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Results: The main results of this deliverable are as follows.

• We have designed and implemented a library which enables Erlang nodes to examine attributes of
other nodes in a distributed system, facilitating the choice of a node which has suitable properties
to support the spawning of a particular process.

• We have tested this library with a distributed Erlang application, showing that the use of at-
tributes can lead to improved performance.

• We have designed and implemented a library which uses an abstract model of communication
times between Erlang nodes in order to deploy distributed Erlang applications in such a way as
to minimise overheads due to communication delays.

• A careful examination of communication times in several multi-node systems on different scales
suggests that our abstract model provides a good description of real communication latencies.

• Earlier deliverables in D3.5 described SD Erlang, which extends Erlang with a mechanism for
partitioning sets of Erlang nodes into s groups in order to improve communication efficiency. Our
libraries are not closely coupled with the new features introduced in SD Erlang, but admit easy
interoperability with s groups. The work described here is perhaps best viewed as a complement
to SD Erlang rather than an extension of it.
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Conclusion: We have designed and implemented libraries which provide methods for implementing dis-
tributed Erlang applications in such a way as to obtain efficient performance without requiring detailed
information about system structure to be coded into the application. We have carried out experiments
which suggest that our libraries do indeed enable programmers to achieve efficient performance in a
portable way.
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1 Executive Summary

We consider the problem of deploying distributed Erlang applications on large heterogeneous clusters
of machines so as to achieve good performance in a portable way.

We propose two methods which programs can use to achieve this. Firstly we look at the notion
of node attributes, which allow an application to examine the properties of remote nodes in order to
select one on which to spawn a process. Secondly, we consider a notion of communication distance:
this provides a model of communication latencies in a network, enabling an application to select nodes
in such a way as to facilitate efficient communication.

We have developed libraries which implement these ideas, and have performed some experimental
validation. For attributes, we have modified one of our existing benchmarks to use attributes in order
to spawn remote processes on suitable nodes, and have shown that doing so provides considerably
better performance than random node selection. For communication distances, we have carried out
a detailed empirical investigation of communication times on a number of systems on different scales,
and our results suggest that in general our model gives a simple but effective description of hierarchies
of communication times in real systems.

The techniques described here are complementary to the s group concept described in earlier WP3
deliverables [REL12a, REL13a, REL13b, REL14]. S groups partition the nodes in a distributed Erlang
system so as to reduce the number of inter-node connections, and hence the amount of communication
required to keep nodes informed about the state of the system. The libraries described in the present
document facilitate node selection from arbitrary sets of nodes: they can thus be used either in a
stand-alone manner, or if s groups are in use they can be used to select nodes from particular s groups.

2 Introduction

When deploying applications written in Erlang (or some other language) on large distributed systems,
difficulties emerge which do not arise in smaller systems. For example:

• The individual machines comprising the system may not all be the same: they may have differing
amounts of RAM, different software installed, and so on.

• Communication times may be non-uniform: it may take considerably longer to send a message
from machine A to machine B, than it does to send a message from machine C to machine D.
This will be particularly important in large distributed applications, where communication times
may begin to exceed the time required for individual processes to carry out their computations,
and hence will start to dominate overall execution time.

These factors will make it difficult to deploy applications, especially in a portable manner. A program-
mer may be able to use system-specific knowledge to decide where to spawn processes so as to enable
an application to run efficiently, but if the application is then deployed on a different system (or if the
structure of the system changes as nodes fail or new nodes are added) this knowledge could become
useless. This problem could become especially pernicious if the deployment strategy is built into the
code of the application.

In order to address these difficulties, we propose a notion of semi-explicit placement, where the pro-
grammer selects nodes on which to spawn processes based on run-time information about the properties
of the nodes (and of the overall system) rather than selecting nodes explicitly based on system-specific
knowledge. For example, if a process performs a lot of computation one would like to spawn it on a
node with a lot of computation power, or if two processes are likely to communicate a lot then it would
be desirable to spawn them on a pair of nodes which communicate quickly.
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We have implemented two Erlang libraries which address the problems outlined above. The first
deals with node attributes, which describe the properties of individual Erlang nodes (and the physical
machines on which they run). The second deals with a notion of communication distances which models
the communication times between nodes in a distributed system.

We describe the theory, implementation, and validation of these ideas in the next two sections, then
discuss some issues which our initial experiences have brought to light.

2.1 Partner Contributions

The principal contributor to the work described here was the University of Glasgow. EDF provided
access to their Athos cluster, and there was considerable interaction with them regarding the usage and
behaviour of the cluster. The University of Uppsala also provided access to their TINTIN cluster, but
our use of this was minimal. Ericsson and Uppsala provided useful help with in relation to the behaviour
of various Erlang VM versions; the details of this are not discussed here (see [REL15c] instead), but
this was helpful in interpreting our experimental results.

2.2 Relation to other RELEASE technologies

SD Erlang. Earlier deliverables [REL12a, REL13a, REL13b] have described s groups, which partition
the nodes in a distributed Erlang system and improve scalability by restricting the scope of “global”
operations. The concepts we describe here are closely related, since the s group(s) to which a node
belongs are another factor which may influence its selection as a target for spawning a particular process.
In fact, in earlier documents we envisaged a single choose nodes function which would allow one to
select nodes based on s groups, attributes, or distances (or a combination of these): see [REL13a, §4].

Our present (preliminary) implementation has diverged somewhat from our earlier proposals, and
we have not integrated the attribute and distance properties with s groups. This has the advantage that
our standalone libraries can be used with any version of Erlang/OTP (not just the RELEASE version),
but has the disadvantage that one might now need to call functions from several different libraries to
select a node, adding some overhead. For example, we might ask for a list of all the nodes in a particular
s group, then call another function to obtain a subset of these satisfying some distance criterion, then
call another function to select nodes from the new subset which have particular attributes; a single
integrated choose nodes function would allow one to do all of these things with a one function call.
We have not yet used all of the selection features (s groups, attributes, distances) in combination,
so this has not been problematic; however, a fully realistic design would require some more thought.
See §3.5.3 for more on this.

WombatOAM. WombatOAM [REL12b, REL13c, REL15a] is a (closed-source, commercial) product
of Erlang Solutions Ltd which is used for deploying and managing Erlang applications on large dis-
tributed systems, either physical or cloud-based. Wombat can collect so-called metrics from the nodes
which it is managing [REL12b, §4.2.2]. Metrics are properties of Erlang VM: for example, sizes of run
queues, numbers of processes, numbers of atoms, and so on. There are about 90 built-in metrics, and
users can define their own, for example by using the Folsom [Bou] or Exometer [Feu] libraries. Wom-
bat uses metrics for monitoring the behaviour of Erlang nodes: someone using Wombat to manage a
distributed Erlang application can ask for information about metrics, plot graphs of them, and so on.

Wombat’s metrics are closely related to the attributes described below, but our attribute values are
made available to other nodes in order to assist with process placement; in contrast, Wombat collects
metrics and does not make them easily available to the nodes which it is managing.

We have implemented a few built-in attributes for demonstration purposes, but we have left the
general process of defining attributes open-ended so that they could be defined by a programmer or
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supplied in the form of a library. Wombat’s metrics would be a good source of useful attributes, but
we have as yet made no attempt to interface our attribute library with Wombat.

SD-Mon. The SD-Mon tool developed at the University of Kent [REL15b] provides facilities for
monitoring running SD Erlang systems; among other things, it can collect statistics about the flow
of messages between nodes. This information could be useful in understanding the “communication
distances” between nodes which forms an important part of §4 below. We hope to investigate this
further in future work.

