is not aware
of s group SGroupName an empty list is returned.

Searching for a Name. A registered name can be found using whereis name functions pre-
sented in Listing 15. The name search is done sequentially, and as soon as the name is found its
pid is returned. The functions first check name Name in the node own registry. If the name is not
found locally then the name is searched in other known s groups by picking a node from the defined
s group SGroupName, then establishing a connection with that node, and then checking whether name
{SGroupName, Name} is registered on that node.

Listing 15: Search of a Registered Name

global:whereis_name(Name) -> Pid | ’undefined’
s_group:whereis_name(SGroupName, Name) -> Pid | ’undefined’
s_group:whereis_name(Node, SGroupName, Name) -> Pid | ’undefined’

Function global:whereis name(Name) returns a pid on a free node in case the name is found,
otherwise returns ’undefined’. Function s group:whereis name(SGroupName, Name) returns a
pid on an s group node if the name is registered in the given SGroupName and the node is aware of
that s group; on a free node the function returns ’undefined’.

Function s group:whereis name(Node, SGroupName, Name) works on both s group and
free nodes and searches only {SGroupName, Name} registered on that node. In case the target
node is free SGroupName should be ’undefined’. If initiating node N1 and target node N2 are not
connected, then the connection is established. In case the process actually resides on node N3 no
connection between nodes N1 and N3 is established.

Sending a Message. A message can be sent to a registered name using send functions presented
in Listing 16. From a free node a message can be sent to name Name using global:send(Name,
Msg). From an s group node that has information about s group SGroupName a message can be
sent to any registered Name in that s group using s group:send(SGroupName, Name, Msg). To
send a message to {SGroupName,Name} registered on node Node function s group:send(Node,
SGroupName, Name, Msg) is used. In case node Node is free a message to Name registered on that

ICT-287510 (RELEASE) 20th August 2013 11

(a) Before (b) After

Figure 4: Connections when Sending a Message

node should be sent for an undefined s group, i.e. s group:send(Node, ’undefined’, Name,
Msg).

Listing 16: Sending Messages

global:send(Name, Msg) -> Pid
s_group:send(SGroupName, Name, Msg) -> Pid | {’badarg’, Reason}
s_group:send(Node, SGroupName, Name, Msg) -> Pid | {’badarg’, Reason}

When sending a message to an s group or a node from a remote node a number of connections can
be established. For example, we have two s groups: {G1, [N1, N2]} and {G2, [N3, N4]} (Figure 4(a)).
Assume that we send a message from node N3 to name {Name,G1} on node N2, i.e.
s group:send(N2, G1, Name, Msg).
If Name registered in s group G1 actually resides on node N1 then node N3 also establishes a connec-
tion with node N1 (Figure 4(b)). Thus, when sending a message to a name on a node or in a remote
s group the initial node establishes a connection with both the defined node and with the node where
the process actually resides.

The difference between functions s group:send/3 and s group:send/4 is in the node that
should maintain information about the target s group. In case of s group:send/3 this is the initiating
node, and in case of s group:send/4 this is the target node.

4 Semi-explicit Placement

We implement semi-explicit placement with function choose nodes/1 presented in Listing 17. The
function returns a list of nodes that satisfy all given criteria, i.e. intersection. In case no node satisfies
the criteria the function returns an empty list. The initial parameters include s groups and attributes.

Currently, only nodes from s groups the initiating node belongs to are considered, i.e. when a
parameter is {s group, SGroupName} in case the initiating node belongs to s group SGroupName
the function returns a list of the s group nodes, otherwise an empty list is returned. When the parameter
is {attribute, AttributeName} the initiating node collects attributes from all connected nodes,
then returns a list of nodes that contain the given attribute.

Attributes are a set of individual node characteristics. Attributes may contain information about
hardware and software specification, or a particular node responsibility. We have implemented at-
tributes by adding a corresponding parameter to a node global state. At the node launch the list

ICT-287510 (RELEASE) 20th August 2013 12

of attributes is empty. To manipulate node attributes we have implemented the following functions:
adding, deleting, and viewing attributes.

