
Efficient Query Processing for Scalable Web Search

Nicola Tonellotto
National Research Council of Italy

nicola.tonellotto@isti.cnr.it

Craig Macdonald
University of Glasgow

craig.macdonald@glasgow.ac.uk
Iadh Ounis

University of Glasgow
iadh.ounis@glasgow.ac.uk

November 23, 2018

1

Abstract

Search engines are exceptionally important tools for accessing information in today’s
world. In satisfying the information needs of millions of users, the effectiveness (the
quality of the search results) and the efficiency (the speed at which the results are
returned to the users) of a search engine are two goals that form a natural trade-off,
as techniques that improve the effectiveness of the search engine can also make it less
efficient. Meanwhile, search engines continue to rapidly evolve, with larger indexes, more
complex retrieval strategies and growing query volumes. Hence, there is a need for the
development of efficient query processing infrastructures that make appropriate sacrifices
in effectiveness in order to make gains in efficiency. This survey comprehensively reviews
the foundations of search engines, from index layouts to basic term-at-a-time (TAAT)
and document-at-a-time (DAAT) query processing strategies, while also providing the
latest trends in the literature in efficient query processing, including the coherent
and systematic reviews of techniques such as dynamic pruning and impact-sorted
posting lists as well as their variants and optimisations. Our explanations of query
processing strategies, for instance the WAND and BMW dynamic pruning algorithms,
are presented with illustrative figures showing how the processing state changes as
the algorithms progress. Moreover, acknowledging the recent trends in applying a
cascading infrastructure within search systems, this survey describes techniques for
efficiently integrating effective learned models, such as those obtained from learning-to-
rank techniques. The survey also covers the selective application of query processing
techniques, often achieved by predicting the response times of the search engine (known
as query efficiency prediction), and making per-query tradeoffs between efficiency and
effectiveness to ensure that the required retrieval speed targets can be met. Finally, the
survey concludes with a summary of open directions in efficient search infrastructures,
namely the use of signatures, real-time, energy-efficient and modern hardware & software
architectures.

1

Acronyms

Here we report the main acronyms used in this survey. Acronyms typeset in Sans-serif
pertain directly to information retrieval concepts that we explain in this survey.

NDCG Normalised Discounted Cumulative Gain
MAP Mean Average Precision
ERR Expected Reciprocal Rank
MED Maximised Effectiveness Difference
RBP Rank Biased Precision
IR Information Retrieval
QPS Queries per second
IDF Inverse Document Frequency
FOR Frame-Of-Reference
PFOR Patched FOR
Vbyte Variable Byte
EF Elias-Fano
PEF Paritioned EF
QMX Quantities, Multiplier and eXtractor
SIMD Single Instruction Multiple Data
TAAT Term-At-A-Time
DAAT Document-At-A-Time
WAND Weighted AND or Weak AND
BMW Block-Max WAND
BMM Block-Max MaxScore
BMA Block-Max AND
LBMW Local BMW
VBMW Variable BMW
QEP Query Efficiency Prediction/Predictor
QPP Query Performance Prediction/Predictor
SLA Service Level Agreement
PESOS Predictive Energy Saving Online Scheduling
DVFS Dynamic Voltage and Frequency Scaling
TFIDF Term Frequency - Inverse Document Frequency
SAAT Score-At-A-Time
LTR learning-to-rank
FPGA Field Programmable Gate Array
IoT Internet-of-Things
ISN index serving node

2

Notations

Here we only report the recurrent notation symbols used in this survey. Fixed size text is
used for pseudocode-related symbols.

R the number of replicas of a shard.
S the number of shards of an index.
K the number of top results returned by a search engine.
s speedup, used as a performance measure.
r reduction, used as a performance measure.
d a document, as indexed by an IR system.
q a query, as processed by an IR system, i.e., a set of terms.
N the number of documents indexed by the IR system.
t, ti a term, as may exist within a query.
Scoreq(d) a generic query-document ranking function.
st(q, d) a generic term-document similarity function.
ft the document frequency of a term.
IDFt the inverse document frequency of a term.
fd,t the number of occurrences of a term in a document.
⊥ special symbol to denote the end of a posting list.
n number of terms in a query.
p, I, O an array of posting lists.
q a priority queue of docids or 〈docid, score〉 pairs.
A an accumulators map from docids to scores.
λ the size of an unordered window complex operator.
p parallelism degree, i.e., number of threads.
t(p) expected query processing time with p threads.
σt(q) the term upper bound, a.k.a. its max score.
σd(q), σd the document upper bound computed with

term upper bounds.
q̂ a set of terms from query q already processed.
θ, θ a threshold, i.e., the smallest (partial) score

of the current top K documents.
L parameter of the Quit and Continue strategies.
Nt the number of documents indexed in a top candidates list.
σ an array of term upper bounds.
ub an array of document upper bounds.
pivot a index of a posting list in p.
pivot_id the docid of the pivot posting list iterator.
F the aggressiveness tradeoff of a dynamic pruning strategy.
b an array of block lists.

3

σb a document upper bound computed with
block upper bounds.

sj(t) a QEP term statistic.
Ai a QEP aggregation function, e.g., max, sum, variance.
fij(q) a QEP feature defined for query q.
τ a posting list score threshold.
A(t1, t2) size of the intersection of the posting lists of terms t1 and t2.
δ, ε, β small positive constants.
fins, fadd filtering thresholds.
w a weight.
b the number of bits used to represent impacts.
g, h fitting parameters for estimation of b.
L,U global lower and upper bounds on term scores.
Q a fidelity control knob.
ρ number of postings to process.
M a standard evaluation metric.
fi, f a feature id.
F a feature id set.
x a feature vector.
Ti a regression/decision tree.
T a set of regression/decision trees.
wi the weight of a regression/decision tree.
dT the depth of tree T .
si a tree score contribution.
ni a branching node of a regression/decision tree.
ei(x) the exit leaf of a tree for a given feature vector.
Ni the set of branching nodes of a tree.
Li the set of leaf nodes of a tree.
γ a threshold value.
a a array of two elements.
tid an array of tree ids.
mask an array of mask bitvectors.
th an array of threshold values.
exit an array of leaf bitvectors.
scores a lookup table of scores.
Q a set of queries.

1 Introduction
Search engines are exceptionally important tools for accessing information in today’s
increasingly digital world. Classical commercial Web search engines, such as those maintained
by Google, Bing, Yandex, Baidu, have processed billions if not trillions of Web documents,
and have kept maintaining these in continuously updated index data structures1 requiring

1https://www.google.com/insidesearch/howsearchworks/thestory/index.html

4

https://www.google.com/insidesearch/howsearchworks/thestory/index.html

petabytes of storage space,2 to ensure satisfying the users of the search engine through
billions of user queries received every month.3 (Bosch et al., 2016)

Satisfaction of the search engine users is a key metric for search engine providers.
Without drawing too broad a sweeping generalisation, one of the fundamental goals of a
search engine is to derive income from advertising traffic, for instance from the ads that
are often presented next to the organic search results. Users that are not satisfied with the
search engine results may switch to a different engine (White, 2016), and may not return.
This is a loss of advertising revenue for the search engine. As a consequence, ensuring that
their users are satisfied with the results is of utmost importance to search engines.

There are various reasons why the result page for a search does not satisfy a user (Diriye
et al., 2012), but the primary causes are the effectiveness – the quality of the returned
results – and the efficiency – the speed at which the results were returned. Indeed, search
engines that are slow to return results to users can negatively damage the user’s perception
of the quality of the results (Brutlag and Schuman, 2009). Hence, a search engine needs to
be both effective (deploying advanced ranking mechanisms), while ensuring that its results
are efficiently returned to the user. A key contribution of this survey is to review both the
foundational background and the recent advances in search engine infrastructures.

Fortunately, search is a parallelisable problem, and scaling can be applied to the search
engine computing infrastructure. Indeed, as shown in Figure 1.1, a large index can be
partitioned across multiple shards, allowing each single search engine server to service a
small portion of the index in order to ensure fast retrieval. Each of the S index shards can
be replicated R times, allowing both resilience and scaling. When user queries arrive, the
broker routes queries to the less loaded replica of each shard for processing (Freire et al.,
2013; Freire et al., 2012).

Using such a distributed setting for a large search engine, R × S can be very large,
covering potentially hundreds of thousands of servers. All of the major search engines run
exceedingly large data centres, each often requiring capital investments of billions of dollars,4
and consuming vast quantities of energy. Data centres use 3% of the global electricity supply
and account for about 2% of the total greenhouse gas emissions; this is expected to triple
in the next decade, putting an enormous strain on energy supplies and dealing a hefty blow
to efforts to contain global warming.5

Clearly, at such large scales, the efficiency of the search engine’s operating internals
are therefore key to the operating costs of such companies. Efficiency improvements of
5% would allow a 5% reduction in R replicas, potentially equating to significant power

2https://www.google.com/insidesearch/howsearchworks/crawling-indexing.html
3https://googleblog.blogspot.it/2010/09/google-instant-behind-scenes.html
4http://www.datacenterknowledge.com/archives/2014/07/23/from-112-servers-to-5b-spent-on-google-data-centers-per-quarter
5http://www.independent.co.uk/environment/global-warming-data-centres-

to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html

5

https://www.google.com/insidesearch/howsearchworks/crawling-indexing.html
https://googleblog.blogspot.it/2010/09/google-instant-behind-scenes.html
http://www.datacenterknowledge.com/archives/2014/07/23/from-112-servers-to-5b-spent-on-google-data-centers-per-quarter
http://www.independent.co.uk/environment/global-warming-data-centres-
 to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html

Queries Broker

Results
Merging

Query Server Retrieval
Strategy Shard

Query Server Retrieval
Strategy Shard

Query
Server

Shard
Replica

Query
Server

Shard
Replica

Query
Server

Shard
Replica

Query
Server

Shard
Replica

S Shards

R Replicas

Figure 1.1: Distributed retrieval architecture.

consumption reductions, and providing a room for further growing the sizes of the search
engines’ indexes, or servicing growth in the user queries.

The distributed nature of a search engine infrastructure is not within the scope of this
survey. The interested reader can find a comprehensive overview of distributed large-scale
Web search engines in (Cambazoglu and Baeza-Yates, 2015). Instead, this survey focuses on
the general architecture of a search infrastructure as might be deployed within a single server.
Our goal is to provide an accurate description of the basic search components involved in
the scoring of documents in response to a query, together with a detailed and exhaustive
review of the research works aiming at boosting the efficiency of query processing without
negatively impacting the effectiveness performance of the system.

A key detail of the manner in which a search engine is designed to operate is the “top-
heavy nature” of results: since the users of search engines typically focus on the top-ranked
results (as can be measured offline using test collections and metrics such as NDCG (Järvelin
and Kekäläinen, 2002) and ERR (Chapelle et al., 2009)), the relevance of those results is
key to user satisfaction. This means that the search engine should itself focus on getting
the most relevant results at the top of the ranking, at the possible detriment of mis-ranking
other results. In his SIGIR 2010 Industry Day talk, Pedersen (2010) described this process
as the use of cascading (illustrated in Figure 1.2). In response to a query, each conceptual
cascade aims to filter or rank documents, before passing onto the next cascade layer. At
the bottom layer, the documents to be retrieved are defined in terms of the subsets of
terms present in the query – being able to identify these subsets as quickly as possible,
without requiring to scan the contents of each document, is a fundamental architecture
decision of an Information Retrieval (IR) system. The bottom layer may filter a collection
of billions of documents down to the millions, which should be scored. In the second layer,
query processing techniques define how the scoring of document weighting models, such as
language modelling or BM25 should be applied. In the final layer (the top layer), various
additional ranking features such as PageRank, or URL information may be calculated and
used within a learned model to re-rank the documents, before presenting the final top

6

K high-scored documents to the user (usually K is small, e.g., 8− 20, as displayed on the
first page of the search results).

20
docs

1,000s of
documents

1,000,000,000s
of documents

Boolean: Do query terms occur?

Simple Ranking: Identify a set most
likely to contain relevant documents

Re-Reanking: Try really hard to get the top of the
ranking correct, using many signals (features)

e.g., AND/OR

e.g., BM25

LEARNING TO RANK

Figure 1.2: Cascading nature of Web search, based on (Pedersen, 2010)

Different techniques are appropriate at different cascade levels, but many are designed
to make efficiency savings by avoiding the scoring of documents, which cannot make the
top-ranked results that will be returned to the user. In this survey, we cover both the core
algorithms and data structures used for retrieval, as well as the optimisations (such as
dynamic pruning) that can be applied at a given cascade level. Of course, not all queries
are equal – some are easier for the search engine to answer effectively, while, orthogonally,
some may be less efficient, i.e., take longer for the search engine to answer. Being able to
know the likely efficiency of a query, as might be obtained from a query efficiency predictor,
can allow the search engine to make on-the-fly decisions about its configuration.

Figure 1.3 provides the main infrastructure that is discussed in this survey. We will
focus on the “online” components, e.g., those responsible for the cascading components of
search, while referring to the “offline” components whenever it is necessary. The remainder
of this survey is structured as follows:
• Chapter 2 provides an overview of the modern infrastructure foundations within a
search engine, covering the basic form of the inverted index data structure, and the
essentials of query processing.
• Chapter 3 provides an introduction to approaches for increasing the efficiency of query

processing, namely the dynamic pruning techniques.
• Chapter 4 describes query efficiency predictors – a new technique to estimate the
response time of queries – that is gaining attention for a number of applications
involving efficient retrieval on a per-query basis.
• Chapter 5 provides an overview of impact-sorted indexes, which make offline changes to

the layout of the inverted index in order to improve the efficiency of query processing.
• Chapter 6 provides an overview of cascading search architectures, and provides insights

into how to efficiently deploy learning-to-rank, a retrieval technique known to benefit

7

Query

Query Processing Features Lookup
and Calculation

Learned
Ranking
Function

Document
Features

Repository

Inverted
Index

Document
Collection

Document
Collection

Indexer
Feature

Processor

Learning to Rank
Technique

Training
Data

Results

ONLINE

OFFLINE

Query
Efficiency
Predictors

Figure 1.3: A conceptual architecture for a search engine.

the search engine’s effectiveness by re-ranking a set of K documents.
• Chapter 7 gives an overview of the current open directions in retrieval infrastructures,

including the use of signature files instead of inverted indexes, and provides concluding
remarks.

Note on Efficiency Performance Measures

In this survey, we illustrate the efficiency measures reported in the cited papers. Since this
survey covers papers from over a period of 30 years, comparing the reported results across
different papers could lead to the wrong conclusions. Hence, we will only report comparative
performance measures derived from single contributions.

The performances of the discussed strategies naturally depend on several factors, such
as the index and/or the query characteristics, the inverted index compression, the similarity
function adopted, the number of documents returned, the actual underlying implementations,

8

the machine(s) used to perform the experiments and so on. In most papers, when comparing
the efficiency of different solution s, two main quantities are typically reported: response
times and/or number of processed elements. In order to be as “implementation-independent”
as possible, we report the speedup of an optimisation w.r.t. the baseline, in terms of mean
response time, and/or its (work) reduction, defined as the percentage of postings that are
dynamically pruned, i.e., not scored, w.r.t. the baseline.

When comparing two time quantities t1 and t2, with t1 > t2 we will always report
their relative speedup s, defined as s = t1/t2 (always greater than 1). For example, if
two strategies A and B have an average response time of 20 ms and 8 ms, respectively,
their speedup (of B w.r.t. to A) is s = tA/tB = 20/8 = 2.5×. When comparing two
numbers of processed elements n1 and n2, with n1 > n2 we will systematically report the
percentage reduction r, defined as r = 1 − n2/n1. For example, if strategy A processes
200 elements while strategy B processes just 150 elements, the reduction of B w.r.t. A is
r = 1− nB/nA = 1− 150/200 = 0.25 = 25%.

Finally, the throughput of a query processing node, as well as that of more complex
search systems, is measured in queries per second (QPS).

Intended Audience

This survey targets readers, researchers and engineers who possess a basic knowledge in
Information Retrieval (IR) or in other cognate topics (e.g., databases, data mining). In
particular, the survey is of utmost interest to PhD students, researchers and practitioners
working on efficiency and system infrastructures in IR and Web search. Indeed, anyone
working on search and ranking on big data will benefit from this manuscript. The survey is
also particularly of interest to lecturers and tutors looking for a concise and comprehensive
textbook on state-of-the-art query processing techniques to support their IR course.

Note on the Origins of the Material

This survey is a new piece of work, but builds upon our research experience in this area.
This survey also benefits from the authors’ experience acquired from presenting two related
tutorials at ECIR 2017 and SIGIR 2018. We would like to thank the attendees of these
tutorials for their insightful questions and comments.

2 Modern Infrastructure Foundations

In this chapter we focus on the fundamental concepts that will be needed in the rest of
the survey. Indeed, we provide a general description of the main “ingredients” that are
necessary to later introduce the more advanced components of query processing. These

9

fundamental ingredients include, in Section 2.1, the nature of the data structures underlying
an IR system – namely the vocabulary and inverted index – and how the inverted index can
be compressed to reduce space usage and decompression time; in Section 2.2 we describe
the basic query processing algorithms that permit retrieval from an inverted index using
both Boolean and best-match retrieval.

2.1 Data Structures

The goal of an IR system is to return information objects relevant to a user’s information
need, expressed as a query. We will refer to the information objects as documents, and the
set of documents over which we perform information retrieval as the document collection.
Each document d can be uniquely identified by a natural number 0, 1, . . . , N − 1, which is
called a document identifier or docid. The atomic unit of information that can be observed
or extracted from a document is called a token. Tokens represent occurrences of single terms,
and the set of unique terms from all documents in a collection is called the vocabulary
or lexicon. Terms can also be uniquely identified with a natural number, called a term
identifier or termid.

The most common type of documents managed by an IR system are the textual
documents, such as text files or Web pages. Hence, the tokens are the occurrences of words
in a document, and a word corresponds to a term. A user query q is expressed as a bag of
terms, and an IR system exploits such terms to process the query and to select documents
from the collection that can satisfy the user’s information need. Since one of the main goals
of an IR system is to provide these relevant documents with subsecond response times, the
document collection must be organised and stored in special data structures to quickly
locate data without processing every document in the collection.

An inverted index (also known as an inverted file) is the most efficient data structure
for accomplishing the goal of text query processing (Witten et al., 1999; Zobel and Moffat,
2006; Manning et al., 2008; Baeza-Yates and Ribeiro-Neto, 2008; Croft et al., 2009; Büttcher
et al., 2010).1 An inverted index organises a document collection in a collection of lists,
one per term (or token), containing information about the documents in which the term
appears.

An inverted index encodes a document collection, exploiting different data structures
that depend on the used query processing algorithm. A typical inverted index layout is
depicted in Figure 2.1. In any case, two components are always present: (a) the vocabulary
(or lexicon) and (b) the set of posting lists (or inverted lists).

The vocabulary is an array of term entries. Every term entry stores information about

1Alternative data structures include signature files and suffix arrays (Baeza-Yates and Ribeiro-Neto,
2008)

10

a term in the document collection, and, in particular, its document frequency (docfreq),
i.e., the number of documents in which the term t appears at least once, and a pointer to
the beginning of the posting list of term t. Note that a vocabulary may store additional
information (stats) regarding the terms appearing in the documents (e.g., the total number
of occurrences of the term in the collection). Typical implementations of a vocabulary
include front-coded sorted arrays, tries, hash tables or B-like trees to allow reduced search
time and an early lookup of term entries (Baeza-Yates and Ribeiro-Neto, 2008).

A posting list is associated with every term in the vocabulary, and it is composed of a
list of postings. A posting is a logical representation of all the information extracted from a
single document in the collection about a specific term. In the most basic case, a posting
for a given document d and term t contains the docid associated with d and, as such, the
posting list of term t contains the docids of the documents in the collection in which the
term appears. Other information, such as the frequency of the term’s occurrence in each
document (freq), or the positions of its occurrences (positions) can also be encoded in the
posting.

Finally, an optional component of an inverted index is the document index. A document
index stores the different attributes of documents as an array of records, indexed by docid.
These attributes include statistical properties of documents, such as the total number of
words (i.e., its document length doclen) and other properties props, such as the language
and the number of incoming links to the document (inlinks), as well as other pre-computed
attributes, such as the importance of the document (i.e., its global score).

attributes

docid
freq

positions

docid
freq

positions

docid
freq

positions
docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

postings

posting list

inverted index

docfreq
stats

term

docfreq
stats

term

docfreq
stats

term

lexicon

term
entry

doclen
props

doclen
props

doclen
props

document
entry

document
index

document

document

document

Figure 2.1: A typical inverted index components. Greyed-out elements are typically optional, and depend
on the choices made in the implementation of the search engine.

11

Overall, the most important data structure is the inverted index, whose main functions
and characteristics are described in Section 2.1.1. Moreover, the inverted index is normally
stored on disk, but since it must be accessed repeatedly to process queries, it is often kept
in the main memory to reduce costly disk accesses. Since an inverted index can occupy a
large amount of space, compression techniques are employed to reduce its size (without
loss of information). Several such compression techniques are described in Section 2.1.2. In
contrast, the “lossy” compression of the inverted index – known as static index pruning – is
highlighted later in Section 5.

2.1.1 Accessing an Inverted Index

The inverted index makes it possible to identify the documents in which some terms appear
without analysing all documents in the collection. By selecting the posting lists of the
query terms, a query processing algorithm can traverse them to identify the docids of
documents in which at least one (or all) of the terms appear(s). Commercial Web search
engines often internally rewrite the user query into a complex query plan that includes
boolean expressions of query terms, which must then be resolved (Risvik et al., 2013). This
posting list query processing is known as boolean retrieval (see Section 2.2.1). In order
to reduce their space occupancy, to store more documents in the same amount of space,
and to exploit modern memory hierarchies, for faster access, the posting lists are stored
contiguously, traversed sequentially, and are usually compressed (see Section 2.1.2) (Zobel
et al., 1998). Large compression benefits can be attained if the posting lists are sorted by
increasing docid value (Silvestri, 2007).2

An inverted index with posting lists sorted by increasing docid value is called a docid-
sorted inverted index. This index layout is commonly used in Web search engines (Dean,
2009). Other index layouts exist, for example the score-sorted or impact-sorted indexes,
which are discussed in chapter 5. Unless otherwise specified, we will always assume that the
posting lists are sorted by increasing docids.

Boolean query processing on Web-scale document collections, with billions of texts to
be managed, cannot be used to retrieve all matching documents directly for the users. Users
do not typically browse more than 20 results (Silverstein et al., 1999). As a consequence,
the number of documents to return to users must be often limited. Thus, a relevance score
is associated with the query-document pairs. Documents are ranked according to a heuristic
similarity function, estimating, according to a given statistical procedure, the similarity (or
the probability of relevance) of a document with respect to a query. Then, the documents
in the posting lists are sorted by their similarity to the user query, and the K documents
with the highest scores are returned to the user. This posting list processing is known as
ranked retrieval (see Section 2.2.2). Sometimes, the final similarity of a document with

2Different orderings, such as impact-based, can lead to greater compression benefits (see Chapter 5).

12

respect to a query is modified by taking into account the query-independent features of
the document (e.g., PageRank, URL length). These features provide the static or global
score of a given document. The effective integration of many such features raises several
challenges with respect to their weighting, often addressed by the use of learning-to-rank
techniques, further discussed in Chapter 6.

Many query-document similarity functions have been proposed, including: the cosine
measure (Salton et al., 1975), BM25 (Robertson et al., 1994), statistical language mea-
sures (Ponte and Croft, 1998; Lafferty and Zhai, 2001), and divergence from randomness
measures (Amati and Van Rijsbergen, 2002). We will not enter into the details of specific
similarity measures, but we will compute the relevance score of query-document pairs
through a generic ranking function Scoreq(d) following the general outline given by the
best match strategy, namely:

Scoreq(d) =
∑
t∈q

st(q, d) (2.1)

where st(q, d) is a term-document similarity function that depends on the number of occur-
rences of term t in document d (i.e., the within-document term frequency) and in the query
q (i.e., the within-query term frequency), on other document statistics such as document
length and on term statistics such as the document frequency. Commonly, the document
frequency of a term ft is used in the similarity functions through a quantity called inverse
document frequency IDFt,3 denoted as:

IDFt = log N
ft

(2.2)

where N is the number of documents in the collection. As such, rare terms will have a
high IDFt, and a high similarity score, while common terms will likely have a low IDFt
and a low similarity score. Term-document similarities are non-negative quantities, and the
contribution to the similarity of document terms not appearing in the query is assumed
to be 0, and vice-versa.4 Since the in-document term frequency is commonly used in many
similarity measures, it is a typically included in the posting list (freq).

An inverted index storing posting lists as sequences of (d, fd,t) pairs is called a document-
level index, since each posting contains information about the number of occurrences of a
term in a document fd,t, but no finer-grained information on these occurrences is provided.
Alternatively, a term-level index encodes in each posting additional information on the
position of the occurrences of a term in a document. In particular, each posting stores an

3For the same purpose, some weighting models, such as the language models and divergence from
randomness models, rely upon the total frequency of the term in the entire collection.

4More generally, the query-document similarity may also include an additive query independent document
global score G(d).

13

increasing sequence of natural numbers, encoding the position of each occurrence of term
t in document d (positions). In this way, it is possible to establish if two or more terms have
adjacently occurred or not.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris
sed bibendum mi, id accumsan tellus. Integer venenatis magna
ac leo sagittis, ut volutpat libero facilisis. Curabitur lorem augue,
porttitor eget suscipit eget, commodo dignissim quam. Nulla
hendrerit lobortis arcu id mattis. Maecenas porttitor rhoncus nisi,
quis hendrerit turpis feugiat id. Aenean sed justo consectetur,
bibendum ligula in, faucibus odio. Suspendisse nec fermentum
erat, sed tempor est. Cras interdum lacus tempus nisl porta, ac
vehicula ligula volutpat. Nullam pharetra finibus tortor, vel
mattis velit congue quis. Donec facilisis nec lacus at aliquam.
Sed et sodales nisi. Phasellus accumsan fermentum eros nec
ultricies. Orci varius natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus.
Donec et fringilla velit. Pellentesque sit amet semper turpis, vel
vulputate leo. Vestibulum lobortis placerat nisl. Praesent ac
aliquet urna, id pulvinar sem.

Bing

www.bing.com

Bing
Bing

Microsoft Bing
Bing

Title

Body

URL

Anchor
Text

Whole
Document

Figure 2.2: Different fields within a document, from (Macdonald et al., 2013b).

Finally, it is worth noting that a given document can be represented in different ways.
For example, a Web page can be represented by its URL, its title or its content. Different
document representations entail different term and term-document statistics, e.g., the term
frequency in a Web page title typically differs from the frequency of the same term in
the content. Hence, an inverted index could group together the term statistics and the
corresponding posting lists for different document representations, also known as fields. As
shown in Figure 2.2, the typical fields in a Web page document are the URL, title, content
and anchor text from the incoming hyperlinks (Macdonald et al., 2013b).

Physically, the internal organisation of posting lists can be interleaved or non-interleaved,
as shown in Figure 2.3 (Anh and Moffat, 2006c). In interleaved indexing, each posting is
stored compactly, where the docid is immediately followed by the term-document frequency

14

and, for term-level indexes, by the list of term occurrence positions. In a non-interleaved
index, all individual components of postings are stored in different (portions of the) inverted
files: one for the docids, one for the frequencies and one for the term positions.

docid freq
interleaved
posting list docid freq docid freq

docid
freq

docid docid
freq freq

non-interleaved
posting list

Figure 2.3: Interleaved and non-interleaved posting list organisations.

Since posting lists are processed sequentially, it is often convenient to see a posting list
as an iterator over its postings. Hence, the access of a posting list through its pointer returns
an iterator starting on its first posting. Some operations that are commonly performed on a
posting list plist are defined as follows:
• plist.docid() returns the document identifier d of the current posting. If the iterator

has reached the end of the posting list, plist.docid() returns the special symbol ⊥.
For comparison purposes, the special symbol ⊥ is considered strictly greater than any
other docid.
• plist.score() returns the similarity score computed with the term and document

statistics extracted from the current posting, as calculated by st(q, d) in Equation (2.1).
• plist.next() sequentially moves the iterator to the next posting. If the iterator has

reached the end of the posting list, plist.next() returns the special symbol ⊥, the
end-of-list marker.
• plist.next(d) advances the iterator forward to the next posting with a document

identifier greater than or equal to d.5 If the current posting’s docid is greater or equal
to d, the iterator is left unchanged. If d is greater than the docid of the last posting
in the list, plist.next(d) returns the end-of-list marker ⊥. In Section 2.1.2, we will
discuss the efficient implementation of the plist.next(d) operator, such that the
number of intervening postings between the current document and the target d that
are decompressed is minimised.

These operations, also known as posting APIs, were introduced by (Broder et al., 2003).
The plist.next() and plist.next(d) operators advance sequentially the iterator along
a posting list and, when required, the plist.docid() and plist.score() operators are
used to inspect and process the contents of posting currently identified by the iterator.
As we will see in Section 2.2, the posting list APIs play a fundamental role in all query

5Alternatively, this operation can be denoted as plist.nextGEQ(d).

15

processing strategies.

2.1.2 Compression & Skipping

Compression is a fundamental component for query processing, since its main aim is to
reduce the space required to store the inverted index while providing acceptable latencies
when using it for query processing. The compression of the posting lists within the inverted
index ensures that as much as possible of the inverted index can be kept in the higher levels
of the computer memory hierarchy – indeed, many search engines keep the entire inverted
index in the main memory. Hence, a compression scheme should not only be time-efficient
(i.e., inexpensive to decompress), but also space-efficient (i.e., high compression ratio),
to minimise the necessary computing resources while answering queries. Inverted index
compression has been used for some time. For example, one common practice while storing
a posting list is to use gaps (or d-gaps) where possible (Witten et al., 1999), i.e., to record
the differences between components (such as docids or positions) instead of their absolute
actual values. Gaps between docids are expected to be small, requiring far less space to
store than the complete docids. Indeed, by not using a fixed (word-aligned) number of bits
for each number, smaller numbers generally lead to smaller representations in terms of bits.
In the following, we use the term codec to describe a compression/decompression algorithm,
and recap the basic (also called oblivious) compression codecs, (i.e., Unary, Gamma, Vbyte
and Varint) as well as list-adaptive codecs (i.e., Golomb/Rice, Simple, Frame-Of-Reference,
and Elias-Fano). We then discuss some recent advances in compression leveraging the
modern processor architectures. Finally, we discuss docid assignment and the efficient
implementation of skipping, as needed by query processing strategies.

