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ABSTRACT

The aim of risk-sensitive evaluation is to measure when a
given information retrieval (IR) system does not perform
worse than a corresponding baseline system for any topic.
This paper argues that risk-sensitive evaluation is akin to the
underlying methodology of the Student’s t test for matched
pairs. Hence, we introduce a risk-reward tradeoff measure
TRisk that generalises the existing URisk measure (as used
in the TREC 2013 Web track’s risk-sensitive task) while be-
ing theoretically grounded in statistical hypothesis testing
and easily interpretable. In particular, we show that TRisk

is a linear transformation of the t statistic, which is the test
statistic used in the Student’s t test. This inherent relation-
ship between TRisk and the t statistic, turns risk-sensitive
evaluation from a descriptive analysis to a fully-fledged in-

ferential analysis. Specifically, we demonstrate using past
TREC data, that by using the inferential analysis techniques
introduced in this paper, we can (1) decide whether an ob-
served level of risk for an IR system is statistically signifi-
cant, and thereby infer whether the system exhibits a real

risk, and (2) determine the topics that individually lead to
a significant level of risk. Indeed, we show that the latter
permits a state-of-the-art learning to rank algorithm (Lamb-
daMART) to focus on those topics in order to learn effective
yet risk-averse ranking systems.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval;
G3.3 [Probability and Statistics]: Experimental design

Keywords: Risk-Sensitive Evaluation, Student’s t Test

1. INTRODUCTION
Various paradigms for the evaluation of information re-

trieval (IR) systems rely on many topics to produce reliable
estimates of their effectiveness. For instance, in the TREC
series of evaluation forums, 50 topics is generally seen as
the minimum for producing a reliable test collection [2, 25].
However, in more recent times, the evaluation of systems
has increasingly focused upon their robustness - ensuring
that a given IR system performs well on difficult topics (as
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investigated by the TREC Robust track [24]), or at least as
well as a baseline system (which is known as risk-sensitive
evaluation [26]). Recently, the TREC 2013 Web track in-
troduced a risk-sensitive task, which assessed how systems
could perform effectively yet without exhibiting large losses
compared to a pre-determined baseline system [10].

In such a risk-sensitive evaluation, the risk associated with
an IR system is defined as the risk of performing a given par-
ticular topic less effectively than a given baseline system [8,
9, 26]. In particular, the URisk risk-sensitive evaluation mea-
sure [26] calculates the absolute difference of an effectiveness
measure (e.g. NDCG) between a given retrieval system and
the baseline system, in a manner that more strongly empha-
sises decreases with respect to the baseline (known as risk)
than gains (reward). A parameter α ≥ 0 controls the risk-
reward tradeoff towards losses in effectiveness compared to
the baseline, where α = 0 weights risk and rewards equally.

In this paper, we argue that in the current practice of
risk-sensitive evaluation based on URisk, any amount of loss
in an IR system’s average effectiveness, observed on a par-
ticular set of topics, is considered enough in magnitude to
infer that the system exhibits a “real risk”. However, from
a statistical viewpoint, such an inferential decision may be
said to be valid only if the observed amount of loss cannot
be attributed to chance fluctuation. Otherwise, it will be
equally likely that the corresponding system may or may
not be under a real risk, meaning that it is possible that the
system can perform every topic with a score higher than that
of the baseline system on another set of topics that could be
drawn from the population of topics. On the other hand, it
is also possible that the observed amount of loss in a par-
ticular system’s average effectiveness can be attributed to
a chance fluctuation, while the corresponding performance
losses for some individual topics are statistically significant
in magnitude. In other words, significant performance losses
for a few topics may not result in a significant total loss on
average, given a relatively large set of topics.

Hence, we advocate that risk-sensitive evaluation can ac-
tually provide the necessary basis for (i) testing the signifi-
cance of the observed amount of loss in a given IR system’s
average effectiveness, called inferential risk analysis in this
paper, and (ii) testing the significance of the corresponding
losses for individual topics, called exploratory risk analysis.

Indeed, we show that the URisk risk-reward tradeoff mea-
sure is actually a linear transformation of the t statistic, as
used in the Student’s t test. Therefore, using this statistical
interpretation of URisk based upon hypothesis testing, this
paper proposes a new risk-reward tradeoff measure, TRisk,
which is a linear transformation of the existing URisk mea-
sure, yet is theoretically grounded upon the Student’s t test



for testing the significance of the observed amount of loss in
a given IR system’s average effectiveness. For α = 0, TRisk

is equivalent to the standard t statistic used typically in the
Student’s t test for testing the null hypothesis of equality in
the population mean effectiveness for two IR systems. How-
ever, for α > 0, the URisk measure emphasises performance
losses compared to the baseline effectiveness. This raises
challenges in the estimation of the standard error of the cal-
culated URisk scores. For this reason, we propose the use
of the Jackknife technique (or leave-one-out) [11], which is a
re-sampling technique for estimating the bias and the stan-
dard error of any estimate. The Jackknife technique serves
two purposes: firstly, to allow the empirical verification of
the estimation of the standard error of URisk as valid; and
secondly, for testing the significance of the corresponding
performance losses for individual topics.

From a practical perspective, a risk-sensitive evaluation
serves two objectives: firstly, as a step further than the clas-
sical evaluation of IR systems, which takes into account the
stability or variance of retrieval results across queries as well
as for the average retrieval effectiveness [8, 9]; and secondly,
as a technique for jointly optimising the retrieval effective-
ness and robustness of retrieval frameworks such as learning
to rank [26]. Indeed, compared to the existing URisk mea-
sure, this paper contributes to both objectives, by exploit-
ing the theory of statistical hypothesis testing for allowing
meaningful interpretation of risk-sensitive evaluation scores,
and also by allowing a learning to rank technique, namely
LambdaMART, to focus on those topics that lead to a sig-
nificant level of risk, in order to learn effective yet risk-averse
ranking systems. The remainder of this paper is structured
as follows: Section 2 provides an overview of risk-sensitive
evaluation practices, including URisk; Section 3 relates the
URisk measure to the t statistic, and hence proposes the
new TRisk risk-sensitive evaluation measure, and discusses
the estimation of the standard error. Section 4 and Section 5
describe new forms of analysis, inferential and exploratory
respectively, that arise from the TRisk measure, and demon-
strate their application upon the TREC 2012 Web track.
Next, Section 6 shows how TRisk can improve the robust-
ness of the LambdaMART state-of-the-art learning to rank
technique. Finally, we review some related work and provide
concluding remarks in Sections 7 & 8, respectively.

2. RISK-SENSITIVE EVALUATION
Different approaches in IR such as query expansion [1,

5] and learning to rank [17] behave differently across topics,
often improving the effectiveness for some of the topics while
degrading performance for others. This results in a high
variation in effectiveness across the topics. To address such
variation, there has been an increasing focus on the effective
tackling of difficult topics in particular (e.g. through the
TREC Robust track [23]), or more recently, on the risk-
sensitive evaluation of systems across many topics [8, 9, 26].

