
ICT-287510
RELEASE

A High-Level Paradigm for Reliable Large-Scale Server Software
A Specific Targeted Research Project (STReP)

D3.3 (WP3): Scalable SD Erlang Reliability Model

Due date of deliverable: 30th September 2013
Actual submission date: 17th October 2013

Start date of project: 1st October 2011 Duration: 36 months

Lead contractor: The University of Glasgow Revision: 1.0

Purpose: Implement and validate a scalable reliability model for SD Erlang.

Results: The main results of this deliverable are as follows.

� We have implemented a node recovery mechanisms for SD Erlang s groups.

� We have minimised the probability s groups with the same name occurring, and ensured correct
node behaviour in case duplicate names occur.

� We have provided an s group operational semantics together with a QuickCheck correctness check
of the s group module functions.

Conclusion: We have implemented a node recovery mechanism, and both specified and validated
correctness of s group SD Erlang functions.

Project funded under the European Community Framework 7 Programme (2011-14)
Dissemination Level

PU Public >
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential only for members of the consortium (including the Commission Services)

ICT-287510 (RELEASE) 28th October 2013 1

Scalable SD Erlang Reliability Model

Contents

1 Executive Summary 1

2 Introduction 2

3 Restarting a Failed Node 2
3.1 Recovering S group State . 2
3.2 Exemplars . 3
3.3 Implemented Approach . 4

4 S groups with the Same Name 5
4.1 Joining an S group at Launch . 6
4.2 Joining an S group Dynamically . 8
4.3 Summary. 9

5 S group Operational Semantics 9
5.1 SD Erlang State . 9
5.2 Transitions . 10

5.2.1 SD Erlang Functions . 11
5.2.2 Auxiliary Functions . 15

6 Validation of S group Semantics and Implementation 19
6.1 Property-based Testing and QuickCheck . 19
6.2 Validation of SD Erlang . 20

7 Implications and Future Work 22

1 Executive Summary

This deliverable presents the work we have conducted to support SD Erlang reliability and to formally
specify the semantics of s groups. We have considered the following aspects of SD Erlang reliability:
node recovery after failures and s group name uniqueness.

The first aspect is restarting nodes in their s groups after failures (Section 3). We have considered a
number of approaches to implement node restart, and have implemented one of them. The mechanism
is optional, and records s group state information for nodes which are started with the -rsconfig flag.

The second aspect considers s groups with the same name (Section 4). In SD Erlang we do not
guarantee s group name uniqueness; however, we guarantee a high probability of s group name unique-
ness when s groups are started dynamically – for that we have modified function s group:new s group.
When s groups are started at launch the configuration file is checked to minimise occurrence of s groups
with the same name. We have also ensured correct behaviour of s groups and nodes in case duplicate
s group names occur.

We introduce an operational semantics for SD Erlang s groups that defines an abstract state and
presents transition of fifteen SD Erlang functions (Section 5). We have conducted a correctness check
of the implemented functions using QuickCheck [AHJW06] testing tool (Section 6).

ICT-287510 (RELEASE) 28th October 2013 2

The reliable SD Erlang s groups are open source and can be found in Github https://github.com/

release-project/otp/tree/dev.

2 Introduction

The objectives of Task 3.3 are to “implement and validate a scalable reliability model for SD Erlang
by minimising supervision interconnections”. The lead participant is the University of Glasgow.

SD Erlang reliability includes a wide spectrum of issues, such as node recovery after failures, cor-
rectness of Erlang node behaviour in s groups, and correctness of implemented functions. We start with
a discussion on node recovery after failures in Section 3. Here, we cover a wide range of possible node
recovering mechanisms, and implement one of them in SD Erlang. Then we discuss s groups with the
same name in Section 4. We started checking the correctness of the functions in deliverable D3.2: Scal-
able SD Erlang Computation Model by conducting an extensive unit testing [REL13a]. In the current
deliverable we introduce SD Erlang semantics. We describe fifteen SD Erlang functions in mathemat-
ical terms using state transition semantics in Section 5. Then we compare results of mathematical
calculations and of the real implementation using QuickCheck [AHJW06] testing tool in Section 6.

Partner Contributions to WP3. We had a series of teleconferences with University of Kent and
Erlang Solutions. The University of Kent contributed to the development of SD Erlang semantics
and conducted the QuickCheck experiments. The Ericsson and ESL teams contributed to identifying
the reliability issues and requirements to the SD Erlang. Enrique Fernandez from ESL visited the
University of Glasgow to identify the interaction between the Wombat deployment and recovery tool
developed in WP6 [REL13b] and reliable SD Erlang developed in WP3.

3 Restarting a Failed Node

The mechanism for restarting a failed node consists of three main components: collecting s group state
information of the node, detecting the node failure, and restarting the node using the s group state
information. In this section we first discuss different strategies to collect node s group information
(Section 3.1). Then we consider strategies that would be useful in the benchmarks we use in the
RELEASE project (Section 3.2), and finally we present the strategy that we have implemented in SD
Erlang (Section 3.3).

3.1 Recovering S group State

A node may join or leave s groups, so we need to record s group membership information to correctly
restart a failed node.

The information collection mechanism can be implemented in a number of ways. To explore different
alternatives we use system state estimation, ξ, that analyses where state information is collected, with
whom it is shared, who initiates the exchange and how often it happens [Rot94]. More formally,

ξ ∈ {Centralised,Decentralised,Hybrid} × {Complete, Partial, V ariable} ×
×{V oluntary, Involuntary, Composite} × {Periodic, Aperiodic, Combination} (1)

Below we discuss the meaning of the parameters and examples of how a particular property can be
implemented to collect s group information.

The first set (Centralised, Decentralised, Hybrid) defines where s group state information is collected.
In case of a centralised scheme a dedicated node or a process may collect s group state information
from the whole system. A decentralised scheme implies that each node is responsible for storing its own

ICT-287510 (RELEASE) 28th October 2013 3

s group state information, for example, in a .config file. A hybrid scheme combines both centralised
and decentralised schemes, e.g. an s group leader node collects s group state information from the
members of its s group in a centralised manner, and then s group leader nodes exchange the state
information between each other in a decentralised manner.

The second set (Complete, Partial, Variable) defines with whom s group state information is shared.
A complete scheme implies that every process that collects s group state information has information
about all nodes of the system. In a partial scheme an information collecting process has only information
about the nodes it collects information from. A variable scheme means that some processes have partial
information and some processes have full information. The scheme is suitable for the cases when
information is collected in a hierarchical manner, e.g. processes of Level1 collect information from the
nodes and pass it to processes of Level2. Thus, Level1 processes have up-to-date partial information;
whereas Level2 processes have information about all nodes in the system, but this information may be
out-of-date.

The third set (Voluntary, Involuntary, Composite) defines who initiates the information exchange.
In a voluntary scheme nodes initiate sending s group state information to the collecting process them-
selves. In an involuntary scheme nodes send s group state information as a response on a request to
provide the information. In a composite scheme some information is send voluntary and some is sent
involuntary. For example, nodes send their s group information to Level1 processes voluntary, whereas
Level1 processes send information to Level2 processes involuntary.

The fourth set (Periodic, Aperiodic, Combination) defines how often the information exchange hap-
pens. The periodic and aperiodic schemes are self explanatory, for example, information is exchanged
every 30 sec or every time the node s group state changes. In a composite scheme nodes may send
s group state information to Level1 processes aperiodically, and Level1 processes send information to
Level2 processes periodically.