3 Node attributes

3.1 Defining and propagating attributes

This section describes an implementation of a library for managing attributes for Erlang nodes, and also
a choose nodes function which makes use of these attributes to select nodes with certain properties.
The implementation is contained in a library called attr.

3.1.1 Attributes

There are a large number of properties which may be of interest when selecting an Erlang node on
which to spawn a process. We divide these into static and dynamic attributes.

Static attributes describe properties of a node which are not expected to change during the lifetime
of an Erlang application. Some possibilities are

• The operating system type and version.

• The amount of RAM available.

• The number of cores used by the VM.

• Availability of other hardware features such as specialised floating point units or GPUs.

• Availability of software features, such as particular libraries. A specific example of this is that
the Erlang crypto library requires a C library from OpenSSL versions later than 0.9.8. We have
used a number of platforms where sufficiently recent OpenSSL versions have not been installed,
and this leads to run-time failures of Erlang applications which use functions from crypto.

• Access to shared filesystems. One reason for this might be that an application may wish to use
Erlang’s DETS tables (which are are stored on disk), and thus if a number of VMs all wish to
access the same table then they must all be able to access the same filesystem. This may be
possible if all of the VMs are running in machines in the same cluster, but not if they’re running
on different clusters.

On the other hand dynamic attributes describe properties which are expected to vary during program
execution; for example:

• The load on the physical machine as a whole (including other users’ processes).

• The number of Erlang processes running in the VM.

• The amount of memory which is currently available.

• Whether a particular type of Erlang process is currently running on the machine. One might
want to spawn a process on a VM which is already running some other type of process, or one
might wish to avoid competing with a CPU-hungry process.
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3.1.2 Propagation strategy

One of the fundamental properties of attributes is that (in our use-cases at least) they should be
available to other VMs, so that a suitable machine can be selected to spawn a process which has special
requirements. The question then arises of how attributes should be propagated through a network.
The technique adopted in the present (prototype) implementation is to equip each Erlang node with a
small server which maintains a database of attributes. When a process wishes to select another node
to spawn a process on, it queries the nodes it’s interested in and asks for the values of the attributes
involved in the selection criterion. The servers on these nodes return the attribute values to the original
node, which then makes a choice according to the information which it has received. We will discuss
the merits and demerits of this approach later on, and suggest extensions and alternatives.

3.1.3 Attribute server

Attributes are stored in an attribute table on each node. Our current implementation uses an ETS
table for this, although Erlang’s recently-introduced maps might be a more lightweight alternative.
The attribute table contains two types of entry:

• Static attributes are stored as name-value pairs, for example {num_cpus, 4} or {kernel_version,
{3,11,0,12}}. The first entry is an Erlang atom, and the second is an arbitrary Erlang term
(typically a number, string, or tuple).

• Dynamic attributes are represented by tuples of the form {dynamic, {M,F}}. Here M is the
name of a module and F is the name of a zero-argument function in M . When a dynamic
attribute is looked up, the function M:F () is evaluated and its result is returned as the value of
the attribute.

We also allow dynamic attributes of the form {dynamic,{M,F,A}} where A is a list of arguments.

The attribute table is managed by a process which is registered with the local name attr server.
Remote nodes can request information about attributes by evaluating a term of the form

{attr_server, Node} ! {self(), {report, Key, AttrNames}}.

Here AttrNames is a list of attribute names and Key is an Erlang reference (see make_ref/0) which is
used to match responses with requests. When the server receives a request of this form, it looks up all
of the specified attributes and sends back a message containing the attribute names and their values. If
an attribute cannot be found, or if there is some problem in evaluating a dynamic attribute, the atom
undefined is returned as the value of the attribute.

3.2 Populating the attribute table

3.2.1 Configuration File

How do the attributes get into the attribute table? The attribute server can be started by calling
attr:start(ConfigFile) where ConfigFile is a string containing the name of a configuration file,
which in turn contains an Erlang list of attributes. For example, a configuration file might contain

[{num_cpus, 4},

{hyperthreading, 2},

{cpu_speed, 2994.655},

{mem_total, 3203368},

{os, "Linux"},
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{kernel_version, {3,11,0,12}},

{num_erlang_processes, {dynamic, {erlang, system_info,

[process_count]}}

].

The final entry here is a dynamic attribute which evaluates erlang:system_info (process_count):
this returns the total number of processes existing on the node at the current point in time.

We also provide functions insert_attr(attrname, AttrValue), update_attr(attrname, AttrValue)

and delete_attr(attrname) which can be used to modify attributes during program execution; one
specific use of these would be for a node to advertise the fact that it is running a particular type of
process (but see §5.1.4 below for a discussion of a potential problem with this strategy).

This scheme is completely extensible. Users can define arbitrary static and dynamic attributes. For
dynamic attributes, they can even use functions from their own libraries (although caution should be
exercised here since an attribute which takes a long time to calculate could slow things down; also, an
attribute whose evaluation never terminates would cause the server to become locked up).

Discovering static attributes automatically. Many static properties of the system can be discov-
ered automatically, for example by examining system files. The attr library includes a mechanism for
specifying such attributes in the configuration file by means of terms of the form {automatic, {M,F}}

and {automatic, {M,F,A}}, where the given functions are evaluated once just after the configuration
file is read, with the resulting values being stored in the attribute table in the same way as normal
static attributes.

Non-instantaneous attribute values. When a dynamic attribute is queried, the related function
is called and the result is returned. This will typically return the value of the attribute at a particular
moment, whereas in some cases it might be desirable to have a value averaged over some time period.
For example, it might be useful to know the average number of Erlang processes running on a node
during the last five minutes. In some cases, the attribute may in fact be implemented by calling
some system function which already performs such averaging: for example, see the built-in loadavg15

function described in the next section. In other cases, a user might want to implement their own non-
instantaneous attributes. This can in fact be done using the automatic attributes described above:
one could specify a function which would spawn a process which would then run at regular intervals
and use the update_attr function to modify the current value of the relevant attribute. This is not
how we intend automatic attributes to be used, and it might be worth extending the attr library to
include explicit support for non-instantaneous attributes.

3.2.2 Built-in attributes

As mentioned above, many system properties can be discovered automatically, for example by examining
files in the proc filesystem on Linux, or by using Erlang functions such as erlang:system_info,
erlang:statistics, or functions in the os Erlang kernel library.

As an experiment, we have implemented a small number of useful attributes of this form which are
automatically loaded when the attribute server is started. Most of these are kept in a library called
dynattr. The built-in attributes are loaded before the contents of the configuration file, and will be
overridden by user-defined versions. The attribute server can also be started without a configuration
file, by calling attr:start(); in this case, only the built-in attributes will be loaded. One can also call
attr:start(nobuiltins) or attr:start(nobuiltins, ConfigFile) to omit the built-in attributes.

The current built-in attributes are described in Tables 1 and 2.
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Attribute name Value

os_type This calls os:type(), which returns a pair such as {unix, linux} giving the family
(either unix or win32) and type of the operating system.

os_version This calls os:version() which will return a tuple or string containing the OS
version.

otp_release This calls erlang:system_info(otp_release) to get the OTP version.
vm_num_processors This calls erlang:system_info(logical_processors_available) to get the

number of processors available to the VM. This may be less than the total number
of processors on the physical machine if the VM is restricted to use some subset of
the processors.

mem_total Total memory on the system (in kB), found in /proc/meminfo.