Oblivious Codecs

When a set of non-negative integers is given to an oblivious codec for compression, it
encodes each value on its own, without considering its value relative to the rest of the set.
A desirable side effect is that every single value can be decompressed separately, or only the
decompression of the preceding values is needed if d-gaps are used. On the other hand, such
codecs ignore global information about the set, which can help to have a better compression
ratio. A number of oblivious compression algorithms are briefly described below.
Unary and Gamma: Unary and Gamma codecs are two bitwise, oblivious techniques. Unary
represents a non-negative integer x as x− 1 one bits and a zero bit (e.g.: 4 is 1110). While
this can lead to extremely large representations, it is still advantageous for the encoding
of values that tend to be small, such as those created by the application of delta gaps,
or term frequencies in small document collections. Gamma, described in (Elias, 1975),
represents positive integer x as the Unary representation of 1 + blog2 xc followed by the
binary representation of x− 2blog2 xc. (e.g.: 9 is 1110 001).

16

Vbyte: Vbyte (variable byte) codec (Williams and Zobel, 1999) is a byte-aligned, oblivious
technique. It uses the 7 lower bits of any byte to store a partial binary representation of
the non-negative integer x. It then marks the highest bit as 0 if another byte is needed
to complete the representation, or as 1 if the representation is complete. For example,
201 is 10000001 01001001. While this technique may lead to larger representations, it is
usually faster than Gamma in terms of decompression speed (Scholer et al., 2002). Trotman
(2014) noted that there are different possible implementations of Vbyte, including the Group
Varintused by Google (Dean, 2009).

List-adaptive Codecs

A list-adaptive codec compresses non-negative integers in blocks, exploiting aspects such as
the proximity of values in the compressed set. This information can be used to improve
the compression ratio and/or decompression speed. However, this can mean that an entire
block must be decompressed even when just a single posting is required from it (e.g. during
partial dynamic scoring approaches such as WAND, as described in chapter 3). Moreover,
it is possible to obtain a larger output than the input when there are very few integers
to compress within the block, because extra space is required in the output to store the
header information needed at decompression time (e.g., range of integers, number of bits per
integer). Indeed, when there are too few integers to be compressed, this header information
can be larger in size than the actual payload being compressed (or the inputs have to be
padded with superfluous extra integers). Below, we provide short descriptions of common
list-adaptive techniques.
Golomb and Rice: Golomb codec is a bitwise and list-adaptive compression scheme (Golomb,
1966). Here, a non-negative integer x is divided by a value β. Then, Unary codec is used
to store the quotient q while the remainder r is stored in binary form. The value of β is
chosen depending on the non-negative integers we are compressing. Usually, β = 0.69× avg
where avg is the average value of the numbers being compressed (Witten et al., 1999). In
the Rice codec (Rice and Plaunt, 1971), β is a power of two, which means that the bitwise
operators can be exploited, permitting more efficient implementations at the cost of a small
increase in the size of the compressed data. Golomb and Rice coding are well-known for
their decompression inefficiency (Anh and Moffat, 2005a; Yan et al., 2009a; Lemire and
Boytsov, 2015).
Simple family: This family of techniques, firstly described in (Anh and Moffat, 2005a),
stores as many non-negative integers as possible in a single word. This is made possible by
using the first 4 bits of a word as a selector to describe the organisation of the remaining 28
bits. For example, in a word we can store {509, 510, 511} as three 9-bits values, with the
highest 4 bits of the word reflecting this configuration, at a cost of one wasted bit.
Frame of reference (FOR): Proposed by Goldstein et al. (1998), FOR compresses non-

17

negative integers in blocks of fixed size (128 elements, for example). It computes the range
of the integers, i.e., between the maximum M and the minimum m value in the block
(M −m), then stores m in binary notation. Each of the values are then saved, using their
difference from m and encoded using b bits each, where b = dlog2(M + 1−m)e.
Patched frame of reference (PFOR): FOR may lead to a poor compression in presence
of outliers: single large values that force an increase of the bit width b on all the other
elements in the block. To mitigate this issue, PFOR has been proposed (Zukowski et al.,
2006). This approach chooses a b which is reasonable for most of the elements in the block,
treating these as in FOR. The elements in a range larger than 2b are treated as exceptions.
In the original approach, those are stored at the end of the output, not compressed. The
unused b bits are used to store the position of the next exception in the block. If b bits are
not enough to store the position of the next exception, a compulsory one is generated. This
means that one of the value is treated as an exception even if it could have been encoded
using b bits.

More recent implementations of PFOR treat the exceptions differently. NewPFD (Yan et
al., 2009b) stores the exception positions in a dedicated area of its output, but divides them
in two parts: b bits are normally stored, as for the normal values, while the remaining 32-b
bits are compressed using a Simple family codec. OptPFD (Yan et al., 2009b) works similarly,
but chooses b in a way that tries to optimise the compression ratio and the decompression
speed. FastPFOR (Lemire and Boytsov, 2015), instead, reserves 32 different areas of its
output to store exceptions. Each area contains those exceptions, which can be encoded using
the same number of bits. Outliers in the same exception area are then compressed using a
FOR technique, to improve both the compression ratio and the decompression speed.
Elias-Fano (EF): Recently, the EF representation of monotone sequences (Elias, 1974; Fano,
1971) has been applied to inverted index compression (Vigna, 2013). Given a monotonically
increasing sequence of n non-negative integers upper-bounded by u, each element in the
sequence is represented in binary using dlog ue bits. The binary representation of each
element is split into two parts: a high part, consisting of the dlogne most significant
bits, and a low part consisting of the remaining bits. The low parts are stored in a fixed-
width bitvector, while the high parts are represented in negated unary.6 Overall, it can
be shown that the sequence representation takes ndlog u

ne + 2n bits. Moreover, the EF
representation of a compressed sequence can support random access without decompression
by using an auxiliary succinct data structure, i.e., negligibly small compared to the EF space
occupancy (Vigna, 2013). However, EF fails to exploit the local clustering that inverted
lists usually exhibit, namely the presence of long subsequences of close document identifiers.
More recently, (Ottaviano and Venturini, 2014) described a new representation based on
partitioning the list into chunks and encoding both the chunks and their endpoints with

6Negate unary represents a non-negative integer x as x− 1 zero bits and a one bit.

18

EF, hence forming a two-level data structure, called Partitioned Elias-Fano (PEF). This
partitioning enables the encoding to better adapt to the local statistics of the chunk, thus
exploiting clustering and improving compression. They also showed how to minimise the
space occupancy of this representation by setting up the partitioning as an instance of an
optimisation problem, for which they present a linear time algorithm that is guaranteed to
find a solution at most (1 + ε) times larger than the optimal one, for any given ε ∈ (0, 1).

SIMD-based Compression

Modern efforts in compression have increasingly focussed on the use of Single Instruction
Multiple Data (SIMD) CPU instructions (Stepanov et al., 2011), which permit the same
operation on multiple data points simultaneously.

For example, Varint-G8IU (Lemire and Boytsov, 2015; Stepanov et al., 2011; Trotman,
2014) is a form of Group Varint where as many integers are packed into 8 consecutive bytes
preceded by a one-byte descriptor that depicts the number of encoded integers. A single
CPU instruction, PSHUFB can then decode all integers.

Lemire and Boytsov (2015) provided a comprehensive study of SIMD-based compression
codecs for integers. For instance, SIMD-BP128 packs blocks of 128 consecutive integers into
a number of 128-bit words. Each integer is stored using the same number of bits. Then a
single SIMD instruction can decode 16 128-bit words at once. The selector is stored before
the sequence, and defines the number of bits needed for each integer.

QMX, which was proposed by Trotman (2014), builds upon SIMD-BP128, but separates
the payload (or Quantities), the run length (or Multipliers), and the selector (or eXtractor),
hence the name. QMX has been shown to be more space efficient than SIMD-BP128 (partic-
ularly for short posting lists), as well as faster at decoding on most of the CPU architectures
investigated by Trotman (2014).

Docid Orderings

The compression rate achievable by a given codec depends on how the occurrences of terms
are clustered within the docid space, due to the use of d-gaps: the smaller the d-gaps
exhibited, the higher is the attainable compression.

Various works have examined the assignment of docids to documents to benefit com-
pression – in this way, the collection is reordered, such that docid 0 is no longer the first
document observed during indexing. Different schemes aim to achieve a clustering property
– by clustering together similar documents, which contain similar terms – hence similar
documents would obtain close docids, and hence the posting lists for these terms would
have smaller d-gaps (Bookstein et al., 1997). In general, finding such an ordering is NP-

19

hard (Silvestri, 2007), and hence various heuristics have been investigated in the literature
(e.g., (Shieh et al., 2003; Silvestri et al., 2004; Tonellotto et al., 2011)).

However, work in this area has been largely completed, due to the observations of
Silvestri (2007), who demonstrated that by simply ordering documents lexicographically by
their URLs (reversing the host part of the URLs first7) produces a good approximation of
the clustering property.8 Indeed, Silvestri (2007) observed compression ratios 5% better
than a clustering approach, while taking two orders of magnitude less time to compute
the docid reassignments. Later, Tonellotto et al. (2011) demonstrated the benefits of URL
ordering on efficient retrieval approaches such as DAAT, MaxScore and WAND. More recently,
Ramaswamy et al. (2017) showed that a docid reordering based on the item category reduces
the average latency of over 20% in a large-scale eCommerce search system.

Nevertheless, major search engines, dealing with potentially a trillion documents, may
find it expensive for the indexing subsystem to assign a globally unique docid to every
document (Risvik et al., 2013). While space compression helps in dealing with storage costs,
distributed search engines may rely on a random docids assignment, to help load balancing
across the index shards.

Skipping

When processing a posting list, there are numerous cases in which it is possible to avoid
reading and decompressing portions of the list. For example, looking for a specific docid in
a given posting list, and reading from disk and/or decompressing all preceding docids is
just time consuming. Hence, (Moffat and Zobel, 1996) proposed to insert synchronisation
points into a compressed posting lists. Such synchronisation points are stored in the index,
together with the corresponding posting lists. Each of them is represented by a docid-offset
pair, also known as a skip pointer, denoting the offset in bits/bytes w.r.t. the beginning of
the posting list where the given docid is compressed (see Figure 2.4).

d1

skip pointers

d2 d3 d4 d5 d6 d7
d3 d5 d7

posting list

Figure 2.4: Example of three skip pointers in a posting list with seven postings.

7For example, www.example.com/main.html becomes com.example.www/main.html.
8Note that this technique will not work if all documents are from the same domain, e.g., Wikipedia.

20

www.example.com/main.html
com.example.www/main.html

To check if a document appears in the posting list we use the skip pointer with the
greatest docid smaller than the document’s docid, and we use its offset to access the inverted
index starting from the position of such docid. In fact, skip pointers are used to efficiently
implement the plist.next(d) operator, introduced at the end of Section 2.1.1. According
to Moffat and Zobel (1996), skip pointers should be placed sequentially at fixed-width
intervals, every

√
ft posting, where ft represents the number of postings in the posting list

of term t.
More recently, Chierichetti et al. (2008) proposed a dynamic programming approach to

place skip pointers optimally, i.e., minimising the expected time to process a query, when
a probability distribution of the processed terms is known in advance. (Boldi and Vigna,
2005) proposed to embed whole skip lists into the posting list for faster access, including
multiple-level of skip pointers.9 However, due to the prevalence of list-adaptive compression
technique, multiple levels of skip lists are seldom deployed.

Overall, skip pointers are an important requirement of an inverted index posting
list implementation, and usable for many techniques that implement conjunctive query
processing (e.g., see Section 2.2.1 below), or for dynamic pruning techniques (discussed
later in Chapter 3).

2.2 Query Processing

When a query q is received, the role of the IR system is to select the docids to return to
the user, based on the terms within the query. In a strict interpretation, the query would
define exactly the terms that the retrieved documents must (or must not) contain. However,
as elicited by Rijsbergen (1979), information retrieval differs from data retrieval (as might
be performed using a database system) in that such an exact retrieval “may sometimes
be of interest but more generally we want to find those items which partially match the
request and then select from those a few of the best matching ones”. Hence, the query may
be pre-processed (or automatically re-formulated) before retrieval commences, for instance,
by removing stopwords, applying a stemming algorithm to identify additional similar words,
or other automatic query expansion or query rewriting techniques.

Assuming that q has thus been pre-processed, in the remainder of this Section, we
highlight the foundational query processing strategies that result in the docids being
retrieved: for Boolean retrieval, when an exact answer is required (Section 2.2.1), and for
ranked retrieval, when documents must be scored in relation to their similarity to q, to
identify those to be returned to the user (Section 2.2.2). Note that techniques for rendering
the results to the user, such as presenting the metadata for each document in the search

9The notion of the skip lists were introduced by Pugh (1990) and are probabilistic binary search tree
data structures.

21

engine’s result page, or the query-biased summarisation of the retrieved documents (which
has been surveyed by Nenkova and McKeown (2011)) are outwith the scope of this survey.
Next, we present and discuss the most recent comparisons of ranked retrieval strategies
in terms of efficiency (Section 2.2.3). This is followed in Section 2.2.4 by an overview of
complex queries, such as phrase and proximity queries, generated using a Web search
engine’s advanced query languages, and a survey of existing techniques to handle the
processing of such queries. We conclude the section with a discussion on the multi-core
query processing solutions (Section 2.2.5).

2.2.1 Boolean Retrieval

During its processing, a query expressed as a (multi-)set of terms, is processed against an
inverted index to produce a list of documents that are returned to the user. In boolean
retrieval, queries can be processed in conjunctive (AND) modes, in disjunctive (OR) mode,
or a mix of the two modes.10 In such a scenario, a conjunctive query processing algorithm
must return a list of documents in which all the terms of the query appears at least once.
Conversely, a disjunctive query processing algorithm must return all documents in which
at least one query term appears.

Let us focus on conjunctive processing first. A simple and effective binary intersection
algorithm for boolean conjunctive processing of two posting lists requires the parallel
traversal of both posting lists, retaining the docids present in both posting lists. In its
simplest implementation, the binary intersection algorithm scans the shorter posting list,
and locates each element of the shorter posting list in the longer one. Portions of the long
list can be skipped leveraging the (d) operator to avoid decompression and/or disk accesses
to unwanted parts of the longer posting list.

With more than two posting lists, the binary intersection algorithm can be iteratively
applied to compute the final results, as shown in Algorithm 2.1. The two shortest posting lists
are intersected, then the resulting posting list is repeatedly intersected with the remaining
posting lists in increasing order of length (lines 3–11). Since the posting lists are processed
in order of increasing length, skipping over the longest posting list will be maximised, since,
as the algorithm proceeds, fewer and fewer docids will fall into the intersected posting list
(line 6).

Culpepper and Moffat (2010) presented a holistic intersection algorithm called max
that performs similarly to the iterative binary merge with uncompressed sorted sequences.
This algorithm, presented in Algorithm 2.2, has a memory access pattern with less spatial
locality, but leverages the possibility to larger jumps in the lists. Each docid in the smallest
posting list is tested against the docids of the remaining posting lists (line 7) and is retained

10Some search engines rewrite user queries into complex field-based boolean expressions, such as the
complex operators discussed in Section 2.2.4 below.

22

Algorithm 2.1: The binary merge boolean conjunctive algorithm
Input :An array p of n ≥ 2 posting lists, one per query term,

sorted by increasing length
Output :A posting list a of docids, sorted in increasing order
BooleanAnd(p):

1 a ← p[0]
2 for i← 1 to n− 1 do
3 tmp ← an empty posting list
4 current ← a.docid()
5 while current 6= ⊥ do
6 p[i].next(current)
7 if p[i].docid() = current then
8 tmp.insert(current)

9 a.next()
10 current ← a.docid()

11 a ← tmp

12 return a

if it is present in all the lists (lines 17–21). The algorithm maintains a current docid as
it proceeds, stepping through the docids of the posting lists. When a docid greater than
the current one is encountered (line 7), the shortest posting list iterator is moved to the
next document whose docid is greater than or equal to this docid, and the next current
docid is the larger between the shortest posting list new docid and the encountered docid
(lines 9–14). The (d) operator is used to skip over whole portions of posting lists, pausing
only at the current docid in each posting list (line 6).

Next, considering boolean disjunctive query processing, a basic algorithm is illustrated
in Algorithm 2.3. In this case, no optimisations are possible. All posting lists must be
traversed in parallel (lines 5–7), and every docid must be retained, taking into account
that the same docid could appear in multiple posting lists. In order to traverse the posting
lists, the algorithm maintains a state current as it proceeds (lines 2 and 8), where the
smallest docid yet to be processed appearing in the posting lists is maintained by the
MinimumDocid(p) procedure.

2.2.2 Ranked Retrieval

Web searchers often look only at the top few pages of results for a query (Silverstein et al.,
1999). Moreover, it is not feasible to return all matching documents to users, since the list of
results could be potentially huge. As such, in ranked retrieval, the matching documents are
ranked against the query according to some similarity function and just the K documents
with the highest scores are returned to the users, using a generic ranking function as in
Equation (2.1).

23

Algorithm 2.2: The holistic boolean conjunctive algorithm
Input :An array p of n posting lists, one per query term,

sorted by increasing length
Output :A priority queue q of docids, sorted in increasing order
BooleanAnd(p):

1 q← a queue of docids, sorted in increasing order
2 current ← p[0].docid()
3 i ← 1
4 while current 6= ⊥ do
5 for i < n do
6 p[i].next(current)
7 if p[i].docid() > current then
8 p[0].next(p[i].docid())
9 if p[0].docid() > p[i].docid() then

10 current ← p[0].docid()
11 i ← 1
12 else
13 current ← p[i].docid()
14 i ← 0
15 break
16 i← i + 1
17 if i = n then
18 q.push(current)
19 p[0].next()
20 current ← p[0].docid()
21 i ← 1

22 return q

Algorithm 2.3: The boolean disjunctive algorithm
Input :An array p of n posting lists, one per query term,

sorted by increasing length
Output :A priority queue q of docids, sorted in increasing order
BooleanOr(p):

1 q← a priority queue of docids, sorted in increasing order
2 current← MinimumDocid(p)
3 while current 6= ⊥ do
4 q.push(current)
5 for i← 0 to n− 1 do
6 if p[i].docid() = current then
7 p[i].next()

8 current ← MinimumDocid(p)

9 return q

24

The two classical query processing strategies to match documents to a query in
ranked retrieval fall into two categories: term-at-a-time (TAAT) and document-at-a-time
(DAAT) (Heaps, 1978; Buckley and Lewit, 1985; Turtle and Flood, 1995; Moffat and Zo-
bel, 1996; Kaszkiel and Zobel, 1998). In the TAAT strategy (also known as term-ordered
processing), the posting lists of the query terms are processed and scored sequentially to
build up the result set. In the DAAT strategy (also known as document-ordered processing),
the query term posting lists are processed in parallel, keeping them aligned by docid. The
boolean processing algorithms seen in Section 2.2.1 are similar to DAAT, as they process all
posting lists at once. TAAT versions of such algorithms are clearly possible.

When processing a query in conjunctive mode in ranked retrieval, no special differences
arise with respect to the boolean retrieval. When the final list of results is computed by
intersecting the posting lists, they are scored one by one, then a sorted list of the top
K documents are returned. When a query is to be processed in disjunctive mode, the
boolean retrieval algorithm in Algorithm 2.3 must take into account the management of the
scores of the processed documents as well as the identification of the top K documents with
the highest scores. We now illustrate the TAAT and DAAT query processing strategies in
disjunctive mode, while in Section 2.2.3 we will summarise and compare their performances
according to the existing literature.

The TAAT strategy is described in Algorithm 2.4. The posting lists are processed one
by one (line 2) and, for a given document, its final score will be available once all posting
lists have been processed. To temporarily store the partial scores of documents, a set of
accumulators A is used (lines 1 and 5). Each accumulator contains the partial similarity score
for a particular document computed thus far. The accumulators can be stored in a static
array, indexed by docid or in a dynamic array, implemented via AVL trees, hashing and skip
lists (Doszkocs, 1982; Harman and Candela, 1990; Moffat and Zobel, 1996; Cambazoglu and
Aykanat, 2006). Once all documents appearing in the posting lists have been completely
scored, the K documents with the highest scores are selected and returned (lines 8–10).

Early IR systems used the TAAT strategy in conjunction with the cosine measure as
ranking function (Salton et al., 1975). In such a ranking function, the term-document
similarity st(q, d) in Equation (2.1) is characterised by a document normalisation weight,
and the ranking function can be factored as follows:

st(q, d) = Wt(q, d) 1
W (d) (2.3)

In such cases, the document normalisation weights were typically pre-calculated and
stored at index construction time. To reduce the number of floating point operations,
TAAT implementations with similar ranking functions sum up in the accumulators only
the term-dependent contributions Wt(d), postponing the document-only normalisation to
a further final loop, traversing the final set of accumulators before the top K documents

25

Algorithm 2.4: The TAAT algorithm
Input :An array p of n posting lists, one per query term
Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,

in decreasing order of score
TermAtATime(p):

1 A← an accumulators map from docids to scores,
all entries initialised to 0

2 for i← 0 to n− 1 do
3 current ← p[i].docid()
4 while current 6= ⊥ do
5 A[current] ← A[current] + p[i].score()
6 p[i].next()
7 current ← p[i].docid()

8 q← a priority queue of (at most) K 〈docid, score〉 pairs,
sorted in decreasing order of score

9 foreach 〈docid, score〉 in A do
10 q.push(〈docid, score〉)
11 return q

selection (between lines 7 and 8) (Moffat and Zobel, 1996).
Figure 2.5 illustrates an example of the TAAT strategy with 3 posting lists that returns

the top 2 documents. Firstly, the shortest posting list p[0] is traversed, and the partial
scores for docids 1 and 3 are computed and stored in the corresponding accumulator. Then,
the second posting list p[1] is processed, updating the partial scores for docids 1 and 3, and
creating a new accumulator for docis 2. Eventually the last posting list p[2] is processed,
updating accumulators for docids 1 and 2, and creating a new accumulator for docid 4. To
conclude, the priority queue q with the highest scores in decreasing order, i.e., docids 3 and
1, is computed and returned.

p[0]

2 3p[1]

21 4p[2]

31 p[0]

1 3p[1]

1 4p[2]

1 p[0]

1 2p[1]

21p[2]

1

1 2

2

3

3

4

3

accumulators
1 2 3 4
5.6 0.0 8.2 0.0

1 2 3 4
9.5 3.1 11.9 0.0

1 2 3 4
11.3 5.3 11.9 2.2

q

3 11.9
1 11.3

Figure 2.5: How the TAAT algorithm processes three posting lists

TAAT sequentially scans and processes a posting list at a time, which results in caching
and prefetching benefits. However TAAT has some serious performance limitations when
the document collection is huge, due to the memory required to store accumulators for

26

Algorithm 2.5: The DAAT algorithm
Input :An array p of n posting lists, one per query term
Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,

in decreasing order of score
DocumentAtATime(p):

1 q← a priority queue of (at most) K 〈docid, score〉 pairs,
sorted in decreasing order of score

2 current← MinimumDocid(p)
3 while current 6= ⊥ do
4 score ← 0
5 next← +∞
6 for i← 0 to n− 1 do
7 if p[i].docid() = current then
8 score ← score + p[i].score()
9 p[i].next()

10 if p[i].docid() < next then
11 next ← p[i].docid()

12 q.push(〈current, score〉)
13 current ← next

14 return q

each document in the collection. Moreover, the final top K documents selection could be a
performance bottleneck, due to the scan of the final accumulators. Instead of sequentially
scanning the posting lists, an alternative for disjunctive ranked retrieval consists in processing
the posting lists in parallel, and fully scoring each document as soon as its postings are
identified. This alternative lies at the core of the DAAT algorithm.

Algorithm 2.5 describes the DAAT algorithm. The smallest docid among the first docids
of all posting lists is used to initialise the current docid (line 2). Then, all posting lists
are traversed in parallel (lines 6–11), and the score for the current docid is computed by
checking the iterator on each posting list (line 8). If a posting list’s iterator is used to
compute the score, it is then advanced, and the next docid to process is stored, leveraging
the increasing docid sorting of the posting lists (line 9). After a docid is completely scored,
it is immediately stored in the top K priority queue, sorted in decreasing order of score,
and the algorithm proceeds to evaluate the next docid (lines 12–13).

An example of the DAAT strategy is presented in Figure 2.6, with 3 postings lists that
returns the top 2 documents. Initially the priority queue q is empty, and the minimum
docid is 1. Such docid is scored through the posting lists’ iterators, hence the iterators are
moved forward. The docid is inserted in the queue. The second docid to score is 2, and
it makes its way to the queue as well. Then, as the processing proceeds, the docid 3 is
processed, and it is inserted in the queue, removing the lowest scored docid in the queue, as

27

it will not be returned as a result. Finally, the last docid is processed, but it is not inserted
in the queue since its score is lower than the minimum score of the documents in the queue.

p[0]

2 3p[1]

21 4p[2]

31 p[0]

1 3p[1]

1 4p[2]

1 p[0]

1 2p[1]

21p[2]

1

1 2

2

3

3

4

3 p[0]

1 2p[1]

21p[2]

1

3

4

3

currentposting list iterator

q
1 11.3
– –

score 11.3 5.3 11.9 2.2

1 11.3
2 5.3

3 11.9
1 11.3

3 11.9
1 11.3

Figure 2.6: How the DAAT algorithm processes three posting lists

2.2.3 TAAT versus DAAT

The TAAT and DAAT strategies have been the cornerstone of query processing in IR systems
since the 1970s. The plain implementations of these two strategies are not used anymore,
since many optimisations have been proposed during the years (see Chapter 3), but several
known systems in production today, from large-scale search engines such as Google and
Yahoo!, to open source text indexing packages such as Lucene and Indri, use some optimised
variations of these strategies (Fontoura et al., 2011).

Noreault et al. (1977), Perry and Willett (1983), and Buckley and Lewit (1985) compared
boolean versus ranked retrieval in early IR systems, and introduced the TAAT query
processing strategy. Turtle and Flood (1995) are the first to argue that DAAT could beat
TAAT in practical environments. Most of the research literature devoted to the DAAT and
TAAT strategies is outdated, having compared the efficiency of both approaches together
with their optimisations mainly on machines with limited memory and disk-resident indexes.
Moreover, the typical index size in these works is limited to hundreds of megabytes. Fontoura
et al. (2011) illustrated for the first time the performance results for TAAT and DAAT
algorithms used in Yahoo!’s production platform for online advertisement. Given the sub-
second latency requirements typical of commercial Web search engines, all experiments
were conducted with memory-resident indexes. Their experiments were carried out on two
test indexes: a small index of ∼200,000 documents (269 MB), and a larger index of more
than 3 millions of documents (3.2 GB). The queries were divided in two sets: a query set
containing ∼16,000 short queries (with mean query length of 4.26 terms), and a query set
containing ∼11,000 long queries (with mean query length of 57.76 terms). The results they

28

reported in the paper are summarised in Table 2.1, where the processing times, averaged
on three runs, of the different strategies w.r.t. the indexes and query sets are reported (in
microseconds). The naïve TAAT strategy always outperformed the naïve DAAT strategy,
except for short queries in large indexes, where DAAT performs slightly better (∼5%) than
TAAT.

Hence, TAAT is in general better than DAAT in terms of query processing time. However,
the dynamic pruning optimisation techniques that will be discussed in Section 3.1 will show
that the optimised DAAT strategies perform better than the optimised TAAT strategies.

Table 2.1: Latency results (in ms) for TAAT and DAAT on a small index (up) and a large index (down).
Adapted from (Fontoura et al., 2011).

Small index Large index

Short queries Long queries Short queries Long queries

TAAT 0.14 1.69 3.78 18.91
DAAT 0.19 4.55 3.58 26.78

2.2.4 Complex Queries

Boolean conjunctive queries, as described in Section 2.2.1, are comparatively rare among
the large query volumes serviced by IR systems, since users seldom use the advanced
functionalities provided by the search engine’s query language. However, many search engines
provide an advanced query language supporting operators such as phrase or proximity
queries. Moreover, it is common for search engines to rewrite the user’s query into a
richer low-level implementation, for instance to add phrasal or conjunctive operators when
appropriate. In doing so, the search engine aims to improve the effectiveness of the query,
and may also have the added benefit that the rewritten formulation of the query is more
precise and can benefit the effectiveness of the search engine, and/or is more specific in
terms of matching requirements, such that the efficiency of the query is improved.

Various open source search engines implement advanced complex query operators. Often,
as in the case of the Indri/Galago search platform’s query language Croft et al., 2009,
Ch.7,11 these are not intended for use by end-users. Table 2.2, from (Macdonald et al.,
2017), shows examples of complex operators implementing synonym terms, phrasal terms
and proximity terms. Examples of how these operators might be used to rewrite the query
‘poker tournament’ are shown in Table 2.3.

At the simplest level, query processing techniques that can answer queries using such
complex operators can be implemented by surfacing each complex term in a query as a

11Also implemented by the Terrier IR platform (Macdonald et al., 2018).

29

Table 2.2: Example of complex query operators.

Complex operator Complex term Description Ephemeral posting list

#syn #syn(car, cars) Synonym set Disjunctive/OR
#1 #1(new, york) Phrase Conjunctive/AND

#uwλ #uw8(divx, codec) Unordered window Conjunctive/AND

Table 2.3: Example of rewrites for the query ‘poker tournament’ using complex operators.

Original query: poker tournament
Stemming: poker #syn(tournaments tournament)
Proximity: poker tournament #1(poker tournament)∧0.1

#uw8(poker tournament)∧0.1
Stemming and poker #syn(tournaments tournament)
Proximity: #1(poker #syn(tournaments tournament))∧0.1

#uw8(poker #syn(tournaments tournament))∧0.1

posting list. For instance, the complex term ‘#1(new, york)’ can be surfaced as a single
ephemeral posting list, which internally processes the posting lists for the constituent terms
‘new’ and ‘york’ in a conjunctive manner (see Figure 2.7), while determining in a DAAT
fashion if the occurrences of the terms are adjacent. This can be achieved, for instance, by
using Algorithm 2.1, and when the docids match (line 7), checking the position information
stored within the postings of each constituent term to check for adjacency. For instance, in
Figure 2.7, in docid 0, the term ‘new’ appears at positions 1 & 5, while ‘york’ appears at
position 2 & 6. This means that the within-document frequency of such a pair of query
terms in docid 0 is 2. While the terms appear in documents 3 & 5, they do not reoccur
until document 6 (positions 4 & 5).

For phrasal and proximity operators with n terms, the calculation of the adjacencies
can be formulated as a set intersection problem for n sorted sets of integers (each term’s
position information will be sorted in ascending order). Asadi and Lin (2013) stated that
this can be implemented using a small adaptive algorithm (Demaine et al., 2000; Barbay
et al., 2006). When n ≥ 3, the problem becomes harder, which Lu et al. (2015) addressed by
using adaptations of a ‘plain-sweep’ algorithm originally proposed by Sadakane and Imai
(1999).