The system state estimation analysis shows that there are many ways that the s group information
collecting algorithm can be implemented. Each algorithm has target applications and some of these
algorithms are more complicated than others. To identify the most suitable type of the node restarting
algorithm for SD Erlang we analyse exemplars we work with in the RELEASE project [BCC+12]
(Section 3.2).

3.2 Exemplars

In this section we consider four exemplars we currently use in the RELEASE project to evaluate
distributed Erlang and SD Erlang, i.e. Sim-Diasca, Riak, Orbit, and Mandelbrot set. The exemplars
are representatives of typical distributed Erlang applications. All benchmarks are open source. The
benchmark details and their possible implementations in SD Erlang are discussed in deliverable D3.1:
Scalable Reliable SD Erlang Design [REL12]. Therefore, in this section for every benchmark we only
discuss principles of grouping nodes in s groups and nodes dynamic membership of s groups.

Sim-Diasca is a simulation engine developed in EDF [EDF10]. When new processes are spawned the
aim is to place often communicating processes close to each other. Thus, nodes can be grouped on the
basis of locality. Currently, the engine executes on a fixed number of nodes, and s group configuration
will not change much during the program execution. Therefore, nodes can be grouped in s groups
either at the node launch or dynamically before the actual simulation has started.

Riak is a database management system developed in Basho [Klo10]. The Riak’s aim is to provide
access to the stored data even when some nodes have failed. Nodes can be grouped in s groups on the
basis of Riak preference lists, i.e. a node forms an s group with the nodes on which its replica data is
kept. Thus, each node will have its own s group. When a node fails its s group information will be

ICT-287510 (RELEASE) 28th October 2013 4

redistributed and the s group will be deleted. When a node gets back again it will join s groups of
the neighbouring nodes and create its own s group. The node will know its neighbours as they will
support its restart; from the neighbours the node will know which nodes to add to its own s group
and which s groups to join. Thus, Riak nodes will join and leave s groups dynamically, and essential
s group information will be provided by peer nodes.

Orbit is a computation oriented, distributed hash table benchmark. A hash table that collects results
of calculations is partitioned between the nodes. The aim of the application is to explore a given set
of values using a set of generators and fill the table. The s group configuration is static. Orbit can be
implemented in failure resistant or failure non-resistant manner. In a non-resistant implementation the
Erlang nodes keep only their own partitions of the table; so, when a node fails its part of the table is
lost, and Orbit should be restarted. In the failure resistant implementation the partitions are replicated
on the neighbouring nodes; thus, when a node fails we may want to restart it in its s groups.

Mandelbrot Set is a computation oriented benchmark. The benchmark uses escape time algorithm
to determine a colour of every pixel on a plot of a given size, i.e. the more iterations it is required for
a value to reach an escape point the darker the pixel’s colour. The size of the computation depends
on the size of the image, the number of iterations to reach an escape condition, and complexity of the
escape condition. The s group configuration is dynamic, the more resources the computation requires
the larger number of nodes are involved in the computation. The nodes can be grouped on the basis of
locality. When a node fails its computation will be re-spawned to the remaining nodes. If the system
requires more resources a new node will be started. Thus, a failure mechanism is not needed.

The exemplars show that applications require different node restarting algorithms if any, i.e. Riak
uses information form neighbouring nodes and Mandelbrot set does not require node restarting. In
Sim-Diasca and Orbit the nodes can be grouped in s groups either at launch or dynamically before
the programs actually start. In case the s groups are started at the node launch and the s groups
never change the failed nodes can be restarted using the initial configuration. In case s groups are
started dynamically we have implemented a simple optional node restarting algorithm. The details of
the algorithm are presented in Section 3.3.

3.3 Implemented Approach

Applications require different node recovery mechanisms as discussed in Sections 3.1 and 3.2. Therefore,
we have implemented a simple mechanism that suits our benchmarks and can be used by setting the
-rsconfig flag at the launch of Erlang nodes. From (1) the approach has the following system state
estimation, ξ, parameters:

ξ ≡ (Decentralised, Partial, V oluntary,Aperiodic) (2)

i.e. each node keeps its own s group information in a configuration file that is updated by the node
every time the node s group configuration changes. The details of the algorithm are as follows. When
a node is started and the -rsconfig flag is set a new configuration file named NodeName.config is
created. Every time s group information is renewed s group process spawns a process to update the
configuration file. The configuration is only updated if the new state information timestamp is greater
than the last update. The configuration file is kept in the same directory as the running node.

Consistent with the SD Erlang design principles [REL12, Section 3], reliable s groups leave dis-
tributed Erlang recovery mechanisms unchanged. In distributed Erlang a node failure can be detected
in several ways, e.g. using a supervision behaviour, a heartbeat monitoring by setting the -heart flag,
or net adm:world list/1,2 and erlang:monitor node/2,3 functions. To restart a failed node a

ICT-287510 (RELEASE) 28th October 2013 5

script file or slave:start/3 function can be used. However, when using slave:start/3 function one
should remember that slave nodes automatically terminate when the master process that started the
nodes terminates.

4 S groups with the Same Name

It is very difficult to guarantee name uniqueness in a distributed system. We have analysed a number
of different approaches, and here is a summary of our analysis.

� Centralised schemes are not scalable and hence are not suitable.

� A flat decentralised scheme either causes a sharp increase of message exchange when an s group is
added or requires non-friendly user names, such as Universally Unique IDentifiers (UUIDs) [LMS05].

� A hierarchical decentralised scheme provides a straightforward solution for name uniqueness but
this will require s groups to be structured in a hierarchical manner which is not suitable for SD
Erlang.

� A hybrid scheme also does not seem suitable, i.e. centralised within an s group and decentralised
between s groups. For example, a leader s group node keeps information about all s groups its
nodes belong to. Then when a node attempts to create a new s group only s group leader nodes
exchange messages between each other to check whether an s group with the same name already
exists. However, when the number of s groups is compatible with the number of nodes the scheme
has the same issues as a flat decentralised scheme.

� A leader node approach, i.e. a full s group name consists of an s group name and the leader
node name, for example, group1@node1@glasgow.ac.uk. However, the scheme becomes very
complicated when leader nodes together with other s group nodes fail and we need to pass the
s group leadership and identify s groups to which the restarted nodes should be added.

Therefore, instead of guaranteeing s group name uniqueness we guarantee a high probability of
name uniqueness and explore node behaviour in cases when s group names are not unique. For that
we modify s group:new s group function, i.e. from
s group:new s group(SGroupName, [Node]) → {SGroupName, [Node]}
to
s group:new s group([Node]) → {SGroupName, [Node]}.
S group names are generated by s group:new s group/1 using UUIDs. In SD Erlang we use uuid

module. In the future this UUID generator may be changed to decrease a probability of generating two
identical UUIDs. A discussion on UUID randomness can be found in [IOS10].

In this section we discuss the cases when there are s groups with the same name and focus on the
following two issues.

1. Ensuring that when two nodes from s groups with the same name connect they behave in a
predictable manner.

2. Preventing nodes from joining an s group when it may cause a confusion, e.g. a node cannot
belong to a number of s groups with the same name.