Table 1: Built-in static attributes

Attribute name Value

cpu_speed Current speed (in GHz) of the first CPU , as found in /proc/cpuinfo.
mem_free Current free memory (kB) , from /proc/meminfo.
loadavg1 System load average over last minute, from /proc/loadavg. The value is a float

between 0 and 1: see man proc and man uptime for details.
loadavg5 Load average over last 5 minutes.
loadavg15 Load average over last 15 minutes.
kernel_entities Numbers of Linux scheduling entities (processes/threads), from /proc/loadavg.

This returns a pair {R,E}, where R is the number of currently runnable entities
and E is the total number of entities on the system.

num_erlang_processes Number of Erlang processes currently existing on the VM, from
erlang:system_info(process_count).

Table 2: Built-in dynamic attributes

This is just a sample implementation for experimental purposes. However, it does show that quite
a large range of properties can be expressed by attributes. Note however that many of the attributes
(in particular system load) are found by consulting files in the Linux proc filesystem. This definitely
won’t work on Windows (you’ll get undefined if you try to look up these attributes), and perhaps not
on other Unix implementations where the precise format of the files may differ.

3.3 Querying attributes and choosing nodes

3.3.1 Querying attributes

The attr library also contains a function called request_attrs which can be used to query a list of
nodes for the values of specified attributes. This is done by a call of the form request_attrs (Nodes,

AttrNames) where Nodes is a list of node names and AttrNames is a list of attribute names, for example

request_attrs([vm1@osiris, vm1@bwlf01, vm2@bwlf02],

[loadavg1, cpu_speed])

The function returns a list of the form [NodeName, [{AttrName, AttrValue}]].

3.3.2 Choosing nodes

We have used the request_attrs function to implement a simple choose_nodes function. This takes
a list of nodes and a list of predicates which those nodes must satisfy. For example:
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choose_nodes(Nodes, [{cpu_speed, ge, 2000},

{loadavg5, le, 0.6},

{vm_num_processors, ge, 4}])

The function calls request_attrs to get the values of the required attributes on the specified machines,
then evaluates the predicates (discarding attributes whose values are undefined) and returns the subset
of the nodes for which all of the predicates are satisfied. See Appendix A for a sample session on the
Heriot-Watt network.

We currently provide two types of predicates. The first carries out comparisons of attribute values
against constants: {AttrName, op, Const}. We currently have the usual six comparison operators:
eq, ne, lt, le, gt, and ge. These correspond to the Erlang operators ==, /=, <, =<, >, and >=,
respectively. These operators can compare any two Erlang terms, although you sometimes have to be
careful; for example, [1,2,3,4] < [1,2,4] but {1,2,3,4} > {1,2,4}. Note also that we’ve used ==

and /= instead of =:= and =/= so that we get the expected results when comparing floats and integers.
The second type of predicate checks boolean values: we can say {AttrName, true} and {AttrName,

false} (or {AttrName, yes} and {AttrName, no}).
This is a fairly minimal predicate grammar, implemented here as a proof of concept. It should

suffice for many purposes, but it wouldn’t be hard to extend it (by adding disjunction, for example) if
necessary.

3.4 Experimental validation

As a validation experiment, we ran a modified version of our multilevel Ant Colony Optimisation
application, ML-ACO. This is described in some detail in [REL15c, §3.2.2], but we recapitulate here
for convenience.

3.4.1 Multilevel ACO

The ML-ACO application is structured as a tree: see Figure 1. There is a single master node M , and a
number of submaster nodes S and colony nodes C. The colony nodes independently construct solutions
to a certain problem, and after a certain number of iterations report their solutions to a submaster
node on the level above. Each submaster chooses the best solution from its children and passes that
to the level above, and so on. Eventually, the master node selects the best solution from its children,
which is the best solution from among all of the colony nodes. This solution is then sent back down the
tree to the colony nodes, which use it to guide their search for new improved solutions. This process is
repeated a number of times, after which the master reports its current best solution and the application
terminates.

M

S S S

S S S

C C C C C C C C C

Figure 1: Multilevel ACO
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The colony nodes perform a considerable amount of mathematical computation (and themselves have
a number of ant processes constructing solutions concurrently), but the master and submaster nodes
don’t do much work. It would therefore seem reasonable to run colonies on VMs with lots of processors
and master and submaster nodes on colonies with fewer processors.

3.4.2 Attribute-aware ML-ACO

We modified ML-ACO so that it used attributes to spawn submasters on small Erlang nodes (at most
4 processors) and colonies on large ones (more than 4 processors). This was run on 256 compute nodes
in EDF’s Athos cluster; three machines each had 24 small VMs running (one pinned to each core) and
the other 253 had a single large VM. We ran the modified ML-ACO version with the VMs presented
in random order, gradually increasing the number of ants from 1 to 80 ants. For each number of ants,
the program was run 5 times using attributes for placement and 5 times without attributes (processes
were just spawned on nodes in the random order in which they were presented to the application).

Figure 2 shows the resulting execution times, and we see that the program performs substantially
better when attributes are used for placement. This is unsurprising, since when attributes aren’t used,
colony nodes will often be placed on Erlang VMs which are only using one core instead of 24. These
colonies will take much longer to execute than ones on VMs using lots of cores, and this slows the
entire program down. This is confirmed by Figure 3, which shows the ratio of execution times without
attributes to those with attributes. For small numbers of ants, the performance of the attribute-unaware
version is similar to the attribute-aware version, but the ratio become progressively worse as the number
of ants (and hence the number of concurrent processes) in the VM increases. We expect that the ratio
would asymptotically approach 24 with very large numbers of ants, but we did not have time to check
this.
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Figure 3: Ratio of execution times

This is admittedly a rather artificial example, since the effect of introducing small VMs is quite pre-
dictable. However, it does demonstrate that the use of node attributes can improve performance in a
heterogeneous network, and that this can be done without any information about the network being
coded into the program. Ideally we would have tested the use of attributes with a large and complex
program such as Sim-Diasca, but unfortunately time constraints precluded this.

3.5 Discussion

3.5.1 Attribute Propagation Strategy

We have adopted a very simple strategy here: when a node wants to know the value of an attribute on
another node, it just asks for it. Another approach would be to have nodes broadcast their attributes
to all the other nodes they’re connected to. Indeed, in [REL12a, §6.2] and [REL13a, §4] we described
a design and an initial implementation of basic attributes using this strategy; however, our present
approach seems to have several advantages:

• Information is only transmitted when it’s required, and only to nodes that require it. It’s pos-
sible that in a real system, only a limited number of nodes would actually be spawning remote
processes, and they’re the only ones which would need to receive attribute information. Perhaps
one could have a model where nodes have to register to receive attribute information (and when
we’re considering s groups we could imagine each group having a single node which collects and
distributes attribute information).

• Only those attributes which are required are computed and transmitted. We presumably don’t
want thousands of nodes broadcasting their load average to everyone once a minute if it’s seldom
required.
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• In this scheme, information about dynamic attributes is always fresh. If attribute information has
to be broadcast then it will sometimes be out of date unless you’re broadcasting it regularly, which
might lead to too much network activity. Also, some overhead is incurred in finding the value
of dynamic attributes, and this would be adding extra load to machines if we had to calculate
dynamic attributes at frequent intervals.

On the other hand, there are some disadvantages to asking for attributes when you need them:

• If we’re spawning a lot of processes, we might be making a lot of requests to the attribute servers,
adding load to the target machines. There’s a tension between this factor and the danger of
flooding the network with too many broadcast attributes.