Finally, it is of note that some large-scale search engines will prefer to record exact
posting lists (rather than generate ephemeral postings lists) for some n-grams. For example
Risvik et al. (2013), in their description of the Maguro part of the Bing search engine stack,
described the indexing atoms (uni-grams or n-grams) that their engine will create posting

30

#1(new york)

york

new 0 [1, 5]2 5 [3]1 6 [4]1

0 [2, 6]2 3 [2, 4, 6]3 6 [5]1

0 2 3 0 5 0 6 1

positionsdocid freq

pair
frequency

docid

5 [1, 5]2

Figure 2.7: On-the-fly creation of an ephemeral postings list for ‘#1(new, york)’, based on the positional
posting lists for terms ‘new’ and ‘york’.

lists for:
1. All unigrams/words in the stream are atoms.
2. All n-grams (up to a given n) are considered as atoms.
3. A selection of all n-grams (beyond length n) are considered as atoms.
4. A selection of known n-grams of arbitrarily length are considered as atoms.
5. A selection of all tuples (wi, wj) are considered as atoms.
The selection process for such n-grams and tuples uses n-grams identified a-priori from

past query logs as well as from the document corpus itself Risvik et al. (2013).

2.2.5 Multi-core Query Processing

Typically, query processing is carried out sequentially, i.e., a single processor processes a
single query at a time. With the advent of modern multi-core servers, query processing
can be parallelised in several ways. The simplest way to leverage multi-core servers is to
execute a query processing thread per core, and schedule each incoming query on the next
available processing thread (Bonacic et al., 2008; Frachtenberg, 2009; Tatikonda et al.,
2011). In this way, each core processes sequentially a single query (or a small batch of
queries (Bonacic et al., 2008)), and queries are dispatched to different cores using a simple
first-come, first-served strategy. This parallelisation strategy incurs a minimal parallelisation
overhead.12 The throughput of the multi-core server increases almost linearly with the
number of cores, up to ∼7.9× on a server with 8 cores (Bonacic et al., 2008). However, this
parallelisation strategy is unable to leverage extra processing capabilities from the available
cores for processing a given query, resulting in no benefits in terms of query processing

12The inverted index is accessed in read-only mode.

31

times (Frachtenberg, 2009; Tatikonda et al., 2011).
In order to leverage multiple cores to improve the response times of individual queries,

a first solution consists in partitioning the document collection among processing threads.
Frachtenberg (2009) proposed a logical partitioning, where all threads share the same index
but each thread receives an equal-sized subset of documents to scan, together covering the
entire inverted index. Tatikonda et al. (2011) proposed a physical partitioning, where the
documents are divided into equally-sized partitions. An independent inverted index is built
for every partition and assigned to its own processing thread. These partitioning schemes
are unable to obtain linear increases in throughput: both schemes obtain an improvement of
only ∼5.1× on a 8 cores server. On the other side, the mean query latency of both schemes
leads to a speedup of 4.9× on 8 cores.

As an alternative to the coarse-grained parallelism among large document partitions
exploited by logical and physical partitioning, Tatikonda et al. (2011) also proposed a
fine-grained parallelism strategy among small-sized processing tasks. In this strategy a
producer task receives a query, fetches the associated posting lists and generates multiple
independent intersection tasks, as follows: Assuming all posting lists have uncompressed
skip lists (see Section 2.1.2), an intersection task must compute the intersection among
the postings between two consecutive skip pointers of the shortest posting lists and the
remaining posting lists. The intersection tasks are collected into a shared intersection task
pool, and the consumer tasks iteratively process them independently, generating intersection
results that are added to a scoring task pool. The consumer tasks are also responsible
for processing the scoring tasks and compute the final top results. The production of the
intersection tasks is controlled by a capacity threshold, i.e., the number of intersection tasks
in the pool at any time. When the number of tasks in the intersection task pool reaches the
threshold, the consumer stops producing new intersection tasks and acts as a consumer. It
starts producing new intersection tasks when the intersection task pool size falls below the
capacity threshold. The fine-grained parallelisation obtains a throughput of up to ∼7.6× on
a 8 cores server with a capacity threshold of 150 tasks, and a mean query latency speedup
of 5.8× with a capacity threshold of 5 tasks.

A fixed number of cores, i.e., parallelism degree, is not suitable for all query loads.
Parallelisation introduces computational overheads due to synchronisation and partitioning,
negatively impacting both the query latency and the system throughput. Jeon et al. (2013)
proposed an adaptive parallelisation strategy that selects the degree of parallelisation on
a per query basis, depending on the number of available cores, the instantaneous system
load and a request execution time profile. The request execution time profile t() of a
query associates the parallelism degree to an expected query processing time, i.e., t(p)
represents the expected query processing time when processed by p threads. Since the
exact processing time of a query is not known in advance, the average processing time
of past queries is used as an estimate. The adaptive parallelisation strategy selects, for a

32

given query, the parallelism degree that increases the least the total processing time of all
queries, i.e., that minimises the query latency of the queries currently processed by the
server and the new query to process. The documents are sorted by decreasing static scores,
and then they are logically partitioned into smaller subsets of documents called chunks.
When a query arrives and its parallelism degree p is computed, p threads in parallel process
the chunks, in decreasing order of static score. When a thread finds that the current top
results are good enough and the later chunks are unlikely to produce better results, the
thread early terminates the query processing, reducing the computational overhead. Their
experiments, prototyped in Microsoft Bing and evaluated experimentally with production
workloads, show a 2× speedup of mean and tail response latencies (e.g., the 95-th or
99-th percentile) for low and moderated workloads. Jeon et al. (2014) further extended the
adaptive parallelisation approach by leveraging query efficiency predictors (see Section 4) in
place of request execution time profiles. Their predictive parallelisation strategy parallelises
only those queries that are predicted to be long-running (i.e., if the predicted execution
time is greater than a given threshold) and runs the other queries sequentially. This strategy
exhibits a 2× speedup for tail latencies, and an increase in system capacity of more than
50%. Kim et al. (2015) adopted a different efficiency prediction strategy for parallelisation.
Each query is sequentially processed for a short time (e.g., 10 ms) and the parallelism
degree is chosen after that initial processing, based on query efficiency predictors leveraging
information collected during the short sequential processing. On an evaluation using a
simulator, their delayed-dynamic-selective parallelisation strategy obtained comparable
results to predictive parallelisation for mean latencies (up to 300 QPS) and tail latencies (up
to 400 QPS). However, the new strategy is able to maintain the same latency performance
for higher workloads, up to 600 QPS.

2.3 Summary

This chapter provided the necessary introduction to the foundational infrastructure inherent
to every IR system. However, users are only interested in the top K ranked results identified
in response to a user’s query. In the next chapter, we provide an in-depth survey of
optimisations that can be applied within an IR system to improve the efficiency. Indeed,
many of these optimisations such as dynamic pruning – discussed in the following chapter–
are made feasible by the top K nature of retrieval, i.e., by avoiding the indexing or scoring
of documents that are unlikely to make the top K results.

33

3 Dynamic Pruning Query Processing
Since users are mostly interested in the top few pages of results for a query, the complete
scoring of every document that contains at least one query term results in high latency.
However, not all of these documents will make the top K retrieved set of documents that
the user will see.

Two main general approaches have been exploited to increase the efficiency of query
processing in IR systems in the top K ranked retrieval scenario: (1) avoid wasting time
in processing portions of the inverted index containing documents that are unlikely to be
relevant, (2) improve the efficiency of algorithms when processing portions of the inverted
index containing relevant documents.

One of the main design solutions for dealing with these two approaches can be im-
plemented at the query processing level, i.e., by modifying the behaviour of the retrieval
algorithms to try to prune documents that will not be retrieved in the top K . In this chapter,
we summarise the growing literature on dynamic pruning optimisation techniques that
improve the query processing efficiency for both the TAAT and DAAT retrieval strategies.

In the following sections, we will introduce the main premises behind dynamic pruning
(Section 3.1), which aims to dynamically skip documents stored in the inverted index that
have a low chance to make the top K final results. We cover the TAAT and DAAT dynamic
pruning optimisations respectively in Sections 3.2 & 3.3, including the popular WAND
technique. Some of these techniques, as we will see, exploit new statistics computed on the
inverted index. Section 3.4 discusses the most recent improvements to the optimisation
techniques discussed in Section 3.3. These improvements leverage a measure of the contri-
bution of portions of posting lists to the relevance of their documents for user queries, not
by altering the inverted index, but instead by introducing a new component, the block max
index. New improved query processing algorithms exploiting this new index component will
conclude Section 3.4. Finally, Section 4 discusses techniques to predict how long a dynamic
pruning strategy will take to execute a query.

3.1 Introduction to Dynamic Pruning

While static pruning strategies (discussed in Chapter 5) alter the index structure at index
construction time, dynamic pruning aims to alter query processing in such a way that
potentially non-relevant documents, for a given query, can be efficiently ignored. Although
different dynamic pruning strategies have been proposed for TAAT and DAAT strategies
through the years, all of these optimisations rely on a common observation, namely that as
soon as it can be determined that a document will never be able to enter in the final top
K results, we can ignore it during processing, or stop its current processing. This observation,
sometimes referred to as the early termination condition, the stopping condition or the

34

pruning condition, can be stated more clearly by introducing the following definitions:
• early termination: during the processing of a query, a document evaluation is early

terminated if all or some of its postings, as defined by the terms of the query, are not
fetched from the inverted index or not scored by the ranking function.
• term upper bounds: for each term t in the vocabulary, we compute a term upper bound
(also known as max score) σt(q) such that, for all documents d in the posting list of
term t,

σt(q) ≥ st(q, d) (3.1)
The term upper bounds can be computed offline by taking the maximum score value
of the highest scoring document for each term in the vocabulary and storing the
observed score in the vocabulary. Alternatively, for some similarity measures, term
upper bounds can be quickly estimated at runtime (Macdonald et al., 2011).
• document upper bounds: given a similarity function such as in Equation (2.1), for a

query q and a document d, we can compute a document upper bound σd(q) based on
the terms occurring in the document, by summing up the n term upper bounds:

σd(q) =
∑
t∈q

σt(q) (3.2)

During query processing, we compute the final query-document score by sequentially
computing the query-term scores. As soon as the postings of some terms in q̂ ⊆ q

have been scored, we can compute a lower upper bound:

σd(q) = σd(q, q̂) =
∑
t∈q̂

st(q̂, d) +
∑
t∈q\q̂

σt(q) (3.3)

• thresholds: during query processing, the top K full or partial scores computed so far,
together with the corresponding docids, are organised in a separate data structure,
and the smallest value of these (partial) scores is called threshold θ. If there are not
at least K scores, the threshold value is assumed to be 0. This data structure can be
implemented as a priority queue queue with capacity K (also known as max-heap),
supporting the following operations:
– queue.push(〈docid, score〉), adding the 〈docid, score〉 pair to the queue if

the score is greater than the current threshold, and evicting, if the queue is full,
the least scoring docid.

– queue.min(), returning the value of the current threshold θ, or 0 if the queue is
not full.

– queue.pop(), removing the top scoring 〈docid, score〉 pair from the queue and
returning it.

The threshold has the fundamental property of non-negative monotonicity.1 Indeed,
during query processing, its value always increases: as new documents are added to the

1We assume st(q, d) ≥ 0 for all queries and documents.

35

queue, their scores cannot be smaller than the current threshold θ. If the document
score is equal to θ, typically the document, which has a greater docid, is not added to
the queue.

At this point we can formulate the pruning condition: for a query q and a document
d, if the document upper bound σd(q), computed by using partial scores, if any, and term
upper bounds, is less than or equal to the current threshold θ, the document processing can
be early terminated, i.e., if the condition

σd(q) ≤ θ (3.4)

evaluates to false.
In essence, the focus of dynamic pruning is to bring the benefits of skipping from

conjunctive query processing to disjunctive query processing. In other words, all dynamic
pruning strategies aim to process queries conjunctively when possible, and disjunctively
otherwise.Dynamic pruning strategies work well when queries are composed of highly
discriminative (i.e., rare) terms as well as poorly discriminative (i.e., common) terms. For
example, when processing the query “mississippi river cruise”, the term mississippi will
typically be rarer in the collection and hence it will make a higher score contribution, while
the other terms river and cruise will make a smaller contribution, since both terms are
quite common. When processing disjunctively such a query, after a few documents are
scored, it is clear that any new document, to be returned in the final top K results, must
necessarily include the term mississippi, while the other two terms may not be present in
the document. Hence, while all documents in the mississippi posting list must be processed,
we can skip through the posting lists of the other two terms, focusing only on the documents
containing mississippi. Posting lists are read in blocks, so it pays, in term of efficiency, to
skip over large chunks of postings in the longer posting lists.

Figure 3.1 illustrates an early termination with 4 posting lists. In the example, the
current theshold value θ is 6.0, resulting from documents in the current top results. While
scoring docid 11, the document upper bound is initially set to 10.1, the sum of the 4 term
upper bounds. While postings are processed, the document upper bound is adjusted with
the actual scores computed for each term. Hence, it decreases to 8.5 after the posting from
the first posting list is processed. Since 8.5 > 6.0, we must continue to process the other
posting lists. After the posting from the second list is processed, the document upper bound
becomes 4.6. At this point we are sure that document 11 will never obtain a final score
greater than 4.6 and since it is less than the current threshold, the postings of the last two
lists can be ignored, and the processing of docid 11 can be terminated, proceeding to the
next docid.

This pruning condition and how it is used can have further consequences on the
particular query processing strategy adopted. Some optimisations may lead to degraded
effectiveness. According to the terminology introduced by Turtle and Flood (1995) and

36

p[0]

22 26p[1]

2311 27p[2]

1311

11

term
upper bounds

2.1

2511 28p[3]

4.0

1.3

2.7

6.0threshold

document
upper bound

current
docid

10.1

p[0]

22 26p[1]

2311 27p[2]

130.5

11

2511 28p[3]

8.5

p[0]

22 26p[1]

2311 27p[2]

13

2511 28p[3]

4.6

14 14 140.5

0.1

Figure 3.1: An example of early termination.

Strohman (2007), the optimisations can be classified into four classes, depending on their
effectiveness guarantees:

safe/unoptimised: the optimisation guarantees that all documents, not just the top K ,
are ranked correctly, i.e., documents appear in the same order and with the same
score as they would appear in the ranking produced by a unoptimised strategy. The
computation of any effectiveness measure would be unaffected.

safe up to K/rank safe: the optimisation guarantees that the topK documents produced
are ranked correctly, but the document scores are not guaranteed to coincide with the
scores produced by an unoptimised strategy. These are the most interesting dynamic
pruning optimisations, since they do not negatively impact the effectiveness of the
documents returned to the users while introducing efficiency gains. Indeed, relevance
evaluation metrics are typically computed over the top K = 10, 20 documents, such
as MAP@10 or NDCG@20.2

unordered safe up to K/set safe: the documents returned by this optimisation coincide
with the top K documents computed by a full strategy, but their ranking can be
different.3

approximate/unsafe: no provable guarantees on the correctness of any portion of the
ranking produced by these optimisations can be given, but most unsafe optimisations
proposed thus far in the literature produce results with very limited effectiveness
losses.

In the following, we will illustrate the main dynamic pruning optimisations separately
2If the optimisation guarantees that the top K documents produced are ranked correctly with the same

score as they would appear in the ranking produced by an unoptimised strategy, it is also called score safe.
3Optimisations with such a guarantee can be considered as good as safe up to K when used in a learning

cascade, since the actual ordering of the top K results is not important.

37

for the TAAT and DAAT strategies, with a particular focus on safe up to K strategies.

3.2 TAAT Optimisations

In the TAAT strategy, all postings of the posting lists of any term appearing in the query are
processed (see Section 2.2.2). This means that, for any document appearing in any posting
list, an accumulator must be created (and updated). Beside requiring time to process the
postings lists, also the memory space required during query processing can be a problem,
in particular if memory is a scarce resource or takes time to allocate.

All TAAT dynamic pruning optimisations split the query processing into two distinct
phases. During the first phase, the normal TAAT algorithm is executed, one term at a
time, in increasing order of document frequency. This order takes into account the term
importance: shorter posting lists will get higher IDF and higher similarity scores (and
consequently higher term upper bounds). This phase is similar to the processing of a
disjunctive query and, as such, it is also called the OR mode phase. New accumulators are
created and updated, until a certain pruning condition is met, and then the second phase
starts. Then, no new accumulators are created, and a different algorithm is executed, on the
remaining terms and/or on the accumulators created during the first phase. According to
the terminology introduced in (Moffat and Zobel, 1996; Anh and Moffat, 1998), the second
phase algorithms can be classified according to the following scheme:

Quit. The processing of postings completely stops at the end of the first phase. No new
accumulators are created and no postings from the remaining terms’ posting lists are
processed. Some of the existing accumulators will contain only partial scores, because
some score contributions could have been computed during the second phase.

Continue. The creation of new accumulators stops at the end of the first phase. The
remaining terms’ posting lists will be processed, but just to update the score of the
already scored documents with new postings. This phase is similar to the processing
of a conjunctive query, since we will look up for specific docids (those for which an
accumulator has been created during the first phase) in the remaining posting lists,
hence it is also called the AND mode phase.

Decrease. The processing of postings in the second phase proceeds as in Continue, but the
number of accumulators is decreased as the remaining terms are processed. Those
terms will have small score contributions, with few chances to alter the current top
K document ranking. More importantly, the memory occupancy can be reduced as
soon as we realise that an existing accumulator can be dropped since it will never
enter in the final top K documents, with a corresponding benefit in terms of response
times.

38

In the following, we will illustrate the different second phase algorithms and optimisations.

Quit and Continue

Smeaton and Rijsbergen (1981) proposed the first Quit optimisation,4 further refined by
Perry and Willett (1983), that we will call EarlyQuit. They proposed to store separately the
top K accumulators encountered so far. The minimum value in this data structure is the
current threshold θ. Partial scores of documents encountered during processing are stored
in the accumulators. The posting lists are processed in increasing document frequency order.
By doing this, early termination may omit the longer lists from scoring, thus increasing the
efficiency of the algorithm. This sorting of the posting lists is exploited by all optimisations
we will discuss. After looking at every document in a given term’s posting list, a document
upper bound among those documents not yet encountered is computed. This is accomplished
by calculating, at runtime, the term upper bound for those terms q \ q̂ that have not been
processed thus far, and summing them together. If the current threshold is greater than
this document upper bound, i.e.,

θ >
∑
t∈q\q̂

σt(q) (3.5)

the TAAT algorithm is concluded, and the top K documents are returned, ranked by their
partial scores. Hence, this optimisation is unordered safe up toK. Note that in this algorithm,
which we will denote EarlyQuit, the pruning condition is tested every time a posting list is
fully processed. The reported efficiency benefits are not appropriate for current collections,
containing several orders of magnitude more documents.

A similar idea is further explored by Buckley and Lewit (1985) and Lucarella (1988).
They proposed another Quit optimisation for the TAAT strategy that keeps track of the
top K + 1 partial scores. Every time a posting list is fully processed, the partial score θ of
the K-th current top document is compared with the sum of the partial scores A[K + 1] of
the (K + 1)-th current top document and the term upper bounds of the terms q \ q̂ yet to
process. If it is impossible that the top (K + 1)-th document can beat the partial score of
the top K document by using the max scores of the remaining query terms, i.e.,

θ > A[K + 1] +
∑
t∈q\q̂

σt(q) (3.6)

then the processing can be stopped and the top K documents are returned, ranked by their
partial scores. In this case too, the pruning condition is tested after the full evaluation of
each posting list. Moreover, the optimisation is unordered safe up to K. This optimisation

4Actually, it is not clear from (Smeaton and Rijsbergen, 1981) if partial accumulators are fully scored or
not, but we are inclined towards the Quit scheme.

39

can have problems if the K-th and K + 1-th documents have an identical (or very similar)
score(s), since in that case it is impossible to early terminate the processing of the remaining
posting lists. Turtle and Flood (1995) compared this optimisation w.r.t. TAAT on a small
disk-resident index and queries with 9.1 terms on average, showing a 11.7% reduction in
terms of processed postings (K = 20). Fontoura et al. (2011) provided a comparison between
this optimisation and the normal TAAT strategy for memory-resident indexes. Although the
optimisation was able to skip a few score computations, no benefits emerged w.r.t. TAAT
for small indexes, and just around a 1.04×−1.07× speedup on average latency was observed
with large indexes (K = 30).

Instead of completely stopping the scoring process when the pruning condition is satisfied,
Harman and Candela (1990) proposed to only process all postings of the most important
terms of a query. In particular, they completely skipped terms whose IDF is less than a
fraction of the maximum IDF among all terms of the query. This optimisation, denoted
with MaxIDF, can be considered a Continue strategy, since the document scoring is not
early terminated. However, this approach is approximate, since the posting lists of the
ignored terms could change the score of the final top K documents. If the score difference
between the last K-th top document and the K + 1 document is small, even a small score
contribution from a low IDF term could change their relative ranking.

Decrease

Moffat and Zobel (1994) and Moffat and Zobel (1996) were the first to propose a systematic
approach to leverage skipping to reduce the number of accumulators and to switch from
a first OR-like query processing mode to a second AND-like mode. The core idea they
proposed is to restrict with an a priori, query-independent bound L, the maximum number
of accumulators that can be created during query processing. Once L accumulators have
been created, two possible processing alternatives are discussed. In the Quit strategy, the
processing of inverted lists is short-circuited, with great benefits on the processing efficiency
but with a possibly poor effectiveness performance, since this strategy is approximate.
Alternatively, in the Continue strategy, the processing of inverted lists continues, but no
new accumulators are allowed. The documents corresponding to the L accumulators will be
fully scored, but cannot be guaranteed to contain the top K documents of a safe ranking
since the limit on the number of accumulators is fixed a priori. Nevertheless, it is reasonable
to expect a very limited impact on the effectiveness for large values of L (Kaszkiel et al.,
1999).

Lester et al. (2005) noted that the pruning condition of both Quit and Continue completely
rejects whole posting lists rather than separate documents within the lists, causing a bursting
effect on the candidate set of accumulators, since the target number of accumulators L could

40

be dramatically exceeded in some cases.5 While the strategies checking the pruning condition
at the end of the posting lists have been renamed Quit-Full and Continue-Full, two alternative
strategies, namely Quit-Part and Continue-Part, check the number of accumulators’ condition
after every posting. However, new experiments conducted in a Web search scenario, i.e.,
queries with a small number of terms, not dozens like in (Moffat and Zobel, 1996), with
corpora of Web documents and generic users, showed that the Continue-Full strategy did not
perform well in terms of actual number of accumulators created, while the Continue-Part
strategy did not perform very well in terms of effectiveness.

The first observation that the accumulators could be decreased as the later terms in
the query are processed appeared in (Turtle and Flood, 1995). The authors proposed an
approach called TAAT MaxScore similar to the one discussed by Smeaton and Rijsbergen
(1981).6 During the first phase, a threshold of the top K accumulators computed thus far
is mantained. After processing each term, the threshold is checked against the sum of the
upper bounds of the remaining terms. If the current threshold is greater than the sum of
upper bounds, no documents that do not already have an existing accumulator can be in
the top K final results. When this happens, instead of terminating the query processing, the
remaining posting lists are processed with a Continue strategy. In this second phase, we only
need to score postings of documents seen during the first phase, hence the accumulators
must be stored in a sorted list. Moreover, the TAAT MaxScore strategy can also reduce the
number of accumulators during the first phase. As soon as we can state that the current
partial score A[d] of a document plus the upper bounds of the remaining terms cannot be
greater than the current threshold, we can safely remove the document’s accumulator from
the candidate set, i.e.,

θ > A[d] +
∑
t∈q\q̂

σt(q) (3.7)

When this condition holds, document d will never be able to enter the final top K results,
even if the current threshold is not the final one.

Turtle and Flood (1995) compared this optimisation w.r.t. TAAT, showing a 65.2%
reduction in processed postings when K = 20. This benefit decreases to 60.8% when
K = 100 and further to 44.4% when K = 1, 000.

Anh and Moffat (1998) discussed another accumulator Purging strategy: at the end
of the first phase, when we have L accumulators, the number of accumulators is reduced
to a second fixed number L0, and is periodically halved during the second phase. The
halving in the second phase is designed to reach exactly K accumulators after the last
query term is processed. As the authors note, this strategy is negatively impacted by

5Suppose that L is set to 1,000 accumulators for a two terms query. The first posting list contains 100
postings, while the second list contains 100,000 postings. During processing, 100,100 accumulators will be
created.

6Not to be confused with the (DAAT) MaxScore strategy introduced in Section 3.3.

41

the cost of performing the purging. To make the process fast, they proposed to store the
accumulators in an unordered array, but this solution requires a completely random access
mechanism to posting lists, instead of a sequential access with skipping. This approach is
only approximate, since there are no guarantees that the purging of accumulators will not
remove some (unlikely) top K documents.

A further improvement in the dynamic management of accumulators has been proposed
by Lester et al. (2005). They introduced an adaptive pruning strategy to control the memory
usage in the TAAT strategy, denoted with Adaptive. At the beginning of the processing
of any posting list (in decreasing order of document frequency), a threshold value v is
computed. This threshold, depending on the actual scoring function, is directly dependent
on a corresponding term-document frequency hurdle h. A posting’s partial score greater
than v must have a value of fd,t greater than h. New accumulators are created only if their
partial scores are greater than v, while existing accumulators with partial scores lower than
v are removed from the candidate set. The term-document frequency hurdle h must be
adaptively estimated at runtime, depending on the size of the candidate set, the number of
“good” postings accumulated thus far in the current posting list and the expected number
of “good” postings in the remaining postings of the list. The experiments in a Web search
scenario showed that, even if approximate only, the proposed adative pruning TAAT strategy
gives very good effectiveness results by using a number of accumulators equal to 0.4% of the
size of the collection. A further refinement to this algorithm, AdaptiveSkips, that leverages
skipping, has been proposed by Jonassen and Bratsberg (2011).The authors reported a
1.33× speedup versus the original adaptive pruning strategy.

Later, Fontoura et al. (2011) introduced a modification to the TAAT MaxScore optimi-
sation by noting that, while the TAAT MaxScore strategy was originally designed to skip
over portions of disk-resident posting lists during the second phase, its benefits could be
definitely less marked in memory-resident indexes. The main disadvantage of the original
TAAT MaxScore is the overhead to update the candidate set during the first phase and to
sort it before the second phase starts, in order to minimise the number of skips. Hence
the authors proposed a memory-resident TAAT MaxScore optimisation (TAAT mMaxScore),
where the candidate set is not sorted before the second phase and hence the remaining
posting lists are scanned sequentially and merged during the second phase, with no skipping
taking place. Moreover, they avoided pruning accumulators during the first phase. According
to their experiments (summarised in Section 2.2.3), this optimisation performs always better
than the Buckley and Lewit (1985) optimisation and the Turtle and Flood (1995) original
TAAT MaxScore, resulting in a 1.09×−1.22× mean response time speedup for small indexes
and a 1.50×−1.60× mean response time speedup for large indexes (K = 30) w.r.t. the
normal TAAT strategy.

Table 3.1 summarises the TAAT optimisations discussed, together with their associated
second phase processing scheme and their effectiveness guarantees. Even if modern Web

42

search systems do not use TAAT strategies anymore, the
xspace optimisation can be considered to be the best TAAT strategy with the current
document collections.

Table 3.1: TAAT optimisations summary.

Name Reference 2nd phase Effectiveness

EarlyQuit

(Smeaton and Rijsbergen, 1981)

Quit(Perry and Willett, 1983) unordered
(Buckley and Lewit, 1985) safe up to K
(Lucarella, 1988)

MaxIDF (Harman and Candela, 1990) Continue approximate
Quit-Full (Moffat and Zobel, 1994; Moffat and Zobel, 1996) Quit approximate
Continue-Full (Moffat and Zobel, 1994; Moffat and Zobel, 1996) Continue approximate
TAAT MaxScore (Turtle and Flood, 1995) Decrease safe up to K
Purging (Anh and Moffat, 1998) Decrease approximate
Adaptive (Lester et al., 2005) Decrease approximate
AdaptiveSkips (Jonassen and Bratsberg, 2011) Decrease approximate
TAAT mMaxScore (Fontoura et al., 2011) Continue safe up to K

3.3 DAAT Optimisations

The DAAT strategy computes the full document scores in a single step, eliminating the
need for a data structure to store the partial scores of documents as in the TAAT strategies.
Moreover, this allows us to store at any time the top K documents seen thus far, and to
compute dynamically the threshold θ on the full scores. All DAAT optimisations rely on the
dynamic update and growth of this threshold, together with term upper bounds, to markedly
improve the performance of the base DAAT algorithm. They also have a smaller memory
footprint than the TAAT strategies, since at runtime they store O(k) document scores
instead of O(N) accumulators. Even if they do not exploit the spatial locality of the posting
lists and they results in high branch mispredictions due to the frequent comparisons, the
DAAT optimisation strategies are known to be successfully adopted by several commercial
Web search engines.

The DAAT optimisations can be broadly classified into four main classes, as follows:

Top Docs: a certain number of documents for each term are stored separately as the
“most influential” documents for the given term, and used in a pre-processing phase
to improve the efficiency of the subsequent DAAT processing.

43

Max Scores: a term upper bound is stored in the vocabulary for each posting list, and
it is used at runtime to take decisions on the early termination and/or skipping of
certain postings/documents.

Block Max: every posting list is divided into blocks. Each block is considered as a self-
contained posting list, and assigned a max score. Then, during processing, the blocks
are traversed first, and if their max scores indicate some potential top K documents,
they are processed posting by posting, otherwise they are completely skipped.

In the following, we will illustrate different top documents optimisations, and the two
most important max scores optimisations, namely MaxScore and WAND, while the discussion
of the block-based max scores algorithms follows in Section 3.4. To conclude, we also provide
some efficiency measures reported in the literature about the DAAT optimisations.

Top Documents

Brown (1995) proposed one of the early DAAT optimisations for disk-based inverted indexes.
In order to minimise the number of disk reads during query processing, he proposed to
focus processing on documents with high score contributions. For any given term t in the
vocabulary, a top candidates list (also known as a champions list) is stored separately as a
new posting list. The postings in that list are the top Nt results returned to the query t,
by using the same scoring function that will be used at query time. The typical value of
Nt is 1, 000, such that every term in the vocabulary ends up with an additional posting
lists of 1, 000 postings, corresponding to the top 1, 000 highest score contributions in the
original posting list. Then, the normal DAAT processing for any query is applied to the top
candidate posting lists only, reducing markedly the number of postings scored, but with a
potential negative impact on the effectiveness, since this optimisation is unsafe.