Originally, the aim of risk-sensitive evaluation [9] was to
provide new analysis techniques for quantifying and visual-
ising the risk-reward tradeoff of any retrieval strategy that
requires a balance between risk and reward. Hence, it facili-
tates the quest for ranking strategies that are more robust in
retrieval effectiveness compared to a baseline retrieval strat-
egy – robust in the sense of the stability or variance of the
retrieval results across topics, while achieving good average
performance over all topics.

The variance with respect to a given baseline system b over
a given set of topics Q with c topics can then be measured as

a risk function FRisk, which takes into account the downside-
risk of a new system r (i.e. performing a topic worse than
the baseline) is defined in [26] as follows:

FRisk =
1

c

c
∑

i=1

max [0, (bi − ri)] , (1)

where ri and bi are respectively the score of the system r
and the score of the baseline system b on topic i, as mea-
sured by a retrieval effectiveness measure (e.g. NDCG@20,
ERR@20 [6]). Similarly, a reward function FReward, which
takes into account the upside-risk (i.e. performing a topic
better than the baseline) is defined as:

FReward =
1

c

c
∑

i=1

max [0, (ri − bi)] . (2)

Thereby, the overall gain in the retrieval effectiveness of r
with respect to b can be expressed as:

UGain = FReward − FRisk. (3)

Next, a single measure, URisk [26], which allows the risk-
reward tradeoff to be adjusted, was defined:

URisk = UGain − α · FRisk

=
1

c





∑

q∈Q+

δq + (1 + α)
∑

q∈Q
−

δq



 , (4)

where δq = rq − bq. The left summand in the square brack-
ets, which is the sum of the score differences δq for all q
where rq > bq (i.e., q ∈ Q+), gives the total win (or upside-
risk) with respect to the baseline. Orthogonally, the right
summand, which is the sum of the score differences δq for
all q where rq < bq , gives the total loss (or downside-risk).
The risk sensitivity parameter α ≥ 0 controls the tradeoff
between reward and risk (or win and loss): α = 0 results
in a pure gain model, while for higher α, the penalty for
under-performing with respect to the baseline is increased:
typically α = 1, 5, 10 [10].

In this paper, we extend the original aforementioned aim
of risk-sensitive evaluation with the following contributions:
1. A well-established statistical hypothesis testing theory
for risk-sensitive evaluations from which arises a new risk
measure TRisk (Section 3), to turn risk-sensitive evaluation
from a descriptive analysis to a fully-fledged inferential anal-
ysis (Section 4).
2. A method for exploratory risk analysis that can identify
the topics that commit real levels of risk (Section 5).
3. Adaptations of the proposed TRisk measure that can en-
hance the robustness of the state-of-the-art LambdaMART
learning to rank technique, compared to URisk, without
degradations in overall effectiveness, where the learned model
adaptively adjusts with respect to the risk level committed
by individual topics (Section 6).

3. THE NEW TRISK MEASURE
Without loss of generality, at α = 0, the risk-reward trade-

off measure URisk reduces to the UGain formula in Eq. (3),
which can be expressed as the average gain over c topics:

UGain =
1

c

c
∑

i=1

δi =
1

c

c
∑

i=1

(ri − bi). (5)

In the context of statistics, UGain refers to the sample mean
of paired score differences, d̄, for two IR systems (the system
under evaluation r and the baseline system b):



d̄ = r̄ − b̄ =
1

c

c
∑

i=1

(ri − bi) = UGain (6)

and in the context of evaluating IR systems, this refers to the
difference in average effectiveness between two IR systems,
r̄− b̄, where r̄ and b̄ are respectively the average effectiveness
of system r and the average effectiveness of the baseline
system b over c topics.

On the other hand, the Student’s t statistic for matched
pairs, as is commonly applied when testing the significance
of results between two systems, can be expressed as:

t =
d̄

SE(d̄)

[

=
r̄ − b̄

SE(d̄)

]

, (7)

Within Eq. (7), the standard error of paired sample mean,
SE(d̄), can be estimated as follows:

SE(d̄) =
sd√
c
, (8)

where sd =
√

c−1
∑

(δi − d̄)2 is the paired sample standard
deviation. Hence, we argue that the Student’s t statistic of
Eq. (7) is actually a linear transformation of UGain from
Eq. (3), which we call TGain:

TGain =
UGain

SE(UGain)
=

√
c

sd
× UGain. (9)

This transformation can be referred to as studentisation

(c.f., t-scores) [14], which in fact is a type of standardisa-

tion (i.e., z-scores). Standardisation is a monotonic linear
transformation, which transforms any given set of data to a
set with zero mean and unit variance, while preserving the
original data distribution in shape.

The t-score of a raw UGain measurement, TGain, differs
from the raw measurement in two important aspects. First,
given a set of IR systems, a test collection, and a baseline
system, the systems’ ranking to be obtained on the basis of
TGain will not necessarily be concordant with the systems’
ranking to be obtained on the basis of UGain, since the t
statistic takes into account the inherent variation in the ob-
served paired score differences ri − bi across the topics, i.e.,
SE(UGain). Second, given a particular baseline system, the
two TGain scores to be obtained on two different test col-
lections for the same IR system are comparable with each
other in magnitude, at least in theory [7], while the two
UGain scores are not, as typical in the case of the two raw
effectiveness scores to be yielded from a standard effective-
ness measure, such as mean average precision [28].

Having shown how TGain can be defined as a linear trans-
formation of UGain, based upon the t statistic, we now exam-
ine URisk, which allows the risk-reward tradeoff to be con-
trolled by the α parameter. For α ≥ 0, the t statistic based
on URisk, which we call TRisk, can be expressed as follows:

TRisk =
URisk

SE(URisk)
. (10)

Although both the TGain formula in Eq. (9) and the TRisk

formula in Eq. (10) stem from the classical t statistic in
Eq. (7), the estimation of the standard error in URisk, the
estimation of SE(URisk) within TRisk, is not as straight-
forward as in the case of SE(UGain), for the reason that
the URisk formula reweighs the score differences δi in aver-
aging, proportionally to α, for each topic i where ri < bi,
as opposed to UGain. Hence, in the remainder of this sec-
tion, we propose two methods to estimate SE(URisk): A

speculative parametric estimator SEx̄ that is an analogy to
the paired sample standard deviation sd (Section 3.1); and a
nonparametric Jackknife Estimator SEJ , based on the leave-
one-out Jackknife technique (Section 3.2). Indeed, later in
Section 3.3, we use the Jackknife Estimator SEJ to show
the validity of the speculative SEx̄ estimator.

On the other hand, TRisk has several advantages over
URisk. Firstly, it can be easily interpreted for an inferen-
tial analysis of risk. Indeed, we will later show in Section 4
that in order to test the significance of an observed risk-
reward tradeoff score between a particular IR system and
a provided baseline system, one can use TRisk as the test
statistic of the Student’s t test for matched pairs.

Secondly, TRisk permits the identification of topics that
commit significant risk or not – we call this exploratory risk
analysis – which we present later in Section 5.

Finally, this exploratory risk analysis leads to new risk-
sensitive measures that can be directly integrated into the
LambdaMART learning to rank technique, to produce learned
models that exhibit less risk than those obtained from URisk

whilst not degrading effectiveness, as explained in Section 6.