Listing 17: Selecting Nodes using Parameters

s_group:choose_nodes([Parameter]) -> [Node]
where

Parameter = {s_group, SGroupName} | {attribute, AttributeName}
SGroupName = group_name()
AttributeName = term()

Adding attributes. Attributes can be added using functions presented in Listing 18. Function
global:add attribute/1 adds a list of attributes to the own node, and function s group:add
attribute/2 adds a list of attributes to a set of nodes.

Listing 18: Adding Attributes

global:add_attribute([AttributeName]) -> ’ok’ | {error, Reason}
s_group:add_attribute([Node], [AttributeName]) -> ’ok’ | {error, Reason}

Removing attributes. To remove attributes functions presented Listing 19 are used. Function
global:remove attribute/1 removes attributes from the own node, and function s group:remove
attribute/2 removes attributes from a list of nodes.

Listing 19: Removing Attributes

global:remove_attribute([AttributeName]) -> ’ok’
s_group:remove_attribute([Node], [AttributeName]) -> ’ok’

Listing attributes. To view own node attributes function global:registered attributes()
is used (Listing 20).

Listing 20: Listing Attributes

global:registered_attributes() -> [AttributeName]

5 Preliminary Validation

The functions have been unit tested. The node state, connections, and name spaces were analysed by
combining the following parameters: static & dynamic s groups, partitioned & overlapping s groups,
common & individual s group configuration on nodes. Individual function properties, such ‘a node
can register a name only in an s group the node belongs to’, discussed in [REL12] were also tested.
Table 4 provides a list of types of nodes we considered in the unit tests for the functions discussed in
Sections 3.3 and 3.4. We also use a feedback from the SD Erlang semantics that we currently work on
to modify and improve the functions.

We work on demonstrators to investigate performance benefits of SD Erlang compared to distributed
Erlang. In the preliminary performance analysis we use DEbench as a benchmarking tool to measure

ICT-287510 (RELEASE) 20th August 2013 13

Functions Types of Nodes

all Free or s group nodes

1. Free node

2. S group node

(a) Belongs to a single s group

(b) Belongs to multiple s groups

Normal or hidden nodes

1. Normal node

2. Hidden node

new s group/2
add nodes/2

Connected or not connected to other nodes

1. Connected to other nodes

(a) Shares a name space with the nodes

i. After joining the new s group continues to share a namespace with the
nodes

ii. After joining the new s group does not share a namespace with the nodes

(b) Does not share a name space with the nodes

2. Not connected to other nodes

delete s group/1
remove nodes/2

Becomes free or remains an s group node after leaving an s group

1. Becomes a free node

(a) Connections with other free nodes

i. Connected to free nodes

ii. Not connected to free nodes

(b) Nodes from the same s group

i. No other nodes become free

ii. Other nodes also become free

2. Remains an s group node

Table 4: Types of Nodes Considered in the Unit Tests

the throughput and the latency of distributed Erlang commands and SD Erlang commands on a cluster.
DEbench is a simplified version of open source Basho Bench benchmarking tool [REL13]. Basho Bench
was created to conduct performance and stress tests, and to produce performance graphs [Bas13]. All
nodes participating in the experiments run their own copy of DEbench. An example of conducted
experiments using DEbench is presented below.

In the experiment we measure throughput and latency of the following P2P and global commands.

� P2P commands: spawn and RPC.

� Global commands: registration, unregistration, and search of global names.

The rate with which the commands are called we define in a configuration file, e.g. one global
command to a hundred of P2P commands. Each node randomly selects a node and a command from
the configuration file and runs that command on the selected node. The experiment is run on 20 nodes
for 5 minutes. In SD Erlang we partition the nodes in 5 s groups, and all s groups have 4 nodes.
Thus, when registering a name in the experiments with distribute Erlang the names are replicated on

ICT-287510 (RELEASE) 20th August 2013 14

(a) Distributed Erlang

(b) SD Erlang

Figure 5: Throughput of 20 Nodes in DEbench Experiments

ICT-287510 (RELEASE) 20th August 2013 15

20 nodes, and in the experiments with SD Erlang the names are replicated on 4 nodes. In commands
spawn and RPC the size of an argument is 1000 bytes, and the called function takes 200µs.