Strohman et al. (2005) proposed a safe up toK version of the top documents optimisation
by merging it with a subsequent phase based on MaxScore. Therefore, we will present
Strohman et al.’s strategy after we introduce MaxScore itself.

Fontoura et al. (2011) introduced a family of optimisations based on top terms instead
of top documents. Given a query, it is split into two sets of terms, depending on their
document frequency. Given a postings threshold T , all terms with higher IDF values, i.e.,
shorter posting lists (ft ≤ T), are processed in a first phase, while all other terms, those
with lower impact, i.e., longer posting lists, are processed in a second phase. During the
first phase, all documents in the short posting lists are processed in an OR-mode, using a
TAAT or DAAT strategy, with no optimisations. The candidate set produced is viewed as
another posting list in the second phase. During the second phase, the long posting lists and
this candidate list are processessed using a DAAT optimisation such as MaxScore or WAND.
Moreover, the K-th partial score of the candidate set is used to initialise the threshold of
the max-heap priority queue used in the second phase. Kane and Tompa (2018) investigated

44

a similar approach based on split-lists for WAND. During indexing time, they proposed to
split each list into two parts, where the first part contains the highest scored documents
and the second part contains the remaining documents. Their experiments reported a 1.7×
speedup for WAND.

MaxScore

The MaxScore optimisation, introduced by Turtle and Flood (1995), is a safe up toK strategy
aiming to boost the efficiency of the DAAT algorithm through the following observation.
At some point during query processing, we can expect that the threshold will be large
enough to prune documents appearing only in the posting list with the smallest term upper
bound contribution. When this happens, the algorithm can safely skip over documents
appearing only in that posting list, and can consider as top K candidate documents only
those appearing in the remaining posting lists. Once a new candidate document must be
fully scored, that posting list can be traversed in an AND mode to look for the candidate
docid only. This observation can be applied to the remaining posting lists as the query
processing proceeds and the threshold increases.

A possible implementation is reported in Algorithm 3.1, based on the description
by Fontoura et al. (2011).7 The algorithm takes as input two arrays of size n: the posting
lists p to be processed and the corresponding term upper bounds σ. Both arrays are sorted
in increasing order of max score. At runtime, the posting lists are kept separated into two
sub-lists by a pivot index, running from 0 to n − 1. The posting lists indexed from the
pivot up to n form the essential lists, while the remaining posting lists, if any, are the
non-essential lists. At any time during query processing, no document can be returned as
a top K result if it only appears in the non-essential lists, i.e., at least one of the terms
corresponding to the essential lists must occur in any top K document.

To update the pivot, we compute n document upper bounds ub (line 5). The entry
ub[0] contains the document upper bound for documents appearing just in p[0], the entry
ub[1] contains the upper bound for documents appearing only in p[0] and p[1], and so
on. While there is at least an essential list and there are documents to process (line 9), the
MaxScore algorithm first processes the essential lists selecting the candidate docid as in
DAAT, while storing the next docid to process (lines 12–17). Then, it proceeds by processing
the non-essential lists by skipping to the candidate docid (lines 18-23). As soon as the
pruning condition holds (line 19), we are sure that the candidate docid cannot be in the
final top K documents, and the remaining posting lists can be skipped completely. If all the
non-essential posting lists are processed, we check if the final score is high enough to enter

7The original description of MaxScore (Turtle and Flood, 1995) does not include all the details of its
implementation, and different descriptions have been later proposed (Strohman et al., 2005; Lacour et al.,
2008; Jonassen and Bratsberg, 2011; Fontoura et al., 2011).

45

in the current top K documents (line 19). If this happens, the current threshold could be
updated (line 25), and the current pivot could change as well (lines 26–27).

11

11

p[0]

22 26p[1]

2411 27p[2]

1311

11

term
upper
bounds

1.3

2311 28p[3]

2.1

3.7

4.0

6.0threshold

partial
score

current
docid

0.0

23ub[0] 1.3

3.4

7.1

11.1

ub[1]

ub[2]

ub[3]

non-essential
lists

essential
lists

posting list
iterator

p[0]

22 26p[1]

27p[2]

1311

11

28p[3]

2.8

23

23

24 11

11

p[0]

22 26p[1]

27p[2]

1311

11

28p[3]

4.5

23

23

24 11

11

p[0]

22 26p[1]

27p[2]

1311

11

28p[3]

0.0

23

23

24

Figure 3.2: How the MaxScore algorithm processes four posting lists.

Figure 3.2 illustrates a MaxScore early termination with 4 posting lists. In the example,
the current threshold value θ is 6.0, resulting from documents in the current top results.
The posting lists are sorted by increasing term upper bound, and we have used the term
upper bounds to compute the values of the array ub. Since ub[1] = 3.4 and ub[2] = 7.1,
the pivot is set to 2, p[0] and p[1] are the non-essential lists, while p[2] and p[3] are
the essential lists. We are processing the document with docid 11. Firstly, we process the
essential lists and compute the partial score of the document (e.g., 2.8), keeping track of the
next docid to process while advancing the posting list iterator of these lists by one step (e.g.,
23). Since, given the partial score computed so far, it is possible that docid 11 could exceed
the current threshold (e.g., 2.8 + ub[1] = 2.8 + 3.4 = 6.2 > 6.0 = θ), we start processing
the non-essential lists for that document. After we process p[1], skipping directly to the
next docid greater than or equal to the next docid to process (e.g., 23), we get an updated
partial score of 4.5. Now, since ub[0]= 1.3, we can safely ignore the first posting list (e.g.,
4.5 + 1.3 = 5.8 < 6.0), and skip directly to docid 23 using the p.next(d) operator. As
discussed in Section 2.1.2, skipping allows us to avoid reading and decompressing portions of
the posting lists, with benefits in terms of efficiency proportional to the size of the skipped
chunks. Note that in the example of Figure 3.2, we do not include the priority queue and
pivot updates for simplicity.

Strohman et al. (2005) proposed a further optimisation of the MaxScore strategy,
leveraging the top documents approach of Buckley and Lewit (1985). For every term t of the
vocabulary with more than 1,000 postings, they extracted a smaller posting list, composed
of the top scoring documents for the term t. The number of pruned documents for each
term can be selected in different ways: a fixed number of documents from all posting lists,
a constant fraction of the documents in each postings list or all the documents with a
term-document frequency greater than a given per-term threshold. Nevertheless, a top doc

46

Algorithm 3.1: The MaxScore algorithm
Input :An array p of n posting lists, one per query term,

sorted in increasing order of max score contribution
An array σ of n max score contributions, one per query term,
sorted in increasing order

Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,
in decreasing order of score

MaxScore(p,σ):
1 q← a priority queue of (at most) K 〈docid, score〉 pairs,

sorted in decreasing order of score
2 ub← an array of n document upper bounds, one per posting list,

all entries initialised to 0
3 ub[0] ← σ[0]
4 for i← 1 to n− 1 do
5 ub[i] ← ub[i − 1] + σ[i]

6 θ ← 0
7 pivot ← 0
8 current← MinimumDocid(p)
9 while pivot < n and current 6= ⊥ do

10 score ← 0
11 next← +∞
12 for i← pivot to n− 1 do // Essential lists
13 if p[i].docid() = current then
14 score ← score + p[i].score()
15 p[i].next()

16 if p[i].docid() < next then
17 next ← p[i].docid()

18 for i← pivot − 1 to 0 do // Non-essential lists
19 if score + ub[i] ≤ θ then
20 break
21 p[i].next(current)
22 if p[i].docid() = current then
23 score ← score + p[i].score()

24 if q.push(〈current, score〉) then // List pivot update
25 θ ← q.min()
26 while pivot < n and ub[pivot] ≤ θ do
27 pivot ← pivot + 1

28 current ← next

29 return q

index is produced, including all the pruned posting lists. During query processing all of the
documents in this index are processed, and stored with their scores in a max-heap priority
queue. The priority queue will contain the union of the top documents and a partial score for

47

each one, sorted by decreasing partial score. These partial scores are guaranteed to be less
than or equal to the final score of the corresponding document (some contributions could
still come from the remaining postings). Moreover, the partial score of the K-th document
is used to initialise a threshold value for the subsequent phase, since any other document
not already processed within the top documents must beat this threshold. Indeed, during
the processing of the top documents, we have already scored the top scoring postings for the
involved terms, and hence we can safely assume the min score of each term’s top document
lists to be the upper bound of the score of the remaining postings of that term. Hence,
during the second phase, the top documents are completely scored, while the remaining
documents are processed by MaxScore, with the initial threshold value and the modified
term upper bounds. Like the MaxScore optimisation, this strategy, called Term Bounded
MaxScore is safe up to K. In their experiments, the authors reported that the best top
doc selection strategy is frequency, even if the disk space occupancy of the top index is
difficult to predict. In that case, their Term Bounded MaxScore implementation obtained a
23% speedup with respect to MaxScore and a 61% speedup versus DAAT.

WAND

The WAND optimisation, introduced by Broder et al. (2003), stems from the definition of a
new boolean operator, Weak AND or Weighted AND. The WAND operator takes as input a
list of n boolean variables X0, . . . , Xn−1, a list of n associated weights w0, . . . , wn−1 and a
threshold θ. By definition, WAND (X0, w0, . . . , Xn−1, wn−1, θ) is true if and only if:

n−1∑
i=0

wixi ≥ θ (3.8)

where xi is equal to 1 if Xi is true, and 0 otherwise. Note that, with unary weights and
a threshold equal to n or 1, the WAND operator implements the boolean AND or OR,
respectively.

Given a query q = {t0, . . . , tn−1} and a document d, we can apply the WAND operator in
the following way. We assume that Xi is true if and only if the term ti appears in document
d, and we take the term upper bound σti(d) as weight wi. The threshold θ has the usual
meaning, i.e., the smallest score among the top K documents scored thus far during query
processing. Hence the condition WAND (X0, σt0(d), . . . , Xn−1, σtn−1(d), θ) evaluates to true
if and only if:

n−1∑
i=0

σti(d) ≥ θ (3.9)

Assuming that all terms t appear in document d, this inequality corresponds to the pruning
condition of Equation (3.4). By using the WAND operator, the authors proposed a DAAT
optimisation that can be interpreted as a two-stage evaluation process in which all and only

48

those documents whose WAND evaluation is true (first phase) will undergo a full evaluation
where the actual scores are computed (second phase).

Several WAND implementations have been discussed (Broder et al., 2003; Fontoura
et al., 2011; Petri et al., 2013). A possible implementation is illustrated in Algorithm 3.2.
The algorithm takes as input two arrays of size n: the posting lists p to be processed and
the corresponding term upper bounds σ. Note that they are not required to be sorted since
they will be kept sorted though increasing the docids by the algorithm itself (lines 3 and 25).
The SortByDocid(p,σ) procedure guarantees that the array of posting lists are sorted by
increasing docid and that the term upper bound σ[i] always corresponds to the posting list
p[i].8 At runtime, the core idea of the algorithm is to evaluate the WAND operator (i.e.,
the pruning condition) one posting list at a time, accumulating the score of the candidate
document in σd (line 10). As soon as this value exceeds the current threshold (line 11), we
have potentially identified a pivot docid pivot_id that could enter the top K documents.
The pivot docid undergoes a full evaluation (lines 17–22) and might be included in the
current top K results (lines 23–24) only if it is present in all posting lists up to, and including,
the list containing the pivot docid. Since the posting lists are sorted by docid, it is sufficient
to test the pivot docid with the current posting’s docid of the first list p[0] (line 16).
Otherwise, since the posting lists are sorted by docid, we can safely affirm that the pivot
docid is the smallest docid among all posting lists from 0 to pivot that could enter the top
K results. The docids smaller than pivot_id will never be able to accumulate enough term
upper bounds to have a chance to beat the current threshold. Unfortunately, we cannot
be sure that pivot_id will be a candidate, since we do not know yet in which posting
lists it appears. Thus, we “backtrack” to the first posting list whose iterator is not on the
pivot docid (lines 27–28), and we move its iterator to the pivot_id (or further) (line 29)
using the p.next(d) operator. The SwapDown(p,σ,pivot) procedure on line 30 restores
the docid-sorting of the posting lists by moving the pivot posting list and the associated
term upper bound “down” to the correct position. Using the p.next(d) operator means
that skipping occurs, and hence the reading and decompression of skipped postings can
be avoided. To conclude, note that if no pivot docid can be found (line 13), we are sure
that no new document can beat the current threshold, and hence the algorithm can safely
terminate.

Figure 3.3 illustrates a few WAND iterations with 4 posting lists. In the example, the
current threshold value θ is 6.0, resulting from documents in the current top results. The
posting list iterators are sorted by current docid. The next pivot id is 22 since neither 2.1
nor 2.1 + 1.3 = 3.4 are greater than the current threshold, while 2.1 + 1.3 + 4.0 = 7.4 does
exceed the threshold. Since the p[0] iterator is not 22, the only knowledge we have so far is

8This procedure does not sort postings inside a posting list, just the array containing the forward-only
iterators, as per Section 2.1.

49

Algorithm 3.2: The WAND algorithm
Input :An array p of n posting lists, one per query term

An array σ of n max score contributions, one per query term
Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,

in decreasing order of score
Wand(p,σ):

1 q← a priority queue of (at most) K 〈docid, score〉 pairs,
sorted in decreasing order of score

2 θ ← 0
3 SortByDocid(p,σ)
4 while true do
5 σd ← 0
6 pivot ← 0
7 for pivot← 0 to n− 1 do // Find list pivot
8 if p[pivot].docid() = ⊥ then
9 break

10 σd ← σd + σ[pivot]
11 if σd > θ then
12 break

13 if σd ≤ θ then // No list pivot found
14 break
15 pivot_id ← p[pivot].docid()
16 if pivot_id = p[0].docid() then // If matching doc pivot
17 score ← 0
18 for i← 0 to n− 1 do
19 if p[i].docid() 6= pivot_id then
20 break
21 score ← score + p[i].score()
22 p[i].next()

23 q.push(〈pivot_id, score〉)
24 θ ← q.min()
25 SortByDocid(p,σ)

26 else // Else move list up to the pivot
27 while p[pivot].docid() = pivot_id do
28 pivot ← pivot − 1
29 p[pivot].next(pivot_id)
30 SwapDown(p,σ,pivot)

31 return q

that no docid smaller than 22 will have a score greater than the current threshold. Hence,
we select p[1] and we advance its iterator to 22, with no reordering of the posting lists
since they are already sorted by docid. At the next iteration, our pivot docid is again 22,
but we cannot fully score it since we do not know if p[0] will actually contribute to the

50

approximate score of the pivot docid, i.e., we do not know if p[0] contains docid 22. We
try to advance the p[0] iterator to 22, but it skips to docid 24, forcing the move of p[0]
to the end of the array of iterators. At the next iteration, we are again considering docid
22: its approximate score now is 1.3 + 4.0 + 3.7 = 9.0, enough for a full processing, and
since all posting lists up to the pivot docid include it, docid 22 undergoes a full evaluation,
and a potential threshold update. During the full evaluation, the iterators of the involved
posting lists are advanced to the next docid (line 22), hence a full reordering of the four
lists is mandatory, to correctly select the next pivot docid (that, with the current threshold
θ = 6.0, will be 24, since σ[2] + σ[0] = 4.0 + 2.1 = 6.1 > θ).

p[0]

22 26p[1]

2322 27p[2]

1311

11term
upper
bounds

2.1

2522 27p[3]

1.3

4.0

3.7

6.0threshold

pivot docid

24

posting list
iterators

p[0]

26p[1]

2322 27p[2]

1311

2522 27p[3]

24

22

p[0]

26p[1]

2322 27p[2]

2522 27p[3]

24

22

p[0]

p[1]

27p[2]

27p[3]

26

23

25

σ[0]

σ[1]

σ[2]

σ[3]

2.1

3.4

7.4

11.1

partial scores

p[0]

26p[1]

2322 27p[2]

1311

2522 27p[3]

24

22

p[1].next(22)

2.1

3.4

7.4

11.1

2.1

3.4

7.4

11.1

p[0]

26p[1]

2322 27p[2]

24

2522 27p[3]

22

2.1

3.4

7.4

11.1

1.3

9.0

5.3

11.1

4.0

11.1

9.8

24 6.1

SwapDown(p[1])

p[0].next(22)

SwapDown(p[0])
score()
next()

SortByDocid()

Figure 3.3: How the WAND algorithm processes four posting lists.

Note that the WAND optimisation is safe up to K, since the pruning condition in
Equation (3.4) is used to select the candidate docids. Nevertheless, aggressive (i.e., approxi-
mate) versions of WAND have been proposed, by substituting θ with F · θ, where F > 1 is
the aggressiveness parameter (Broder et al., 2003; Tonellotto et al., 2013). By using this
parameter, we are forcing the new candidate documents to beat the current threshold by a
larger quantity.

WAND was designed for disk-based indexes, where disk access is the most expensive
cost. For this reason, if a pivot docid is not scored (since there is at least one posting list
before the one containing the pivot whose iterator is not yet on or after the pivot docid), the
WAND strategy typically chooses to advance just a single posting list, since every iterator
advancement is a potential disk access. This is not the case with memory-based indexes,
and Fontoura et al. (2011) proposed a modified version of WAND, called mWAND, where

51

all the iterators of the posting lists preceding the pivot list are advanced. In this way, the
number of pivot selections could be reduced, and consequently, the number of times the
posting list array is sorted.

Performances of DAAT, MaxScore and WAND

The most recent performance comparisons of DAAT, MaxScore and WAND appear in
(Fontoura et al., 2011) and (Mallia et al., 2017). In the production framework detailed in
Section 2.2.3, Fontoura et al. (2011) reported the results summarised in Table 3.2. Mallia
et al. (2017) experimented with a research framework written in C++ with two standard
datasets, ClueWeb09, consisting of 50 million English Web pages crawled in 2009, and
Gov2, consisting of 25 million .gov Web sites crawled in 2004, and two TREC Terbayte
track efficiency task topics, namely Trec05 and Trec06, from which they randomly selected
1, 000 queries for different query lengths. Table 3.3 reproduces their main results, for the
ClueWeb09 collection and Trec06 experiments only.

Table 3.2: Latency results (in ms) for DAAT, MaxScore and WAND (with speedups and slowdowns) on a
small index (up) and a large index (down), for K = 30. Adapted from (Fontoura et al., 2011).

Small index Large index

Short queries Long queries Short queries Long queries

DAAT 0.19 4.55 3.58 26.78
MaxScore 0.17 (1.12×) 2.69 (1.69×) 1.58 (2.27×) 9.32 (2.87×)

WAND 0.21 (0.90×) 5.22 (0.87×) 1.90 (1.88×) 14.08 (1.90×)

Table 3.3: Latency results (in ms) for DAAT and MaxScore (with speedups) for different query lengths,
average query times (Avg, in ms) on ClueWeb09, for K = 10. Adapted from (Mallia et al., 2017).

Number of query terms Avg
2 3 4 5 6+

DAAT 60.6 215.9 439.1 686.5 1,270.5 542.5
MaxScore 12.7 (4.77×) 21.3 (10.14×) 27.1 (16.20×) 33.9 (20.25×) 55.0 (23.10×) 32.3 (16.80×)

WAND 14.2 (4.27×) 23.1 (9.34×) 27.3 (16.08×) 37.3 (18.40×) 73.8 (17.22×) 37.2 (14.58×)

Given the differences between the production and research frameworks, the reported
latency results and reductions vary as might be expected, in particular since the testbed
details in (Fontoura et al., 2011) are not fully disclosed. However, it is clear from both
Tables that both MaxScore and WAND provide huge benefits w.r.t. DAAT, and the response
time reductions are larger for longer queries (i.e., with 54–61 terms) than for shorter queries

52

(i.e., with 3–5 terms). In particular, from Table 3.2, we can conclude that MaxScore is always
better than WAND in terms of speedup, and that WAND is not helpful in reducing the
response times of any kind of query on small indexes. From Table 3.3, a detailed analysis of
query lengths is carried out and we can conclude that, while WAND and MaxScore exhibit
similar speedups for 2 − 4 terms queries, WAND quickly becomes less competitive than
MaxScore for longer queries. For short queries, mWAND exhibits larger (resp. similar) mean
response times than MaxScore (resp. WAND) for short queries, while mWAND is more
efficient than both MaxScore and WAND for long queries.

Experiments by Ottaviano et al. (2015), on a sample of 5, 000 queries from a realistic
query log, showed that MaxScore is always more efficient than WAND, and a similar
conclusion is reported by Dimopoulos et al. (2013b). Moreover, the pruning capacity of
WAND heavily depends on the scoring function used. While most works employ the BM25
scoring function (Robertson et al., 1994), which allows the skipping of more than 90% of all
documents for all Ks, Petri et al. (2013) have shown that with different scoring functions
such as those based on language models 20% of all postings are evaluated for K = 10 and
almost all documents are evaluated when K = 1, 000.

Kane and Tompa (2018) proposed to prime the threshold of the max-heap. At indexing
time, the K-th highest score contributions in each posting list is pre-computed and stored
on disk. Before query processing starts, the max-heap threshold is initialised by taking the
greatest K-th score value for all the query terms. They found that using this threshold
priming improves the performance of the WAND strategy for large K values.

3.4 Block-based Dynamic Pruning

Thus far, all dynamic pruning optimisations have leveraged a single upper bound for
any term involved in query processing for skipping over postings. However, as shown in
Figure 3.4, a term upper bound is computed over the scores of all documents in a posting
list (left), and it could be larger than the average score contribution (right). This fact limits
the potential benefits of skipping over the posting lists, as shown by the shaded areas.

To deal with this, Ding and Suel (2011) proposed to enrich the inverted index data
structures with additional information, in a new block-max index data structure. Each
posting list is sequentially divided in a block list, where each block contains a given number
of consecutive postings, e.g., 128 postings per block, leveraging the posting blocks used in
list-adaptive compression schemes (see Section 2.1.2). For each block, a block upper bound
is computed, storing the maximum contribution of the postings in the block. This local
upper bound can be computed and stored offline, and can then be exploited for improving
the efficiency of the existing query processing strategies.

In order to exploit blocks in query processing, the inverted index needs to store additional

53

information (recall Figure 2.1). A possible organisation of such a block-max index is depicted
in Figure 3.5.

For each posting list, the lexicon stores the number of its fixed-size blocks,9 and a
pointer to its block list. Every block stores the last docid of the corresponding sequence
of postings as well as the block upper bound.10 Block upper bounds are calculated as the
maximum scores of the postings in the block. We will see a block list as a cursor over
its blocks, analogously to the iterator view of posting lists in Section 2.1.1. We define the
following operations on a block list b.
• b.last() returns the last docid of the current block. If the cursor has reached the end
of the block list, b.last() returns the special symbol ⊥. For comparison purposes,
the special symbol ⊥ is considered strictly greater than any other docid.
• b.score() returns the block upper bound of the current block.

postings

scores

postings

scoresTerm upper bound Block upper bounds

Figure 3.4: Term upper bound (left) vs. block upper bounds (right) on a given posting list. Shaded areas
represent the sums of score errors using the upper bounds.

docfreq
upper bound

term
entry

block

num blocks

last docid
upper bound

last docid
upper bound

last docid
upper bound

block list

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

docid
freq

positions

Figure 3.5: A possible layout of a block-max index.

9We are assuming the size of a block is term-dependent constant.
10Other implementations usually store the first docid of the corresponding postings as well (Chakrabarti

et al., 2011).

54

• b.move(d) moves the cursor to the block containing the document identifier d.
The block upper bounds can be exploited in a number of ways, adapting existing

algorithms such as MaxScore and WAND to leverage the new information. The first of such
algorithms is Block-Max WAND (BMW), proposed by Ding and Suel (2011), and detailed in
Algorithm 3.3.

The algorithm takes as input three arrays of size n, where n is the number of terms to
process: the posting lists p to be processed with their term upper bounds σ and their block
lists. The SortByDocid(p,b,σ) (lines 3 and 30) and SwapDown(p,b,σ) (lines 33 and 40)
functions are analogous to the ones in the WAND algorithm (see Algorithm 3.2), guaranteeing
that the term upper bound σ[i] and the block list b[i] always correspond to the posting
list p[i]. At runtime, the core idea of the algorithm is to avoid the decompression of
(blocks of) postings and their full processing by making shallow advances through the
posting lists by using block lists only, and to make deep moves in the posting lists only
when the block upper scores sufficiently accumulate to beat the current threshold. At each
iteration, the BMW algorithm computes the pivot posting list, the pivot_id docid and the
accumulated (partial) score σd as in WAND, by using the term upper bounds (lines 5–10).
The accumulated score σd is also used to check the termination condition. Note that the
pivot pointer is advanced to include all the postings lists whose cursor is on the pivot
docid (lines 9–10), while in WAND the pivot pointer included just the posting lists whose
upper bounds exceed the current threshold.

Next, the shallow move is performed, by accumulating a new score σb using the block
upper bounds (lines 11–17). At the same time, the smallest last docid among the blocks up
to the pivot is stored in nextb.

If the block score σb beats the current threshold θ (line 18), pivot_id is a potential
candidate. If the pivot docid does not match, i.e., if pivot_id 6= p[0].docid(), this means
some posting list iterators up to the pivot are still on docids smaller than the pivot and
then we advance one of them to (or right after) pivot_id and we reorder the posting lists
by increasing docid as in WAND (lines 32–33). Otherwise, we perform a deep move with a
potentially partial evaluation of the pivot document(lines 20–27) and, as a result, the pivot
docid might be included in the current top K results (lines 28–29).

If the block score σb does not beat the current threshold θ (line 18), it follows that no
document appearing in the blocks can beat the threshold, hence the next pivot docid could
be strictly greater than nextb if no other posting list, ignored so far, contributes to the
accumulated block score. Hence, nextb becomes the minimum docid computed between
nextb + 1 and the docid of the first posting list whose iterator is not on the pivot docid
(lines 35–38), which is guaranteed to be greater than pivot_id. Now, we locate a list whose
iterator is not on pivot_id and we advance it to or right after nextb and swap down as in
WAND (lines 39–40).

Figure 3.6 illustrates a few iterations of the BMW algorithm. The most complex part

55

Algorithm 3.3: The BMW algorithm
Input :An array p of n posting lists, one per query term

An array σ of n max score contributions, one per query term
An array b of n block lists, one per query term

Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,
in decreasing order of score

BlockMax WAND(p,b,σ):
1 q← a priority queue of (at most) K 〈docid, score〉 pairs,

sorted in decreasing order of score
2 θ ← 0
3 SortByDocid(p,b,σ)
4 while true do
5 σd, pivot ← values updated as in Wand(p,σ) lines 5–12
6 if σd ≤ θ then // No list pivot found
7 break
8 pivot_id ← p[pivot].docid()
9 while pivot < n− 1 and p[pivot + 1].docid() = pivot_id do

10 pivot ← pivot + 1

11 σb ← 0
12 nextb ← +∞
13 for i← 0 to pivot do // Shallow move
14 b[i].move(pivot_id)
15 σb ← σb + b[i].score()
16 if b[i].last() < nextb then
17 nextb ← b[i].last()

18 if σb ≥ θ then // If pivot doc would enter
19 if pivot_id = p[0].docid() then
20 score ← 0
21 for i← 0 to pivot do
22 score ← score + p[i].score()
23 σb ← σb − b[i].score() + p[i].score()
24 if σb ≤ θ then
25 break

26 for i← 0 to pivot do
27 p[i].next()

28 q.push(〈pivot_id, score〉)
29 θ ← q.min()
30 SortByDocid(p,b,σ)

31 else
32 Move list to pivot_id as in Wand(p,σ) lines 27–29 // Deep move
33 SwapDown(p,b,σ,pivot)

34 else // Else update blocks
35 if pivot < n− 1 and nextb > p[pivot + 1].docid() then
36 nextb ← p[pivot + 1].docid()

37 if nextb ≤ pivot_id then
38 nextb ← nextb + 1

39 Move list to nextb as in Wand(p,σ) lines 27–29 // Deep move
40 SwapDown(p,b,σ,pivot)

41 return q

of this algorithm is to keep the block cursors and the posting list iterators aligned when
performing shallow and deep moves. In the example, the current threshold value θ is 3.3,
resulting from documents in the current top results. The posting list iterators are sorted
by current docid. The next pivot id is 22 since 2.1 + 1.3 = 3.4 is greater than the current

56

threshold. Note that, while WAND would select the second posting list as a pivot, BMW
selects the third list (lines 9–10). At the second step (lines 11–17), the block cursor of the
first posting list is actually moved, and the block upper bound is computed, resulting in
1.7 + 1.3 + 0.5 = 3.5. While it is large enough to beat the current threshold, since the first
posting list iterator does not point to docid 22, a deep move is performed. At the third step,
the pivot docid 22 is evaluated, and the posting list iterators of the first three posting lists
are deep moved one step forward at the fourth step, and the posting lists sorted by docid.
In the fifth step, assuming that the current threshold has not changed, the pivot docid
becomes 24, but its block upper bound is 0.5 + 1.3 + 1.2 = 3.0, which is not enough to beat
the threshold. Since no docid in the current blocks up to the pivot can beat the threshold,
the next deep move could be towards the docid 1 + min{27, 28, 26} = 27. However, since
the posting list iterator right after the pivot is on docid 25, the third posting list iterator
will be advanced to docid 25, as shown in the sixth step (lines 35–40)

Several versions of Block-Max MaxScore (BMM), the MaxScore variant for block-max
indexes, have been proposed in (Chakrabarti et al., 2011; Shan et al., 2012; Dimopoulos
et al., 2013b). A possible implementation of BMM is detailed in Algorithm 3.4. The main
differences w.r.t. the MaxScore algorithm lie in the early termination controls during the
processing of the non-essential lists (lines 18–34). If the non-essential posting lists must be

2211 25

term
upper
bounds

2.1

1.3

4.0

3.7

1.7

1.3

0.5

1.2

24

2322 27

28

2524 26

2.05

1.36

2.17

1.414

22

2211 25

1.3

0.5

1.2

24

2322 27

28

2524 26

2.05

1.36

2.17

1.414

22

1.72.1

1.3

4.0

3.7

11 25

1.3

0.5

1.2

24

2322 27

28

2524 26

2.05

1.36

2.17

1.414

22

1.72.1

1.3

4.0

3.7

22

pivot
docid

posting list
iterator3.3threshold 1.7 block with

upper bound
1.7 block

cursor

11

1.3

0.5

1.2

22 27

28

2524 26

2.05

1.36

2.17

1.414

22

1.72.1

1.3

4.0

3.7

22 25

24

23

0.522 272.174.0 23

1.3281.36 221.3 24

1.22524 261.4143.7

112.05 1.72.1 22 25

0.522 272.174.0 23

1.3281.36 221.3 24

1.22524 261.4143.7

112.05 1.72.1 22 25

b[0].next(22) p[0].next(22)
Shallow move Deep move

score()
next()

SortByDocid()p[2].next(25)
Deep move

Figure 3.6: How the BMW algorithm processes four posting lists.