3.1 Parametric Estimator of SE(URisk)

Let the random variable Xi denote the risk-reward trade-
off score between system r and baseline b for topic i:

Xi =

{

δi if ri > bi
(1 + α)δi if ri < bi

(11)

for i = 1, 2, . . . , c and a predefined value of α ≥ 0. Then, the
standard error of URisk, SE(URisk) can be approximated by
the standard error of the sample mean x̄:

SEx̄ =
sx√
c
, (12)

where s2x = c−1 ∑(xi− x̄)2. Here, the sample mean x̄ corre-
sponds to the URisk score considered as the arithmetic mean
of the sample of the observed individual topic risk-reward
tradeoff scores x1, x2, . . . , xc at a predefined value of α:

x̄ = URisk =
1

c

c
∑

i=1

xi. (13)

This parametric estimator of SE(URisk), SEx̄, is specula-
tive and hence its validity might be compromised to some ex-
tent. Therefore, we empirically verify the validity of SEx̄ in
estimating SE(URisk) by means of comparing it with a non-
parametric re-sampling technique, called the Jackknife [21],
which we present in Section 3.2. Indeed, by comparing the
two estimates of SE(URisk) (i.e., the parametric estimate
SEx̄ of Eq. (12) and the nonparametric Jackknife estimate
of SE(URisk)), one can decide whether an inference to be
made on the basis of the TRisk statistic is valid. If the two
estimates agree with each other, such an inference may be
said to be valid, otherwise its validity is compromised.

3.2 Jackknife Estimate of SE(URisk)

In this paper, the Jackknife technique is employed for a
purpose which serves two different aims: 1) as a mechanism
of the empirical verification of the validity of an inference to
be made based on the TRisk statistic in Eq. (10), and 2) as
a mechanism for exploratory risk analysis.

Jackknife, which is also known as the Quenouille-Tukey
Jackknife or leave-one-out, was first introduced by Que-
nouille [18] and then developed by Tukey [21]. Tukey used
the Jackknife technique to determine how an estimate is af-
fected by the subsets of observations when discordant values



(i.e., outlier data) are present. In the presence of discordant
values, it is expected that the Jackknife technique could re-
duce the bias in the estimate. Although the original ob-
jective of Jackknife is to detect outliers, in principle it is a
re-sampling technique for estimating the bias and the stan-
dard error of any estimate [11]. In Jackknife, the same test is
repeated by leaving one subject out each time: this explains
why this technique is also referred to as leave-one-out.

Let the random variables X1, X2, . . . , Xc denote a random
sample of size c, such that Xi is drawn identically and inde-
pendently from a distribution F for i = 1, 2, . . . , c. Suppose
that the goal is to estimate an unknown parameter θ of F .
It can be shown that θ can be estimated by a statistic θ̂,
which is derived from an observed sample x1, x2 . . . , xc from
F , with a measurable amount of sampling error [15].

An unbiased estimator θ̂ is a statistic whose expected
value E(θ̂) is equal to the true value of the population pa-

rameter of interest θ, i.e., E(θ̂) = θ. The amount of bias

associated with an estimator is therefore given by:

bias(θ̂) = E(θ̂ − θ) = E(θ̂)− θ. (14)

We denote as X(i) the sub-sample without the datum Xi.
There are in total c sub-samples of size c−1 for i = 1, 2, . . . , c:
X(i) = X1, X2, . . . , Xi−1, Xi+1, . . . , Xc.

Next, let the estimate derived from the ith sub-sampleX(i)

be denoted as θ̂(i), and the mean over c sub-samples be:

θ̂(.) =
1

c

c
∑

i=1

θ̂(i). (15)

The Jackknife estimate of bias, which is actually a nonpara-
metric estimate of E(θ̂ − θ), is defined as follows [21]:

biasJ (θ̂) = (c− 1)(θ̂(.) − θ̂) =
(c− 1)

c

c
∑

i=1

(θ̂(i) − θ̂).

and, in accordance, the bias-reduced Jackknife estimate of θ
is defined as θ̃ = θ̂ − biasJ (θ̂) = cθ̂ − (c− 1)θ̂(.).

Tukey [21] showed that the Jackknife technique can also

be used to estimate the variance of θ̂ by introducing the
so-called pseudo-values, θ̃(i) = cθ̂ − (c− 1)θ̂(i), such that

varJ (θ̂) =
1

c(c− 1)

c
∑

i=1

[

θ̃(i) − θ̃
]2

=
(c− 1)

c

c
∑

i=1

[

θ̂(i) − θ̂(.)

]2

.

This nonparametric Jackknife estimate of variance gives
the empirical estimate of the standard error of θ̂:

SE(θ̂) =

√

varJ (θ̂). (16)

For the TRisk statistic in Eq. (10), the standard error of
URisk, SE(URisk), can hence be estimated by substituting

URisk into Eq. (16) as θ̂:

SEJ =
√

varJ (URisk). (17)

3.3 Empirical Validation of SE(URisk)

The nonparametric estimator SEJ is an alternative to the
parametric estimator SEx̄ (Eq. (12)). In this section, we em-
pirically compare these estimates of SE(URisk) with each
other, to assess the validity of the result of a hypothesis test
to be performed using TRisk as the test statistic. In general,
if the two estimates agree, the test result may be said to be
valid, and otherwise its validity will be compromised. As a
result, nonparametric methods can help to alleviate doubts
about the validity of the analysis performed [14].

In the following, we compare the estimates using the sub-
mitted runs to the TREC Web track. In particular, the
provided baseline run for the TREC 2013 Web track risk-
sensitive task is based on the Indri retrieval platform. How-
ever, as the submitted runs and results for the TREC 2013
campaign were not yet publicly available at the time of writ-
ing, in the following we perform an empirical study based on
runs submitted to the TREC 2012 Web track. Indeed, the
2013 track coordinators have made available a set of Indri
runs on the TREC 2012 Web track topics1 that correspond
to the TREC 2013 baseline runs - in our results, we use the
2012 equivalent run to the 2013 pre-determined baseline, the
so-called indriCASP. We report the URisk values obtained
using the official TREC 2012 evaluation measure, ERR@20.

Table 1 reports the parametric estimates (SEx̄) and the
nonparametric Jackknife estimates (SEJ) of the standard er-
rors associated with the average risk-reward tradeoff scores
(URisk), calculated for each of the TREC 2012 Web track
top 8 ad-hoc runs over c = 50 topics, with respect to the in-

driCASP baseline, applying several risk-sensitivity param-
eter values of α = 0, 1, 5, 10. From the results, it can be
observed that the two estimates, SEx̄ and SEJ agree with
each other for each of the 8 runs. In fact, over all of the 48
runs submitted to the TREC 2012 Web track, we observe
a Root Mean Square Error (RMSE) of 0.000 between SEx̄

and SEJ . Thus, we conclude that it is highly likely that it
would be valid to conduct an inferential risk analysis upon
those TREC 2012 runs based on the new risk-reward trade-
off measure TRisk (Eq. (10)), regardless of how SE(URisk)
is estimated. An example of inferential risk analysis based
on TRisk follows in the next section.