A mathematical description of interconnections between s groups with the same name is presented
below. Here, x, y are nodes; A,A′, B are s groups; and A,A′ s groups have the same s group name.

� Disjoint s groups contain no nodes which belong to both s groups that share a name (Figure 1(a)),
i.e. @x (x ∈ A, x ∈ A′) ∧ ∀x, y@B (x ∈ A, y ∈ A′, [x, y] ∈ B).

ICT-287510 (RELEASE) 28th October 2013 6

(a) Disjoint s groups (b) Directly overlapping s groups (c) Indirectly overlapping s groups

Figure 1: Interconnections between S groups with the Same Name

� Directly overlapping s groups contain nodes that belong to multiple s groups that have the same
name (Figure 1(b)), i.e. ∃x (x ∈ A, x ∈ A′).

� Indirectly overlapping s groups have no nodes that belong to more than one s group with a
duplicate name but some nodes belong to an s group with a different name and through it the
nodes share a namespace (Figure 1(c)), e.g.
@x (x ∈ A, x ∈ A′) ∧ ∃x, y,B (x ∈ A, y ∈ A′, [x, y] ∈ B).

When we create an s group or add nodes to an existing s group we should ensure that no nodes in
that s group belong to different s groups with the same name. A node may become a member of multiple
s groups that have the same name either when it is started, i.e. at the node launch using s group config-
uration, or when nodes are added to existing s groups, i.e. dynamically using s group:new s group/2

and s group:add nodes/2 functions. Below we discuss s group interaction for the case when nodes
join s groups at launch (Section 4.1) and dynamically (Section 4.2).

4.1 Joining an S group at Launch

To join an s group at the node launch the -config flag together with a configuration file are used.
The configuration file contains information about prospective s groups. For example, to start a node
using s group config.config file the following command is called:

$ erl node1@glasgow.ac.uk -config s group config

An example of configuration file s group config.config is presented in Listing 1.

Listing 1: An example of s group config.config file

[{kernel, [{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,

’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’]},
{group2, normal, [’node3@glasgow.ac.uk’, ’node5@glasgow.ac.uk’,

’node6@glasgow.ac.uk’]},
{group3, normal, [’node4@glasgow.ac.uk’, ’node7@glasgow.ac.uk’,

’node8@glasgow.ac.uk’]}]}]}].

Thus, at the node launch we can check the s group configuration and eliminate undesirable be-
haviour. The configuration file may contain information either only about own s groups or about own
and remote s groups. In case the configuration file contains descriptions of multiple s groups with the
same name one of the following actions can be done.

� Merge s groups that have the same name.

� Consider only the first encounter of the s group name and ignore the rest.

ICT-287510 (RELEASE) 28th October 2013 7

(a) Disjoint s groups (b) Directly overlapping s groups (c) Indirectly overlapping s groups

Figure 2: S group Interconnections when the S groups are Joined at Launch

� Discard s groups whose names occur more than once in the configuration file.

� Report the error in the configuration file and start the node as a free node.

� Report the error and terminate the node using init:stop(). function.

From the above alternatives we have implemented the following. In case all s groups that have the
same name are identical we create a single s group; otherwise we check whether any of these s groups
contain the current node. In case the s groups that have the same name are remote we keep a record
of no s group with that name. In case the current node is a member of at least one s group an error is
returned and the node terminates.

The reason we have decided to terminate the node in case the configuration is wrong is to inform
the programmer that the configuration for a particular node is dubious and should be specified to avoid
wrong connections and incorrect information sharing. As for the information about the remote nodes,
currently, we do not renew s group information but trust that it is correct, and if the information is
ambiguous from the beginning it is better to discard it to eliminate errors.

The cases in which the configuration file contains information only about one s group that have
the same with other s groups in the system are discussed below. We consider the following types of
overlapping: disjoint, direct and indirect overlapping (Section 4).

Disjoint S groups. In case the node has a record of only one s group with a particular name the
node is started and no s group information is modified. For example, we start four nodes: nodes N1 and
N2 are started with configuration from Listing 2, and nodes N3 and N4 are started with configuration
from Listing 3. Nodes from different disjoint s groups communicate normally and do not share the
namespace (Figure 2(a)).

Listing 2: Configuration 1 for Disjoint S groups

[{kernel, [{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’]}]}]}].

Listing 3: Configuration 2 for Disjoint S groups

[{kernel, [{s_groups,
[{group1, normal, [’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’,]}]}]}].

ICT-287510 (RELEASE) 28th October 2013 8

Directly Overlapping S groups may occur when nodes have inconsistent information about s groups.
For example, we start four nodes: nodes N1 and N2 are started with configuration from Listing 4, and
nodes N3 and N4 are started with configuration from Listing 5. As nodes N2 and N3 have different
information about group1 the nodes do not synchronise and have a synchronisation error, i.e. nodes
N1 and N2 belong to one s group and nodes N3 and N4 belong to another s group that have the same
name group1. The s groups do not share connections and namespace (Figure 2(b)).

Listing 4: Configuration 1 for Directly Overlapping S groups

[{kernel, [{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,

’node3@glasgow.ac.uk’]}]}]}].

Listing 5: Configuration 2 for Directly Overlapping S groups

[{kernel, [{s_groups,
[{group1, normal, [’node2@glasgow.ac.uk’, ’node3@glasgow.ac.uk’,

’node4@glasgow.ac.uk’,]}]}]}].

Indirectly Overlapping S groups may occur when nodes have partial information about remote
s groups. For example, we start seven nodes: nodes N1, N2, N3 are started using configuration from
Listing 6, and nodes N4, N5, N6, N7 are started using configuration from Listing 7. Independently of
the order we start the nodes they do not share connections and name spaces (Figure 2(c)).

Listing 6: Configuration 1 for Indirectly Overlapping S groups

[{kernel, [{s_groups,
[{group1, normal, [’node1@glasgow.ac.uk’, ’node2@glasgow.ac.uk’,

’node3@glasgow.ac.uk’]},
{group2, normal, [’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’,

’node5@glasgow.ac.uk’, ’node6@glasgow.ac.uk’]}]}]}].

Listing 7: Configuration 2 for Indirectly Overlapping S groups

[{kernel, [{s_groups,
[{group1, normal, [’node5@glasgow.ac.uk’, ’node6@glasgow.ac.uk’,

’node7@glasgow.ac.uk’,]},
{group2, normal, [’node3@glasgow.ac.uk’, ’node4@glasgow.ac.uk’,

’node5@glasgow.ac.uk’, ’node6@glasgow.ac.uk’]}]}]}].

4.2 Joining an S group Dynamically

A node can join an s group dynamically using s group:new s group/1 or s group:add nodes/2 func-
tions defined in Sections 4, 5.2.1, and in [REL12]. In both cases we distinguish two types of nodes: a
node that initiates the action and nodes that join the s group. Additionally, s group:add nodes/2

function has the third type of nodes, i.e. nodes which are already members of the s group.

Disjoint S groups may occur when s groups with the same name are started independently from
each other. When nodes from disjoint s groups connect they share neither connections nor namespaces.

ICT-287510 (RELEASE) 28th October 2013 9

Directly Overlapping S groups. To prevent directly overlapping s groups the initiating node first
checks whether the new s group’s name is identical to an s group the node already belongs to. If it is
then a new s group name is generated and the checking is repeated. When a node receives a request to
join an s group it also first checks whether it already belongs to an s group with the same name. Only
nodes that return a negative response are added to the s group.