• If there’s a lot of latency in the network (or just between the machine which is making the
request and a single member of the list of machines it’s querying) then request_attrs and
hence choose_nodes will take a long time every time it’s called. This could slow things down
considerably in comparison to the case where information is broadcast regularly.

It may be possible to find some middle ground by having request_attrs cache responses (in an ETS
table, for example). Once a static attribute has been retrieved once, it would never be necessary to ask
for it again (although one might end up with attribute information belonging to defunct machines, so
it might be worth invalidating all of the static attributes once every few hours). Dynamic attributes
could be saved with a timestamp, and if they’ve been in the cache too long then we could ask for their
value again. The time for which an attribute is valid could even vary with the attribute: we probably
want to discard the 1-minute load average quite quickly, but we could keep the 15-minute load average
for a while.

Given more time, we would have liked to implement a system where attributes are broadcast across
the network as well, and to see how this method compares with the one we have already implemented.
It is possible that the second approach would be more effective in certain situations, but this would
depend on the properties of the application.

3.5.2 Reliability

The present implementation is fairly simplistic, and makes no pretence to reliability. If a node’s
attribute server crashes for some reason then there’s no attempt to restart it. There are also problems
in querying such nodes. At the moment, request_attrs times out if it has to wait too long: if nothing
happens for 5 seconds after receiving its most recent message, it just times out and returns whatever
attributes it’s already received. If an attribute server has gone down then request_attrs will take at
least 5 seconds every time it requests information from a list of nodes which contains a bad one. On
the other hand, timing out runs the risk of missing a response from a live node which is taking a long
time to respond.

See §5.1.4 below for some related points.

3.5.3 Attributes and s groups

In earlier deliverables ([REL12a, REL13a, REL13b, REL14]), , we have described and implemented
s groups, which are important for improving scalability of distributed Erlang applications.

In this document we haven’t considered the interaction of node attributes and s groups; however it
shouldn’t be too difficult to integrate the two. The current choose_node function takes a list of Erlang
nodes as its first argument, so one can easily supply it with the members of an s group, obtained using
the s_group:own_nodes function for example. One could modify attr:choose_node to take an s group
name as a parameter, but this would make it quite tightly coupled to the s_group library, which is not
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part of the standard Erlang/OTP distribution; our current attr library can be used with any Erlang
version.

4 Communication Distances

In many modern distributed computer installations, the inter-node communication infrastructure has
some kind of hierarchical structure. Within a particular organisation, machines in a cluster may be
connected together by a high-speed network, and this network may be in turn be connected to other
machines within the organisation via a network with slower communication. If the network spans
several sites in different geographical locations, then communication between sites may be slower still.
Connecting to machines in a different organisation may introduce further delays.

On a smaller scale, communication between processing units within an SMP machine may be sim-
ilarly hierarchical: inter-processor communication rates may depend on the level of cache which two
processors share, or whether the processors are located on the same socket.

In this section we describe an implementation of an abstract model of communication times which
can be used for process placement in systems with this type of hierarchical communication structure.
We use an idea of P. Maier [MST14].

Suppose we have a collection of Erlang nodes. A useful way to think about inter-node communication
times is to think of the nodes as points in a space and to regard communication times as distances
between these points. An appropriate mathematical model is the notion of a metric space (see [HS65,
6.12] or [Rud76, 2.15], for example).

4.1 Metric and ultrametric spaces

Definition. A metric space is a set X together with a function

d : X ×X → R+ = {x ∈ R : x ≥ 0}

such that, for all x, y, z ∈ X,

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

The inequality (iii) is called the triangle inequality. If we replace (iii) with

(iii′) d(x, z) ≤ max{d(x, y), d(y, z)}

then we obtain the definition of an ultrametric space [Kra44] (and (iii′) is called the ultrametric in-
equality). It is not hard to see that every ultrametric space is a metric space.

Metric spaces give a very general model of distances, and admit generalisations of many concepts
from standard geometry. One specific concept we will make use of is the closed disc.

Definition. Let X be a metric space. For x ∈ X and r ∈ R+, the closed disc of radius r with centre
x is

D(x, r) = {y ∈ X : d(x, y) ≤ r}.
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4.2 Trees and ultrametric spaces

Given a tree (with an arbitrary amount of branching), we can define a metric (in fact, an ultrametric)
on its set of leaves by

d(x, y) =

{
0 if x = y

2−`(x,y) if x 6= y.

where `(x, y) is the length of the longest path which is shared by the paths from the root to x and y:
see Figure 4. We leave it as an exercise to show that d is in fact an ultrametric.

h i j

e f ga b c d k l m

(a) d(b, c) = 1
4

h i j

e f ga b c d k l m

(b) d(b, g) = 1
2

h i j

e f ga b c d k l m

(c) d(b, k) = 1

Figure 4: Distances between nodes
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Figure 5 shows what closed discs look like with respect to the metric d. This diagram suggests why
this particular metric might be useful for studying communication distances: given a (computing)
node in some hierarchical communication system, the various closed discs contain nodes which are in
the same subclusters at various levels, and hence which might be expected to have similar inter-node
communication times.

h i j

e f ga b c d k l m

(a) D(b, 0.3)

h i j

e f ga b c d k l m

(b) D(b, 0.8)

h i j

e f ga b c d k l m

(c) D(b, 1)

Figure 5: Closed discs around node b

4.2.1 Implementation

We have implemented a simple Erlang library which carries out calculations using ultrametric distances.
It takes as input a tree (represented as an Erlang term) which describes the structure of a network of
Erlang VMs, and then uses closed discs to describe VMs at various distances. The library includes a
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choose nodes function similar to that in the attribute library: one can select machines by making calls
of the type

choose_nodes (Nodes, {dist, le, 0.2})

or

choose_nodes (Nodes, {dist, gt, 0.8})

to get machines which are close or far away, respectively. Eventually we intend to merge this library
with the attribute library, but we have not yet done this.

4.3 Comparing the model with reality

Our model is extremely abstract, and we claim that this is in fact an advantage. Given a computer net-
work with a hierarchical communication structure, we can draw a tree which reflects the communication
hierarchy and use its abstract metric properties to reason about communication times, without having
to know details about the physical structure of the network, including actual communication times.

The question arises of whether our model might be too abstract. If we make decisions based
on the abstract hierarchical structure of the network, can we be sure that they bear a reasonable
correspondence to real communication times?

In an attempt to answer this question, we have carried out some empirical studies of Erlang com-
munication times on real-life systems. Our technique has been to look at the time taken for messages
to pass between pairs of nodes in distributed Erlang systems and then to use statistical techniques to
study how nodes cluster together as determined by communication times. We can then compare the
outcome of the clustering process with our abstract view of the system to see how they correspond.

We do not expect actual communication times to satisfy the metric space axioms precisely. For
example, messages sent from a node to itself will not be sent instantaneously (see axiom (i)); however,
it is plausible that such messages will be significantly faster than messages between different nodes.
Similarly, communication times will probably not be precisely symmetric (axiom (ii)), but we would
expect messages times from node A to node B to be very similar to those from B to A. These
expectations are confirmed by the data from the experiments described below.

4.3.1 Empirical validation

We have implemented a small Erlang application with two components:

• A server which waits for messages and then replies immediately to the sender.

• A client which sends a large number of messages to the server and then calculates the average
time between sending a message and receiving a reply, using the functions in the Erlang timer

module.

Given a network of machines, we run the client and server on every pair of machines to determine average
communication times. We then apply statistical methods to detect clusters within the network.