4. INFERENTIAL RISK ANALYSIS
The goal of the classical evaluation of IR systems is to de-

cide whether one IR system is better in retrieval effectiveness
than another on the population of topics. This goal can be
formulated into a (two-sided) null hypothesis, as given by:

H0 : µr = µb or H0 : µr − µb = 0, (18)

against the alternative hypothesis H1 : µr 6= µb, where µr

and µb represent respectively the population mean perfor-
mance of the system r and the population mean performance
of the baseline system b. The test statistic for this null hy-
pothesis is the t statistic (Eq. (7)), since the larger values of
t are evidence against the null hypothesis H0 : µr − µb = 0.
Below, we describe the hypothesis testing of H0 in abstract
terms, before explaining how it can be applied to TRisk (Sec-
tion 4.1) and illustrating its application upon the TREC
2012 Web track runs (Section 4.2).

In order to decide how much difference between the two
sample means r̄ and b̄ is assumed to be large enough to re-
ject the null hypothesis, we should first determine how much
difference can be attributed to a chance fluctuation. It can
be shown that, under the null hypothesis H0, the sampling
(or null) distribution of the test statistic t can be approxi-
mated by a Student’s t distribution with df = c− 1 degrees
of freedom for any population distribution with finite mean
µ and variance σ2 > 0, because of the central limit theo-
rem [12]. Thus, at a predefined significance level of γ (typi-
cally γ = 0.05 for 95% confidence), two standard deviations
(±t(γ/2,df)×SE(d̄)) determine the maximum difference that
can be attributed to chance fluctuation, where in between
the critical values ±t(γ/2,df) the area under the Student’s t

1https://github.com/trec-web/trec-web-2013



Table 1: Calculated risk-reward tradeoff scores, URisk for the TREC 2012 Web track top 8 ad-hoc runs at the

risk-sensitivity parameter values of α = 0, 1, 5, 10, along with the parametric estimates SEx̄ and the nonpara-

metric Jackknife estimates SEJ of the associated standard errors SE(URisk). indriCASP is the baseline.
α = 0 α = 1 α = 5 α = 10

ERR@20 URisk SEx̄ SEJ URisk SEx̄ SEJ URisk SEx̄ SEJ URisk SEx̄ SEJ

uogTrA44xi 0.3132 0.1185 0.0528 0.0528 0.0556 0.0739 0.0739 -0.1959 0.1755 0.1755 -0.5104 0.3091 0.3091

srchvrs12c09 0.3049 0.1102 0.0479 0.0479 0.0679 0.0644 0.0644 -0.1015 0.1489 0.1489 -0.3133 0.2619 0.2619

DFalah121A 0.2920 0.0974 0.0425 0.0425 0.0467 0.0632 0.0632 -0.1558 0.1588 0.1588 -0.4089 0.2827 0.2827

QUTparaBline 0.2901 0.0954 0.0448 0.0448 0.0385 0.0672 0.0672 -0.1893 0.1703 0.1703 -0.4740 0.3033 0.3033

utw2012fc1 0.2195 0.0248 0.0449 0.0449 -0.0558 0.0705 0.0705 -0.3782 0.1849 0.1849 -0.7813 0.3314 0.3314

ICTNET12ADR2 0.2149 0.0203 0.0416 0.0416 -0.0495 0.0637 0.0637 -0.3286 0.1648 0.1648 -0.6774 0.2950 0.2950

indriCASP 0.1947 * * * * * * * * * * * *

irra12c 0.1723 -0.0223 0.0410 0.0410 -0.1182 0.0693 0.0693 -0.5014 0.1904 0.1904 -0.9805 0.3437 0.3437

qutwb 0.1659 -0.0287 0.0462 0.0462 -0.1342 0.0791 0.0791 -0.5560 0.2194 0.2194 -1.0832 0.3969 0.3969

distribution sums up to (1 − γ). If an observed t-score is
greater than t(γ/2,df), or less than −t(γ/2,df), one can reject
H0 with 100%(1− γ) confidence, denoted as the p-value.

4.1 Inference Based on TGain and TRisk

The above protocol of hypothesis testing is referred to as
the Student’s t test for matched pairs, or paired t test for
short, in statistics. Hence, in the context of risk-sensitive
evaluation, the TGain formula in Eq. (9) stands for the test
statistic t. In fact, at α = 0, testing the significance of an
observed risk-reward tradeoff score between r and b (i.e. an
observed UGain score) is akin to testing the significance of
the observed difference between r̄ and b̄.

To test the significance of an observed UGain score, one
can therefore compare the corresponding TGain score with
the two-sided critical ±t

(γ/2,df)
values at a desired level of

significance γ. If −t(γ/2,df) ≤ TGain ≤ t(γ/2,c−1), the ob-
served UGain score can be attributed to chance fluctuation,
meaning that the observed gain in the performance of the
system r with respect to the baseline system b is not sta-
tistically significant. In such a case, it is equally likely
that the observed UGain score may or may not occur on
another topic sample drawn from the population. Other-
wise, if TGain ≤ −t

(γ/2,c−1)
or TGain ≥ t

(γ/2,c−1)
, one can

however be sure that a UGain score at least as extreme as
the observed score would occur on 100(1− γ)% of the topic
samples that could be drawn from the population.

Both TGain and TRisk stem from the t statistic. Indeed,
for α = 0, TGain = TRisk, while for α > 0, SE(URisk) was
shown to be valid in Section 3.3. Hence, we argue that an
equivalent inferential analysis can be conducted upon the
TRisk scores that have been calculated based on URisk. In
the following, we provide an illustration of such inferential
analysis upon runs submitted to the TREC 2012 Web track,
but the same inferential analysis methodology could be ap-
plied for any risk-sensitive evaluation scenario.

4.2 Inferential Analysis of Web Track Runs
Given a particular IR system, a baseline system, and a set

of c topics, one can use the paired t test for testing the signif-
icance of the calculated average tradeoff score between risk
and reward over the c topics, URisk, by comparing the corre-
sponding t-score, TRisk, with the critical values ±t

(γ/2,df)
at

a desired level of significance γ. To illustrate such an anal-
ysis, Table 2 reports the URisk risk-reward tradeoff scores
based on ERR@20, and the corresponding TRisk scores for
the 8 highest performing TREC 2012 ad-hoc runs, given the
baseline run indriCASP (we omit other submitted runs for
brevity, however the following analysis would be equally ap-
plicable to them). As the TREC 2012 Web track has 50

topics, for a significance level of γ = 0.05, the critical values
for TRisk are ±t

(0.025,49)
= ±2.

In Table 2, the URisk scores to which a two-sided paired
t test gives significance are those that have a corresponding
TRisk score less than −2 or greater than +2. For example,
at α = 0, the calculated URisk scores of the top 4 runs
are significant with a p-value less than 0.05. This means
that, under the null hypothesis H0 : µr = µb, given another
sample of 50 topics from the population, the probability of
observing a risk-reward tradeoff score, between any one of
these 4 runs and the baseline run indriCASP, that is as
extreme or more extreme than the one that was observed is
less than 0.05, i.e. the associated p-values. Since TRisk > 0,
for those runs, the declared significance counts in favour of
“reward” against “risk”. Thus, one can conclude, with 95%
confidence, that the expected per topic effectiveness of each
of the top 4 runs is, on average, higher than the expected
per topic effectiveness of the baseline run indriCASP on the
population of topics. In other words, given a topic from the
population, it is highly likely that any one of the top 4 runs
will not perform worse for that topic than indriCASP. This
suggests, as a result, that those top runs do not exhibit a
real risk that is generalisable to the population of topics.