57

processed according to their document upper bound (line 18), a new array bub of (partial)
document upper bounds is built, by using shallow moves on the non-essential lists and
the resulting block maxscores (lines 19–24). During the processing of a non-essential list,
the pruning condition is evaluated by using the block-based document upper bounds bub
(line 26).

Algorithm 3.4: The BMM algorithm
Input :An array p of N posting lists, one per query term

An array σ of N max score contributions, one per query term
An array b of N block lists, one per query term

Output :A priority queue q of (at most) the top K 〈docid, score〉 pairs,
in decreasing order of score

BlockMax MaxScore(p,b,σ):
1 q← a priority queue of (at most) K 〈docid, score〉 pairs,

sorted in decreasing order of score
2 ub← an array of N max score upper bounds, one per posting list,

all entries initialised to 0
3 ub[0] ← σ[0]
4 for i← 1 to N − 1 do
5 ub[i] ← ub[i − 1] + σ[i]

6 θ ← 0
7 pivot ← 0
8 current← MinimumDocid(p)
9 while pivot < N and current 6= ⊥ do

10 score ← 0
11 next← +∞
12 for i← pivot to N − 1 do // Essential lists
13 if p[i].docid() = current then
14 score ← score + p[i].score()
15 p[i].next()

16 if p[i].docid() < next then
17 next ← p[i].docid()

18 if score + ub[pivot − 1] > θ then
19 bub← an array of pivot block max score upper bounds, one per non

essential posting list, all entries initialised to 0
20 b[0].move(current) // Shallow move
21 bub[0] ← b[0].maxscore()
22 for i← 1 to pivot − 1 do
23 b[i].move(current) // Shallow move
24 bub[i] ← bub[i − 1] + b[i].maxscore()

25 for i← pivot − 1 to 0 do // Non-essential lists
26 if score + bub[i] ≤ θ then
27 break
28 p[i].next(current) // Deep move
29 if p[i].docid() = current then
30 score ← score + p[i].score()

31 if q.push(〈current, score〉) then // List pivot update
32 θ ← q.min()
33 while pivot < N and ub[pivot] ≤ θ do
34 pivot ← pivot + 1

35 current ← next

36 return q

58

Performance

Ding and Suel (2011) have conducted experiments on a collection of 25 million documents
(Gov2), with 2,000 multi-term queries and retrieving the top 10 results per query. Blocks
are composed by 64 postings. They reported (see Table 3.4, also validated by Mallia et al.
(2017)) an average speedup of BMW versus WAND of 2.78×, with extremely high speedups
of 5.61× for queries of two terms and 3.70× for queries of three terms. With respect to
DAAT, the BMW average speedup is 8.09×. With respect to the evaluated documents,
WAND and BMW only evaluate 4.6% and 0.6% of the documents processed by DAAT,
respectively. The authors also showed that the performances of WAND and BMW are

Table 3.4: Latency results (in ms) for DAAT, WAND and BMW (64 postings blocks) (with speedups) for
different query lengths, average query times (Avg, in ms) on Gov2, for K = 10. Adapted from (Ding and
Suel, 2011).

Number of query terms Avg
2 3 4 5 6+

DAAT 60.0 159.2 261.4 376.0 646.4 225.7
WAND 23.0 (2.61×) 42.5 (3.75×) 89.9 (2.91×) 141.2 (2.66×) 251.6 (2.60×) 77.6 (2.91×)

BMW 4.1 (14.63×) 11.5 (13.84×) 33.6 (7.78×) 54.5 (6.90×) 114.2 (5.66×) 27.9 (8.09×)

markedly improved when assigning docids to documents according to the lexicographic
ordering of their URLs (Silvestri, 2007) – this is known to exhibit a good clustering and
hence a good locality in the posting lists. Thus it follows that documents with high/low
scores will cluster in blocks using this docid ordering.

Shan et al. (2012) reported different results. With a slightly different experimental
setting (stopwords removed, ∼3% of single term queries included in averages), the speedup
of BMW with respect to DAAT was only 2.38×. They also evaluated an implementation
of BMM that, on average, performs better than BMW, with an average speedup of 3.69×
compared to DAAT. With respect to the evaluated documents, BMW and BMM evaluate
only 0.3% and 3.7% of the documents processed by DAAT, respectively. The higher speedup
of BMM even if it scores more documents than BMW is explained by the mechanism
governing the next document to process. In the BMM methods, the next docid is selected
among the essential posting lists, likely composed by the most important terms, while in the
BMW methods, the pivoting is performed among all posting lists for the whole execution of
the algorithm.

Dimopoulos et al. (2013b) confirmed the BMW experiments in (Ding and Suel, 2011) in
terms of average response times, but their implementation of BMM is 1.25 times slower
than BMW on average. They reported that BMM outperforms BMW only for queries with

59

more than 5 terms.
Crane et al. (2017) reported that the performance gap between WAND and BMW is

not as clear as the previous literature suggested. Their tests on a more recent collection of
50 million documents showed that with long queries, i.e., queries with four or more terms,
WAND begins to outperform BMW. They explained this behaviour with the additional
complex logic required to compute skips in BMW and with the impact of such a logic on
the number of cache misses and branch mispredictions.

Variants

While the BMW algorithm is the first proposed algorithm leveraging the block-max index
structure, several variants of BMW as well as different uses of blocks have been proposed.

The BMW authors proposed in (Ding and Suel, 2011) a block-max version of BMW for
conjunctive processing called Block-Max AND (BMA). They showed performance improve-
ments of BMA over exhaustive AND for queries with two and three terms, while for longer
queries the shallow moves make exhaustive AND faster than BMA. They also investigated a
layered version of BMW, where each posting list is split in two parts, with high and low
impact postings respectively, and each posting list portion is treated as an independent
posting list.

In (Shan et al., 2012), the authors proposed a Local BMW variant (LBMW), where
the pivot document in BMW is computed by using local block upper bounds instead of
global upper bounds. They also proposed a Local BMM variant, quite similar to the BMM
algorithm in Algorithm 3.4. Moreover, they also explored BMW and BMM variants taking
into account the query-independent document global scores.

Dimopoulos et al. (2013b) proposed the BMM-NLB variant of BMM, which skips over
dead blocks, i.e., blocks that are guaranteed to have a block upper bound over all posting lists
smaller than the current threshold, similarly to the approach in (Chakrabarti et al., 2011).
In the same paper, a hierarchical organisation of blocks is proposed, with a complex query
processing algorithm inspired by branch-and-bound techniques, called HIER. The authors
also investigated a different organisation of blocks. While the previous works considered
blocks as a contiguous sequence of postings (posting-oriented blocks) leveraging the posting
grouping performed in block-based compression, in this paper the whole docid space, i.e., the
set of all docids, one per document in the collection, is partitioned into blocks (docid-oriented
block). For example, with block size 1024, all documents with docid from 0 to 1023 will end
up in one block, docids from 1024 to 2047 in another block, and so on. This will result in
blocks with different sizes in the same posting lists. They also proposed to manually tune
the docid block size depending on the posting list length, to limit the space occupancy of
the additional information required.

Dimopoulos et al. (2013a) illustrated an optimised implementation of docid-oriented

60

blockmax indexes exploiting the SIMD processing capabilities of modern CPUs and ad-
hoc caching policies. Rojas et al. (2013b) and Rojas et al. (2013a) presented parallel and
distributed implementations of BMW, respectively, while Daoud et al. (2016) discussed
how BMW can be implemented on top of a tiered inverted index, extending their previous
results from (Rossi et al., 2013).

Mallia et al. (2017) introduced a refinement for BMW that uses variable-size blocks, rather
than constant-sized blocks, called Variable BMW (VBMW). They considered the problem of
deciding the block partitioning of a posting list as an optimisation problem, which maximises
how accurately the block upper bounds represent the underlying scores, and described
an efficient dynamic programming approximate solution. Their experiments showed that
VBMW outperforms BMW with a speedup of roughly 2×. Moreover, they proposed a
compression scheme for block upper bounds based on quantisation. The compressed VBMW
strategy obtained a space reduction of 50% with only a minimal speed degradation w.r.t.
the uncompressed VBMW counterpart.

Conditional Skipping

Bortnikov et al. (2017) proposed to add a new operation to the postings’ APIs discussed in
Section 2.1.1, namely the conditional skip:
• plist.next(d, τ) advances the iterator forward to the next posting with a document
identifier greater than or equal to d, while ensuring that all skipped postings have
a score lower than τ . If the current posting’s docid is greater or equal to d, the
iterator is left unchanged. If d is greater than the docid of the last posting in the
list, plist.next(d) returns the end-of-list marker ⊥. More precisely, this operator
advances the posting list iterator plist to the first posting with a docid greater than
or equal to d such that either plist.docid() ≥ d or plist.score() ≥ τ .

The conditional skip operator can be used to improve the performance of DAAT
processing and its optmisations, MaxScore, WAND and BMW. Two simple examples of the
conditional skip behaviour are reported in Figure 3.7. In both examples, there are two
posting lists p[0] and p[1], whose iterators point to the postings of docids 11 and 40, and
the current threshold is equal to 4.0. Any docid in the range [11, 40), appearing in the
posting list p[0], can be safely skipped (top example in Figure 3.7) unless one of the docids
in this range has a score greater than the current threshold (bottom example).

Bortnikov et al. (2017) proposed different implementations of the conditional skip, and
modified the DAAT, MaxScore, WAND and BMW strategies to use it. Their experiments on
the ClueWeb09 B dataset showed a reduction in the document scoring overheads, and also
in query processing times.

61

3.5 Limitations of Dynamic Pruning

Several of the dynamic pruning techniques discussed above are based on additional statistics
calculated upon the inverted index, such as the global or block-based upper bounds σt(q) for
each term t. Obtaining these involves the scoring of every posting in each term’s posting list.
This is not an expensive process when conducted offline, before an index is deployed (and
noting that its an embarrassingly parallelisable process). However, the exact pre-calculation
of term upper bounds σt(q) has some disadvantages, in that it is sensitive to changes in the
ranking function scores (e.g., the used weighting model). This may happen in a number of
cases:

1. Adaptation of the weighting model, or its hyper-parameters (e.g., the parameter
tuning of the search engine);

2. Adaptation of the index, e.g., adding or removing documents, thereby changing
the global statistics of the index (number of documents, average document length,
document frequency);

3. Adaptation of a given term’s posting list, e.g., changing documents, thereby changing
the statistics of the term (e.g., term frequency).

We note that Macdonald et al. (2011) and Macdonald and Tonellotto (2017) proposed
approximate (less-tight) upper bounds. These can mitigate some of the disadvantages noted
above, but could also result in reduced efficiency.

Assuming that exact upper bounds are necessary, given the efforts in scoring all postings

p[0]

22 26p[1]

1311

40

14 23 33 44

4.0threshold

1.0 2.2 0.9 3.0 3.4

p[0]

22 26p[1]

13

40

14 23 3311
1.0 2.2 0.9 3.0 3.4

44
p[0].next(40, 3.5)

p[0]

22 26p[1]

1311

40

14 23 33 44

4.0threshold

1.0 2.2 0.9 5.0 3.4

p[0]

22 26p[1]

13

40

14 23 4411
1.0 2.2 0.9 5.0 3.4

33
p[0].next(40, 3.5)

computed scores computed scores

Figure 3.7: A simple example of the conditional skip operator.

62

in the inverted index, a notable question would be if that more efficiency benefits can be
sought from this extra processing, for instance by rewriting the inverted index into a more
efficient form, that focuses upon documents that are more likely to be retrieved. This will
be the focus on Chapter 5.

3.6 Summary

This chapter introduced dynamic pruning techniques for attaining efficient retrieval. After an
introduction to early termination and various core concepts, we presented, for completeness,
a full range of TAAT optimisations, very common in the early IR systems but with almost
no known practical deployment nowadays. Then we presented with clear examples and
pseudo-codes the DAAT optimisations, currently used in most IR systems: MaxScore, WAND
and BMW. Their definitions have significantly improved the efficiency of many deployed
Web search engines. In the next chapter, we will discuss recent trends in the development
and applications of query efficiency predictors for dynamic pruning (Section 4). Indeed,
some of these applications have demonstrated remarkable benefits in increased efficiency or
reduced server resource utilisation, with corresponding energy reductions.

Most of the techniques discussed within this chapter are concerned with inverted index
layouts where posting lists are docid ordered, as used by at least one commercial search
engine (Dean, 2009). In Chapter 5, we will address other techniques that alter the inverted
index, such as index layouts with alternative orderings that ensure that documents more
likely to be retrieved are identified earlier during retrieval – such techniques generate a
different set of optimisations, which we describe in detail.

4 Query Efficiency Prediction for Dynamic Pruning

In this chapter, we discuss a new technique gaining attraction for a number of applications,
namely query efficiency prediction (QEP) (Macdonald et al., 2012d). In particular, as will
be clear from the experimental results reported in Chapter 3 above, the execution time of
different queries can vary. Moreover, different techniques can exhibit different speedups for
different queries. Hence, it is intuitive that different query processing techniques might be
applied for different queries, or tuned differently (for example varying the aggressiveness, F ,
of WAND or BMW on a per-query basis). Obtaining accurate estimations of the response
time of the search engine for a query allows the deployment of such per-query optimisations.

Aside: We emphasise the difference between query efficiency prediction and query perfor-
mance prediction (QPP). In QPP, the aim is to predict the likely effectiveness of the results
set for the query (e.g., in terms of MAPor NDCG) – this can be estimated by examining

63

pre-retrieval statistical properties of the query terms (He and Ounis, 2006), i.e., before
retrieval commences, or post-retrieval, by examining the retrieved documents (Cronen-
Townsend et al., 2002). In 2010, Carmel and Yom-Tov reviewed many of the existing query
performance prediction techniques available at that time. In contrast, the task of query
efficiency prediction, described in this chapter, is inherently pre-retrieval, in that once
retrieval has been performed, we will know the actual, exact response time.

Briefly, the main idea behind query efficiency prediction is to estimate how long an
unseen query will take to be processed, before it has executed. The main factors that can
affect how long a search engine will take to respond to a given query are, for instance, the
number of query terms, or the length of the posting lists of the query’s constituent query
terms. For example, this is true for both DAAT and TAAT traversals. However, dynamic
pruning adds a further dimension to this, as different queries may suffer different amounts
of pruning, and the number of documents being retrieved affect the response times of the
search engine. This chapter specifically discusses how the QEP approaches could be deployed
to assist the optimisation of dynamic pruning approaches.

At this juncture, it is important to point out that impact-sorted index layouts, as might
be processed by a SAAT technique (further detailed in Chapter 5) do not require query
efficiency prediction, as the time to execute a query can be much more accurately predicted.

On the other hand, to predict the query execution times of the DAAT query evaluation
techniques, Macdonald et al. (2013b) resorted to a machine-learned framework, based on
term-level statistics (including, among others, the length of posting lists, and the number of
high-scoring documents within those posting lists), as well as aggregators, such as max, min,
mean, to compose scalar values across the various terms in a query. This chapter will provide
an overview of query efficiency prediction, which can be made prior to the execution of the
query (Section 4.1), or while the query is executing (Section 4.2). Moreover, query efficiency
prediction permits the development of approaches that can respond to the duration that
a query is expected to take, which we describe further in Section 4.3. In particular, we
will provide various insights into five applications of query efficiency prediction. In the
following, we first describe various implementations of query efficiency prediction used in
the literature.

4.1 Implementations of Query Efficiency Prediction

The task of predicting the execution time of a query before it executes is itself not easy to
accurately achieve. As mentioned above, there are a number of factors that can affect the
execution time of a query, for instance the length of the query in terms, or the length of the
constituent posting lists of those terms. These factors are adequate to predict accurately

64

the execution time of the TAAT and DAAT strategies.
However, while the above is certainly true for the response times of an IR system with a

full exhaustive scoring of the postings lists, for dynamic pruning approaches such as WAND,
the pruning behaviour means that not all postings in a posting list will be scored, nor
even decompressed. Moreover, not all queries benefit equally from dynamic pruning. For
example, consider two queries with two query terms each: In the first query, one term is
considerably less frequent in the collection than the other, and hence is dominant in the
document scoring (i.e., it has a large IDF component); For the second query, the two query
terms have approximately equal IDF. For the first query, dynamic pruning will usually
avoid the scoring of many postings for the second query term. On the other hand, for the
second query, it is likely that the occurrences of both query terms will need to be scored.
Macdonald et al. (2012d) described this observation as variations in the pruning difficulty.
The aim of query efficiency prediction is to empirically estimate the pruning difficulty.

The main approach taken by the literature (Macdonald et al., 2012d; Jeon et al., 2014)
is to approach QEP as a supervised regression problem. Queries are represented by a number
of features, and a regression model is obtained by learning from a past history of queries
and their execution times. Given the likely applications of QEP, it is important that the
calculation of such features is extremely timely, and therefore based on statistics that may
be recorded for each term in the lexicon data structure. This then naturally leads to the
framework proposed by Macdonald et al. (2012d), in that term-level statistics, such as posting
list length, are aggregated for each term in the query, using aggregation functions such as max,
sum, etc, into features for learning the model. More formally, let fij(q) be a feature defined
for query q using term statistic sj(t) and aggregation function Ai (max, sum, variance):

fij(q) = Ai
(
{sj(t), ∀t ∈ q}

)
. (4.1)

Different term-level statistics have been examined. Clearly, the number of postings
for a term t, denoted Nt, should be used, as this is the simplest predictor, useful for
exhaustive approaches, and also for queries where no dynamic pruning is possible (i.e.,∑
t∈qNt). Moreover, for WAND, the minimum of Nt across the query terms is indicative of

the minimum number of postings that will definitely be scored, in the presence of excellent
pruning conditions. Other features examined the score distributions within each term’s
posting list (e.g., term upper bound, arithmetic mean of the scores of document in a posting
list or number of postings within 5% of the maximum score). These help to indicate the
likely pruning difficulty. Learning a supervised approach using these features, combined with
a linear regression learner, have demonstrated over 0.9 Pearson’s correlations for queries of
lengths 2− 5 (Macdonald et al., 2012d).1

1As no dynamic pruning is possible by WAND for single-term queries, the prediction of the execution
time of single-term queries is trivial.

65

Jeon et al. (2014) enhanced the earlier work on query efficiency prediction in two ways.
Firstly, by recognising that for commercial search engines, the queries that are expected
to exceed the service level agreement (SLA) are those that really matter. Indeed, their
work targets the Bing search engine by aiming to address an SLA of 100 ms for 99-th
percentile response time (i.e., only one query in 100 can exceed 100 ms). QEP can hence be
formulated as a classification task: predict accurately those queries that will exceed such
a tail latency target. Secondly, they proposed small improvements to enhance QEP, such
as recognising that the minimum aggregation function is useful for QEP.2 Moreover, when
dealing with queries within the context of the Bing search engine, advanced query features
such as relaxations (e.g., "facebok OR facebook") are considered. They reported that the
new features lead to large benefits in tail query classification precision and recall. Moreover,
they experimentally show that gradient-boosted regression trees provide better results than
linear regression.

Returning to our example two-term queries with varying pruning difficulties, even queries
where both query terms t1 and t2 have roughly equal IDF scores (i.e., Nt1 ' Nt2) can result
in a varying number of postings being scored, depending on the correlation between the
terms: if the two terms occur independently, then the overlap between the docids in their
posting lists will follow a random distribution. On the other hand, if the two terms are
correlated (e.g., they frequently co-occur in the collection), then the docids in their posting
lists will be similar. An analytical method of query efficiency prediction was proposed by
Wu and Fang (2014), who noted that if two query terms t1 and t2 are independent, then
the expected number of documents containing both terms is Nt1

N ×
Nt2
N ×N . This can be

generalised, such that when the two terms are not independent and Nt1 ≤ Nt2 , the number
of documents containing both terms, A(t1, t2) is approximated as follows:

A(t1, t2) = Nt1

N
×
(
Nt2

N

)δ
×N, (4.2)

where δ is a parameter used to control how related are the terms t1 and t2. In general, it
is impossible to store the frequency of co-occurrence of arbitrary terms in a corpus without
resorting to accessing an inverted index, so the authors “arbitrarily” assume that δ = 0.5 is
a good value in the general case. By using this approximation, Wu and Fang (2014) showed
how to estimate new dynamic pruning features for a given query, such as the number of
blocks to be accessed and decompressed, the number of documents to be processed and the
number of postings to evaluate when processing the query. Overall, this proposed analytical
approach for QEP showed promise in decreasing errors in the predicted execution times
compared to the machine learned approach of Macdonald et al. (2012d).

2This aggregator was missing in (Macdonald et al., 2012d).

66

4.2 Delayed Query Efficiency Prediction

Depending on the application of QEP, it may be possible to delay the calculation of the
QEP until the query has been running for a small amount of time. At this stage, the
matching algorithm might have access to certain statistics that allow an accurate depiction
of the likely execution time of the query. Such an approach was proposed by Kim et al.
(2015) to reduce the extreme tail latencies, i.e., the 99.99-th percentile, of query servers in
a commercial search engine by parallelisation (see Section 4.3.3).

The main idea is to allow queries to be executed for an empirically tuned short amount
of time (e.g., 10 ms). This preliminary processing has two main benefits: firstly, short
queries that can be processed in less than 10 ms do not need either efficiency prediction
nor parallelisation. Secondly, such preliminary execution can provide dynamic features
affecting query execution that can be used for query efficiency predictions. Such features
include statistics on the dynamic score distribution observed at runtime, the number of
processed documents and the average time to match two consecutive documents. The
features may also include estimates on the co-occurrence frequency of query terms. Indeed,
the independence of the query terms cannot be well approximated in prior to execution of
a query (see A(t1, t2) above). This is because it is not possible to record the co-occurrence
frequency of arbitrary terms in a space-efficient manner without resorting to the inspection
of an inverted index. However, if term occurrences are assumed to be distributed uniformly
through the index (they may not be – often some orderings of docids cause a “clustering”
effect of term occurrences – see Section 2.1.2, page 19), then dynamic estimates obtained as
the query executes may be sufficiently good enough to estimate accurately the expected
execution time of the query.

The experiments in (Kim et al., 2015) showed that the new dynamic features provide
important information on predicting the query execution times of long queries, coupled
with aggregators to summarise term-level information at query-level. In particular, learned
models classifying extreme tail latencies obtained a great boost in prediction precision over
static features without delayed prediction.

4.3 Query Efficiency Prediction Applications

We now describe the applications of QEP, namely on-the-fly adaptations of the configuration
of the search engine on a per-query basis. The underlying aim of these applications is to
enhance the query processing component of the search engine, and to reduce the overall
query response times. Many of these applications take into account the Service Level
Agreement (SLA) that the search engine targets, e.g., a constraint on the duration of

67

mean or long-running3 query response times. In the following, we provide insights into five
different applications of QEP– in each case, such applications are designed to increase the
efficiency of the search engine over different elements of the query processing component,
which will have resulting benefits upon server capacity and energy savings, namely:
• Selective Pruning (Section 4.3.1): Selective pruning is concerned with adjusting the
F tradeoff parameter of a dynamic pruning technique for queries that are predicted to
take a long time, or adjusting K, the number of documents retrieved by the dynamic
pruning stage, which are then re-ranked by the application of a learned model in a
subsequent stage (covered further in Chapter 6).
• Selecting the replicated query server likely to be the least busy (Section 4.3.2):

Replicated query servers in a distributed search engine may not be equally busy, due
to the varying volume of queries being received. Predicting the execution time of
queries allows us to employ effective scheduling strategies leveraging such information,
such as the shortest job first strategy, instead of the simple first-come first-served
approach.
• Selective Parallelisation (Section 4.3.3): As queries take varying amounts of time

to execute, long-running queries can be spread (or parallelised) among multiple CPU
cores, to ensure that the SLA constraints are met.
• Selective query re-writing (Section 4.3.4): Queries may be rewritten internally
before execution, for instance through the application of proximity operators or
stemming, if the rewritten query is more likely to complete within the constraints of
the SLA.
• Selective CPU frequency scaling (Section 4.3.5): Since users can hardly notice
response times that are faster than their expectations, a CPU can process queries
at the lowest frequency respecting the user-defined deadlines, in such a way to save
energy and reduce the operational costs of Web search engines.

In the following, we describe the aforementioned five applications in detail, and survey
a number of corresponding approaches from the literature.

4.3.1 Selective Pruning

As discussed in chapter 6, a dynamic pruning strategy is often considered as input to a (series
of) refined ranking stage(s), which will re-rank those K results to increase effectiveness.
This is achieved by calculating additional features, and applying a learned model obtained
from a learning-to-rank technique.

The effectiveness of the K documents ranking has therefore a role in the effectiveness of

3For instance, some works describe SLAs in terms of tail response times, such as 95-th percentile response
time.

68

the final ranking presented to the user – for instance, approximate or set-safe retrieval4
may not have a considerable impact on user satisfaction, as the re-ranker will still be able
to identify highly relevant documents within the initial K documents.

With this in mind, Tonellotto et al. (2013) investigated selective pruning, where the
number of documents K and the pruning aggressiveness F are varied on a per-query
basis (recall, from page 51 that F > 1 makes WAND approximate in nature, degrading
effectiveness in favour of increased efficiency). In doing so, they examined two intuitions,
aiming to enhance efficiency while maintaining effectiveness:
• Queries that are predicted to be easy should be targeted for more aggressive pruning.
For such queries, the relevant documents will be highly scored, and hence, sufficient
recall is obtained even when aggressive pruning (F > 1) or smaller K values are used.
• Queries that are predicted to take a long time to execute should be targeted for
more aggressive pruning. By targeting such inefficient queries (which typically have
long posting lists), we can directly benefit efficiency, while aiming for not markedly
damaging effectiveness. Indeed, applying more aggressive pruning will skip more of
the scoring of the less informative query terms with long postings lists, which are less
likely to change the retrieved documents.

Hence, their experiments compared the application of a per-query pruning decision
mechanism for varying K and F that compared the use of QPPs vs. QEPs. Indeed, their
experiments using the ClueWeb09 B test collection showed that using QEPs resulted in
marked efficiency improvements (decreasing mean response time by 36% and the response
time experienced by the slowest 10% of queries by 50%) while ensuring that effectiveness
was maintained.

Later, Broccolo et al. (2013) went further by improving selective pruning, by observing
that the appropriate aggressiveness for a query should be determined not just by considering
the current query, but by also considering the current load of the machine, i.e., other queries
currently queued or being processed by that machine.

To explain this further, consider that a given query server within a search engine can
only process a fixed number of queries concurrently, e.g., based on the number of CPU
cores, and that any other queries are queued, in a first-in first-out basis, until they can
be processed. Furthermore, consider that the search engine has a SLA for queries being
executed, say within 100 ms. Queries that spend time in the queue, waiting to be executed,
are increasingly moving toward their 100 ms deadline without having made any progress.
Hence, the available time to process such queries is decreasing. To address this, they took
the natural step of using the predicted execution time of the query and the queries following
it in the queue into account when determining the aggressiveness for a given query.

The work of Broccolo et al. (2013) considered four strategies that might be used when

4See page 37 for definitions.

69

determining the pruning aggressiveness for a query:
• Manic: All queries are processed as quickly (aggressively) as possible, leading to small
response times, but also to degradations in the effectiveness of all queries.
• Perfectionist: All queries are processed as slowly as possible, using a safe-to-rank strat-

egy, leading to larger response times, but without degradations in their effectiveness.
• Selfish: Each query is processed allowing as much time as possible to permit its
processing deadline to be met, making use of QEPs.
• Altruistic: This approach aims to be fairer, by aggressively pruning queries, thereby
aiming to ensure queries in the queue can meet their deadlines. This method works
by using QEP to compute the time for the entire queue of queries to be completed.
Any slack time is spread fairly across all queries.

Their experimental setup used the ClueWeb09 B corpus, partitioned across ten index
shards. Queries were answered using the TAAT Continue method. Their results showed that
at a workload of 40 queries per second, the Altruistic approach is able to meet a deadline
of 0.5 seconds for 90% of queries whilst still attaining high effectiveness. Overall, selective
pruning is a promising application of QEPs, where the configuration of the dynamic pruning
technique is performed on a per-query basis.

4.3.2 Selecting among Replicas in a Distributed Retrieval Engine

As highlighted by the work of Broccolo et al. (2013) described above, in some search
scenarios, queries will arrive faster than they are processed. This mandates a need for
queuing queries as they arrive.

Figure 4.1 provides a graphical illustration of the conceptual architecture of a distributed
search engine, where a given index shard is replicated R times. Queries arrive at a central
broker, which schedules these queries across the replicated query servers.

Query Server

Query Server

Retrieval
Strategy Index

Query
Scheduler

Incoming
Queries Retrieval

Strategy Index

R Replicas

Figure 4.1: Conceptual architecture for a replicated index shard with R replicated query servers, where
each replica has its own queue of queries to process.

70

From Figure 4.1, it is easy to see that the next query would likely be directed to the
second replicated query server, as this server has the smallest queue of waiting queries. Such
a scheduling choice would be optimal if all queries took the same time to execute. However,
as queries vary in their execution times, such a scheduling decision would lead to queries
taking longer to execute, and potentially exceeding their SLA.

In (Macdonald et al., 2012d), the authors demonstrated an application of QEPs for
scheduling queries within such a replicated architecture. In particular, queries are received by
a query scheduler, which computes the predicted execution time of the query. The scheduler
can then schedule the next query to the node with the shortest predicted execution time
for the queries currently queued. This prevents queries being starved behind long-running
queries.

Their simulated experiments compared queue length-based scheduling (where a query is
routed to the server with the shortest queue) with predicted execution time-based scheduling,
based on QEPs, and a best case scheduling where the actual execution times were known
in advance (i.e., using perfect QEPs). The results demonstrated the usefulness of the
predicted execution time-based scheduling, with a 22% reduction in the time queries spent
waiting to execute, compared to queue length-based scheduling. Overall, these experiment
demonstrated a further potential application of QEPs to reduce query response times, in
particular within a distributed search engine setting.

4.3.3 Selective Parallelisation

The execution time of queries by some retrieval strategies can benefit from the use of multiple
CPU cores. Jeon et al. (2013) described an approach deployed in the Bing search engine
where “chunks” of posting lists are assigned to a work queue. Under normal, single-threaded
execution, chunks are processed sequentially resulting in a normal-esque retrieval process,
but where the final scores of the documents in the global heap are updated at the end of
each chunk. For some queries, chunks can be assigned to different execution threads. The
use of thread-local heaps reduce inter-thread contention in accessing the global heap.5

Through experiments using a stream of Bing queries, their approach was shown to
attain a speedup of 4×, using 6 CPU cores, for the 5% of queries that take the longest to
execute. However, not all queries should be parallelised, as this would be an inefficient use
of resources, which could be used to process other queries. Jeon et al. (2013) examined two
heuristics for making parallelisation decisions: system load, i.e., number of waiting queries;
and a parallelisation efficiency profile, which estimates if a query would likely benefit from
parallelisation.