Figures 5(a) and 5(b) show the throughput of a 20-node Elang cluster in experiments using dis-
tributed Erlang and SD Erlang respectively. The experiments show that the throughput in SD Erlang
experiments is larger in comparison with distributed Erlang experiments, i.e. 500,000 operations/sec
vs. 200,000 operations/sec; whereas the latency of global operations in SD Erlang experiments is smaller
that in the distributed Erlang experiments, i.e. 3,000µs vs. 15,000µs. Therefore, in comparison with
distributed Erlang SD Erlang reduces the latency of global operations and increases the throughput.

In the next year we plan to use s groups in the WP6 case studies.

6 Implications and Future Work

The deliverable presents the implementation of SD Erlang computation model and semi-explicit place-
ment. We have discussed the main aspects of s group implementation and covered functionality of
the following sixteen functions from s group and global modules: creating and deleting an s group,
adding and removing nodes from an s group, listing own and known s groups, synchronisation and
monitoring of nodes, providing node information, name registration, re-registration, and unregistra-
tion, listing registered names, search of registered names, and sending messages. For semi-explicit
placement we have implemented choose nodes/1 function and node attributes together with five
additional function to manipulate those attributes. All functions were unit tested.

To guarantee the uniqueness of s group names we plan to introduce s group leader nodes in D3.3
Scalable SD Erlang Reliability model deliverable, and hence we no longer need to maintain global
updates of s group information [REL12, p.11,13].

We plan to build the following on the s group implementation presented here.

1. Reliability Model is scheduled in deliverable D3.3. It includes mechanisms to ensure uniqueness
of s group names when no central information about s groups is collected. One of the direction
proposed in D3.1 is introducing s group leader nodes. The reliability model also includes restarting
nodes in their s groups.

2. Semi-explicit Placement. We plan to add more parameters to choose node/1 function as dis-
cussed in D3.1 The Design of Scalable Distributed Erlang deliverable. Currently, we consider
adding node’s load and communication distance parameters, i.e. collecting load information from
connected nodes to place processes on the least loaded nodes, and using communication distances
to decide how far we want to spawn a process from the initiating node. We may also consider
introducing a scalable scheme to collect state information from remote s groups. This will enable
a node to consider placing processes not only on the nodes from its own s group but also on nodes
from remote s groups.

3. SD Erlang Semantics. Together with the Kent team of the RELEASE project we work on the
semantics of the basic SD Erlang functions, such as register name/3 and new s group/2.

ICT-287510 (RELEASE) 20th August 2013 16

Change Log

Version Date Comments
0.1 15/3/2013 First Version Submitted to Internal Reviewers
0.2 29/3/2013 Revised version based on comments from T. Hoffmann and R. Aloi sub-

mitted to the Commission Services
1.0 10/4/2013 Final version submitted to the Commission Services
1.1 4/7/2013 Version Submitted to Internal Reviewers
1.2 8/8/2013 Revised version based on comments from E. Fernandez submitted to the

Commission Services
2.0 20/8/2013 Final version submitted to the Commission Services

References

[Bas13] Basho Technologies. Basho Bench, 2013. http://docs.basho.com/riak/latest/ops/building/
benchmarking/.

[Eri13] Ericsson AB. Types and Function Specifications, 2013. http://www.erlang.org/doc/reference
manual/typespec.html.

[REL12] RELEASE Project. Deliverable D3.1: Scalable Reliable SD Erlang Design, June 2012.

[REL13] RELEASE Project. DEbench, 2013. https://github.com/release-project/RELEASE/ Re-
search/Benchmarks/DEbench.