We view the machines in the network as points in a space and the communication times as a measure
of distance between the points. This view is distinct from our earlier abstract view involving metric
spaces. Here we simply have empirical data and we have no guarantee that it will satisfy any of the
axioms of metric spaces. The point of our experiments is to see how closely our empirical data in fact
conforms (or fails to conform) to our abstract model.
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4.3.2 Cluster Analysis

To study the hierarchical structure of our results we use a technique known as hierarchical agglomerative
clustering ([ELLS11, Chapter 4], [KR90]). This collects data points into clusters according to how close
together they are. Furthermore, the clusters are arranged hierarchically, with small clusters grouped
together to form larger ones, and so on.

The basic technique is as follows:

• Start off by placing every point in a cluster of its own.

• Look for the two clusters which are closest together and merge them to form a large cluster.

• Repeat the previous step until we have only a single cluster.

This process is illustrated in Figure 6.
A question arises here: we know the distance between two points (that’s our basic data), but how

do we measure the distance between two clusters? Various methods can be used. For example, given
two clusters A and B, any of the following could be used:

d(A,B) = max{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = mean{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}

All of these methods (and others) are used in the clustering literature (see [ELLS11] or [KR90], for
example), and all are useful in different situations. We have chosen the first method, which is known
as the complete linkage method: d(A,B) = max{d(a, b) : a ∈ A, b ∈ B}. In terms of communication
times, this tells us what the worst-case communication time between a node in A and a node in B is;
this is reasonable from our point of view because we wish to have upper bounds on communication
time.

The hierarchical structure of clusters and subclusters can be displayed in a type of diagram called a
dendrogram. This is a tree which has one node for each cluster, with the children of a cluster being its
subclusters. Figure 7 shows the dendrogram corresponding to Figure 6. The dendrogram was obtained
using the hclust command in the R system for statistical analysis and visualisation [R C14], using
distances between points measured directly from Figure 6. The dendrogram describes the hierarchical
nested structure seen at the end of Figure 6, with the height of the internal nodes of the dendrogram
reflecting the distances between the corresponding subclusters.
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Figure 6: Hierarchical clustering
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Figure 7: Corresponding dendrogram

4.4 Measurements

We ran our distance-measuring Erlang application on several systems. Firstly we used it on a small
scale to look at inter-processor communication times within a multicore system, then we used it on a
larger scale to look at inter-node communication times on two sizeable networks.

Our technique was to run Erlang VMs on each of the components of the system (processing units
within a single SMP machine, individual physical machines within a network), and measure the average
time taken to send several messages back and forth between each pair of VMs. More precisely, our basic
unit of measurement was the time taken to send 100 messages back and forth: we chose this number
because the time taken for a single message can be close to the one-microsecond resolution of Erlang’s
timer:tc function, so it’s difficult to get precise times for single messages.

For each pair of VMs, we actually measured the mean time over 100 such 100-message batches, and
used that as our final data. This was an attempt to make sure that our figures were representative:
with a smaller number of datapoints, there was a danger that (for example) one of the VMs might have
been swapped out by the operating system when the messages arrived, adding an unusual delay. By
sending 100 batches we hoped to mitigate such effects.

We also tried two different strategies. In the first, we ran a single process on VM number 1 which
broadcast messages to all other VMs in parallel; once this had finished, we ran a similar process on
VM number 2, and then on VM number 3, and so on. In our second strategy, we ran such processes
on all VMs concurrently, so that all pairs of VMs were communicating simultaneously. We found that
this gave more interesting results, because high traffic densities made irregularities in communication
times more apparent.

It should be pointed out that running multiple VMs on the same physical machine is not obviously
a sensible thing to do: within a single VM, inter-process messages are transmitted directly within the
VM, by copying data between VM data-structures. This is something like 40 times faster than TCP/IP
communication between two VMs on the same physical machine, and hence having more than one VM
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would appear to lead to inefficiency. However, this is not necessarily the case. If a VM doesn’t require
too many resources, then pinning it to some subset of the cores (on a single socket, for example) might
enable it to benefit from the same locality effects that we have seen above, and hence to operate more
efficiently than if it is using all of the cores. Whether or not this is desirable would depend on the
application being run.

4.4.1 Eight core machine

Firstly, we ran our experiment on an 8-core SMP machine, with one Erlang VM pinned to each core.
The CPU was an Intel Xeon E5504, whose structure is shown in Figure 8. A dendrogram obtained
from our measurements is shown in Figure 9.

Figure 8: Eight-core machine (two sockets like this)

4 5 6 7

0 1

2 3

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

H
ei

gh
t

Figure 9: Dendrogram for eight-core machine

The structure of the dendrogram (and hence the communication times from which it was derived)
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reflects the NUMA structure of the machine very closely. Erlang uses TCP/IP for inter-VM communi-
cations, and when the VMs are on the same host, this will take place via the Application layer of the
TCP/IP protocol [Bra89], where messages are transmitted within memory by the OS. This means that
there will be very little overhead, so communication times are strongly affected by the cache structure
of the machine.

4.4.2 Forty-eight core machine

We also ran our experiment on a machine with 48 AMD Opteron 6348 processors. The structure of the
machine is shown in Figure 10 and a dendrogram of our results in Figure 11. Once again, we see that
the communication times have a strongly hierarchical structure corresponding to the NUMA structure
of the physical machine.

Figure 10: Forty-eight-core machine (four sockets like this)
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Figure 11: Dendrogram for forty-eight-core machine
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4.4.3 Departmental network

We also ran our tests on some machines in a departmental network at Heriot-Watt University. We used
39 machines, including a 34-node Beowulf cluster. The results are shown in Figure 12.
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Figure 12: Dendrogram for departmental network

The results are less clear-cut here. The dendrogram picks out the Beowulf cluster, but it’s not obvious
what is happening with the other machines.
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4.4.4 EDF’s Athos cluster

Our final test-case was EDF’s Athos cluster. Athos has 776 compute nodes, called atcn001–atcn776:
each of these has 64GB of RAM and 24 Intel Xeon E5-2697 v2 processors. In the RELEASE project we
have a simultaneous access to up to 256 nodes (6144 cores) for up to 8 hours at a time. Users interact
with the cluster via a front-end node and initially have no access to any of the compute nodes. Access to
the compute nodes is obtained via the SLURM workload manager (see http://slurm.schedmd.com/),
either interactively or via a batch script which specifies how many nodes are required, and for how long.
Jobs wait in a queue until sufficient resources are available, and then SLURM allocates a number of
compute nodes, which then become accessible (via ssh, for example). The user has exclusive access to
these machines, and no-one else’s code will be running at the same time. Fragmentation issues mean
that jobs are not usually allocated a single contiguous block of machines, but rather some subset scat-
tered through the cluster: for example atcn[127-144,163-180,217-288,487-504,537-648,667-684].
These will be interspersed with machines allocated to other users: see Figure 13, which shows a screen-
shot from SLURM’s smap command at a time when the Athos cluster was fairly busy.

Figure 13: SLURM allocation

The area at the top contains a string of characters, one for each machine in the cluster (wrapping round
at the end of lines in the usual way). Dots represent unallocated machines, and coloured alphanumeric
characters correspond to the jobs running on the machines; information about some of the jobs is shown
in the lower part of the figure, with usernames and job names obscured. Note for example how the jobs
labelled S and V are fragmented.

Users can request specific (and perhaps contiguous) node allocations, but it may take a long time
before the desired nodes are all free at once, leading to a very long wait in the SLURM queue.