On the other hand, a run with TRisk < −2 at α = 0
will be under a real risk, though among the shown top 8
TREC 2012 runs there is no such run. For those runs with
−2 ≤ TRisk < +2, such as utw2012fc1 and qutwb, the risk
analysis performed here is inconclusive, since the associated
URisk scores can be attributed to chance fluctuation, i.e. it is
equally likely that they may or may not be under a real risk.

Next, we observe from Table 2 that as α increases, the
observed tradeoffs between risk and reward for each run
changes in favour of risk compared to reward, hence the
runs exhibiting significant URisk scores change. For exam-
ple, each of the runs with significant URisk scores at α = 0
(i.e., the top 4 runs) have a URisk score that can be at-
tributed to a chance fluctuation at α = 10, while, in con-
trast, those runs whose URisk scores can be attributed to
chance fluctuation at α = 0 (i.e., the last 4 runs) have a
significant URisk score at α = 10.

Figure 1 shows the change in the TRisk scores of the
TREC 2012 top 8 ad-hoc runs for several risk-sensitivity
α parameter values from 0 to 15. From the figure, we ob-
serve that for α > 5 the TRisk scores for all runs are negative
in sign, and for the last 4 runs the calculated URisk scores
can be considered statistically significant (i.e., TRisk > −2.0
for α > 5). It is also observed that, even for α = 15, the
calculated URisk scores of the top 4 TREC runs can still be
attributed to chance fluctuation.

As a result, the inferential analysis performed so far sug-
gests that, in general, none of the 8 top TREC 2012 ad-hoc



Table 2: URisk and TRisk scores risk-reward tradeoff scores for the top 8 TREC 2012 ad-hoc runs at α = 0, 1, 5, 10,
where the baseline is indriCASP. The underlined URisk scores are those for which a two-tailed paired t test

gives significance with p < 0.05 - i.e. exhibit a TRisk score greater than +2 or less than −2.
α = 0 α = 1 α = 5 α = 10

URisk TRisk p-value URisk TRisk p-value URisk TRisk p-value URisk TRisk p-value

uogTrA44xi 0.1185 2.2440 0.029 0.0556 0.7528 0.455 -0.1959 -1.1163 0.270 -0.5104 -1.6512 0.105
srchvrs12c09 0.1102 2.3034 0.026 0.0679 1.0541 0.297 -0.1015 -0.6817 0.499 -0.3133 -1.1961 0.237
DFalah121A 0.0974 2.2899 0.026 0.0467 0.7401 0.463 -0.1558 -0.9808 0.332 -0.4089 -1.4466 0.154
QUTparaBline 0.0954 2.1305 0.038 0.0385 0.5723 0.570 -0.1893 -1.1116 0.272 -0.4740 -1.5626 0.125
utw2012fc1 0.0248 0.5526 0.583 -0.0558 -0.7914 0.432 -0.3782 -2.0457 0.046 -0.7813 -2.3574 0.022
ICTNET12ADR2 0.0203 0.4869 0.629 -0.0495 -0.7775 0.441 -0.3286 -1.9942 0.052 -0.6774 -2.2960 0.026
irra12c -0.0223 -0.5446 0.588 -0.1182 -1.7038 0.095 -0.5014 -2.6335 0.011 -0.9805 -2.8525 0.006
qutwb -0.0287 -0.6226 0.536 -0.1342 -1.6956 0.096 -0.5560 -2.5342 0.015 -1.0832 -2.7295 0.009

Figure 1: The change in standardised TRisk scores

for the top TREC 2012 ad-hoc runs for 0 ≤ α ≤ 15.
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runs are under a real risk of performing any given topic from
the population worse than the baseline run indriCASP, on
average. In particular, there can be no significant reduction
in risk that could be attained for the top 4 systems, given
a baseline system with the average retrieval effectiveness of
indriCASP. On the other hand, a significant reduction in
risk could be attained, on average, for the last 4 systems,
particularly for α > 5.

Lastly, in Table 2, it is notable that the high URisk scores
do not necessarily imply high TRisk scores, because of the
fact that each system would in general have a different in-
herent variation in ri−bi across topics (i.e. SE(URisk)) from
that of the other systems. For example, consider the runs
uogTrA44xi and srchvrs12c09. At α = 0, uogTrA44xi has a
URisk score (0.1185) higher than the URisk score (0.1102) of
srchvrs12c09, while srchvrs12c09 has a higher TRisk score
than uogTrA44xi, i.e. 2.3034 vs. 2.2440. This shows that a
ranking of retrieval systems obtained based on TRisk will
not necessarily be concordant with the ranking of systems
obtained based on URisk.

5. EXPLORATORY RISK ANALYSIS
In the previous section, the risk analysis that we per-

formed could hide significant performance losses on individ-
ual topics. Nevertheless, one can perform an exploratory

risk analysis to determine those individual topics on which
the observed risk-reward tradeoff score between a given IR
system and the baseline system (i.e., xi) is statistically sig-
nificant. In the following, we provide a definition for ex-
ploratory risk analysis (Section 5.1), which we later illustrate
upon the TREC 2012 Web track runs (Section 5.2).

5.1 Definition
The TRisk measure permits the topic-by-topic analysis of

risk-reward tradeoff measurements, which we refer to as ex-

ploratory risk analysis. Such an analysis is implicitly sug-
gested by the t statistic itself. The t statistic in Eq. (7) can
be rewritten as follows:

t =
d̄

SE(d̄)
=

1
c

∑c
i=1 (ri − bi)

sd/
√
c

=

√
c

c

c
∑

i=1

ri − bi
sd

. (19)

In here, each component of the sum ti = ri−bi
sd

: gives the

standardised score of the observed difference in effectiveness
between the system r and the baseline system b on topic i,
for i = 1, 2, . . . , c.

In analogy, the TRisk measure, which stems from the t
statistic, can be rewritten as:

TRisk =
URisk

SEx̄
=

1
c

∑c
i=1 xi

sx/
√
c

=

√
c

c

c
∑

i=1

xi

sx
, (20)

where each component of the sum, in this case, gives the
standardised score of the individual topic risk-reward trade-
off measurements x1, x2, . . . , xc:

TRi =
xi

sx
. (21)

In a similar manner that we compare the calculated TRisk

score of a given IR system with the two-sided critical values
±t

(γ/2,df)
to decide whether the system exhibits a significant

level of risk on average (Section 4), to decide whether an
observed loss (or gain) on a particular topic i is significant,
we can compare the component TRi score with the same
critical values ±t

(γ/2,df)
, at a desired significance level of γ.

If −t(γ/2,df) ≤ TRi ≤ t(γ/2,df), the observed loss (or gain)
can be attributed to chance fluctuation, and otherwise it can
be considered statistically significant.