Later, Jeon et al. (2014) extended their deployment of parallelisation to use QEP,

5Later work by Jeon et al. (2014) clarified that query processing takes place in a DAAT fashion, using
early-termination.

71

particularly targeting queries exhibiting ‘tail latencies’, i.e., high-percentile response times
that might not meet the Bing service level agreement. Such queries were selectively identified
using efficiency predictions. Comparative experiments to the earlier adaptive approach
(from (Jeon et al., 2013)) demonstrated that by using QEP for selective parallisation, a
99-th percentile response time of 100 ms was achieved for query loads of upto 750 QPS.
In contrast, using the adaptive approach, the 99-th percentile response time exceeded
100 ms at the fairly low-load rate of 300 QPS. This was due to the adaptive approach
incorrectly parallelising many queries that would have completed anyway within 100 ms.
The experiments reported in Jeon et al. (2014) demonstrated a noteworthy benefit to the
Bing search engine, with the predictive approach increasing the server throughput by 50%.
Such a throughput increase is equivalent to a potential saving of one-third of production
servers, constituting a marked energy cost reduction in a large-scale system with tens or
hundreds of thousands of servers.

More recent improvements reported by Kim et al. (2015) showed the usage of delayed
prediction (discussed separately above in Section 4.2), and a deployment on heterogeneous
CPU architectures. In particular, Kim et al. (2015) found that they could schedule queries
with longer predicted execution times onto faster, more expensive CPU cores.

Overall, the findings reported in the literature for this application demonstrate the
potential for QEP to have substantial efficiency benefits to a commercial search engine, with
resulting energy savings.

4.3.4 Selective Rewriting

Many approaches have been proposed to rewrite the user’s initial query, to encapsulate
stemming (Peng et al., 2007), common query reformulations (Jones et al., 2006), or the
inclusion of complex “proximity” operators that boost the scores of documents where
the query terms occur closely together (Bendersky et al., 2010; Metzler and Croft, 2005).
However, many such techniques degrade the efficiency of the search engine, resulting in a
longer, more complex query that takes longer to execute.

To address this issue, Macdonald et al. (2017) described the application of QEPs to
facilitate effective and efficient rewriting of the user’s query. Indeed, they noted that the
application of learned models means that techniques such as proximity can be applied either
within the first-pass retrieval (i.e., during the WAND or BMW retrieval processes), or later as
a feature calculated on the top K documents. Therefore, there is a choice: invest execution
time in the first retrieval phase, by using a complex query formulation, which may allow
smaller K sets to be used; or use a simpler query with a larger K. Figure 4.2 illustrates
the available space of solutions for each query, where the size of the circles illustrates the
likely execution time. In each case, choosing strategies that lie far from the origin results
in decreased efficiency, and, hopefully, increased effectiveness.

72

Macdonald et al. (2017) built upon the earlier work of (Tonellotto et al., 2010) that
deploys QEPs. Here, these QEPs are repurposed to eliminate strategies that cannot execute
within the constraints of the SLA. Of the remaining strategies, the one that demonstrated
the highest mean effectiveness on previous training queries is then applied to execute that
query. From their experiments using the ClueWeb09 B dataset, they reported a 49% decrease
in mean response time, and 62% decrease in tail (95-th percentile) response time, without
significant degradations in effectiveness.

As an aside, we note that a further contribution of Macdonald et al. (2017) is the
derivation of QEP estimates when the query contains complex operators (e.g., #uwλ, which
counts the frequency of query terms within a window of n tokens in each document). Such
operators are commonly used to implement proximity weighting models – complex operators
are further described in Section 2.2.4.

In summary, query rewriting is an important aspect of modern search engines, which
must account for the efficiency costs as well as the effectiveness benefits. In this application,
by deploying QEP, the authors showed that they could select among possible rewritings of
the query those that benefit both effectiveness and efficiency.

4.3.5 Selective CPU Frequency Scaling

Web search engines perform distributed query processing on computer clusters composed
by thousands of computers and hosted in large data centers (Cambazoglu and Baeza-Yates,
2015). While such facilities enable large-scale online services, they also raise economical
and environmental concerns. Indeed, a large-scale data center – like those used by Web

Number of top documents K

Qu
er

y
Fo

rm
ul

at
ion

Original

Complex

Simple

10 100 1000

Figure 4.2: Illustration of the search space of strategies to handle a query, varying both K and the
complexity of the rewritten query.

73

search engines – can draw tens of megawatts of electricity to operate and it can cost several
millions of US dollars per year in terms of energy expenditure (Greenberg et al., 2008).
CPUs are the most energy consuming component in servers dedicated to query processing,
accounting for 40% of the total energy consumption when a server is idle and for 66% of the
total energy consumption when it is fully utilised (Barroso et al., 2013). Catena et al. (2015)
proposed to use Dynamic Voltage and Frequency Scaling (DVFS) technologies to reduce
the CPU energy consumption of a query server. Leveraging the fact that users can hardly
notice response times that are faster than their expectations (Arapakis et al., 2014), Catena
and Tonellotto (2017) postulated that Web search engines should not process queries faster
than a user’s expectations and, consequently, they proposed the Predictive Energy Saving
Online Scheduling (PESOS) algorithm. This algorithm considers the latency requirement
of queries as an explicit parameter, and tries to process queries no faster than required.
In doing so, the CPU energy consumption is reduced, while respecting the query latency
constraints. PESOS bases its decision on frequency-dependent query efficiency predictors.
Firstly, a modified QEP predicts the number of scored postings for a query with a given
number of terms, independent of the underlying CPU features, then a single-variable linear
predictor forecasts the processing time of a query composed by a given number of terms
at a certain CPU frequency through the estimated number of its scored postings. PESOS
leverages such predictions to select the most appropriate CPU frequency to process a query
by its deadline, e.g., 500 ms, on a per-core basis.

The experimental evaluation of PESOS upon the ClueWeb09 B collection and the MSN
2006 query log showed that PESOS can reduce the CPU energy consumption of a query
processing server from 24% up to 48% when compared to a high performance system
running at maximum CPU core frequency, depending on the required latency. Overall, this
QEP application demonstrates that by considering the execution characteristics of a query,
significant energy savings can be made on the servers executing the query.

4.4 Summary

Overall, query efficiency prediction has been shown to be a promising concept for the
on-the-fly adaptation of the search engine’s configuration. However, thus far, QEP is only
applicable to DAAT query processing - i.e., only in DAAT do the query response times for
queries exhibit such variance. Moreover, such DAAT techniques may take a long time to
answer a query exhaustively (and safely), and not have increased the effectiveness compared
to a more aggressive, unsafe configuration. In contrast, in the next chapter, we describe
impact-sorted indexes, which due to their nature of focusing on higher value documents
earlier in the posting lists, lead to a less degraded effectiveness if the scoring process is
terminated earlier. While this negates the need for QEP, impact-sorted indexes also have

74

other disadvantages, as we discuss in the next chapter.

5 Impact-Sorted Indexes

Despite the best attempts of dynamic pruning techniques to avoid scoring non-relevant
documents, or those that will never be retrieved, for a particular query, there are documents
in the index that will never be retrieved for any query. Hence, a natural question arises
as to whether we can eliminate terms or entire documents that are not useful for effective
retrieval, or whether we could first process those documents that are more likely to be
retrieved.

These ideas can be instantiated into different modifications of the inverted index:
static pruning (Carmel et al., 2001) techniques are offline operations that remove index
portions that are unlikely to contain relevant documents. Some static pruning techniques
are based upon the statistical properties of documents – i.e., by relying on a summary of the
important aspects of a document, or by removing entire terms from the index that rarely
impact upon the effectiveness of retrieval (e.g., stopword removal and Latent Semantic
Indexing (Deerwester et al., 1990)). Static pruning can be considered as a form of lossy
compression of the index (in contrast to the lossless compression discussed in Section 2.1.2),
since the results are no longer safe. Static pruning techniques can be used to develop tiers
of indexes – smaller, more highly pruned index tiers are more likely to contain the relevant
documents for popular queries, while more difficult or less popular queries will need to
resort to a larger index tier (Risvik et al., 2003). Tiering and static index pruning are
common architectural optimisations in distributed query processing systems, which are
employed to reduce the query workloads of these systems as well as the corresponding query
processing times. A comprehensive discussion of their implementations and merits can be
found in Cambazoglu and Baeza-Yates, 2015, Ch. 4.

In contrast to static pruning, impact ordering describes the situation where the docu-
ments in the posting lists are sorted not according to their identifier, but according to some
measure of their contributions to the relevance of a document to the users’ queries. As such,
the most “contributing” documents will appear first when processing a posting list, and
hence scoring can be terminated early, without reaching the end of the constituent terms’
posting lists, while ensuring that the retrieved documents are useful. Indeed, we will describe
the special query processing algorithms necessary to deal with these impact-sorted indexes.

Nevertheless, impact-sorting is not a panacea for efficient retrieval, and has notable
disadvantages compared to traditional docid ordering. Indeed, the same disadvantages noted
in Section 3.5 above for the pre-calculation of term upper bounds (e.g., index updates)
also apply for impact-sorting. Nevertheless there are also inherent advantages, particularly
concerning the predictability of retrieval times (as postings lists do not need to be entirely

75

traversed). Table 5.1 provides an overview of the advantages and disadvantages of different
index orderings – the exact choice appropriate for a given search engine will depend on other
factors, such as the necessity of boolean or phrase operators (e.g., to support proximity
search). Note that as of 2009, Dean (2009) stated that the Google search engine was using
docid-sorting at that time. However, it is likely that other commercial search engines are
using impact-sorting, or hybrid combinations of impact and docid-sorting.

In the following, Section 5.1 describes the revised inverted index data structures necessary
for impact-sorting, while Section 5.2 describes score-at-a-time dynamic pruning optimisations
designed to operate directly on an impact-sorted inverted index.

Table 5.1: Pros and cons of docid-sorting vs. impact-sorting of an inverted index.

Docid-sorting Impact-sorting

Pros

• Can do phrase/boolean queries
based on unigram posting lists

• Lower mean and variance in re-
sponse times

• High compression rate • Fast to decompress
• Can append new documents to
posting lists

• Early termination of a posting
list pass less damaging to effec-
tiveness
• Easier to predict response times

Cons

• Difficult to predict response
times

• Difficult to update index

• Retrieval requires a pass over
the entire posting lists

• Possible loss in effectiveness

5.1 Data Structures

During the query evaluation, we want to identify as soon as possible the top scoring
documents for a given query. Most of the query processing strategies discussed thus far
assume that the postings within the posting lists of the inverted index are sorted by docid.
An alternative way to arrange the posting lists is to sort them such that the highest scoring
documents appear early. In theory, in docid-sorted lists, the top documents could be found at
the end of the posting lists, forcing any safe up to K algorithm to traverse them completely.
If an algorithm could find them at the beginning of the posting lists, the dynamic pruning
conditions can be enforced very early.

76

The first alternative organisation of posting lists was proposed by Wong and Lee (1993),
based on the TFIDF rule (Salton, 1989). This rule asserts that, for each term t in query
q and for each document d in the collection, the similarity score between q and d must
increase with the term-document frequency fd,t and must decrease with the document
frequency ft. While processing posting lists in decreasing order of term upper bound, Wong
and Lee (1993) organised the posting lists in decreasing term-document frequency values,
and processed them by grouping postings in individual disk pages. In this way, the pages are
processed in decreasing order of similarity score contributions, until an estimated threshold
on the retrieval accuracy is reached and the top K documents scored thus far are then
returned (behaving then as a Quit strategy). The authors noted that the processing and
storage overheads of this frequency-sorted index will be higher than a docid-sorted index,
but these overheads can have a limited impact for environments where updates are done in
batch and are infrequent compared to retrieval activities.

The same index organisation is used by Persin (1994) and Persin et al. (1996) to propose
a TAAT optimisation that leverages the frequency sorting to select the documents to prune.
Firstly, Persin (1994) noted that the decision to stop in the Quit and Continue optimisations
by Moffat and Zobel (1996) is based only on the global parameters of the collection. The
pruning condition of both algorithms completely rejects whole posting lists rather than
separate documents within the lists, making it impossible to have “gradual transition” from
processing to rejecting terms. Persin proposed a document filtering modification of the TAAT
strategy based on two filtering thresholds fins and fadd. For each posting in any posting
list, the term-document frequency fd,t is compared to these two new thresholds. If fd,t is
greater than the insertion threshold fins, the corresponding accumulator is created and
initialised, if not present, or its partial score is updated, if already present. Otherwise, if
fd,t is greater than the addition threshold fadd, then the partial score is accumulated only if
the corresponding accumulator is already in the candidate set. If the document is not in the
candidate set, nothing is done in this case, as well as in the case when the term-document
frequency passes neither thresholds.

With docid-sorted indexes, the frequency tests must be done for every posting in every
posting lists, while with the frequency-sorted posting lists, we start processing the most
important document in each list first, then we can stop inserting new accumulators and
eventually stop accumulating the partial scores of the existing accumulators. Although
the filtering thresholds must be experimentally tuned, the authors showed a large memory
saving in terms of the number of accumulators compared to Lucarella (1988) and Harman
and Candela (1990).

One of the most popular and effective similarity models is the vector space model (Witten
et al., 1999; Zobel and Moffat, 2006; Baeza-Yates and Ribeiro-Neto, 2008; Manning et al.,
2008; Croft et al., 2009; Büttcher et al., 2010). The vector space model relies on the TFIDF
rule for statistically approximate similarity scores between a query and a set of documents.

77

In such a model, the similarity function in Equation (2.1) can be efficiently represented as
follows:

Scoreq(d) =
∑
t∈q

st(q, d) = 1
Wd

∑
t∈q

wt(q) · wt(d) (5.1)

Anh et al. (2001) introduced the definitions of (i) the impact of term t in document d
for the quantity wt(d)/Wd (or document impact) and (ii) the impact of term t in query q for
wt(q) (or query impact). Building upon the ideas of frequency-sorted indexes, the authors
proposed to facilitate effective query pruning by sorting the posting lists in decreasing order
of (document) impact, i.e., to process queries on an impact-sorted index. In such indexes,
postings do not store the term-document frequency fd,t anymore, but the document impact
wt(d). However, while term-document frequencies are natural numbers, document impacts
are floating point values. Hence, they are not as amenable for compression. Leveraging
a technique introduced by Moffat et al. (1994) applied to document weights, Anh et al.
(2001) quantised the impact values, approximating them by b-bit integers, and storing such
integers instead of the original real values in the postings. Two successful approaches were
proposed to assign impacts to weights, LeftGeom and Uniform. A third one, RightGeom, did
not provide a good effectiveness compared to the other two. In the LeftGeom quantisation,
a weight w in the real range [L,U] is assigned to one of the 2b buckets according to the
following mapping:

w 7→
⌊
2b log(w/L)

log(U/L) + ε

⌋
(5.2)

while in the Uniform quantisation, the mapping is as follows:

w 7→
⌊
2b w − L
U − L+ ε

⌋
(5.3)

where ε is a small positive value to ensure that the weight U maps to the impact 2b − 1
rather than 2b.

The LeftGeom quantisation has this name since it provides more accurate approximations
for values close to the weight lower bound L, while the Uniform quantisation equally divides
the U −L range into 2b buckets (the RightGeom quantisation provides good approximations
of large values, close to the weight upper bound U). Given an impact i ∈ {0, . . . , 2b − 1}
and a direct mapping w 7→ f(w) = i, the corresponding inverse weight is defined as:

1
2
(
f−1(i) + f−1(i+ 1)

)
(5.4)

i.e., the middle value of the range of weights corresponding to that bucket. The experiments
conducted by Anh et al. (2001) showed that 5 bits are reasonable to encode the impacts with
minimal effectiveness losses for both quantisation schemes (with 10 bits, no effectiveness

78

losses are reported) but this value should be tuned when using different collections and/or
different similarity functions. Later, Crane et al. (2013) confirmed that 5 to 8 bits are
enough for small-medium document collections, but for larger collections, from 8 up to
25 bits are necessary, depending on the effectiveness measure. They proposed a simple
empirical formula to compute the number of bits b according to the number of documents
|D|, as follows:

b =
⌈
g + h

√
|D|/108

⌉
, (5.5)

where g and h are linear fitting parameters depending on the used effectiveness measure
(g = h = 5.4 for MAP, g = 2.9, h = 54.3 for P@20).

5.2 Query Processing

During query processing, early termination can be checked every time the impact of postings
changes during the posting lists traversal. Posting lists are divided into document impact
blocks of postings and interleaved as in Figure 3.5. Then, given a query, the document
impacts of a given posting list are multiplied by the query impact of the corresponding term,
and the impact blocks are processed in decreasing order according to these values. This
query processing strategy on impact-sorted indexes is often called score-at-a-time (SAAT),
and illustrated in Algorithm 5.1.

3

2

1

3 2 1

3 12

2 1

query
impacts

document impacts

9

4

6

6 2

2 1

3
p[0] p[1]

p[3]p[2] p[6]

p[7] p[8]

p[4]

3
3

p[5]

array of posting lists p
sorted by impact contribution w

Figure 5.1: How the SAAT algorithm sorts the posting list blocks by impact

The adoption of integer values to encode the impacts and to enforce dynamic pruning
allows the accumulators to be integers, and hence efficient techniques can be leveraged to
sort them, resulting in a 2× speedup compared to frequency-sorted indexes.

Further investigations on impacts have been discussed in (Anh and Moffat, 2002; Anh
and Moffat, 2005b; Anh and Moffat, 2006b; Anh and Moffat, 2006a). In particular, in (Anh
and Moffat, 2002), the authors found evidence that the commonly used similarity scores
based on the TFIDF rule overstate the role of high impacts and dampens the effect of

79

Algorithm 5.1: The SAAT algorithm
Input :An array p of N × 2b posting lists, one per query term per impact,

sorted in decreasing order of impact contribution (see Figure 5.1)
An array w of N × 2b impact contributions, one per query term per
impact, sorted in decreasing order

Output :A priority queue q of (at most) the top K 〈docid, impact〉 pairs,
in decreasing order of impact

ScoreAtATime(p):
1 A← an accumulators map from docids to impact,

all entries initialised to 0
2 for i← 0 to N × 2b − 1 do
3 current ← p[i].docid()
4 while current 6= ⊥ do
5 A[current] ← A[current] + w[i]
6 p[i].next()
7 current ← p[i].docid()

8 q← a priority queue of (at most) K 〈docid, impact〉 pairs,
sorted in decreasing order of impact

9 foreach 〈docid, impact〉 in A do
10 q.push(〈docid, impact〉)
11 return q

low-impact terms. This is particularly detrimental for the effectiveness of short queries.
The authors hence proposed a global impact normalisation procedure, to allocate large
relative increases to small values and vice versa. Then the new impact values are again
quantised, to be represented as integers, and thresholded, to statically remove from the
index the lowest-impact blocks of postings. Among the different solutions proposed by the
authors, the most successful one consists in reducing by a fixed amount the impact score
contribution to any accumulator. This amount is initially zero, but it is increased every
time an impact block or a whole posting list is completely processed. In doing so, the score
contribution of low impact blocks and query terms is gradually reduced, partially reversing
the effects of the normalisation procedure. With all parameters tuned and with the right
data structures, this impact normalisation procedure increased both the effectiveness and
efficiency of the original impact-sorted indexes.

Anh and Moffat (2005b) proposed a different mechanism to produce normalised impacts.
Instead of relying on quantitative impacts derived from a pre-determined similarity function,
they introduced the concept of qualitative impacts. Such impacts are defined locally to each
document and then transformed as in (Anh and Moffat, 2002). However, instead of adapting
the mappings of Equation (5.2) and (5.3) from a global view (i.e., using collection-level
bounds L and U) to a local view (i.e., using document-level bounds Ld and Ud), they
proposed to use the ranking position of terms in documents. Hence, for a given document,

80

its terms are ranked according to some criteria, then they are grouped into 2b buckets, and
rank impacts assigned to buckets. The experiments reported improvements in effectiveness
in terms of mean average precision with BM25 and language models, coupled with the
efficiency benefits of impact-sorted indexes already discussed above.

Anh et al. (2001) proposed a revised management of the accumulators array. They
proposed to keep track of the accumulators through their values, by using an array of lists of
accumulators indexed by accumulator value. Then they keep track of the top accumulator’s
value and the lowest K accumulator’s value through a set of pointers, that are updated at
runtime to ensure that the top K accumulators are correctly identified at the end of query
processing.

Anh and Moffat (2006a) proposed a dynamic pruning optimisation approach for SAAT,
based on the Continue strategies presented in Section 3.2. The impact blocks are initially
processed in an OR mode (as presented in Algorithm 5.1). The processing continues in
an AND mode, i.e., no new accumulators are created, once no document with an existing
accumulator can be a member of the final candidate set. At a certain point, we will be able
to exactly identify the top K accumulators, so the algorithm proceeds to a third phase in a
REFINE-mode, where only these top K accumulators are retained, and correctly scored.
The experiments showed that this optimisation approach is able to reduce the memory
footprint by 98% w.r.t. SAAT, with a speedup of 1.75×. Note that the proposed optimisation
is safe up to K compared to SAAT. The authors also discussed an unsafe modification
to the proposed algorithm. After the initial OR mode processing, a fidelity control knob
Q controls the percentage of postings to process after the first phase. They found that
processing Q = 30% of the remaining postings results in a good retrieval performance, for
both long and short queries. This approach is discussed also by Lin and Trotman (2015) and
implemented in the JASS open-source search engine. The authors applied linear regression
to correlate a time deadline (on the query processing time) with the maximum number of
postings to process to meet the deadline ρ (e.g., 103, 104 or 105 postings). Once this number
of postings ρ is processed, no new impact blocks are processed. Mackenzie et al. (2017)
further investigated this approximate early termination approach, a.k.a. anytime ranking.
Instead of terminating the processing after a fixed amount of postings is processed (10% of
the documents in the collection as empirically observed by Lin and Trotman (2015)), they
proposed to stop after processing a given percentage of the total postings in the query terms’
posting lists, on a per-query basis. According to their experiments, the fixed threshold may
result in reduced effectiveness as the number of query terms increases, but conversely it
gives a very strict control over the tail latency of the queries.

Strohman and Croft (2007) further refined the memory-optimised safe up to K approach
described in (Anh and Moffat, 2006a), by reducing the number of accumulators gradually
during the AND mode phase. The authors proposed to trim in a MaxScore style the
accumulators that cannot beat the current threshold during the second phase, and optimised

81

the accumulators data structure to leverage the cache, together with a new skipping scheme,
obtaining a 1.69× speedup compared to the Anh and Moffat (2006a) strategy.

Jia et al. (2010) introduced several improvements to the SAAT algorithm. They proposed
to manage the priority queue q during the posting list traversal. Moreover, they showed
that in some cases the accumulator initialisation can be quite expensive, i.e., when the
memset library function is used. They discussed a management of the accumulators array
similar to the paging mechanism in the operating system’s virtual memory. Lin and Trotman
(2017) discussed how to include early termination in SAAT. Every term has an associated
upper bound, that is updated, i.e., decrease, every time a corresponding block impact list is
completely processed. By storing (and updating) the sum of the term upper bounds during
query processing, we can stop creating new accumulators when the topK accumulator scored
thus far is larger than the sum of upper bounds. We can also stop updating accumulators
that are not in the priority queue when the difference between the top K and the top K + 1
accumulators is larger than the current sum of upper bounds, since no existing accumulator
can further accumulate enough impact to beat the current top K accumulators.

Trotman (2014) investigated the performance of integer compression algorithms for
frequency-sorted and impact-sorted indexes. The author demonstrated some space inefficien-
cies in existing SIMD-based codecs, in particular with short posting lists, and proposed a
new SIMD compressor (QMX), that is more time and space efficient than the SIMD codecs.
Trotman and Lin (2016) provided further experiments for QMX. Lin and Trotman (2017)
found that the best performance in query processing with SAAT is indeed obtained when no
compression is used, even if the advantage w.r.t. QMX is small (∼5%). Moreover, uncom-
pressed impact-sorted indexes can be up to two times larger than their QMX-compressed
versions.

Finally, we note that Crane et al. (2017) performed a detailed investigation of the
performance of rank-safe SAAT with respect to WAND and BMW. They found that, for
K = {10, 100, 1000}, SAAT performs worse than both WAND and BMW, even if the
average response time of SAAT does not exhibit a dependency on K. A multi-threaded
implementation of SAAT is further discussed in (Mackenzie et al., 2017).

5.3 Summary

This chapter introduced offline modifications to the content and structure of an inverted
index to prioritise the processing of documents that are more likely to be retrieved. We
focused upon impact-sorted indexes, where significant efficiency improvements can be
obtained with negligible negative impacts on effectiveness. It is likely that current modern
Web search engines adopting a combination of dynamic pruning with static pruning and
impact-sorting strategies.

82

In the next chapter, we investigate the role of the techniques discussed in Chapters 3 and 5
in cascading search architectures. We also provide insights into the efficient deployments
of learning-to-rank infrastructures, which can benefit the search engine’s effectiveness by
re-ranking a set of K documents.

6 Learning-to-Rank & Cascades

Over the years, many different ranking models have been proposed in order to score docu-
ments in response to a query. Such models strongly depend on the sources of information avail-
able to characterise the documents. In the early years of Information Retrieval (IR), the main
source of relevance was the presence of the query terms in a document. Next, the relevance
of a document to a query was better formalised using the Vector Space Model (Salton et al.,
1975) or using the Probabilistic Ranking Principle (Maron and Kuhns, 1960). These bag-of-
words approaches leverage the occurrences of query terms in the whole collection and in each
single document, modeling documents and queries as vectors of term/document frequencies.

In the past there has been significant evidence that IR can benefit from data fusion,
also called metasearch, whereby the outputs of multiple and different retrieval systems
are combined into a single ranking of documents. Various data fusion techniques, such
as CombSUM and BordaFuse, were proposed to build an unsupervised combination of IR
system rankings, for instance by combining raw retrieval scores (Bartell et al., 1994; Fox
and Shaw, 1994), normalised retrieval scores (Montague and Aslam, 2001; Manmatha
et al., 2001) or simply leveraging the ranks of retrieved documents (Montague and Aslam,
2002). Data fusion benefits effectiveness through a number of manners, such as the chorus
effect, whereby if multiple constituent systems agree on the estimated relevance of a given
document, then this document is more likely to be relevant (Vogt and Cottrell, 1998). The
perceived benefits of data fusion led to the development of various Web metasearch engines
for some time, such as HotBot and Dogpile. Later, supervised data fusion techniques were
developed (e.g., (Lillis et al., 2006)).

However, the clear disadvantage of data fusion is that multiple IR systems need to
be queried to attain the perceived effectiveness benefits. Hence, it could be argued that
it would make more sense to combine the attributes of multiple systems within a single
system, for both efficiency purposes and to eliminate the need for license payments.

On the other hand, with the Web, new sources of information about the documents have
been increasingly identified. Measures such as the importance of a Web page (e.g., PageRank,
number of inlinks/outlinks), additional document statistics (e.g., term frequencies in the
title or body fields, anchors text, term proximity) and search engine interactions (e.g., URL
clicks) can be exploited as relevance signals. Collaborative and social platforms such as
Wikipedia, Twitter and Facebook are exceptional sources of relevance signals. For example,

83

Wikipedia titles can be used for entity annotation in queries, while social media can capture
the users’ behaviour, and identify fresh pages that are relevant to new or trending queries.

With such an abundance of signals to be taken into account when modeling the
relevance of documents w.r.t. queries, simple ranking functions such as those corresponding
to Equation (2.1) show their limits. Even with a simple linear combination of signals,
the weighting parameters of the linear function still need to be adequately estimated.
Therefore, to address the challenge of effectively combining large numbers of relevance
signals, machine learning approaches have proven successful in producing effective relevance
ranking algorithms, generally referred to as learning-to-rank (LTR). In this monograph, we
are not focusing on specific LTR methods and learning-based retrieval algorithms. Instead,
we are rather interested in their implementation and usage in query processing. For a
comprehensive survey of LTR methods and approaches, and for additional details on the
learning-to-rank paradigm, please refer to the seminal monograph of (Liu, 2009).

One important advance in search engine architectures facilitated by learning-to-rank is
the separation of the ranking process into cascades. In particular, bag-of-words retrieval
models such as BM25 are sufficiently fast that they can be efficiently calculated when
querying over all documents matching any of the query terms, even when the underlying
index contains millions of documents. Such retrieval models use very few statistics (e.g., term
frequency, document frequency, document length) that are efficiently stored and accessed
in the inverted index, and are easily combined in a predefined manner. In contrast, LTR
models combine hundreds of arbitrary features, and they can be combined in the most
effective way thanks to training data (Dang et al., 2013). Due to the computational cost
of extracting or computing hundreds of features for every query-document pair, the LTR
models are not applied directly on the document collection, i.e., to rank all documents
matching a query. Instead, they are deployed in a pipelined fashion by conducting first a
simpler (base) preliminary ranking stage, before one or more subsequent more expensive
ranking processes are applied, in a cascading manner.

Figure 6.1 provides an overview of how a search engine operates in a basic cascading
manner. During query processing, the base ranking stage uses simple ranking functions to
retrieve from the whole document collection a sample (or candidate set) of documents of
sufficient recall effectiveness. Approaches from Chapters 3 & 5, such as static and dynamic
pruning, are easily deployable at this stage. In the second stage, further computationally-
expensive and highly discriminative features for the documents in the sample are generated
or extracted from other sources, and the LTR ranking stage reranks the sample’s documents,
focusing on high precision results at the top positions. The final top K documents of the
reranked list are then returned to the user.

This separation into stages also has important benefits for faster training, in that
documents can be ranked once, extra features calculated, and the learning process conducted
‘offline’ on a single machine, disconnected from the underlying retrieval engine. Various

84

learning-to-rank datasets, including the LETOR ones released by Microsoft Research1 were
created in this manner, allowing researchers to evaluate learning-to-rank techniques on
shared datasets.

More complex cascading architectures have been devised. For example, Yin et al. (2016)
described the Yahoo search engine distributed architecture being composed of a preliminary
recall stage performing boolean retrieval over the document collection, followed by a first
round stage performing lightweight scoring. Next, there is a core ranking function stage,
based on LTR models trained simply on query-document pairs. These stages run on the
index serving nodes of their distributed infrastructure. A single blending node is responsible
for merging and sorting the top results from multiple index serving nodes, which implements
a contextual reranking stage, based on LTR models trained with information extracted
from other candidate results for the same query, to compute the final top results to return.
A similar architecture is described by Risvik et al. (2013), detailing part of the search
infrastructure of Microsoft’s Bing.