Athos was somewhat problematic. As we shall see shortly, communication times were highly non-
uniform. We hypothesise that Athos communication takes place via a hierarchy of routers, but the
precise structure of the cluster is not publicly available. Furthermore, SLURM tends to allocate a
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different set of nodes to each job, so it is difficult to get repeatable results.
The next few figures illustrate the complicated communication structure that we have observed.

Figure 14 shows a dendrogram for communication times in a 256-node SLURM allocation on the
Athos cluster (the names of the machines are omitted because they are illegibly small). We can see
nine or ten distinct subclusters with fast intra-cluster communication, but with substantially slower
communication between the subclusters. However, it’s difficult to determine exactly what’s going on
due to the denseness of the diagram.
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Figure 14: Dendrogram for Athos cluster

In an effort to make the data more comprehensible, Figure 15 show four views from a three-
dimensional plot of the communication times. The x- and y- axes show the source and target nodes
(ie, the nodes which are sending and receiving messages, respectively), and there is one point for each
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pair of machines, whose z-coordinate represents the mean communication time observed between those
machines. These points are coloured according to the source machine, in an attempt to make the
perspective views easier to interpret. It is clear that communication times are highly quantised: for
some pairs of machines, the mean time taken to exchange 100 messages is on the order of 25ms, whereas
for others, it is over 800ms. This is a 32-fold difference.

Figure 15: Athos communication times
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Another plot of these times is shown in Figure 16. This is a heatmap, which is rather like an over-
head view of Figure 15, with points coloured according to communication times: red represents fast
communication, yellow and white slower communication.
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Figure 16: Heatmap for Athos communication times

Recall that SLURM usually allocates nodes in fragmented blocks: in this case, the allocation was
atcn[019-036,073-126,145-216,451-468,487-522,541-594,750-753]. It is tempting to suspect
that the block structure seen in Figure 16 corresponds to the blocks within the allocation, but this
is not quite the case. In Figure 17 we have added dotted lines to show where the breaks in the
allocation occur. We see that the breaks in the allocation correspond to some of the discontinuities in
the communication times, but not all of them. Furthermore, there are areas where nodes in different
blocks of the allocation communicate very quickly, for example the small red block at approximately
(250,70).
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Figure 17: Heatmap for Athos communication times (2)

There is certainly some dependence on the SLURM allocation. Plots obtained with different allocations
differ in detail, but are qualitatively very similar to the ones above.

Remark. It is worth noting that communication times vary with the amount of network traffic.
We also ran our test program with a different strategy, where one machine at a time would exchange
messages with all of the others, then the next machine would do the same thing, and so on; this involves
much less network traffic. Figure 18 shows a plot of some data obtained with this strategy during the
same SLURM job as above. The distribution is clearly much smoother, and all communication between
different machines takes between about 50ms and 60ms for 100 exchanges. This contrasts strongly with
the situation in Figure 15, where the mean communication time is much slower (585ms, as opposed
to 58ms); Oddly, some of the communication is actually faster in Figure 15, where about 10% of the
exchanges take between 20ms and 40ms.
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Figure 18: Athos communication times (low network traffic)

Discussion. The earlier figures show that Athos does have a very hierarchical communication struc-
ture (at least when there is a lot of network traffic), but we have been unable to determine exactly
what that structure is. Information about the construction of the network is not available to us, but we
hypothesise that there is some tree-shaped hierarchy of routers. When there’s a lot of network traffic
(as there was in these experiments, where all nodes were talking to all others simultaneously) this would
mean that some messages would have to travel up and back down through several layers of routers,
and some of the routers would become congested. There appears to be an extra complication that
node names don’t correspond cleanly to the hierarchical structure of the network; this would explain
the off-diagonal areas of fast communication in the heatmaps above. The situation is made even worse
by the fact that we can’t observe the whole network at once: we can only look through the 256-node
windows supplied by SLURM.

This is somewhat problematic. There are clearly different levels of communication times, and this
is exactly what our model is supposed to deal with. Our planned strategy is to look at the structure of
the network, use it to write down a tree, and then use the ultrametric structure on the tree to aid in
process placement; unfortunately, in this case we aren’t able to write down the required tree because
the structure of the network is difficult to observe.

4.5 Determining cluster structure automatically

We have a plan to deal with these difficulties. At the start of a SLURM job on Athos, we could run our
test program to gather timing data, then perform cluster analysis to obtain a dendrogram. This could
then be used as input to our metric space method, which could then be used for process placement.
Standard cluster analysis is not quite suitable for this, because it always creates binary trees: looking
again at the Athos dendrogram in Figure 14, it can be seen that the clusters at the bottom of the
diagram consist of cascades of binary branches. Clearly, single clusters with multiple elements are what
is required.

We have implemented an algorithm which does this. This involves a slight modification of the
standard clustering algorithm described at the beginning of §4.3.2. Our algorithm involves a user-
defined threshold α ≥ 1, and proceeds as follows:



ICT-287510 (RELEASE) 27th March 2015 30

• Start off by placing every point in a cluster of its own.

• Look for the two clusters which are closest together and merge them to form a larger cluster K.

• Let δ = diam(K) = max{d(a, b) : a, b ∈ K}.

• Expand K by adding points x with d(x,K) ≤ αδ. This forms a cluster of roughly equidistant
points, the degree of roughness being determined by α.

• Repeat this process until we have only a single cluster. At each step, δ should be equal to the
diameter of the current version of K.

This produces a non-binary dendrogram of the type we require. This is a fairly simple extension of the
standard clustering algorithm, and one would expect that it would be well-known; however, we have
not yet been able to find a reference in the clustering literature (but see [BTH11], where considerably
more sophisticated methods are used to tackle problems of this type).

We have applied this method with various values of α to the Athos data in the previous section,
and the results are shown in Figures 19–25.

Unfortunately, R cannot render non-binary dendrograms of the type we have constructed here, so
we have had to resort to yet another visualisation, this time obtained by getting our clustering program
to produce output for the dot tool of the Graphviz package [GN00]. Elliptical nodes represent clusters
at the lowest levels, and contain the numbers of the relevant machines, together with the size of the
cluster and its diameter (ie, the maximum communication time between two nodes in the cluster).
Square nodes indicate higher level clusters (themselves formed from smaller clusters) and contain the
cluster’s diameter.

When α = 1.0 we are essentially reproducing the standard binary clustering algorithm, and we
obtain a dendrogram with one node for each machine (this corresponds to Figure 14).
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Figure 19: α = 1.0
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As we increase α, we start to form larger clusters. For low values of α, there tends to be too much
variation to collect pairs of machines with similar inter-machine communication times into a single
cluster, and we are left with single machines in clusters of their own.
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Figure 20: α = 1.3
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Figure 21: α = 1.4
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Figure 22: α = 1.5

When we reach α = 1.6, we obtain what may be thought of as the “real” cluster structure, with 10
small clusters corresponding to those seen in Figure 14. Increasing α still further, we start to lose
the higher-level subclusters, until at α = 2.5 we only have the low-level clusters, and have lost all of
the higher-level structure. For even bigger values of α, the algorithm becomes completely unable to
distinguish between the individual machines, and we end up with a graph consisting of a single large
cluster (Figure 26).
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Figure 23: α = 1.6
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Figure 24: α = 2.0
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Figure 26: α = 3.0

This algorithm is still not perfect: we have to make a subjective choice of a value of α which gives us
a satisfactory structure; furthermore, a single value of α may not be appropriate at all scales. There is
quite a lot of variation in communication times in the small clusters, so we need a largish value of α in
order to detect the clusters. However, variations at larger scales are more subtle, so there is a danger of
losing higher-level hierarchical structures with large values of α, as in Figures 24 and 25. The Bayesian
methods of [BTH11] might be helpful here, but we do not have an implementation of this.