Indirectly Overlapping S groups may occur as a result of using s group:new s group/1 or
s group:add nodes/2 functions. When nodes from indirectly overlapping s groups connect they do
not share connections and namespaces.

4.3 Summary.

In this section we have discussed dynamic and at launch s group creation, and measures we have
taken in SD Erlang to minimise the probability of presence of s groups that have the same name in
the system (Sections 4 and 4.1). For each type of s group creation we have discussed three ways of
interconnections between s groups that have the same name, i.e. disjoint s groups, directly overlapping
s groups, and indirectly overlapping s groups (Sections 4.1 and 4.2). Here, have covered the cases when
the interconnections may occur, and how nodes and the system behave.

We recommend using at launch state configuration only in cases when nodes need to know infor-
mation about other s groups in the system from the start, and s group configuration is not likely to
change. It is up to the programmer to ensure that at launch s group configuration is correct, and no
s groups have identical s group names, e.g. starting the whole system with a single configuration file to
avoid copy-paste errors. Otherwise, dynamic s group creation provides a higher probability of unique
s group names. To avoid s group name clash we also advise using either only static or only dynamic
s group creation.

5 S group Operational Semantics

As requested at the 1st year review we present a small-step transition semantics for the s group opera-
tions provided by SD Erlang. For simplicity the current semantics ignores failures. We start by defining
an abstract state of SD Erlang systems (Section 5.1), and then define each operation as a transition
between states (Section 5.2).

5.1 SD Erlang State

The state of an SD Erlang system, and associated abstract syntax variables, are defined in Figure 3.
The state of a system is modelled as a four tuple comprising a set of s groups, a set of free groups, a
set of free hidden groups, and a set of nodes. Each type of groups is associated with nodes and has
a namespace. An s group additionally has a name, whereas a free hidden group consists of only one
node, i.e. a hidden node simultaneously acts as a node and as a group, because as a group it has a
namespace but does not share it with any other node. Free normal and hidden groups have no names,
and are uniquely defined by the nodes associated with them. Therefore, group names, gr names, are
either NoGroup or a set of s group names. A namespace is a set of name and process id, pid, pairs
and is replicated on all nodes of the associated group.

A node has the following parameters: node id identifier, node type that can be either hidden or
normal, connections, and group names, i.e. names of groups the node belongs to. The node can belong
to either a list of s groups or one of the free groups. The type of the free group is defined by the node
type. Connections are a set of node ids.

ICT-287510 (RELEASE) 28th October 2013 10

(grs, fgs, fhs,nds) ∈ {state} ≡ {({s group}, {free group}, {free hidden group}, {node})}
gr ∈ grs ≡ {s group} ≡ {(s group name, {node id},namespace)}
fg ∈ fgs ≡ {free group} ≡ {({node id},namespace)}
fh ∈ fhs ≡ {free hidden group} ≡ {(node id ,namespace)}
nd ∈ nds ≡ {node} ≡ {(node id ,node type, connections, gr names)}
gs ∈ {gr names} ≡ {NoGroup, {s group name}}
ns ∈ {namespace} ≡ {{(name, pid)}}
cs ∈ {connections} ≡ {{node id}}
nt ∈ {node type} ≡ {Normal,Hidden}
s ∈ {NoGroup, s group name}
n ∈ {name}
p ∈ {pid}
ni ∈ {node id}
nis ∈ {{node id}}
m ∈ {message}

Figure 3: SD Erlang State

SD Erlang State Property. Every node in an SD Erlang state is a member of one of the three
classes of groups: s group, free group, or free hidden group. The three classes of groups partition
the set of nodes. That is, for any state (grs, fgs, fhs,nds) {Πnode idgrs,Πnode idfgs,Πnode idfhs} is a
partition of Πnode idnds where Πnode id is projection onto the node id attribute, or set of attributes, of
the tuples.

Assumptions. We make the following two assumptions to simplify the state transitions.

1. No two s groups have the same name, that is all s group names are unique. We discuss s group
name uniqueness in Section 4.

2. All node ids identify some node. More formally, for all node ids occurring in some state (grs, fgs, fhs,nds),
there exists some node in nds with that node id.

As we continue the work on the SD Erlang semantics we plan to relax these assumptions.

5.2 Transitions

The transitions we present in Section 5.2.1 have the following form:

(state, command,ni) −→ (state ′, value)

meaning that executing command on node ni in state returns value and transitions to state′. The
transitions use a number of auxiliary functions defined in Section 5.2.2.

In the following ⊕ denotes disjoint set union. By xxs ≡
⊕
{xx |...} we mean that elements from all

generated xx sets are accumulated in one xxs set.

ICT-287510 (RELEASE) 28th October 2013 11

5.2.1 SD Erlang Functions

In this section we present the transitions of fifteen SD Erlang functions. The following nine func-
tions change their state after the transition: register name/3, re register name/3, unregister name/2,
whereis name/3, send/2, new s group/2, delete s group/1, add nodes/2, remove nodes/2. Whereas the
other six functions only return some state information but do not change the state after the transition:
send/3, whereas name/2, registered names/1, own nodes/0, own nodes/1, own s groups/0.

The implementation and description of the functions are discussed in deliverable D3.2: Scalable SD
Erlang Computational Model.

register name. When registering name n for pid p in s group s the pair (n, p) is added to the
namespace ns of the s group only if neither n nor p appears in the namespace, and node ni is a member
of s group s.

((grs,fgs, fhs,nds), register name(s,n, p),ni)
−→ (({(s, {ni} ⊕ nis, {(n, p)} ⊕ ns)} ⊕ grs ′, fgs, fhs,nds),True) If (n,) /∈ ns ∧ (, p) /∈ ns
−→ ((grs, fgs, fhs,nds),False) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs

re register name. When re registering name n for different pid p in s group s the name is re-
registered only if the pid is not already registered in namespace , and node ni is a member of s group
s.

((grs,fgs, fhs,nds), re register name(s,n, p),ni)
−→ (({(s, {ni} ⊕ nis,ns ′ ⊕ {(n, p)})} ⊕ grs ′, fgs, fhs,nds),True) If (, p) /∈ ns
−→ ((grs, fgs, fhs,nds),False) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs
ns ′ ≡ ns − {(n,)}

unregister name. To unregister name n from namespace ns of s group s node ni should belong to
s group s.

((grs,fgs, fhs,nds),unregister name(s,n),ni)
−→ (({(s, {ni} ⊕ nis,ns − {(n, p)})} ⊕ grs ′, fgs, fhs,nds),True) If (n,) ∈ ns
−→ ((grs, fgs, fhs,nds),True) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs

registered names function returns a list of names registered in s group s if node ni belongs the
s group, empty list otherwise. IsSGroupSNode/3 and OutputNs/2 are auxiliary functions defined in

ICT-287510 (RELEASE) 28th October 2013 12

Section 5.2.2.

((grs,fgs, fhs,nds), registered names(s),ni)
−→ ((grs, fgs, fhs,nds),nss) If IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds), {}) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs
nss ≡ OutputNs(s,ns)

whereis name/2 function returns pid p registered as name n in s group s if node ni belongs to the
s group, undefined otherwise.