Indeed, this is one of the typical methods of outlier detec-
tion in statistics [14]. Recall that the original objective of
Jackknife is to detect outliers [21]. The TRisk measure can
also be expressed in terms of the Jackknife estimate of bias,
following Wu [29]:

TRisk =
URisk

SEJ
=

1

c

c
∑

i=1

√

(c− 1) (θ̂(i) − θ̂)

SEJ
. (22)

Here, each component of the sum:

TJi =

√

(c− 1) (θ̂(i) − θ̂)

SEJ
=

√

(c− 1) (x̄(i) − x̄)
√

varJ (x̄)
, (23)

gives the standardised Jackknife estimate of bias in URisk

due to leaving the topic risk-reward score xi out of the sam-
ple x1, x2, . . . , xc, where x̄ = URisk and x̄(i) is the URisk

score to be obtained when the ith topic is leaved out of the
topic set in use, for i = 1, 2, . . . , c.

In general, both the TRi statistic in Eq. (21) and the
TJi statistic in Eq. (23) can be used for the purpose of ex-
ploratory risk analysis. However, there is a certain difference



between them in theory. Using TRi , we can decide whether
an observed performance loss on topic i is significant, by
comparing the topic risk-reward score xi with the maximum
score that can be attributed to chance fluctuation, but as if
the single datum xi is the whole sample. In contrast, using
TJi , we can make the same decision by comparing the ob-
served difference between two URisk scores, x̄(i) − x̄, with
the maximum difference that can be attributed to chance
fluctuation. Since we showed in Section 3.3 that the two
estimates of the standard error for each TREC run are in
perfect agreement (i.e. SEx̄ ≈ SEJ ), we argue that this the-
oretical difference has no practical consequences. Hence, in
the following, we provide an illustration of exploratory risk
analysis on the TREC 2012 Web track runs, based on TJi

alone. However, initial experiments showed no differences
between TRi and TJi .

5.2 Exploratory Analysis of Web Track Runs
Figure 2 shows the standardised Jackknife estimate of

bias in the URisk scores calculated for two TREC runs,
namely uogTrA44xi and qutwb at α = 0, 5, 10, 15 for the
50 TREC 2012 Web track topics, where indriCASP is the
baseline. This standardised Jackknife estimate of bias, TJi

is estimated by leaving one TREC 2012 Web track topic out
of the set of topics {151, 152, . . . , 200} in turn. In the figure,
the topics that result in a significant performance loss (gain)
for the corresponding systems with respect to indriCASP, at
the significance level of γ = 0.05, are those which have a TJi

score less than −2 (greater than 2, respectively). Horizontal
lines at −2 and +2 are shown to aid clarity.

From Figure 2, at α = 0 it can be observed that uog-

TrA44xi has more significant wins in number than qutwb,
and less significant losses. This shows in detail why the
declared significance for uogTrA44xi in Section 4 counts in
favour of reward against risk, while the observed tradeoff
between risk and reward can be attributed to chance fluctu-
ation for qutwb, with respect to the baseline indriCASP.

In general, both of the runs uogTrA44xi and qutwb exhibit
considerable performance losses with respect to indriCASP

on the same topics, including 166, 172, 174, 175, and 191, out
of which 2 are significant for uogTrA44xi (i.e., 166 and 175)
and 4 are significant for qutwb (i.e., 166, 172, 175, and 191),
at α = 0. In particular, consider the topic 166, on which the
magnitude of the TJi score is nearly the same for both runs.
It is notable here that, as α increases, the significance of that
topic relatively doubles for uogTrA44xi, while for qutwb it
nearly remains the same. The situation is also similar for
topic 175, though the TJi score of uogTrA44xi at α = 0 is
small in magnitude compared to that of qutwb.

This is one of the important differences between TRisk

and URisk in assessing the risk associated with IR systems.
Given a particular topic i, the same amount of performance
loss with respect to a provided baseline effectiveness can lead
to different TJi (and TRi = xi/SEx̄) scores for different IR
systems, depending on the variation in the observed risk-
reward tradeoff across the topics (i.e., different SEx̄ for dif-
ferent systems), while leading to the same topic risk-reward
score, xi, for i = 1, 2, . . . , c. As α increases, the topic risk-
reward score xi increases proportionally for both of the runs
uogTrA44xi and qutwb. However, the tradeoff counts, on av-
erage, significantly in favour of reward against risk for uog-

TrA44xi, whereas, it counts neither in favour of reward nor
against risk for qutwb, as shown in Section 4. Thus, the same
margin of increase in topic risk-reward tradeoff score xi in

favour of risk should lead to a relatively higher level of risk
for uogTrA44xi than that for qutwb, in a way that TJi did.

Assessing the level of risk that a topic commits for a given
IR system relative to the level of risk associated with the sys-
tem on average is a property unique to the measures TJi and
TRi . Besides the use of these measures for exploratory risk
analysis, this property also enables adaptive risk-sensitive
optimisation within a learning to rank technique, as we ex-
plain in the next section.

6. ADAPTIVE RISK OPTIMISATION
In this section, we describe how to exploit the new risk-

reward tradeoff measure TRisk (Eq. (10)) in learning robust
ranking models that maximises average retrieval effective-
ness while minimising risk-reward ratio, in the context of
the state-of-the-art LambdaMART learning to rank tech-
nique [30]. As discussed below, Wang et al. [26] proposed to
integrate URisk (Eq.(4)) within LambdaMART to achieve
risk sensitive optimisation, by using α to penalise risk dur-
ing the learning process. However, URisk considers top-
ics equally regardless of the level of risk they commit. In
contrast, we propose to adaptively change the level of risk-
sensitivity, so that the total risk-sensitivity is distributed
across the topics proportionally to the level of risk each topic
commits. In the following: Section 6.1 provides an overview
of the LambdaMART objective function, while Section 6.3
describes the integration of URisk within LambdaMART;
Section 6.3 explains our proposed adaptive risk-sensitive op-
timisation approaches, with the experimental setup & re-
sults following in Sections 6.4 & 6.5, respectively.

6.1 LambdaMART
LambdaMART [30] is a state-of-the-art learning to rank

technique, which won the 2011 Yahoo! learning to rank chal-
lenge. It can be described as a tree-based technique, in that
its resulting learned model takes the form of an ensemble
of regression trees, which is used to predict the score of
each document given the document’s feature values. Dur-
ing learning, LambdaMART creates a sequence of gradient
boosted regression trees that improve an effectiveness met-
ric. In general, for our purposes2, it is sufficient to state
that LambdaMART’s objective function is based upon the
product of two components: (i) the derivative of a cross-
entropy that originates from the RankNet learning to rank
technique [3] calculated between the scores of two documents
a and b, and (ii) the absolute change ∆M in an evaluation
measure M due to the swapping of documents a and b [4].
Therefore the final gradient λnew

a of a document a within the
objective function is obtained over all pairs of documents
that a participates in for query q:

λnew
a =

∑

b6=a

λab · |∆Mab|

where λab is RankNet’s cross-entropy derivative, and ∆Mab

is the change in an evaluation measure M by swapping doc-
uments a and b. Various IR evaluation measures are suitable
for use as M , including NDCG and MAP, as they have been
shown to satisfy a consistency property [4]: for a pair of
documents a and b where a is ranked higher than b, if the
relevance label of a is higher than b, then a“degrading” swap
of a and b must result in a decrease in M (i.e. ∆M ≤ 0),
and orthogonally ∆M ≥ 0 for “improving” swaps.