Nonetheless, our algorithm (with, say, α ∈ [1.5, 2.0]) is able to detect the low-level clusters with
fast inter-machine communication times. Furthermore, our implementation has an alternative output
format (in the form of an Erlang term) which is suitable for use by our communication-distance library.

4.6 Experimental evaluation

We had hoped to perform experiments to test the validity of our methods, but lack of time has prevented
us from doing this. However, we will describe the experiment we had planned to carry out.

Consider the multi-level ACO application (ML-ACO) again (see §3.4.1). Recall that here we have
a tree of submaster nodes collecting results from colonies. Each submaster calculates the best result
from the subtree which it is managing, then passes this up the hierarchy, where another submaster
will compare it with results from other subtrees. Eventually all of these pass up the tree to the master
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node, which selects the globally-best solution. This is then propagated back down the tree to the colony
nodes.

Now different pairs of nodes can have different communication times, as we have seen above. If we
have a descending path through the tree where several submasters are a long way from their children
in communication terms, then a communication delay will be incurred at several points as messages
travel up and down the tree, leading to a slowdown in the overall execution times: see Figure 27, where
red edges represent slow communication.
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Figure 27: Bad placement

Clearly we wish to avoid this situation. It may not be possible to avoid some slow communication,
but we should try to avoid this happening more than once in each path through the tree: see Fig-
ure 28. With sufficient knowledge of communication distances, it should be possible to arrange process
placement so as to avoid long chains of slow communication.
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Figure 28: Good placement

Having implemented this, our plan was to run a SLURM job on Athos which would run our
communication-time-measuring program, then feed the output to our clustering algorithm to gener-
ate a description of the subnetwork allocated by SLURM, then use this as input to our distance-aware
ML-ACO program. The first two steps here are only required because we do not have a static descrip-
tion of the Athos network. We could also try this on a system of whose structure we do have a static
description, but we have as yet been unable to find a suitable candidate.

Postscript. We have in fact succeeded in getting some preliminary results from this experiment on
the Athos cluster. Unfortunately our results are both incomplete and inconclusive, and we will not
report the details here. We hope to continue with this work after the end of the project.
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5 Discussion

We have described two concepts which we believe will be useful for producing performance-portable
Erlang applications: node attributes and communication distances. Both of these can be used to help
in making a sensible choice of nodes to spawn processes on, and we have described libraries which make
it possible for applications to use these concepts without requiring system-specific information to be
embedded in their source code.

5.1 Practical issues

The libraries for attributes and communication distances described above are prototypes, and our
experience so far suggests several factors which it would be helpful to modify in libraries intended for
general use.

5.1.1 Concrete and abstract bounds

In practice it may be somewhat difficult to know what concrete bounds to use to make a choice of
nodes. For instance, at a particular time there may be no nodes satisfying {loadavg5, lt, 0.1} but
several satisfying {loadavg5, lt, 0.3}. For practical use it might be worth having predicates like
{loadavg5, low} and {cpu_speed, high} which would examine an entire list of candidate nodes and
select the ones whose attributes are relatively “good” in comparison with the majority.

Similarly, programmers should not have to know about explicit distances. Note that distances vary
with the depth of a network hierarchy: in a shallow network, the nearest node to a specified node
might be at a distance of 1

4 , whereas in a deeper network it could be at a distance of 1
32 . In order

to avoid this, we should provide the programmer with some abstractions such as {very_near, near,

far, very_far, anywhere}.

5.1.2 Conflicting constraints

Another issue is that a programmer may supply conflicting constraints. For example, one might ask
for a node which has a large number of cores and has a particular library installed, but it may not be
possible to satisfy both requirements at once. One could overcome this to some extent by (for example)
giving priority to the earlier constraints in a list. For debugging purposes, it could be useful to include
a mode in which such conflicts are reported at runtime.

5.1.3 Avoiding clashes when spawning processes

There may be some danger in using attributes to select nodes. If a large number of processes are
spawning other processes, there is a possibility that many of them may select the same node, and then
performance will suffer. This could be mitigated to some extent by making a random choice from a list
of suitable candidates, but there could be problems if there is a unique node which has some particularly
desirable properties. At some point it may be necessary to spawn processes on a suboptimal node, but
it’s not entirely clear how to do this in a portable manner.

5.1.4 Fault-tolerance

Our attribute scheme is highly-fault tolerant as long as no applications dynamically modify the at-
tributes of a node. Suppose that only static and built-in attributes are used: in the event of the
attribute server crashing, it can simply be restarted and all of the node attributes will be restored;
similarly, if an application process crashes then it can be restarted and the node attributes will be the
same as they were before the crash. However, if an application modifies the attributes (for example, to
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register the fact that it’s running on the node), then if the attribute server crashes, this information will
be lost; if the application crashes then the attribute server could be left with stale attributes belonging
to a defunct process. This suggests that allowing applications to modify node attributes may be a bad
idea.

5.1.5 Dynamic changes to network structure

Our current distance scheme depends on a static description of the network structure. In a long-
running system, it is likely that nodes will leave the system, or that new ones may join. We have some
preliminary ideas as to how to deal with this problem, but this will require further work.

6 Conclusions

Our experimental validation has been less comprehensive than we would have liked, but we believe that
we have demonstrated that attributes and communication distances can be useful in practice. We have
shown that the use of attributes can have substantial performance benefits in a realistic application.
Ideally we would like to validate our methods by applying them to a large real-world Erlang application
running on a number of different distributed systems.

Despite the fact that we haven’t validated the distance methods in the context of running Erlang
applications, we believe that our work shows the the ideas will be useful in distributed systems with
non-uniform communication times. Our examination of the Athos system and SMP machines shows
that hierarchical communication structures do appear in practice, and that communication times can
vary significantly according to the relative positions of nodes in the hierarchy. Our abstract model
clearly captures this type of structure, and hence should be well suited for deploying processes in such
a way as to take account of communication times. The benefit of the model is that it captures the
hierarchical structure while disregarding precise details of timing, and can be constructed from a fairly
high-level view of the system (assuming such a view is available).

We intend to carry on investigating these ideas beyond the end of the RELEASE project. Commu-
nication distances in particular are a promising idea, and may have general applicability in the area of
distributed systems.

A Appendix: Querying attributes in a real system

This section contains a demonstration of the attr library in action, with the aim of giving the reader
a feel for its behaviour.

We ran Erlang VMs on a number of machines at Heriot-Watt University. The machines were
called bwlf01, bwlf02, bwlf03, bwlf04, bwlf10, bwlf15, bwlf16, bwlf17, bwlf18, bwlf19, bwlf20,
bwlf32, bwlf32, bwlf33, bwlf34, amaterasu, osiris, persephone, cantor, oberon, and jove (with
the exception of jove, these are the same machines considered in §4.4.3). The bwlfNN machines are
part of a Beowulf cluster, and the others are non-Beowulf machines connected to the departmental
network.

There was one Erlang VM called vm1 on all of the machines except for bwlf10, which had three
VMs pinned to subsets of its 8 processors (vm1 on core 0, vm2 on cores 1 and 2, and vm3 on cores 3–8).

There’s an extract from an Erlang session querying the attributes of these VMs below. Some lines
have been omitted because of typing errors or uninteresting results. The VMs were started without a
configuration file, so all of the queries below use only built-in attributes.
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(m@localhost)1> Nodes = nodes:nodes().