((grs,fgs, fhs,nds),whereis name(s,n),ni)
−→ ((grs, fgs, fhs,nds), p) If IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds),undefined) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs
p ≡ FindName(ni , s,n, grs, fgs, fhs,nds)

whereis name/3. Depending on the type of nodes ni and ni′ a search of name n from group s on
a remote node ni′ may lead to establishing new connections between nodes ni, ni′, and the node on
which process p actually resides.

((grs,fgs, fhs,nds),whereis name(ni ′, s,n),ni)
−→ ((grs, fgs ′, fhs,nds ′), p)

where
(fgs ′,nds ′) ≡ AddConnections(ni ,ni ′, grs, fgs, fhs,nds)
p ≡ FindName(ni ′, s,n, grs, fgs ′, fhs,nds ′)

send. In SD Erlang we have implemented two send functions, i.e. send/3 and send/4. Function
send/3 is defined in Erlang as a where is/2 to locate pid p of process name n from s group s, followed
by send/2 to send message m to the pid (Listing 8).

Listing 8: send/3 Function in Erlang-like Syntax

send(s,n,m) ->
p = whereis_name(s,n),
send(p,m).

Function send/4 is defined in Erlang as a where is/3 to locate pid p of process name n from
s group s and node ni′, followed by send/2 to send message m to the pid (Listing 9).

Listing 9: send/4 Function in Erlang-like Syntax

send(ni’,s,n,m) ->
p = whereis_name(ni’,s,n),
send(p,m).

ICT-287510 (RELEASE) 28th October 2013 13

Transitions of whereis name(ni’,s,n) and whereis name(s,n) functions are presented above,
and a transition of send(p,m) function is as follows:

((grs,fgs, fhs,nds), send(p,m),ni)
−→ ((grs, fgs ′, fhs,nds ′), p)

where
ni ′ ≡ node(p)
(fgs ′,nds ′) ≡ AddConnections(ni ,ni ′, grs, fgs, fhs,nds)

“node(p)” is a primitive distributed Erlang function node(Pid)→Node that identifies the node id
of the node hosting process p. The passing of the message is not modelled in our state.

new s group. When we create a new s group s, the s group together with its nodes nis are added
to the list of s groups. If before joining the s group nodes nis free then the nodes are removed from
free groups. The new s group has an empty namespace.

((grs,fgs, fhs,nds),new s group(s,nis),ni)
−→ ((grs ′, fgs ′, fhs ′,nds ′′), (s,nis)) If ni ∈ nis
−→ ((grs, fgs, fhs,nds),Error) Otherwise

where
nds ′ ≡ InterConnectNodes(nis,nds)
nds ′′ ≡ AddSGroup(s,nis,nds ′)
grs ′ ≡ grs ⊕ {(s,nis, {})}
(fgs ′, fhs ′) ≡ RemoveNodes(nis, fgs, fhs)

add nodes. For node ni to add nodes identified by nis to s group s node ni should belong to that
s group. S group s membership is added to nds′ nodes identified by nis node ids, and the existing and
the new s group nodes interconnect. The nodes that were free before joining the s group are removed
from the corresponding free groups fgs′ and fhs′.

((grs,fgs, fhs,nds), add nodes(s,nis),ni)
−→ ((grs ′′, fgs ′, fhs ′,nds ′′), (s,nis)) If IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds),Error) Otherwise

where
{(s, {ni} ⊕ nis ′,ns)} ⊕ grs ′ ≡ grs
nds ′ ≡ InterConnectNodes({ni} ⊕ nis ⊕ nis ′,nds)
nds ′′ ≡ AddSGroup(s,nis,nds ′)
grs ′′ ≡ {(s, ({ni} ⊕ nis)⊕ nis ′,ns)} ⊕ grs ′

(fgs ′, fhs ′) ≡ RemoveNodes(nis, fgs, fhs)

delete s group. To delete s group s node defined by ni node id should be a member of that s group.
When s group s is deleted its membership is removed from group names of nds identified by ni and

ICT-287510 (RELEASE) 28th October 2013 14

nis. In case the nodes become free, we add new free nodes to the corresponding free groups.

((grs,fgs, fhs,nds), delete s group(s),ni)
−→ ((grs ′, fgs ′, fhs ′,nds ′′),True) If IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds),False) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs
nds ′ ≡ RemoveSGroup(s, {ni} ⊕ nis,nds)
(fgs ′, fhs ′,nds ′′) ≡ NewFreeNodes(fgs, fhs,nds ′)

remove nodes. To remove nodes identified by nis node ids from s group s the nodes should be
members of that s group. Additionally, ni node should be also a member of s group s and it cannot
remove itself from an s group. The s group s membership is removed from group names of nds identified
by nis. In case the nodes become free, we add new free nodes to the corresponding free groups.

((grs,fgs, fhs,nds), remove nodes(s,nis),ni)
−→ ((grs ′′, fgs ′, fhs ′,nds ′′),True) If ni /∈ nis ∧ IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds),False) Otherwise

where
{(s, ({ni} ⊕ nis)⊕ nis ′,ns)} ⊕ grs ′ ≡ grs
grs ′′ ≡ {(s, {ni} ⊕ nis ′,ns)} ⊕ grs ′

nds ′ ≡ RemoveSGroup(s,nis,nds)
(fgs ′, fhs ′,nds ′′) ≡ NewFreeNodes(fgs, fhs,nds ′)

own nodes function has two versions, i.e. own nodes/0 and own nodes/1. When no parameter is
specified, i.e. own nodes(), the function returns a list of nis′ node ids of the nodes that belong to the
same groups as node ni.

((grs,fgs, fhs,nds), own nodes(),ni)
−→ ((grs, fgs, fhs,nds),nis ′)

where
nis ′ ≡ OwnGroupNis(ni , grs, fgs, fhs)

When s group s is specified, i.e. own nodes(s) the function returns a list of nis′ node ids of the
nodes that belong to the s group. In case node ni does not belong to s group s, an empty list is
returned.

((grs,fgs, fhs,nds), own nodes(s),ni)
−→ ((grs, fgs, fhs,nds),nis ′) If IsSGroupSNode(ni , s, grs)
−→ ((grs, fgs, fhs,nds), {}) Otherwise

where
{(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs
nis ′ ≡ {ni} ⊕ nis

ICT-287510 (RELEASE) 28th October 2013 15

own s groups function returns a list of s groups and their nodes to which ni node belongs to if node
ni is an s group node, empty list otherwise.

((grs,fgs, fhs,nds), own s groups(),ni)
−→ ((grs, fgs, fhs,nds), snis) If IsSGroupNode(ni , grs)
−→ ((grs, fgs, fhs,nds), {}) Otherwise

where
snis ≡ OutputOwnSGroups(ni , grs)

5.2.2 Auxiliary Functions

In this section we present auxiliary functions introduced in Section 5.2.1.

IsSGroupNode function returns True if node ni is a member of some s group s, False otherwise.

IsSGroupNode(ni , grs) = ∃s,nis,ns, grs ′ . {(s, {ni} ⊕ nis,ns)} ⊕ grs ′ ≡ grs

IsFreeNormalNode function returns True if node ni is a member of some free normal group, False
otherwise.

IsFreeNormalNode(ni , fgs) = ∃nis,ns, fgs ′ . {({ni} ⊕ nis,ns)} ⊕ fgs ′ ≡ fgs

IsFreeHiddenNode function returns True if node ni is a member of some free hidden group, False
otherwise.