Query
Base

Ranking
Stage

Inverted
Index

Feature Extraction
&

Computation Stage

Top K
Documents

LtR Ranking
Stage

Features LtR
Model

Figure 6.1: Basic stages of a cascading search engine

In general, the efficient application of learning-to-rank within search engines, while
deemed useful, has seen correspondingly less research compared to the generation of effective
learned models. In fact, the efficiency of LTR model applications mainly depends on three
factors: (1) the efficiency of the initial base ranking stage, (2) the calculation/extraction of
the required features, and (3) the efficient application of the learned models to combine
those features into a final improved ranking. These factors also depend on the sample size,
i.e., the number of documents retrieved in the base ranking stage.

As a consequence, in the rest of this chapter, we will address the candidate generation
for learning-to-rank based on the initial base ranking stage (Section 6.1), the calculation of
features for learning-to-rank (Section 6.2), and the efficient application of learned models
(Section 6.3).

1https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/

85

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/

6.1 Candidate Generation for Learning-to-Rank

In a search engine using learning-to-rank, the base ranking stage needs simply to identify a
set of documents of sufficient recall effectiveness (i.e., the sample), in an as efficient manner
as possible. Clearly this can be achieved through a direct application of the dynamic pruning
techniques described in Chapter 3, and/or those in Chapter 5. This allows for two avenues
that benefit efficiency, namely (i) retrieving less documents in the base ranking stage, i.e., a
smaller sample size (which enhances efficiency) and/or (ii) sacrificing the safety/effectiveness
of the dynamic pruning strategies.

Macdonald et al. (2012c) examined the second avenue, the dynamic pruning safety, by
varying the F aggressiveness parameter of WAND (see page 51). When re-ranking 1000
documents, there was no change at rank 20 in the effectiveness of the sample for 1 ≤
F ≤ 3, but when re-ranked by a LambdaMART learning-to-rank model, the LambdaMART
performance was much less stable for different F values. As F → 10, the effectiveness of
the learned model decreased, with corresponding efficiency gains. Of particular note, the
effectiveness was even observed to significantly improve for F = 1.75, despite failing to
retrieve 82 relevant documents across the 50 queries. This is caused by a bias inherent
in unsafe WAND, where retrieval becomes more focused on lower numbered docids in
the posting lists. Indeed, by artificially increasing the threshold τ by the factor F , the
threshold for unsafe WAND causes more documents to be prevented from entering the top
K documents. Early in the traversal of the posting lists, when τ is lower, documents can
still enter into the retrieved set. However as τ becomes higher, more pruning occurs, even
for documents that would have made the retrieved set for F = 1. This explains unsafe
WAND’s bias towards lower docid documents.

While Liu (2009) discussed the use of 1000 documents as a candidate set, this came
without empirical justification. Indeed, some other learning-to-rank approaches in the
literature used smaller candidate sets, in the order of 10s of documents (which may
constitute an easier problem for learning an effective ranking model). Macdonald et al.
(2013a) studied the effectiveness of a variety of learning-to-rank techniques as the sample size
is varied. In general, on the large ClueWeb09 B corpora, effectiveness was markedly reduced
for adhoc and mixed-task queries if less than 1000-2000 documents were retrieved during
the base ranking stage. On the other hand, for easier navigational tasks, less documents
were needed, particularly if the anchor text of the documents was included in the document
representation.

A growing body of work has encompassed varying the initial number of documents
necessary to rank on a per-query basis. The first of these, selective pruning (i.e., the selective
adjustment of dynamic pruning techniques on a per-query basis), initially proposed by
Tonellotto et al. (2013), is based on query efficiency techniques, and was described earlier in
Section 4.3.1. More recent approaches have addressed the problem by learning the number

86

of documents to retrieve in the candidate set (Culpepper et al., 2016). However, a recurring
problem is the availability of sufficient queries with relevance labels to allow a successful
learning. This challenge has been overcome by the use of reference lists (Clarke et al.,
2016; Culpepper et al., 2016), which, given a standard evaluation metric M ,2 allow for
comparative effectiveness measurements between a ranking assumed to be effective and
another ranking, using a measure called Maximised Effectiveness Difference (MED-M). For
instance, Mackenzie et al. (2018) learned to predict the configuration of the initial candidate
set generation – either the minimum sample size suitable for a given query obtained from
BMW, or the aggressiveness parameter ρ of the JASS SAAT technique (see Section 5.2).
In doing so, their objective is to minimise changes in the MED-RBP measure compared
to the reference ranking lists produced by a reference system. In using their predictions,
they adopted a hybrid approach, where for each query, a decision is made whether the
query should be addressed by a BMW dynamic pruning strategy or a JASS approach, to
minimise tail latency, and how the selected retrieval technique should be configured in terms
of aggressiveness. Their predictions demonstrate no loss in effectiveness compared to their
learned model approach, as evaluated on the TREC 2009 Web track topics.

On the other hand, not all proposed techniques in the literature for the first stage of
retrieval actually perform ranking. Asadi and Lin (2012) described a technique using Bloom
filters. Indeed, they noted that in scenarios such as Web search, many queries are processed
conjunctively, i.e., only documents that contain all the query terms are considered. This
being the case, the authors proposed that the postings list be stored both as a compressed
sequence of integers and as a Bloom filter – a fast and small data structure that supports
O(1) approximate set membership tests. In this case, the Bloom filter permits to quickly
determine whether a docid occurs in a posting list (with a given accuracy). This allows
the intersection to be quickly made. Building on this, Goodwin et al. (2017) described
a signature-based approach for representing the candidate set generation phase called
BitFunnel. BitFunnel has since been deployed into Microsoft’s Bing search engine. We
discuss it further in Section 7.2.

Once the docids for the candidate set have been identified, the next step is to calculate
the additional signals (or features) for every document, such that the learned model has a
further chance to identify the most relevant documents to place at the top of the re-ranked
candidate set. In the next section, we further discuss the efficient calculation of such features.

6.2 Feature Calculation in Learning-to-Rank

The basic model for LTR is as follows. Given a specific query q, a document d is represented
by a vector of features. Each feature relates to one or more relevance signals of the query-

2Such as MAP, NDCG or Rank Biased Precision (RBP)

87

document pair (q, d). A numeric relevance judgement is associated to each query-document
pair. A machine learning algorithm is then trained to produce a learned model combining
all input features. Figure 6.2 shows the features for three documents, as used in the LETOR
datasets. Typically, the learned model is trained to reproduce as accurately as possible
the relevance judgements of a training set of query-document pairs by minimising an
effectiveness-specific loss function (Liu, 2009). At query processing time, the learned model
is used to rank documents for new user queries, by computing the same input features for
each query-document pair and producing a ranking of the documents.

2 qid:1 1:1 2:1.9 3:0.4 # docid=5
0 qid:1 1:0.99 2:0.2 3:0.5 # docid=941
1 qid:1 1:0.88 2:0.5 3:0.8 # docid=83

Figure 6.2: An example of a LETOR-formatted learning-to-rank training file.

There are various classes of features implemented within a learning-to-rank deployment.
Many of these were historically included in the LETOR datasets (Qin et al., 2010), and
encapsulated various research techniques available at that time. The common classes are:
• Query-dependent features: These are document features that vary according to the
query. Typically, these will encapsulate various term weighting models, including
those calculated on separate fields or proximity/dependence models. Macdonald et
al. (2013b) showed that including multiple such query-dependent features within a
learning-to-rank model significantly benefited effectiveness.
More recently, neural semantic matching models have been proposed, which use
dense vector representations of terms and deep learning to achieve a more accurate
similarity between queries and documents. While their integration into search engine
architectures has not yet seen a wide examination in the literature, approaches such as
DUET (Mitra et al., 2017), DeepRank (Pang et al., 2017), and the weakly supervised
RankProb model (Dehghani et al., 2017) were applied as re-rankings of candidate
document sets created by, for instance, BM25. For this reason, we describe features
based upon such neural semantic similarity models as query-dependent features (they
need both the query and the document). However, note that these features require
access to some representative content of the documents, as might be found in the
direct (forward) index.
• Query-independent features: These are document features that have the same value
for each query. The ubiquitous PageRank and various other link-analysis features
fall into this category, as well as URL length, spam features and other content-based
document quality indicators – Bendersky et al. (2011) described a number of such
features, including fraction of words in a table, fraction of stopwords covered by a
document, to name but a few.

88

• Query-only features: Such features are document-independent, in that they have the
same value for each document (Macdonald et al., 2012b). Query analysis, such as query
type identification and query performance predictors, falls into this category. These
features permit the adaptation of the ranking strategy for different query categories
such as query type (informational vs. navigational, easy vs. difficult, presence of an
entity, or news-related, etc.).
• Contextual features: These features take into account contextual information of
existing features from other candidate results for the same query. Lucchese et al.
(2015a) proposed rank-based features, to provide additional information about some
ordering properties of a document compared with the other candidate documents.
For example, a new feature corresponding to the rank of a document after sorting
the candidates w.r.t. a given feature can capture relatively better or relatively worse
concepts over the current candidate set. Yin et al. (2016) proposed new contextual
features, such as the mean/variance of specific feature values in the candidate set,
and so on.

The manner in which the features are calculated is of particular interest. For instance,
query-independent features may simply be recorded in a fast-access memory data structure
(i.e., an array of values for each document held in memory – these may be floating point
values). However, some tree-based learning techniques can make use of quantised feature
values, making use of distributions learned on the training data. Hence, these techniques
require fewer bits to record the feature values for a given document (Li et al., 2007).

An alternative architecture for storing the values of the query-independent features is
to record them in the posting lists. This makes each of the postings larger, and repeats the
feature values for every posting in every document. This causes a large memory overhead,
and for this reason, this architecture is rarely used. On the other hand, feature values are
immediately available during scoring without requiring a random access lookup.

On the other hand, calculating additional query-dependent features, such as those based
upon proximity or field information, requires access to the posting information, normally
recorded in the inverted index. This presents a challenge: the learning-to-rank paradigm
suggests that the calculation of additional query-dependent features should only occur once
the initial set of the top K documents to be re-ranked has been identified, as part of a
first phase retrieval (as described in Chapters 2-5). Indeed, it is considered too expensive
to calculate the additional features for all documents that contain one or more query
terms and that might make the top K documents. However, the calculation of additional
query-dependent features requires access to the postings in the inverted index, which are
not readily available for random-access.

There are a few solutions for this challenge, which have advantages or disadvantages in
terms of flexibility and efficiency:
• Inverted Index Re-traversal: In this architecture, which is notably inefficient, the

89

relevant inverted index posting lists are re-traversed for the documents in the final
top K set. Figure 6.3 illustrates the flow of data for this architecture. This can be
reasonably efficient since the set of documents being scored is small, and skipping
(Section 2.1.2) may be used to skip more quickly to the correct postings. Yet, the
postings for those documents being rescored with additional query-dependent features
must be decompressed.3

Base
Ranking
Stage

Inverted
Index

Feature Extraction
&

Computation Stage

Inverted
Index

Top K Documents

Other
Features

Figure 6.3: Using an inverted index for calculating additional query-dependent features.

• Caching of the postings: (Macdonald et al., 2013b) described the FAT architecture
implemented by the Terrier IR platform (Macdonald et al., 2012a), whereby the
matching postings of the documents that are admitted to the top K heap are cached.
At any point of time, at most K × n postings are kept in the heap, i.e., for every
document, one for each query term. Figure 6.4 illustrates the flow of data for this
architecture, which is described as ‘fattening’ the result set with postings. This
allows the computation of additional query-dependent features without accessing and
decompressing the posting lists in the inverted index a second time. However, this
architecture is only applicable for computing such additional query-dependent features
in the case of query terms that occurred in the original query, since the fattened result
set will not contain the postings of any further query terms.
• Direct Index: Asadi and Lin (2013) described a representation where the ‘forward’
or ‘direct’ index4 is used for calculating additional query-dependent features in a
document-centric manner. Figure 6.5 illustrates the flow of data for this architecture.
They described several implementations of such an index, concentrated around either
an array of term ids – one for each term position – or a sparser representation, similar
to that used in an inverted index posting list (termids, frequencies, term positions).
In both cases, termids are assigned such that more frequently occurring words obtain
lower termids, thereby benefiting compression. In particular, if the term position

3At the time of writing, our understanding is that Solr’s LTR implementation is based on index re-traversal,
based on conversations with software engineers familiar with such an implementation.

4Also called document vectors by Asadi and Lin (2013).

90

Base
Ranking
Stage

Inverted
Index

Feature Extraction
&

Computation Stage

Top K Documents
with FAT postings

Other
Features

Figure 6.4: Retaining FAT postings from the inverted index for calculating additional query-dependent
features.

information is not required for the first pass retrieval, then the inverted index does
not need to include the position information, and this can instead be kept solely
in the direct index. On the other hand, even with posting compression, a direct
index can take significant space over-and-above the inverted index. Indeed, Asadi
and Lin (2013) found that the space consumption of a direct index with positional
information combined with a non-positional inverted index is similar to that of a
positional inverted index (depending on the compression scheme used, 70 - 86 GB vs.
75GB for the 50 million documents of the ClueWeb09 B collection). To address the
space issue, they proposed a space-efficient hashing scheme for direct index contents
to reduce the number of bits needed to encode the termids of a given document, giving
a total index of 58 GB.

Base
Ranking
Stage

Inverted
Index

Feature Extraction
&

Computation Stage

Direct
Index

Top K Documents

Other
Features

Figure 6.5: Using a direct index for calculating additional query-dependent features.

Compared to Terrier’s FAT framework, we note that using the document vectors
approach of Asadi and Lin (2013) allows additional query-dependent features to also
target further query terms that were not present in the original query, such as those
derived from query expansion/rewriting. Such an approach also facilitates the use
of deep neural network matching models, such as those of Dehghani et al. (2017),
which learn to match queries to documents, and hence also require the content of the

91

documents in the candidate set.
We finally highlight the work of Arroyuelo et al. (2012), which also considered whether
positional information needs to be indexed. In particular, they demonstrated that
the compressed representation of the raw text of a document can be achieved in a
space only 12% larger than the positional index – such an index data structure could
therefore have uses for both proximity feature generation and snippet generation.

6.3 Application of Learning-to-Rank Models

Following the taxonomy introduced by Capannini et al. (2016), the LTR models typically
adopted in IR systems or Web search engines fall into the following three classes, ordered
by increasing complexity:

1. linear models, where a scalar product between the input features and the learned
weights is computed;

2. neural network models, where neural networks are trained to minimise specific loss
functions;

3. forests of trees models, where thousands of regression trees are used as ranking models.
This classification groups learning-to-rank algorithms by their implementation and

complexity at the query processing stages. The main learning algorithms producing linear
models are Coordinate Ascent (Metzler and Croft, 2007) and SVM-Rank (Joachims, 2002).
The computations performed during query processing by such models are extremely cheap
and fast, and modern CPUs can easily parallelise the required operations. The overall cost
is that of a linear combination of the number of input features.

Neural network models employed in LTR algorithms such as RankNet (Burges et al.,
2005), ListNet (Cao et al., 2007) and SortNet (Rigutini et al., 2011) have a computational
cost, which depends on the number of input features and their internal complexity, i.e.,
the number of nodes in the inner layers. The computations they need to perform and the
non-linear activation functions they employ (e.g., sigmoid and hyperbolic functions) make
the application of such models more complex and more time-consuming than linear models.
Their overall cost is that of a linear combination of the number of input features, i.e., the
size of the input layer, and the number of hidden nodes, i.e., the size of the hidden layer.

The forests of trees class of models includes all LTR algorithms that produce a ranking
model based on decision trees. Such trees take boolean decisions at each internal node,
comparing an input feature value with a given threshold and traversing the tree depending
on the outcome of such decisions. When an exit node is reached, a score value is produced.
A large number of learning algorithms fall in this class, depending on the structure of trees
and the aggregation method of the trees’ outputs. RankBoost (Freund et al., 2003) employs
one-level decision trees (a.k.a. decision stumps) whose outputs are linearly weighted to

92

score documents. Random forests (RFs) (Breiman, 2001) use multi-level regression trees
to independently predict document scores whose arithmetic mean is used as the predicted
score of each document. Moreover, gradient-boosted regression trees (GBRTs) (Friedman,
2001) use multi-level regression trees, whose outputs are linearly weighted to compute
the final scores. GBRT rankers outperform all other classes of rankers in terms of the
quality of their results, while their complexity mainly depends on the number of trees
employed in the model and the number of their exit nodes. A detailed analysis of the
time complexity and the effectiveness-efficiency tradeoff of such algorithms can be found
in (Capannini et al., 2016). Despite their complexity, these models are successfully adopted
in several industrial scenarios, not just related to query processing. For example, Facebook
used boosted decision trees to transform input features concatenated with a sparse linear
classifier in their click prediction systems for online advertising (He et al., 2014) and for
a variety of internal applications (Hazelwood et al., 2018). Similarly, Microsoft boosted
neural networks with GBRTs for click-through prediction in sponsored ads (Ling et al.,
2017). Yandex also adopted a similar approach (Trofimov et al., 2012). Microsoft’s Bing
search engine5, Amazon Search (Sorokina and Cantú-Paz, 2016) and Yahoo (Yin et al.,
2016) have all employed gradient-boosted trees for various ranking problems.

Given the vast success and wide adoption of forests of regression trees, in the following we
present the main approaches used for their efficient implementation in the query processing
stages (Section 6.3.1), as well as some structural LTR optimisations such as early termination
strategies (Section 6.3.2).

6.3.1 Query Processing with Forests of Regression Trees

Let F = {f1, . . . , fm} denote the ids of features in a given LTR setting. The vector x ∈ Rm

represents the relevance signals, or feature values, of a given document for a particular
user’s query that is being processed. A ranking model based on an additive ensemble of
regression trees is composed by a set of trees T = {T1, . . . , Tn}, or a forest. Every tree
Ti receives the feature vector as input, and produces as output a real-valued number si
representing the tree’s score contribution to the final score of the document. The score
contributions of the trees for the same document are combined into a final document score.
Documents are sorted in decreasing final score, and the top K highest-scoring documents
are returned as the results list to the user submitting the query or, alternatively, to the
next query processing stage in the cascade. Every tree Ti in the forest is composed of a set
of binary branching nodes Ni and a set of leaf nodes Li. Each branching node performs a
boolean test on the value x[fi] of a specific input feature fi ∈ F and a constant threshold
value γ, i.e., the nodes check if the condition x[fi] ≤ γ is true or false. If the condition is
true, the left branch is followed, otherwise the right branch is followed. The traversal of

5https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/

93

https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/

tree T1, weight w1 = 1.2 tree T2, weight w2 = 0.4

-31

f3 5.1

1-2

f2 9.9 -74

f1 3.6 -5-1

f3 6.0

f1 2.3

f2 1.1

f1 2.6

52

f3 5.5

-4-9

f2 4.1-16

f2 0.2-22

f1 8.6

f3 1.0

f1 7.2

f3 3.3

Figure 6.6: A forest of two decision trees with three features. Branching nodes contain the feature id (left)
and the threshold value (right), while the leaf nodes denote the score contributions.

the tree continues until a leaf node is reached, and a score contribution si(x) is returned.
This leaf node is called the exit leaf and is denoted by ei(x). The tree traversal process
is repeated for each tree in the forest, and the final score s(x) is finally computed as a
weighted sum of score contributions:

s(x) =
n∑
i=1

wisi(x). (6.1)

An example of a forest of two decision trees with three features, including tree weights,
threshold values and score contributions, is depicted in Figure 6.6. Table 6.1 summarises

Table 6.1: Dimensions in a GBRT query processing stage (Chapelle and Chang, 2011).

Number of trees per stage 1, 000–20, 000
Number of leaf nodes per tree 4–64
Number of documents per query 1, 000–10, 000
Number of features per document 100–1, 000

the complexity of the GBRT rankers deployed at the last stage of a typical query processing
cascade (Chapelle and Chang, 2011). With such complex models, it is of paramount
importance to efficiently exploit the underlying CPU architecture. The following two main
CPU components are exploited for the efficient processing of queries in LTR:
• cache memory hierarchies, to speed up the access to data and the execution of compiled

code;

94

• superscalar architectures, where multiple instructions can be simultaneously executed.
Cache memory is a small but extremely fast memory holding the recently accessed data
and instructions. The performance benefits of cache memory depend on the access patterns
of the running program, i.e., the sequence of memory locations being read and/or written
during its execution: larger amounts of program instructions/data found in the cache (i.e.,
a cache hit) lead to faster programs. Moreover, a program’s data structures and their access
patterns should take into account the presence of cache memories, to exploit spatial and
temporal localities and consequently reduce the cache misses.

Superscalar architectures are fully exploited when programs include many independent
instructions that can be executed in any order and thus in parallel. A data flow dependency
between a pair of consecutive instructions or a control dependency caused by a branching
instruction prevent the parallel execution of instructions. Modern CPUs exploit branch
predictors, which guess the branch directions (taken/not-taken) to prefetch and execute the
correct next instruction.

A forest of decision trees can be naively implemented using conditional statements (if
then else) or conditional operators (?:). In both cases, the compiler can generate very
efficient code, reorganising internally the conditional statements/operators. The compiled
code size is proportional to the number of trees in the forest and to the number of branching
nodes. As reported by Asadi et al. (2014) and Dato et al. (2016), these direct code translation
approaches are efficient for ensembles of trees with a small number of features. However,
these approaches suffer from two performance bottlenecks. Firstly, when the generated code
does not fit into the cache. Secondly, since the next branch to take is known only after the
boolean test is evaluated, the next instruction to be executed is not known, causing a large
number of control hazards.

Alternatively, a decision tree could be implemented with a simple binary tree with
pointers. Every branching node in the tree contains the feature id, the threshold value and
the pointer to the left and right children. Every leaf node contains its score contribution. A
C++ implementation based on pointers exhibits poor reference locality and many control
hazards, introduced by the boolean tests (Hennessy and Patterson, 2011). Asadi et al. (2014)
proposed the Struct+ algorithm, to manually manage the memory allocation of nodes to
tackle the reference locality problem. Dato et al. (2016) reported that implementations based
on code generation clearly outperform the Struct+ approach. To address the control hazards
in Struct+, Asadi et al. (2014) proposed to re-organise the computation, transforming the
control hazards into data hazards, with an algorithm called Pred (also explored in previous
works such as (Sharp, 2008; Van Essen et al., 2012)). Each tree is visited in breadth-first
order and stored in an array of nodes. Each node ni contains the feature id f , the threshold
value γ and an array a of two elements pointing to the left and right children nodes.
Leaf nodes have self-pointing children indexes and dummy feature id/threshold values. An
example is shown in Figure 6.7.

95

f1 2.3
f2 1.1
f1 2.6
f3 5.1

1 12
f2 9.9

⊥ ⊥ f1 3.6

f3 6.0

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

2 9
3 6
1 12
4 4

5 5
7 8
7 7
8 8
10 11

10 10
11 11
13 14
13 13
14 14

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Figure 6.7: Pred data structure of tree T1 in Figure 6.6.

The output of a boolean test is used as the index of the child node, to retrieve the
next node to be processed. The visit of tree T of depth dT is statically un-rolled into dT
operations, starting from the root node, as follows:

i← 0

dT times



i← ni.a
[
x[ni.f] > ni.γ

]
i← ni.a

[
x[ni.f] > ni.γ

]
...

...
i← ni.a

[
x[ni.f] > ni.γ

]
At the end of the visit, the exit leaf is identified by variable i, and a look-up table is used

to retrieve the score contribution of the tree. The Pred algorithm successfully transforms
control dependencies into data dependencies: the next instruction to be processed is always
known. Nevertheless data dependencies are always present, and data locality is not enforced,
since the accesses to the array depend on the input feature vector. Asadi et al. (2014) then
proposed the VPred algorithm, a vectorised version of Pred, which interleaves the scoring
of multiple documents. VPred scores multiple documents per tree, allowing the processor
to execute instructions in parallel on distinct documents.6 Their experiments showed that
VPred clearly outperforms all other approaches based on static code generation, as well
as Pred. Such results are confirmed by experiments performed on different datasets by
Lucchese et al. (2015b) and Dato et al. (2016). Tang et al. (2014) improved VPred by laying
out the trees data in a cache-conscious way, namely to optimise data traversal for better
temporal cache locality. They proposed to partition the t trees of the ranking model and
the s documents to process in blocks of p < t trees and q < s documents, respectively. The
values of p and q are chosen in such a way that the fast cache memory can easily hold
the relevant data, and the processing is performed block by block. The authors reported
experiments with up to 50% improvements over VPred.

6Indeed, recall that LTR is always applied to compute the scores of all documents in a candidate set.

96

The QuickScorer family of algorithms is the most recent solution for the efficient traversal
of the forests of regression trees. The original QuickScorer algorithm is presented in (Lucchese
et al., 2015b; Dato et al., 2016). The core idea of QuickScorer is to process the trees in
a coordinated way and not one tree at a time, adapting the processing to the CPU
characteristics. This is accomplished through computing the final score of a document by
identifying the branching nodes whose boolean tests evaluate to false (false nodes). In
QuickScorer, a tree structure is represented by a set of mask bitvectors, one per branching
node. Every mask bitvector contains one bit per leaf. All bits are set to 1, but the i-th bit
is set to 0 if the corresponding leaf is in the left sub-tree of the branching node. In doing so,
we are able to identify the set of unreachable leaves of the tree from a false node. Then
QuickScorer groups all branching nodes of the trees by feature id, to efficiently identify the
false nodes. For each feature id f ∈ F , a triple (i,mask, γ) per node is created. Each triple
encodes the information about the boolean test on the feature id f with threshold value γ
in a branching node of tree Ti with the mask bitvector identifying the unreachable leaves if
the associated test is false. The list of triples Nf is sorted by increasing threshold value.
To make cache-friendly accesses to the data structures storing the triples (i,mask, γ) of
each feature, QuickScorer stores them in three separate arrays, namely tid[f], mask[f]
and th[f]. The use of three distinct arrays solves some data alignment issues arising when
triples of heterogeneous data types are stored contiguously in memory. For the same reason,
the arrays of the different features are then juxtaposed one after the other. Finally, the
leaf nodes and their score contributions are stored in a lookup table score. These data
structures can be computed offline to represent the whole forest of regression trees and
thereafter accessed in read-only mode. Figure 6.8 illustrates these data structures for the
example model in Figure 6.6.

th

tid

mask

1 1 1 2 2

00
00
00
11

00
11
11
11

11
11
01
11

11
00
11
11

01
11
11
11

f1

2.3 2.6 3.6 7.2 8.6

2 1 2 1

11
01
11
11

00
00
11
11

11
11
11
01

11
01
11
11

f2

0.2 1.1 4.1 9.9

2 2 1 2 1

00
11
11
11

11
11
00
11

01
11
11
11

11
11
01
11

11
11
11
01

f3

1.0 3.3 5.1 5.5 6.0

1 -3 -2 1 4 -7 -1 -5
2 -2 6 -1 2 5 -9 -4

score
T1
T2

Figure 6.8: The QuickScorer data structures of the model in Figure 6.6.

The QuickScorer algorithm is detailed in Algorithm 6.1. When a document, represented

97

by a feature vector x must be scored, an array of n bitvectors exit is created, one per tree.
Every exit bitvector contains one bit per leaf and all bits are set to 1 (lines 1-3). Each
feature is processed sequentially (lines 4-10). Whenever a false node is identified (line 6), the
corresponding tree’s exit bitvector is updated, resetting to 0 the bits of the unreachable
leaves, thanks to a logical AND (∧) operation with the node’s mask (line 7). As soon as
a test evaluates to true, the remaining branching nodes cannot be false nodes, and the
evaluation of the associated tests can be safely skipped. Now the score computation can take
place (lines 11-15). The leftmost bit set to 1 in exit[i] identifies the leaf corresponding to
the score contribution of tree Ti, stored in the lookup table scores. All score contributions
are summed (weights are included in the values stored in the lookup table) and the final
score s is returned.

Algorithm 6.1: The QuickScorer algorithm
Input :A document as an array x of m input features values
Output :The final score of the document
QuickScorer(x):

1 exit← an array of n bitvectors of L bits
2 for i← 0 to n− 1 do
3 exit[i] ← 11...11

4 for f← 0 to m− 1 do
5 k← 0
6 while x[f] > th[f][k] do
7 exit[tid[f][k]] ← exit[tid[f][k]] ∧ mask[tid[f][k]]
8 k← k + 1
9 if k ≥ Length(th[f]) then

10 break

11 s← 0
12 for i← 0 to n− 1 do
13 l← the index of the leftmost bit set to 1 in exit[i]
1415 s← s + score[i,l]

16 return s

The original QuickScorer paper (Lucchese et al., 2015b) reported up to 6.5× speedups
w.r.t. VPred, depending on the number of trees and leaves. The interleaved traversal strategy
of QuickScorer needs to process less nodes than in a traditional root-to-leaf visit such as in
the code generation and the VPred approaches. QuickScorer exploits more efficiently the
branch predictor, since the branches in Algorithm 6.1 are very easily predictable. Finally, the
compact data structures and their linear access greatly improve the cache usage. In the same
paper, the authors also experimented with a blocking version of QuickScorer called BWQS,
adapting the strategy proposed by Tang et al. (2014), with a speedup of at most 1.55×
w.r.t. QuickScorer on models with 20,000 trees and 64 leaves. Jin et al. (2016) investigated in

98

great detail the impact of the document-based and tree-based blocking strategies on cache
hierarchies, and developed an analytical cost model used to select a traversal method and
blocking parameters for the effective use of memory hierarchies. In (Dato et al., 2016), the
QuickScorer strategy was adapted to a particular class of regression trees, called oblivious
trees. These oblivious trees are balanced trees where, at each level, all of the branching nodes
test the same feature-threshold pair (Langley and Sage, 1994; Kohavi, 1994). In (Lucchese
et al., 2016), a vectorised version vQS of QuickScorer is presented, exploiting the SIMD
instructions of modern CPUs. The authors reported a speedup w.r.t. QuickScorer ranging
from 1.2× for larger models to 3.2× for smaller models.

6.3.2 Efficient-Effective Tradeoffs in Learned Models

In the previous section, we presented the main approaches for the efficient implementation
of forests of regression trees in the query processing stages with no impact on the result
effectiveness. In this section, we describe some optimisation strategies for models that
tradeoff efficiency improvements at the cost of some effectiveness losses.