% This is just a function which returns a fixed list, to make it

% easy to get the node names into the Erlang shell.

[vm1@bwlf01,vm1@bwlf02,vm1@bwlf03,vm1@bwlf04,vm1@bwlf15,

vm1@bwlf16,vm1@bwlf17,vm1@bwlf18,vm1@bwlf19,vm1@bwlf20,

vm1@bwlf32,vm1@bwlf32,vm1@bwlf33,vm1@bwlf34,vm1@amaterasu,

vm1@osiris,vm1@persephone,vm1@cantor,vm1@oberon,

vm1@localhost,vm1@bwlf10,vm2@bwlf10,vm3@bwlf10]

...

(m@localhost)4> attr:request_attrs(Nodes, [cpu_speed,mem_free]).

[{vm1@bwlf01,[{cpu_speed,1596.0},{mem_free,6845956}]},

{vm1@bwlf02,[{cpu_speed,1596.0},{mem_free,9690156}]},

{vm1@bwlf03,[{cpu_speed,1596.0},{mem_free,8722596}]},

{vm1@bwlf15,[{cpu_speed,1596.0},{mem_free,10964856}]},

{vm1@bwlf04,[{cpu_speed,1596.0},{mem_free,10999276}]},

{vm1@bwlf16,[{cpu_speed,1596.0},{mem_free,10801120}]},

{vm1@bwlf17,[{cpu_speed,1596.0},{mem_free,10438240}]},

{vm1@bwlf18,[{cpu_speed,1596.0},{mem_free,10870756}]},

{vm1@bwlf19,[{cpu_speed,1596.0},{mem_free,10794812}]},

{vm1@bwlf20,[{cpu_speed,1596.0},{mem_free,6871704}]},

{vm1@bwlf33,[{cpu_speed,1998.0},{mem_free,13948024}]}, % bwlf33 and bwlf34 are

{vm1@bwlf32,[{cpu_speed,1596.0},{mem_free,10977732}]},

{vm1@bwlf34,[{cpu_speed,1998.0},{mem_free,9832688}]}, % faster than the others

{vm1@osiris,[{cpu_speed,2666.0},{mem_free,217452}]},

{vm1@bwlf32,[{cpu_speed,1596.0},{mem_free,10977732}]},

{vm1@amaterasu,[{cpu_speed,1.6e3},{mem_free,13878268}]},

{vm1@persephone,[{cpu_speed,1998.0},{mem_free,754432}]},

{vm1@cantor,[{cpu_speed,2.8e3},{mem_free,435815476}]},

{vm1@oberon,[{cpu_speed,1.2e3},{mem_free,25687204}]},

{vm1@localhost,[{cpu_speed,1.6e3},{mem_free,8517844}]},

{vm1@bwlf10,[{cpu_speed,1596.0},{mem_free,10481680}]},

{vm2@bwlf10,[{cpu_speed,1596.0},{mem_free,10481680}]},

{vm3@bwlf10,[{cpu_speed,1596.0},{mem_free,10481680}]}]

(m@localhost)5> attr:request_attrs(Nodes, [loadavg5, vm_num_processors]).

[{vm1@bwlf01,[{loadavg5,0.04},{vm_num_processors,8}]},

{vm1@bwlf02,[{loadavg5,0.0},{vm_num_processors,8}]},

{vm1@bwlf03,[{loadavg5,0.36},{vm_num_processors,8}]},

{vm1@bwlf04,[{loadavg5,0.19},{vm_num_processors,8}]},

{vm1@bwlf15,[{loadavg5,0.0},{vm_num_processors,8}]},

{vm1@bwlf16,[{loadavg5,0.05},{vm_num_processors,8}]},

{vm1@bwlf17,[{loadavg5,0.0},{vm_num_processors,8}]},

{vm1@bwlf18,[{loadavg5,0.12},{vm_num_processors,8}]},

{vm1@bwlf19,[{loadavg5,0.39},{vm_num_processors,8}]},

{vm1@bwlf20,[{loadavg5,0.22},{vm_num_processors,8}]},

{vm1@bwlf32,[{loadavg5,0.88},{vm_num_processors,8}]},

{vm1@bwlf32,[{loadavg5,0.88},{vm_num_processors,8}]},

{vm1@bwlf33,[{loadavg5,0.07},{vm_num_processors,8}]},

{vm1@bwlf34,[{loadavg5,0.21},{vm_num_processors,8}]},

{vm1@amaterasu,[{loadavg5,0.0},{vm_num_processors,8}]},

{vm1@osiris,[{loadavg5,7.93},{vm_num_processors,24}]},

{vm1@persephone,[{loadavg5,0.0},{vm_num_processors,2}]},

{vm1@cantor,[{loadavg5,5.05},{vm_num_processors,48}]},

{vm1@oberon,[{loadavg5,0.0},{vm_num_processors,6}]},

{vm1@localhost,[{loadavg5,0.27},{vm_num_processors,24}]},
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{vm1@bwlf10,[{loadavg5,0.01},{vm_num_processors,1}]}, % The VMs on bwlf10 are

{vm2@bwlf10,[{loadavg5,0.01},{vm_num_processors,2}]}, % running on subsets of

{vm3@bwlf10,[{loadavg5,0.01},{vm_num_processors,5}]}] % the full set of cores.

...

(m@localhost)8> attr:choose_nodes(Nodes, [{vm_num_processors, lt, 8}]).

[vm1@persephone,vm1@oberon,vm1@bwlf10,vm2@bwlf10,vm3@bwlf10]

(m@localhost)9> attr:choose_nodes(Nodes, [{vm_num_processors, ge, 8},{loadavg5, lt, 1}]).

[vm1@bwlf01,vm1@bwlf02,vm1@bwlf03,vm1@bwlf04,vm1@bwlf15,

vm1@bwlf16,vm1@bwlf17,vm1@bwlf18,vm1@bwlf19,vm1@bwlf20,

vm1@bwlf32,vm1@bwlf33,vm1@bwlf32,vm1@bwlf34,vm1@amaterasu,

vm1@localhost]

(m@localhost)10> attr:choose_nodes(Nodes, [{vm_num_processors, ge, 8},{loadavg5, lt, 0.5}]).

[vm1@bwlf01,vm1@bwlf02,vm1@bwlf03,vm1@bwlf04,vm1@bwlf15,

vm1@bwlf16,vm1@bwlf17,vm1@bwlf18,vm1@bwlf19,vm1@bwlf20,

vm1@bwlf33,vm1@bwlf34,vm1@amaterasu,vm1@localhost]

(m@localhost)11> attr:choose_nodes(Nodes, [{vm_num_processors, ge, 8},{loadavg5, lt, 0.1}]).

[vm1@bwlf01,vm1@bwlf02,vm1@bwlf15,vm1@bwlf16,vm1@bwlf17,

vm1@bwlf33,vm1@amaterasu]

(m@localhost)12> attr:choose_nodes(Nodes, [{loadavg5, lt, 0.1}, {cpu_speed, gt, 2000}]).

[]

...

(m@localhost)14> attr:choose_nodes(Nodes, [{loadavg5, lt, 0.1}, {cpu_speed, gt, 1600}]).

[vm1@bwlf01,vm1@bwlf33,vm1@persephone]

(m@localhost)15> q().

ok

Change Log

Version Date Comments

0.1 11/03/2015 First Version Submitted to Internal Reviewer.

0.2 21/03/2015 Revised version based on comments from S. Thompson

0.3 23/03/2015 Final version submitted to the Commission Services

0.4 27/03/2015 Minor corrections
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