IsFreeHiddenNode(ni , fhs) = ∃ns, fhs ′ . {(ni ,ns)} ⊕ fhs ′ ≡ fhs

SameFreeGroup function returns True if nodes ni and ni′ are members of the same free normal
group, False otherwise.

SameFreeGroup(ni ,ni ′, fgs) = ∃nis,ns, fgs ′ . {({ni ,ni ′} ⊕ nis,ns)} ⊕ fgs ′ ≡ fgs

SameSGroup function returns True if nodes ni and ni′ are members of the same s group, False
otherwise.

SameSGroup(ni ,ni ′, grs) = ∃s,nis,ns, grs ′ . {(s, {ni ,ni ′} ⊕ nis,ns)} ⊕ grs ′ ≡ grs

AddConnections function systematically checks types of nodes ni and ni′, and then adds corre-
sponding connections. Here, a connection between the nodes may already exist. The first outcome
(fgs, nds) occurs when the nodes are in the same free normal group or the same s group and hence
are connected. The second outcome (fgs, nds′) occurs in one of the following cases: 1) node ni is an
s group node, and nodes ni and ni′ are not in the same s group; note that ni′ may be an s group node,
a free normal node, or a free hidden node; 2) node ni is a free hidden node; 3) node ni is a free normal
node and node ni′ is either an s group node or a free hidden node. The third outcome (fgs′′, nds′′)

ICT-287510 (RELEASE) 28th October 2013 16

occurs when nodes ni and ni′ are in different free normal groups.

AddConnections(ni ,ni ′, grs, fgs, fhs,nds)
= (fgs,nds) If SameFreeGroup(ni ,ni ′, fgs)

∨ SameSGroup(ni ,ni ′, grs)
= (fgs,nds ′) If (IsSGroupNode(ni , grs) ∧ ¬ SameSGroup(ni ,ni ′, grs))

∨ IsFreeHiddenNode(ni , fhs)
∨ (IsFreeNormalNode(ni , fgs) ∧ ¬ IsFreeNormalNode(ni ′, fgs))

= (fgs ′′,nds ′′) If ni ∈ nis1 ∧ ni ′ ∈ nis2
= (fgs,nds) Otherwise

where
nds ′ ≡ InterConnectNodes({ni ,ni ′},nds)
({(nis1 ,ns1)} ⊕ {(nis2 ,ns2)})⊕ fgs ′ ≡ fgs
fgs ′′ ≡ {(nis1 ⊕ nis2 ,ns1 ⊕ ns2)} ⊕ fgs ′

nds ′′ ≡ InterConnectNodes(nis1 ⊕ nis2 ,nds)

InterConnectNodes function interconnects nodes from nds identified by nis node ids.

InterConnectNodes(nis,nds) = nds ∪ {(ni ,nt , (cs ⊕ nis)− {ni}, gs) | (ni ,nt , cs, gs) ∈ nds,ni ∈ nis}

AddSGroup function adds membership of s group s to all nodes identified by nis node ids.

AddSGroup(s,nis,nds) = (nds − nds ′)⊕ nds ′′

where
nds ′ ≡ {(ni ,nt , cs, gs) | (ni ,nt , cs, gs) ∈ nds,ni ∈ nis}
nds ′′ ≡ {(ni ,nt , cs,AddSGroupS(s, gs)) | (ni ,nt , cs, gs) ∈ nds ′}

AddSGroupS function adds s group s to a list of s groups.

AddSGroupS(s, gs)
= {s} If gs ≡ NoGroup
= gs ⊕ {s} Otherwise

RemoveSGroup function removes membership of s group s from all nodes identified by nis node
ids.

RemoveSGroup(s,nis,nds) = (nds − nds ′)⊕ nds ′′

where
nds ′ ≡ {(ni ,nt , cs, gs) | (ni ,nt , cs, gs) ∈ nds,ni ∈ nis}
nds ′′ ≡ {(ni ,nt , cs, gs) | (ni ,nt , cs, gs ⊕ {s}) ∈ nds ′}

ICT-287510 (RELEASE) 28th October 2013 17

RemoveNodes function removes node ids identified by nis from free normal groups fgs and free
hidden groups fhs.

RemoveNodes(nis, fgs, fhs) = (fgs ′′, fhs ′)
where

fgs ′ ≡ {({ni} ⊕ nis ′,ns ′) | ({ni} ⊕ nis ′,ns ′) ∈ fgs,ni ∈ nis}
fgs ′′ ≡ (fgs − fgs ′)⊕ {(nis ′,ns ′) | ({ni} ⊕ nis ′,ns ′) ∈ fgs ′,ni ∈ nis}
fhs ′ ≡ fhs − {(ni ,ns) | (ni ,ns) ∈ fhs,ni ∈ nis}

FindName function identifies pid p of name n registered in group s. Here, s can be NoGroup or an
s group name.

FindName(ni , s,n, grs, fgs, fhs)
= p1 If s ≡ NoGroup ∧ nt ≡ Normal
= p2 If s ≡ NoGroup ∧ nt ≡ Hidden
= p3 Otherwise

where
{(ni ,nt , cs, gs)} ⊕ nds ′ ≡ nds
{({ni} ⊕ nis, {(n, p1)} ⊕ ns1)} ⊕ fgs ′ ≡ fgs
{(ni , {(n, p2)} ⊕ ns2)} ⊕ fhs ′ ≡ fhs
{(s, {ni} ⊕ nis, {(n, p3)} ⊕ ns3)} ⊕ grs ′ ≡ grs

NewFreeNodes function places new free nodes to corresponding free groups. The groups are deter-
mined by the node types and connections.

NewFreeNodes(fgs, fhs,nds) = (fgs ′, fhs ′,nds ′′)
where

nds ′ ≡ {(ni ,nt , cs,NoGroup) | (ni ,nt , cs, {}) ∈ nds}
fhs ′ ≡ AddFreeHiddenGroup(fhs,nds ′)
(fgs ′,nds ′′) ≡ AddFreeNormalGroup(fgs,nds,nds ′)

AddFreeHiddenGroup function adds new free hidden groups to fhs.

AddFreeHiddenGroup(fhs,nds) = fhs ⊕ {(ni , {}) | (ni ,Hidden, cs,NoGroup) ∈ nds}

AddFreeNormalGroup function distributes new free normal nodes defined by nis from nds′ to
corresponding free normal groups. The groups are defined by the node connections css′ to existing free
nodes. In case a new node has no connections with existing free normal nodes a new free normal group
is created.

AddFreeNormalGroup(fgs,nds,nds ′) = (fgs ′,nds ′′)
where

nis ≡ {ni | (ni ,Normal , cs,NoGroup) ∈ nds ′}

css ≡
⊕
{cs | (ni ,Normal , cs,NoGroup) ∈ nds ′}

css ′ ≡ {ni | (nis ′ ⊕ {ni},ns) ∈ fgs,ni ∈ css}
(fgs ′,nds ′′) ≡ MergeFreeNormalGroups(nis, css ′, fgs,nds)

ICT-287510 (RELEASE) 28th October 2013 18

MergeFreeNormalGroups function merges free normal groups which nodes are connected with
each other. The function also adds missing connections between nodes from the same free normal
group.