2Further details on LambdaMART can be found in [4, 26].



Figure 2: Bar graph showing the standardised Jackknife estimate of bias in the URisk, TJi
, for uogTrA44xi

and qutwb at α = 0, 5, 10, 15, where indriCASP is the baseline.
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6.2 Risk-Sensitive Optimisation
Wang et al. [26] demonstrated that a more robust learned

model could be obtained from LambdaMART if the ∆M is
replaced by the difference in URisk for a given swap of two
documents, denoted ∆T . In doing so, their implementation
weights the value of ∆M by α + 1 only for the topics with
down-side risk, while for the topics with up-side risk it leaves
∆M as is, ∆T = ∆M . ∆T was shown to exhibit the consis-
tency property iff the underlying evaluation measure ∆M is
consistent (e.g. as obtained from NDCG).

6.3 Adaptive Risk-Sensitive Optimisation
Compared to URisk, TRisk is grounded in the theory of

hypothesis testing and produces values that are easily inter-
pretable – as shown in Section 4. However, as a linear trans-
formation of URisk, the direct application of TRisk as ∆T
within LambdaMART to attain risk-sensitive optimisation
cannot offer marked improvements on the resulting learned
models. On the other hand, the exploratory risk analysis of
Section 5 offers a promising direction, as it permits the learn-
ing to rank process to adaptively focus on topics depending
upon the level of risk that they commit. In this section, we
propose two new models of adaptive risk-sensitive optimisa-
tion that exploit the standardised topic risk-reward tradeoff
scores (TRi , Eq. (21)), but which differ on which individual
topics they operate on. In particular, the first model, Semi-
Adaptive Risk-sensitive Optimisation (SARO), focuses only
on the topics with down-side risk and augments only the
corresponding ∆M values. In contrast, the Fully Adaptive
Risk-sensitive Optimisation (FARO) model operates on all
topics and augments every ∆M value. Hence, compared
to URisk as used in [26], FARO and SARO both alter the
importance of riskier topics within the learning process.

In URisk, ∆M is multiplied by α+1 if the topic commits
a downside risk3. This amounts to a static level of sensitiv-
ity for each topic, irrespective of the level of risk that the
topic commits. In contrast, based on the standardised topic

3This follows directly from the definition of Eq. (4), however
the consistency proof in Section 4.3.2 of [26] defines ∆T for
different scenarios.

risk-reward tradeoff scores, TRi (Eq. (21)), we propose to
adaptively adjust α so that the total level of sensitivity can
be distributed across the topics proportional to the levels
of risk that they commit. In order to achieve this, for each
topic we must estimate the probability of observing a risk-
reward score greater than the actual observed TRi score.
Technically speaking, we need to estimate the cumulative
probability Pr (Z ≥ TRi), where TRi is the observed risk-
reward tradeoff score and Z is the corresponding standard
normal variable of TRi for all topics i = 1, 2, .., c. For large
sample sizes (generally agreed to be ≥ 30), the distribu-
tion of the t statistic in Eq. (7) can be approximated by
the standard normal probability distribution function, with
zero mean and unit variance [15]. Thus, the probability
Pr (Z ≥ TRi), which is the probability of a topic risk-reward
score greater than TRi , can be estimated by the standard
normal cumulative distribution function Φ(·), as follows:

Pr (Z ≥ TRi) ≈ 1− Φ(TRi) , (24)

for i = 1, 2, . . . , c. Φ(Z) is a monotonically increasing func-
tion of the standard normal random variable Z, where 0 ≤
Φ(Z = z) ≤ 1 for −∞ ≤ z ≤ ∞, and at Z = 0, Φ(Z) = 0.5.

Hence, we can replace the original α in ∆T as α′ as follows:

α′ = [1− Φ(TRi)] · α. (25)

where 0 ≤ α′ ≤ α. As the level of risk TRi committed by
topic i increases, α′ also increases. By substituting α′ into
∆T (as defined by Wang et al. [26]), this augments the ∆M
values for every topic with a weight proportional to the level
of risk that each topic commits.

The application of α′ differs between the SARO and FARO
models. In particular, SARO only addresses the down-side
risk, as in the case of URisk. Indeed, under the null hy-
pothesis H0 : µr = µb, the higher the level of down-side
risk (i.e. the larger the size of the difference ri − bi < 0), the
higher the probability of observing a topic risk-reward trade-
off score greater than the observed score (Pr (Z ≥ TRi)).
Hence, SARO varies α′ from 0 to α, according to the down-
side risk of each topic.

On the other hand, FARO operates on all topics. Indeed,
for the topics with up-side risk, FARO gives lower weights



to the topics that more strongly outperform the baseline
system (i.e. as the difference ri − bi > 0 increases). At
the extreme, if topic i exhibits maximal improvements over
the baseline (i.e. ri − bi = 1), then Φ(TRi ) = 1, and hence
topic i has minimal emphasis on the learner. In other words,
the learner focuses on improving the riskier topics. FARO
operates on all topics, by redefining ∆T as follows:

∆T ′ = (1 + α′)×∆M, (26)

Moreover, for α = 0, α′ = 0, hence ∆T ′ = ∆M , i.e. the
gain-only LambdaMART, as for URisk.

Finally, we informally comment on the consistency of SARO
and FARO: For both models, we calculate SE(URisk) after
the first iteration of boosting within LambdaMART, and
not for each considered swap – we found this to be sufficient
to obtain accurate estimates of SE(URisk); Next, the con-
sistency of SARO follows from URisk, as our replacement of
α with α′, as 0 ≤ α′ ≤ α. For FARO, ∆T ′ only changes sign
with ∆M , again as 0 ≤ α′ ≤ α. Hence, as long as ∆M is
consistent, both SARO and FARO are also consistent.

6.4 Experimental Setup
We implement the URisk, SARO and FAROmodels within

the Jforests implementation [13] of LambdaMART4. Experi-
ments are conducted using the large MSLR-Web10k learning
to rank dataset5, as used by Wang et al. [26]. This dataset
encompasses 9,685 queries with labelled documents obtained
from a commercial web search engine. For each ranked doc-
ument for each query, a range of 136 typical query-inde-
pendent, query-dependent and query features are provided.

We use identical hyper-parameters for LambdaMART to
those described by Wang et al. [26], namely: the minimum
number of documents in each leaf m = 500, 1000, the num-
ber of leaves l = 50, the number of trees in the ensemble
nt = 800 and the learning rate r = 0.075. The best m
value is chosen for each of the five folds using the valida-
tion topic set, based on the NDCG@10 performance of the
original LambdaMART algorithm, and used for all experi-
ments for that fold thereafter. For the calculation of risk
measures, like [26], we use the ranking obtained from the
BM25.whole.document feature as the baseline system. The
NDCG@10 performance of this baseline is 0.309.