MergeFreeNormalGroups(nis, css, fgs,nds)
= (fgs,nds) If nis ≡ {}
= (fgs ′,nds) If nis 6≡ {} ∧ css ≡ {}
= (fgs ′′,nds ′) Otherwise

where
fgs ′ ≡ fgs ⊕ {(nis, {})}
fgs r ≡ FindFreeNormalGroups(css, fgs)

nis1 ≡
⊕
{nis ′ | (nis ′,ns) ∈ fgs r}

nis ′′ ≡ nis1 ⊕ nis

ns ′ ≡
⊕
{ns | (nis ′,ns) ∈ fgs r}

fgs ′′ ≡ (fgs − fgs r)⊕ {(nis ′′,ns ′)}
nds ′ ≡ InterConnectNodes(nis ′′,nds)

FindFreeNormalGroups function returns a list of free normal groups that contain nodes identified
by nis node ids.

FindFreeNormalGroups(nis, fgs) = {(nis ′ ⊕ {ni},ns) | (nis ′ ⊕ {ni},ns) ∈ fgs,ni ∈ nis}

OwnGroupNis function returns a list of nis′ node ids of the nodes that belong to the same groups
as ni node.

OwnGroupNis(ni , grs, fgs, fhs)
= {ni} ⊕ nis If IsFreeNormalNode(ni , fgs)
= {ni} If IsFreeHiddenNode(ni , fhs)
= nis ′ Otherwise

where
{({ni} ⊕ nis,ns)} ⊕ fgs ′ ≡ fgs
nis ′ ≡ OwnSGroupNis(ni , grs)

OwnSGroupNis function returns a list of nis′ node ids of the nodes that belong to the same s groups
as ni node.

OwnSGroupNis(ni , grs) = nis ′ ⊕ {ni}
where

nis ′ ≡
⊕
{nis | (s, {ni} ⊕ nis,ns) ∈ grs}

OutputNs function returns a list of process names registered in ns namespace of s group s.

OutputNs(s,ns) = {(s,n) | (n, p) ∈ ns}

ICT-287510 (RELEASE) 28th October 2013 19

OutputOwnSGroups function returns information about s groups to which ni node belongs to,
i.e. a list of s group names s and node ids of nodes from those s groups.

OutputOwnSGroups(ni , grs) = {(s, {ni} ⊕ nis) | (s, {ni} ⊕ nis,ns) ∈ grs}

6 Validation of S group Semantics and Implementation

In addition to defining the operational semantics of SD Erlang, we have also validated the consistency
between the formal semantics and the SD Erlang implementation. Our approach is based on property-
based testing, in particular we use the Erlang QuickCheck [AHJW06] tool developed by Quivq. The
testing revealed s group bugs in both the semantics and the s group implementation; it gives us high
confidence on the consistency between the formal semantics of s groups and the implementation. Al-
though SD Erlang is the subject under test in this case, the testing approach is applicable to the
validation of formal operational semantics in general. While Quivq QuickCheck is the tool we use
for testing, another property-based testing tool PropEr [PAS11] written in Erlang and inspired by
QuickCheck could be an alternative.

In this section we provide a brief introduction of property-based testing and QuickCheck’s eqc statem

in Section 6.1, and an overview of the testing approach in Section 6.2.

6.1 Property-based Testing and QuickCheck

Property-Based Testing (PBT) provides a powerful and high-level approach to testing. In PBT system
behaviour is specified by properties expressed in a logical form rather than focusing on individual test
cases. For example, a function without side effects may be specified by means of the full input/output
relation using a universal quantification over all the inputs; a stateful system will be described by means
of a model, which is an extended finite state machine. The system is then tested by checking whether it
has the required properties for randomly generated data; the randomly generated data may be inputs
to functions, sequences of API calls to the stateful system, or other representations of test cases.

QuickCheck supports random testing of Erlang programs. Properties of the programs are stated
in a subset of first-order logic embedded in Erlang syntax. QuickCheck verifies these properties for
collections of randomly generated Erlang values with user guidance in defining the generators where
necessary. When a counterexample is found, QuickCheck tries to generate a simpler – and thus more
comprehensible – counterexample, in a constructive manner; this process is called shrinking. PropEr
testing tool has a very similar user interface.

QuickCheck is the tool of choice for the testing of SD Erlang developed by QuivQ. In particular, we
utilise its support for extended finite state machines through the eqc statem behaviour. As illustrated

Figure 4: QuickCheck eqc statem

ICT-287510 (RELEASE) 28th October 2013 20

in Figure 4, with eqc statem the user defines an abstract model of the System Under Test (SUT),
including an abstraction of the state of the SUT itself. The model includes an initial abstract state
in which test cases begin and describes how each command changes the state. The state is used by
QuickCheck both during test case generation and during test execution. For each command a number
of properties can be described, e.g.

� preconditions to decide whether or not to include a candidate command in test cases;

� postconditions to check whether the value returned by the executed command is correct;

� a description of the changes in the abstract state as a result of command execution;

� a method to generate an appropriate function call to appear next in a test case.

6.2 Validation of SD Erlang

To validate the SD Erlang semantics and implementation using eqc statem, an abstract model of the
SUT is needed as discussed in Section 6.1. Our approach, as illustrated in Figure 5, is to derive the
abstract model from the semantics specification, i.e. we translate the semantics specification into an
abstract model written in Erlang. The abstract model contains the abstract state representation and
the transition from one state to another when an operation is applied. There is a transition function
for each SD Erlang operation defined in the semantics.

An Erlang representation of the abstract state (Figure 6) shows a clear mapping from the formal
state specification to the Erlang representation. The abstract model state is initialised according to
the actual distributed SD Erlang system that we test. Thus, both the abstract state machine and the
tested system have the same starting point. For our actual testing setup we use 14 SD Erlang nodes,
12 of which are normal nodes and 2 are hidden nodes.

A collection of data generators have been defined to guide the automatic generation of data value fed
to s group operations; the callback function command/1 allows QuickCheck to automatically generate
candidate test commands (Figure 7). The arguments supplied to each symbolic call of an s group
operation are also data generators. The frequency/1 function makes a weighted choice between the
generators in its argument, such that the probability of choosing each generator is proportional to the
weight paired with it. A test case is a sequence of s group operations, and by default, QuickCheck
generates 100 test cases for each run unless the testing fails.

The conditions defined in precondition/2 function serve as a filter, so a candidate command
is included in a test case only if the preconditions for that operation are met. For instance, the
precondition for new s group operation is defined as follows:

Figure 5: Testing SD Erlang Using QuickCheck eqc statem

ICT-287510 (RELEASE) 28th October 2013 21

-record(state, {groups =[] :: [group()],
free_groups =[] ::[free_group()],
free_hidden_groups =[] ::[free_hidden_group()],
nodes =[] ::[a_node()]}).

-type group()::{s_group_name(), [node_id()], namespace()}.
-type free_group()::{[node_id()], namespace()}.
-type free_hidden_group()::{node_id(), namespace()}.
-type a_node()::{node_id(), node_type(), connections(), gr_names()}.
-type gr_names()::free_normal_group|free_hidden_group|[s_group_name()].
-type namespace()::[{atom(), pid()}].
-type connections()::[node_id()].
-type node_type()::visible|hidden.
-type s_group_name()::atom().
-type node_id()::node().

Figure 6: An Abstract State Representation in Erlang

precondition(_S, {call, ?MODULE, new_s_group,
[{_SGroupName, NodeIds, _CurNode},
_AllNodeIds]}) ->

NodeIds/=[]; %% A new s_group cannot be empty

Each generated test command is applied to both the abstract model and the actual tested system.
The application of the test command to the abstract model takes the abstract model from its current
state to a new state as described by the transition functions; whereas the application of the test command
to the real system leads the system to a new actual state. The actual s group-related state information
is collected from each tested node, then the information is merged and normalised to the same format
as the abstract state representation. For a successful testing, after the execution of each test command
the normalised actual state should be the same as the abstract state; this constraint, together with
some other generic invariants, is specified as the postconditions of s group operations. For instance,
the postcondition for new s group operation is defined as follows:

-- Res is the actual value returned by the command
-- ActualState is the actual state information collected from nodes
postcondition(S, {call, ?MODULE, new_s_group,

[{SGroupName, NodeIds, CurNode}, _AllNodeIds]},
{Res, ActualState}) ->

{AbsRes, NewS} = new_s_group_next_state(S, SGroupName, NodeIds, CurNode),
(AbsRes == Res) and is_the_same(ActualState, NewS);

Postconditions are validated after execution of every test command. If a validation fails the failing
test case is reported.

The top-level property that connects all the parts together is defined as follows:

prop_s_group() ->
?SETUP(

fun setup/0,
?FORALL(Cmds,commands(?MODULE),

begin
{H,S,Res} = run_commands(?MODULE,Cmds),
teardown(),
setup(),
pretty_commands(?MODULE, Cmds, {H,S,Res}, Res==ok)

end)).

ICT-287510 (RELEASE) 28th October 2013 22

command(S) ->
frequency(

[{5, {call, ?MODULE, new_s_group,
[gen_new_s_group_pars(S), all_node_ids(S)]}}

,{5, {call, ?MODULE, add_nodes,
[gen_add_nodes_pars(S), all_node_ids(S)]}}

,{5, {call, ?MODULE, remove_nodes,
[gen_remove_nodes_pars(S), all_node_ids(S)]}}

,{5, {call, ?MODULE, delete_s_group,
[gen_delete_s_group_pars(S), all_node_ids(S)]}}

,{10,{call, ?MODULE, register_name,
[gen_register_name_pars(S), all_node_ids(S)]}}

,{10,{call, ?MODULE, whereis_name,
[gen_whereis_name_pars(S), all_node_ids(S)]}}

,{10,{call, ?MODULE, re_register_name,
[gen_re_register_name_pars(S), all_node_ids(S)]}}

,{10,{call, ?MODULE, unregister_name,
[gen_unregister_name_pars(S), all_node_ids(S)]}}

,{10,{call, ?MODULE, send,
[gen_send_pars(S),all_node_ids(S)]}}

,{1, {call, ?MODULE, node_down_up,
[gen_node_down_up_pars(S), all_node_ids(S)]}}

]).

Figure 7: Command Generator

Here, setup/0 and teardown/0 functions start and terminate the actual SD Erlang system respec-
tively.

To date we have validated the nine functions listed in Figure 7. We found and fixed four bugs
in the semantics and identified an issue in the SD Erlang implementation, i.e. in some cases after an
s group has been removed the actual s group structure and the abstract s group structure initially do
not match each other but eventually become the same. The structures become identical after a 60s
timeout and an error report from the real system. Currently, we are not sure about the origins of the
issue but we believe it is due to node synchronisation, and work on resolving of the issue.

7 Implications and Future Work

This deliverable addresses SD Erlang s group reliability and s group semantics. The reliability was
addressed by implementing a node recovery mechanism and analysing s groups that have the same
name. To identify the most suitable node recovery mechanism we explored several alternate strategies
using system state estimation and analysing RELEASE SD Erlang exemplars (Section 3). We outline
the approach we have implemented where each node keeps its own s group information in a configu-
ration file that is updated by the node every time the s group configuration changes. To guarantee
a high probability of s group name uniqueness when s groups are started dynamically we have mod-
ified function s group:new s group to generate names that are very probably unique (Section 4). If
duplicate s group names do occur we have ensured correct behaviour of s groups and nodes. We have
also introduced s group transition semantics by defining an abstract state of SD Erlang systems and
presented the transitions of fifteen SD Erlang functions (Section 5). We have validated the consistency
between the formal semantics and the SD Erlang implementation using Erlang QuickCheck testing tool

ICT-287510 (RELEASE) 28th October 2013 23

(Section 6).
Our future plans include the following.

� SD Erlang Semantics. Together with the Kent team continue to work on the semantics by running
more QuickCheck tests, relaxing assumptions, and the outstanding SD Erlang implementation
issue.

� SD Erlang Validation. Validating SD Erlang by running the benchmarks discussed in Section 3.2,
and releasing the SD Erlang library in deliverable D3.4: Scalable Reliable OTP Library Release.

� Semi-explicit Placement. Conduct the work outlined in deliverable D3.2: Scalable SD Erlang
Computation Model [REL13a, Section 6].

Change Log

Version Date Comments
0.1 10/10/2013 First Version Submitted to Internal Reviewers
0.2 17/10/2013 Revised version based on comments from N. Papaspyrou submitted to

the Commission Services
1.0 28/10/2013 Final version submitted to the Commission Services

References

[AHJW06] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing telecoms software
with Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
ERLANG ’06, pages 2–10, New York, NY, USA, 2006. ACM.

[BCC+12] O. Boudeville, F. Cesarini, N. Chechina, K. Lundin, N. Papaspyrou, K. Sagonas, S. Thomp-
son, P. Trinder, and U. Wiger. RELEASE: A high-level paradigm for reliable large-scale
server software. In In Proceedings of the 13th International Symposium on Trends in Func-
tional Programming, volume 7829, pages 263–278. Springer, 2012.

[EDF10] EDF. The Sim-Diasca Simulation Engine, 2010. http://www.sim-diasca.com.

[IOS10] Ahmad Ali Iqbal, Maximilian Ott, and Aruna Seneviratne. Simplistic hashing for building
a better bloom filter on randomized data. In Proceedings of the 2010 13th International
Conference on Network-Based Information Systems, pages 325–331, Washington, DC, USA,
2010. IEEE Computer Society.

[Klo10] Rusty Klophaus. Riak core: Building distributed applications without shared state. In ACM
SIGPLAN Commercial Users of Functional Programming, pages 14:1–14:1, New York, NY,
USA, 2010. ACM.

[LMS05] P. Leach, M. Mealling, and R. Salz. A universally unique identifier (UUID) URN namespace,
2005. RFC 4122.

[PAS11] Manolis Papadakis, Eirini Arvaniti, and Kostis Sagonas. PropEr: A QuickCheck-inspired
property-based testing tool for Erlang, 2011. http://proper.softlab.ntua.gr.

[REL12] RELEASE Project. Deliverable D3.1: Scalable Reliable SD Erlang Design, June 2012.

[REL13a] RELEASE Project. Deliverable D3.2: Scalable SD Erlang Computation Model, July 2013.

ICT-287510 (RELEASE) 28th October 2013 24

[REL13b] RELEASE Project. Deliverable D6.3: Distributed Erlang Component Ontology, September
2013.

[Rot94] H. G. Rotithor. Taxonomy of dynamic task scheduling schemes in distributed computing
systems. IEE Proceedings Computers & Digital Techniques, 141(1):1–10, 1994.