The performances obtained for LambdaMART upon the
MSLR-Web10k in terms of NDCG@1 and NDCG@10 are
similar in magnitude to those reported by Wang et al. [26],
however we note some differences in the risk profile. Such
differences are expected given the different implementations:
Wang et al. [26] used a private implementation of Lamb-
daMART, while we use and adapt an open source machine
learning toolkit for URisk, SARO and FARO. Nevertheless,
the reported results allow valid conclusions to be drawn, in-
cluding identical conclusions to [26] on the impact of using
URisk within LambdaMART.

6.5 Results for SARO and FARO
Table 3 reports the effectiveness and robustness results

for FARO and SARO along with URisk, for α = 1, 5, 10, 206.
In the table, the gain over the baseline effectiveness is ex-

4All of our code has been integrated to Jforests, available at
https://code.google.com/p/jforests/
5http://research.microsoft.com/en-us/projects/mslr/
6α=0 is equivalent to the normal LambdaMART algorithm.

Table 3: Results for SARO, FARO and URisk.
α = 0 α = 1 α = 5 α = 10 α = 20

NDCG@1 (URisk) 0.472 0.468 0.458 0.442 0.423
NDCG@1 (SARO) - 0.470 0.463 0.455 0.439
NDCG@1 (FARO) - 0.468 0.467 0.470 0.469

NDCG@10 (URisk) 0.480 0.478 0.470 0.458 0.448
NDCG@10 (SARO) - 0.479 0.474 0.468 0.458
NDCG@10 (FARO) - 0.479 0.477 0.479 0.478

Risk/Reward (URisk) 0.172 0.168 0.164 0.176 0.185
Risk/Reward (SARO) - 0.167 0.164 0.169 0.177
Risk/Reward (FARO) - 0.170 0.171 0.171 0.172

Loss/Win (URisk) 0.281 0.278 0.267 0.272 0.275
Loss/Win (SARO) - 0.267 0.266 0.272 0.270

Loss/Win (FARO) - 0.272 0.274 0.271 0.277

Loss (URisk) 2080 2059 1992 2019 2040
Loss (SARO) - 1996 1992 2024 2010

Loss (FARO) - 2025 2040 2040 2060
Win (URisk) 7400 7417 7468 7427 7406
Win (SARO) - 7470 7476 7437 7441

Win (FARO) - 7451 7452 7469 7429

Loss > 20% (URisk) 1180 1130 1036 1036 1042
Loss > 20% (SARO) - 1124 1124 1046 1032

Loss > 20% (FARO) - 1152 1145 1155 1172

pressed as the risk (Eq. (1)) to reward (Eq. (2)) ratio (i.e.,
the “Risk/Reward” rows). Similarly, the number of topics
that the risk-sensitive optimisation contributed to reward
against risk is expressed as the loss to win ratio (i.e., the
“Loss/Win” rows). Raw numbers of losses and wins asso-
ciated with each α value for each model are also shown.
Finally the “Loss > 20%” rows show, for each model, the
number of topics on which the relative loss in performance
over the BM25 baseline was higher than 20%7.

As expected, since the semi-adaptive risk-sensitive opti-
misation (SARO) and the risk-sensitive optimisation based
on URisk focus on only those topics with down-side risk,
there is a steady decrease in average retrieval effectiveness
(i.e., NDCG@1 and NDCG@10), as the risk-sensitivity pa-
rameter value of α increases. Nevertheless, SARO results
in a decrease in average retrieval effectiveness that is less
than URisk, for all α values. In contrast, the fully adaptive
risk-sensitive optimisation (FARO) maintains the average
retrieval effectiveness nearly constant across all α values, as
well as the values of the quality and robustness measures,
namely the risk-reward ratio and the loss-win ratio.

For SARO, the observed values of the two quality and ro-
bustness metrics (risk-reward ratio and loss-win ratio) are
better than for URisk across the α values. For the met-
ric “Loss > 20%”, they are comparable between SARO and
URisk, given a topic sample as large as 9685 in size.

Next, for FARO, the observed values of the two quality
and robustness metrics are comparable with that of the risk-
sensitive optimisation based on URisk across α values, and
for the metric, “Loss > 20%” the observed values for FARO
are slightly worse than that of both URisk and SARO.

To summarise, the empirical evidence in Table 3 suggest
that (i) FARO is best suited for retrieval tasks that are not
tolerant to any loss in average effectiveness but also require
robustness in effectiveness across the topics, and (ii) SARO
suits retrieval tasks that require primarily robustness but are
tolerant to some loss in the achievable average effectiveness.

7Similar measures are reported in [26]. With 9685 topics,
all NDCG differences are statistically significant.



7. RELATED WORK
To the best of our knowledge, this paper is the first work

examining risk-sensitive evaluation from the perspective of
statistical inference. Indeed, while there has been some in-
vestigation into measures of robustness in the literature,
such as Geometric-Mean Average Precision [24], developed
within the context of the TREC 2004 Robust track, this pa-
per advances upon the URisk measure, first proposed in [26]
in 2012. The TRisk measure is the test statistic counterpart
of URisk, which enables hypothesis testing on the level of risk
associated with a given IR system. As a result, it facilitates
adaptive risk-sensitive optimisation within learning to rank.

Outside of risk-sensitive evaluation, statistical hypothesis
testing has a long history within IR. Van Rijsbergen [22]
noted that “there are no known statistical tests applicable to

IR”. However, later, Hull [32] recommended various hypoth-
esis tests for the evaluation of retrieval experiments, includ-
ing the Student’s t test for matched pairs. Zobel [31] was the
first to apply re-sampling techniques in IR, by using a leave-
one-out technique for assessing the effect of pooling on the
effectiveness measurements and the significance of hypothe-
sis tests, including the paired t test and the Wilcoxon signed
rank test. Later, Smucker et al. [19, 20] and also Urbano et
al. [27] investigated nonparametric re-sampling techniques,
such as the bootstrapping and permutation tests, for the
purposes of the evaluation of retrieval experiments.

Finally, much work in developing effective learning to rank
techniques has occurred in the last few years, as reviewed
by Liu [16]. Macdonald et al. [17] examined how the choice
of evaluation measure encoded within their loss functions
impacted upon the effectiveness of various learning to rank
techniques. In particular, it is notable that the AdaRank
technique [16, Ch. 4] focuses on hard queries using boost-
ing. Taking a different approach, Wang et al. [26] proposed
a risk-sensitive optimisation for the state-of-the-art Lamb-
daMART technique, based on their URisk measure. We fur-
ther extend URisk to the new TRisk measure within this
paper, which is both theoretically founded, and results in
more effective and less risky learning to rank.

8. CONCLUSIONS
This paper proposed the new TRisk measure for risk-sensitive

evaluation, which is theoretically grounded within hypothe-
sis testing. It easily allows inferential hypothesis testing of
risk, as well as the exploratory identification of topics that
commit significant levels of risk. In particular, we showed
how TRisk could be integrated within the state-of-the-art
LambdaMART learning to rank technique, to permit effec-
tive yet risk-averse retrieval. Indeed, compared to the exist-
ing URisk measure, we attain higher effectiveness with com-
parable or better risk/reward tradeoffs. For future work, we
believe that there is a huge scope to build further effective
and risk-averse adaptations for learning to rank upon TRisk,
other than SARO and FARO, and beyond LambdaMART.
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