Cambazoglu et al. (2010) proposed to apply the concepts of dynamic pruning discussed in
Chapter 3 to query processing in additive machine learned ranking systems. They suggested
to early-terminate (or short-circuit) the scoring process avoiding wasting time in processing
documents that are unlikely to be relevant, since the relevant documents to be retrieved
are typically few and only few top scoring documents are returned to the users.

In additive ensembles, document scores can be computed according to two different
traversal orders, both logically structured in two nested loops. The document-ordered
traversal strategy (DOT) loops over the documents to be scored, and for every document, it
loops over the scorers, i.e., the decision trees. On the other hand, the scorer-sorted traversal
strategy (SOT) loops over the scorers, and for every scorer, it loops over the documents. In
DOT, at every iteration of the outer loop, the score of a document is completely computed,
while in SOT, document scores are partially computed and accumulated at every outer loop
iteration.

Cambazoglu et al. (2010) proposed four early exit strategies, depending on the traversal
strategy. All strategies need externally-provided thresholds, one per scorer, and an early
exit decision is taken every time a new score contribution for any document is computed.
• early exits using score thresholds (EST): exits are based on comparisons between
accumulated scores and the provided score thresholds. After a scorer updates the
accumulated score of a document, if it is less than the provided threshold, the document
is not processed by any of the remaining scorers. This strategy works for both DOT
and SOT. The main limitation of this strategy is that we assume that the provided
score thresholds are suitable for all query-document pairs.
• early exits using capacity thresholds (ECT): when documents are processed under DOT,

99

a maximum score heap whose capacity is provided by the threshold is maintained for
each scorer. Once the heap is full, a document whose partial score cannot beat the
lowest partial score in the heap is discarded, otherwise the heap is updated with the
new partial score and the lowest partial score stored is removed. The main limitation
of this strategy is that the lowest partial score depends only on those documents
already processed.
• early exits using rank thresholds (ERT): when documents are processed under SOT,

after every scorer, the documents are ranked by their partial scores, and all documents
ranked below the provided threshold are discarded. The main limitation of this strategy
is that it discards documents even if their scores are just slightly smaller than the last
ranked one.
• early exits using proximity thresholds (EPT): when documents are processed under

SOT, after every scorer, the K-th document score is computed (pivot score). The
following scorer processes all documents with a score higher than the pivot score, as
well as those documents with smaller scores but whose score differences with the pivot
score are smaller than the provided threshold. In a sense, this strategy combines both
the rank and score information available thus far.

Note that the thresholds of these early exit strategies must be tuned offline, and the
corresponding strategies do not guarantee the correctness of the top K results (i.e., they
are unsafe, see Section 3.1). The authors reported considerable speedups when the proposed
strategies were deployed using real-life documents and queries from a commercial search
engine. In particular, for the EPT strategy, they reported up to 4× speedups with negligible
losses in effectiveness. Another major limitation of the proposed strategies is that the
costs of the scorers are assumed to be similar, while they depend on the complexity of the
individual scorers and the extraction cost of the involved features.

Tuning the thresholds in the previous approaches is a first example of the effectiveness-
efficiency tradeoff occurring in LTR query processing. In such cases, the tuning is performed
empirically, without a well-defined and principled way to quantify such a tradeoff. Wang et al.
(2010) proposed a novel class of tradeoff metrics that take into account both effectiveness
and efficiency. The execution time of a query q taken from a set of queries Q quantifies
the efficiency of its processing with the function σ : Q → [0, 1], where 0 represents an
inefficient query processing and 1 represents an efficient query processing. Effectiveness is
measured with a similar function γ : Q → [0, 1], such as one obtained from the commonly
used effectiveness metrics such as MAPand NDCG. The proposed efficiency-effectiveness
tradeoff (EET) metric for a given query q is defined as the weighted harmonic mean of σ(q)
and γ(q):

EET(q) = 1 + β
1

σ(q) + β
γ(q)

= (1 + β)σ(q)γ(q)
βσ(q) + γ(q) , (6.2)

100

where β is a parameter controlling the relative importance of effectiveness and efficiency.7
Given a set of queries Q, it is possible to compute a mean EET metric (MEET) over the
queries in the log, as follows:

MEET(Q) = 1
|Q|

∑
q∈Q

EET(q). (6.3)

Wang et al. (2010) exploited the MEET measure in the LTR model learning phase. They
focused on learning the weights of both the query terms and complex query operators (such
as #uwλ and #1, see Section 2.2.4), in the sequential dependence proximity model. Indeed,
in the weighted sequential dependence model, the weights on terms and complex operators
are not constants but depend on the particular query terms and bigrams involved (Bendersky
et al., 2010). At query processing time, if the ratio between the bigram feature weights and
the sum of the individual term feature weights is less than a threshold, the corresponding
bigram feature is not used, thereby improving efficiency. The authors’ experiments showed
that their feature-pruning learned ranking functions achieve significantly decreased average
query execution times with no losses in effectiveness w.r.t state-of-the-art LTR models.

Wang et al. (2011) proposed to implement effective yet efficient multi-stage cascading
systems by progressively refining a shrinking set of candidate documents (document-pruning).
The core idea is to process many documents at the first stages, using few and cheap features,
while focusing on more computationally expensive features only at the last stages, with
fewer documents. They modeled a cascade as a sequence of stages, where each stage is
associated with a pruning function (equivalent to early exit strategies) and a local ranking
function. Each stage receives as input the set of ranked documents from the previous stage.
Each stage firstly uses the pruning function to remove documents from the input set, and
then computes the score contribution of the local ranking function, updating the scores of
the candidate documents still under consideration. The output results are forwarded to the
next cascade stage. The goal of the cascade is to reduce the number of documents to be
processed at each stage, while increasing the effectiveness of the top K documents.

The pruning functions they discussed are based on:
• rank thresholds: at every stage, a document is pruned if it ranks below a threshold
value;
• score thresholds: at every stage, the document scores are linearly scaled in [0, 1], and
all documents below a threshold value in [0, 1] are discarded;
• mean-max thresholds: at every stage, all documents with a score less than a linear
combination of the maximum and mean scores of the document sample are pruned
(the combination weights depend on the provided threshold).

The authors used a generalisation of the AdaRank (Xu and Li, 2007) boosting-based
algorithm to learn the optimal sequence of ranking stages together with the pruning

7Originally, Wang et al. (2010) used β2 instead of β as control parameter.

101

conditions at each stage. Differently from Cambazoglu et al. (2010), Wang et al. (2011)
incorporated the selection of the pruning functions and their tuning in the machine learning
algorithm. They adopted an efficiency-effectiveness tradeoff metric that can be restated
using the notation of Equation (6.2) as follows:

EET(q) = γ(q) + βσ(q), (6.4)

where β ∈ [0, 1] is a parameter controlling the relative importance of effectiveness and
efficiency. From this tradeoff definition, as we add more stages to a cascade, the total
efficiency metric σ(q) decreases (as a query needs more time to be processed), and must be
counteracted by increases in the effectiveness metric γ(q). Wang et al. (2011) compared
the performance of their document-pruning multi-stage cascade with their earlier feature-
pruning multi-stage cascade proposed in Wang et al. (2010) using the weighted sequential
dependence ranking function. They reported efficiency improvements up to 1.44× over the
feature-tuning approach, with small gains in effectiveness.

Chen et al. (2017) discussed how to build efficient cost-aware cascades using gradient-
boosted tree models, instead of simpler linear models. They explicitly modeled the feature
extraction costs and the feature importance, and proposed a generic framework that
encompasses the feature costs within the learned models. The authors noted that a cascade
is composed by a sequence of increasingly complex ranking functions, where expensive
features are used in later cascade stages. They explored three different feature availability
settings:
• the features are sorted in ascending order of unit cost and partitioned among the
stages in this order;
• the features are sorted in descending order of cost efficiency and partitioned among

the stages in this order;8
• all features are available among all stages.
Their approach was compared w.r.t. the document-pruning approach of (Wang et al.,

2011), using both linear and tree-based models with different feature allocation strategies.
The experiments showed that the proposed approach can consistently achieve better tradeoffs
than the document-pruning approach, even though their approach to parameter selection
for the learned models is largely empirical and costly.

6.4 Summary

This chapter introduced the separation of the ranking process into cascades, dictated by
the necessity of both effectively and efficiently combining large numbers of relevance signals
with learning-to-rank algorithms and models. We presented and discussed the three main

8The cost efficiency of a feature is defined as its importance score divided by its unit cost.

102

factors impacting the efficiency of LTR model applications, namely: the initial base ranking
stage, the calculation/extraction of the features, and the efficient application of the learned
models to combine those features into a final improved ranking.

It remains to be seen how the advent of deep neural IR techniques will change the
learning-to-rank paradigm. Thus far, as mentioned in Section 6.2, many deep learning
approaches can be applied as query dependent features within a learning-to-rank framework,
and we have not, thus far, witnessed changes to the learning-to-rank paradigm due to deep
learning.

7 Open Directions & Conclusions

In this chapter, we provide concluding remarks on the conducted survey and discuss future
open directions for the efficient deployment of the query processing component in information
retrieval systems.

7.1 Summary

This monograph aimed to both provide the foundations of query processing, as well as
to discuss more recent trends. In particular, in Chapter 2, we provided the necessary
background material such as data structures, posting lists compression and skipping, while
also introducing the core concepts of TAAT and DAAT. We believe that they were necessary
to cover in order to provide all readers with a coherent grounding in these concepts.

Chapter 3 introduced dynamic pruning techniques, including MaxScore, WAND and
BMW. In particular, the latter forms the state-of-the-art for dynamic pruning, and can result
in an 8× improvement over a basic DAAT implementation. These algorithms are complex
in nature, have been described in different papers, and have been sometimes interpreted
or presented in different ways. We strongly believe that our descriptions of all of these
techniques, using the same notations and abstractions, will allow readers to quickly grasp
their key attributes, their intricacies and differences, as well as providing a fast basis for
their implementations.

Chapter 4 described a comparatively modern development in the form of query efficiency
predictors (QEPs), and their applications. All of the described applications are intended to
make on-the-fly adaptations to the search engine’s processing of a query, based on how long
the query is expected to take, through the use of QEP s, to reduce the overall response times.
We described 5 QEP applications from the literature including the selective adjustment of
the pruning aggressiveness and the selective parallelisation of long-running queries.

Chapter 5 described impact-ordered posting lists, and the resulting SAAT dynamic
pruning techniques designed to work with such index layouts. They have advantages over

103

docid-ordered posting lists, in that stopping the retrieval of a given query early is less likely
to impact upon the resulting effectiveness.

Chapter 6 discussed the efficient application and deployment of learning-to-rank models
in a search setting. This encompassed the necessary infrastructure to compute the features
on a retrieved candidate set of documents, as well as the efficient application of complex
tree-based learned models to generate the final scores for the candidate documents. We
also highlighted recent trends in varying the configuration of dynamic pruning techniques
used to compute the candidate set, for example by reducing the number of documents for
long-running queries.

This Chapterprovides additional highlights towards open directions and emerging trends
in efficient information retrieval, namely: the use of signatures (section 7.2) as probabilistic
approaches for retrieving documents matching a query; techniques that directly target a
reduction in the power consumption of search engines (section 7.3); new efficiency approaches
made possible by new hardware architectures (section 7.4) or implemented on new software
paradigms (section 7.5); and, finally, search architectures targeting real-time search settings,
where results need to be constantly up-to-date (section 7.6).

7.2 Signatures

Almost all of the approaches described in this monograph use the classical inverted index
data structure to support retrieval. An alternative that was examined and discarded in the
classical literature (Zobel et al., 1998) is the use of signature files. In signatures, each term
of a document is hashed a number of times, to determine the bits of a document signature
that should be set. Queries are similarly hashed, and matching occurs by comparing the
query signature to the signature of each document. Some hash collisions will occur, meaning
that each possible matching document must be checked against the query to determine
whether it is a false match (terms do not occur in the document), or a true match.

Of course, storing and searching signatures for each document is both space- and time-
inefficient. In particular, every document’s signature must be scanned, even if a term is very
rare. Bit-slicing allows multiple documents to be searched simultaneously, as well as simpli-
fying the necessary bitwise operations. Bit-sliced block signatures work by assigning multiple
documents to each bit in a signature, however, Zobel et al. (1998) did not find that this ap-
proach offered much benefits. In contrast, and more recently, Goodwin et al. (2017) described
BitFunnel, a signature-based search engine implementation based on Bloom filters, and
proposed new signature-based layouts: frequency-conscious signatures to reduce the memory
footprint, and higher-rank rows of signatures. In particular, frequency-conscious signatures
vary the number of hash functions on a term-by-term basis within the same Bloom filter.
Higher-rank rows generalises the ideas behind blocking such that each term simultaneously

104

hashes to multiple bit-sliced signatures with different blocking factors. A Bloom filter on n
bits for a given term is the rank-0 row. It is “folded”, pairing the low bits with the high bits,
into a dn/2e bits rank-1 row, and so on. Given a fixed bit density (i.e., number of bit sets w.r.t.
the total number of bits), each term is associated with the higher-rank row with the closest bit
density, and rows with a rank higher than 0 are “unfolded” at runtime for query processing.

Experiments conducted in comparison to a Partitioned Elias-Fano (PEF, described
on page 19) index, showed that, depending on the density of the shard of the index,
query throughput could be improved from 1.5× for smaller documents upto 8× for longer
documents using the BitFunnel signature files, at the expense of upto 2− 5 times more index
space, and false positive rates of 1− 4%.

BitFunnel has been deployed at Bing since 2013 across thousands of servers, and improved
server query capacity by a factor of 10 (Goodwin et al., 2017). This has spawned further
research in how signatures can be applied in Web search (e.g., (Liu et al., 2018)), and we
expect this trend to continue.

7.3 Energy Efficiency

The infrastructure of a Web search engine can be considered at different levels, from the
single search server (sometimes called an index serving node, or ISN), to a cluster of ISNs
responsible for storing the data and processing queries, up to the level of data centres, which
can be geographically distributed around the world. The techniques that we have discussed in
this survey focus on those at the level of the individual ISN, but which can be deployed across
many servers to emphasise their particular advantages. In general, efficiency savings at the
level of the individual server without (significant) effectiveness loss allow a potential reduction
in the number of ISNs required to run the search engine. For instance, Jeon et al. (2013)
claimed that their QEP-based selective parallelisation strategy (described in Section 4.3.3)
could reduce the number of query servers necessary to run Microsoft Bing by one third.

Yet, the distributed nature of search engine infrastructures brings further possibilities to
reduce energy consumption that have not been well investigated in the literature. The impact
of new solutions on this front could have a marked impact on the economic profitability
of a Web search engine, and, at the same time, could decrease its pollution impact on the
environment. Moreover, the carbon footprint of IT infrastructures is likely to continue to
grow in importance in future years, as strategic decisions at government and international
levels continue to impose further constraints and expectations on the sustainability and
the eco-friendliness of IT systems.

In the past, a large part of the energy consumption of a data centre was accounted for
by inefficiencies in its cooling and power supply systems. However, careful design of the
data centre can drastically reduce the energy wastage of those infrastructures. In fact, now,

105

the CPUs of the servers in the data centres are the main energy consumers (Barroso et al.,
2013).

The energy efficiency of a Web search engine can be improved at the levels of: (i) the
search server, (ii) the search cluster, and (iii) across multiple data centres. At the search server
level, most approaches to energy efficiency solutions rely on energy-proportional computing,
i.e., hardware components with power consumption proportional to utilisation (Barroso
and Hölzle, 2007). For instance, Modern CPUs expose multiple frequencies available to the
CPU cores. Indeed, a CPU core can operate at different clock frequencies (e.g., 800 MHz,
1.6 GHz, 2.1 GHz, etc.). This is possible thanks to Dynamic Frequency and Voltage Scaling
(DVFS) technologies (Snowdon et al., 2005). Higher frequencies correspond to a higher
performance and consumption, while lower frequencies correspond to a lower performance
and consumption. Catena et al. (2015) proposed to perform frequency throttling according
to the query server utilisation, i.e., the ratio between the query arrival rate and the query
processing rate. This conservative approach was later refined by Catena and Tonellotto
(2017), leveraging the fact that users can hardly notice response times that are faster than
their expectations (Arapakis et al., 2014). They proposed the Predictive Energy Saving
Online Scheduling algorithm (PESOS, described on page 73), which considers the latency
requirement of queries as an explicit parameter, and tries to process queries no faster
than required. In doing so, the CPU’s energy consumption is reduced while respecting
each query’s latency constraint. Their experiments showed that while the conservative
approach can reduce the energy consumption of a CPU core by more than 40%, but with
uncontrollable latency violations, PESOS can reduce energy consumption by 20% up to
30%, while respecting the required tail latency.

At the level of the search cluster, both workload consolidation and power capping can
lead to energy savings. Freire et al. (2014) and Freire et al. (2015) proposed a self-adaptive
model to manage the number of active search servers in a replicated search engine, while
guaranteeing acceptable response times. By exploiting the historical and current query loads,
their model autonomously decides whether to activate a search server or put it on standby.
The latter option allows to reduce the energy consumption of the system during low query
loads, while the former allows to increase the system performance when the system faces a
high query volume. Simulation results showed that the proposed model reduces by 33%
the search engine energy consumption, with respect to a naive baseline where all search
servers are always active. At the same time, the authors observed only little increases in
query response times and small percentages of unanswered queries, i.e., queries that are
not processed within an acceptable time since their arrival. Lo et al. (2014) introduced
PEGASUS, a feedback-based model that dynamically caps the CPUs power consumption of
a distributed search engine. Essentially, PEGASUS constantly monitors the search engine
latency and passes this value to a centralised rule engine. Depending on the observed
latency, the rule engine decides whether to increase or decrease the CPUs performance by

106

exploiting DVFS technologies. Experimenting on a Google production cluster, the authors
observed a 20% power consumption reduction and estimated that a distributed version of
PEGASUS could nearly double those savings. Catena et al. (2018) evaluated both PESOS
(see Section 4.3.5) and PEGASUS on a simulated distributed Web search engine composed
of a thousand of servers. Their results showed that PESOS can reduce the CPU energy
consumption of a distributed Web search engine by up to 18% with respect to PEGASUS,
while providing query response times that are in-line with user expectations.

To improve the energy efficiency of multi-center search engines, it has also been proposed
to leverage spatial and temporal variations in both the energy prices and query workloads.
Due to time zone differences, a search engine’s data center may experience a high workload
and energy price at a given moment, while other distant sites are under-utilised and can
use cheaper electricity. Thus, the first data center could forward its queries to other sites to
reduce its energy expenditure. However, network latencies have to be carefully considered, to
ensure that acceptable query response times are not exceeded. Moreover, data centers have
limited processing capacity. It is therefore not possible to forward too many queries towards
a particular site. Kayaaslan et al. (2011) investigated the possibility to dynamically shift the
query workload among data centers by using query forwarding. Simulation results showed
that multi-center search engines can save up to 35% in energy expenditure, when compared
to a system that always locally solves its incoming queries. Similarly, Teymorian et al.
(2013) proposed the Rank-Energy Selective Query forwarding (RESQ) algorithm, which
decides when and where to forward a query by modeling the problem as a linear program,
obtaining similar results in term of energy efficiency. Blanco et al. (2016) investigated the
potential benefits of query forwarding when renewable sources of green energy are available
at different data centres. They designed an algorithm, which decides what fraction of the
incoming query load arriving into one processing facility must be forwarded to be processed
at different sites to optimise the use of available green energy sources. Their experiments
with a real query traffic from a large search engine showed that the proposed solution
maintains a high query throughput, while reducing by up to ∼25% the energy operational
costs of multi-center search engines.

The energy efficiency of data centers and, in particular, of the Web search engines they
host, is becoming more and more important. Their economic impact, as well as their global
emission footprint, is, and will continue to be, of a growing concern (Belkhir and Elmeligi
(2018) stated that data centers will account for 45% of the ICT global carbon footprint by
2020), and therefore we expect that research in this area will continue to intensify in the
next few years.

107

7.4 Modern Hardware Architectures

With the scale of the search engines’ data centres, it is only natural that customised hardware
solutions are increasingly being developed to suit the particular workload of a search engine.
For instance, in 2012, Google was developing customised networking switches1 for their
data centres. Since then, the added-value and suitability of new hardware architectures,
such as SSDs, GPUs and FPGA are the object of new research trends.2

In particular, solid state drives (SSDs) offer larger storage mediums that support better
random access than hard disk drives. Wang et al. (2013) discussed how this can be used to
benefit search engine caching strategies; Risvik et al. (2013) described the use of SSDs for
storing posting lists for phrases and term pair co-occurrences – while the posting list of a
phrase may be much shorter than the constituent terms, there can be many more phrases
to store. Using SSDs allow more posting lists to be stored than can be fitted in RAM.

Reconfigurable chips, such as Field Programmable Gate Arrays (FPGAs), are considered
to be viable accelerators for various core functions in Web search engines (Putnam et al.,
2014). FGPAs developed as part of Microsoft’s Project Catapult 3 are deployed in the Bing
data centers (Culpepper et al., 2018). Each FPGA is designed to be resilient and to boost
the query throughput, and is responsible for feature extraction and the execution of learning-
to-rank algorithms, receiving as input first-stage results from a set of query processing nodes.
These FPGAs have increased the ranking throughput in a production search infrastructure
by up to 95% at comparable latencies to a software-only solution (Putnam et al., 2014).
We expect that distributed reconfigurable infrastructures incorporating FPGAs will remain
crucial in the future for continued cost and capability improvements.

GPUs have clearly revolutionised the availability of deep neural network learning at
both low time and low costs. They also have applicability to tasks such as posting list
intersection (Wu et al., 2010), and learning-to-rank model traversal (Lettich et al., 2018), to
name but a few. Google has a customised chip specifically designed for deep neural network
learning denoted as a Tensor Processing Unit (TPU),4 which has benefited many of its
products including Search.5

Overall, as hardware engineers carry on developing new specialised architectures, these
are likely to continue to benefit search applications, which are notably among some of the
world’s most largest users of IT infrastructures. Moreover, these hardware architectures will
soon be available on all users’ clients (from phone to tablet to laptop to desktop), providing
opportunities to off-load work from the data center and onto the user’s device (Culpepper

1https://www.wired.com/2012/09/pluto-switch/
2https://www.microsoft.com/en-us/research/project/project-catapult/
3https://www.microsoft.com/en-us/research/project/project-catapult/
4https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
5https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.

html

108

https://www.wired.com/2012/09/pluto-switch/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

et al., 2018).

7.5 Clouds and New Software Paradigms

Cloud-based data centres and software architectures have changed the nature of many
software deployments, and are now beginning to impact upon the IR system architectures.
For instance, cloud services have evolved from heavy-weight virtual machine instances
to lighter-weight containers (e.g. Docker), towards lightweight “serverless” microservices
deployed as Lambda functions (e.g. AWS Lambdas). Such lambda functions are stateless,
but allow a cost benefit due to a charging model that only requires payment for each
invocation. In fact, such lambda functions have been shown to be usable for large-scale data
analytics, e.g.Spark (Kim and Lin, 2018). We note that the initial experiments by Crane and
Lin (2017) towards deploying a search service built upon AWS Lambdas, and subsequent
attempts at neural ranking models entirely built on such serverless infrastructures (Tu et al.,
2018). There have also been attempts at implementing search engines that run in the ever
more powerful browser-based Javascript engines Lin (2015).

Overall, since the invention & implementation of MapReduce by Google in the early
2000s to make a scalable search indexing pipeline, it is clear that new software paradigms
are closely tied to search infrastructures, and we expect innovations to continue to drive
how we think about and implement search in the future. Moreover, the increasing evolution
of search engines from a first-order technology (directly accessed by users) to a component
in a larger microservice ecosystem – for instance as part of the infrastructure underlying a
conversational search agent – will continue to drive new research into suitable architectures
and data-structures to enable effective, efficient and frictionless pipeline integration (Kyriazis
et al., 2018).

7.6 Real-Time and Social Media Search

This survey has focussed on search engine deployments that are mostly static in nature,
i.e., where the corpus is not frequently changing. In fact, specialisations of the standard
index data structures are needed to handle cases where the index is being maintained with
continuous document additions, updates and deletions. For instance, the compressed nature
of the posting lists are not naturally amenable to the additions.

Index maintenance of such events is typically handled by the use of uncompressed index
shards, which have posting lists that can easily be appended to. Such index shards can be
held in-memory, and then written to disk once they are full. Index shards should be merged,
to ensure efficient retrieval. Strohman and Croft (2006) described Indri’s implementation,
while arguing that the merging should occur in exponentially growing shard sizes.

109

The rise of social media has focused particular research attention into the challenges
of searching voluminous social media streams. For instance, when searching Twitter, it is
likely that the user would want some of the most recently posted tweets that match their
query. This necessitates a low-latency indexing of tweets, whereby these tweets must be
available for searching almost as soon as they are posted. Indeed, it is most likely that the
newest tweets should be retrieved first since they are most likely to be of high value.

Busch et al. (2012) described the index layout of Twitter’s Lucene-based search in-
frastructure called Earlybird in 2011-2012. Earlybird uses several important observations
in its design: firstly, due to the short length of tweet documents, within-document term
frequencies are rarely greater than 1, and hence a posting only needs to contain the docid
and the term position; each occurrence obtains another posting entry. These are stored in
fixed length representations in contiguous memory arrays: 24-bits are devoted to storing the
document docid, and 8 bits for the term position (a tweet cannot have more than 28 = 256
words). Moreover, since the index is not compressed, there is no need for skip-lists because
the array can be directly binary-searched to identify the posting(s) for a given document.

At any point in time there is an active index shard in Earlybird that is responsible
for indexing new tweets. The space allocation for the posting lists of terms is notable, in
that terms are progressively allocated exponentially larger blocks of memory. Once the
active index shard is full (approx 224 = 16M tweets), it becomes read only and is further
compressed and optimised for fast reading. The memory allocation for posting lists was
further investigated by (Asadi et al., 2013), while the same authors also investigated, for
tweet search, the use of Bloom filters for candidate generation before applying a learned
model.

Finally, we note that social media is not the only form of streaming data that is
necessary to search in real-time. Increasingly, the world is becoming more connected, with
the Internet-of-Things (IoT) connected devices. The plethora of devices producing data
leads to the emergence of new information seeking tasks that necessarily require new types of
search infrastructures (Culpepper et al., 2018; McCreadie et al., 2016). For instance, venue
recommendation describes the task of making personalised suggestions of points-of-interests
for a user to visit. This can benefit from up-to-date information about the busy-ness of
venues (Deveaud et al., 2015), as might be obtained from social sensors such as Foursquare,
or from physical sensing IoT networks (such as people’s detectors based on WiFi or mobile
phone cell usage). New information-seeking tasks arising from emerging IoT networks will
continue to necessitate new types of search infrastructures.

110

Acknowledgements
We would like to thank Maarten de Rijke for his patience and encouragements during
the preparation of this manuscript, as well as the three anonymous reviewers for their
constructive suggestions and thoughtful comments towards improving the manuscript.

Nicola Tonellotto acknowledges the partial support by the BIGDATAGRAPES (grant
agreement No. 780751) project, which has received funding from the European Union’s Hori-
zon 2020 research and innovation framework, within the Information and Communication
Technologies work programme.

111

References
Amati, G. and C. J. Van Rijsbergen (2002). “Probabilistic Models of Information Retrieval

Based on Measuring the Divergence from Randomness”. ACM Trans. Inf. Syst. 20(4):
357–389. issn: 1046-8188. doi: 10.1145/582415.582416.

Anh, V. N., O. de Kretser, and A. Moffat (2001). “Vector-space Ranking with Effective
Early Termination”. In: Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 35–42. isbn:
1-58113-331-6. doi: 10.1145/383952.383957.

Anh, V. N. and A. Moffat (1998). “Compressed Inverted Files with Reduced Decoding
Overheads”. In: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 290–297. isbn: 1-58113-015-5.
doi: 10.1145/290941.291011.

Anh, V. N. and A. Moffat (2002). “Impact Transformation: Effective and Efficient Web
Retrieval”. In: Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 3–10. isbn: 1-58113-561-0.
doi: 10.1145/564376.564380.

Anh, V. N. and A. Moffat (2005a). “Inverted Index Compression Using Word-Aligned Binary
Codes”. Inf. Retr. 8(1): 151–166. issn: 1386-4564. doi: 10.1023/B:INRT.0000048490.
99518.5c.

Anh, V. N. and A. Moffat (2005b). “Simplified Similarity Scoring Using Term Ranks”.
In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 226–233. isbn: 1-59593-034-5. doi:
10.1145/1076034.1076075.

Anh, V. N. and A. Moffat (2006a). “Pruned Query Evaluation Using Pre-computed Impacts”.
In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 372–379. isbn: 1-59593-369-7. doi:
10.1145/1148170.1148235.

Anh, V. N. and A. Moffat (2006b). “Pruning Strategies for Mixed-mode Querying”. In:
Proceedings of the 15th ACM International Conference on Information and Knowledge
Management. ACM. 190–197. isbn: 1-59593-433-2. doi: 10.1145/1183614.1183645.

Anh, V. N. and A. Moffat (2006c). “Structured Index Organizations for High-Throughput
Text Querying”. In: Proceedings of the 13th International Conference on String Processing
and Information Retrieval. Springer. 304–315. isbn: 978-3-540-45775-6. doi: 10.1007/
11880561_25.

Arapakis, I., X. Bai, and B. B. Cambazoglu (2014). “Impact of Response Latency on
User Behavior in Web Search”. In: Proceedings of the 37th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 103–112.
isbn: 978-1-4503-2257-7. doi: 10.1145/2600428.2609627.

112

http://dx.doi.org/10.1145/582415.582416
http://dx.doi.org/10.1145/383952.383957
http://dx.doi.org/10.1145/290941.291011
http://dx.doi.org/10.1145/564376.564380
http://dx.doi.org/10.1023/B:INRT.0000048490.99518.5c
http://dx.doi.org/10.1023/B:INRT.0000048490.99518.5c
http://dx.doi.org/10.1145/1076034.1076075
http://dx.doi.org/10.1145/1148170.1148235
http://dx.doi.org/10.1145/1183614.1183645
http://dx.doi.org/10.1007/11880561_25
http://dx.doi.org/10.1007/11880561_25
http://dx.doi.org/10.1145/2600428.2609627

Arroyuelo, D., S. González, M. Marin, M. Oyarzún, and T. Suel (2012). “To Index or Not
to Index: Time-space Trade-offs in Search Engines with Positional Ranking Functions”.
In: Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 255–264. isbn: 978-1-4503-1472-5. doi:
10.1145/2348283.2348320.

Asadi, N. and J. Lin (2012). “Fast Candidate Generation for Two-phase Document Ranking:
Postings List Intersection with Bloom Filters”. In: Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management. ACM. 2419–2422.
isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2398656.

Asadi, N. and J. Lin (2013). “Document Vector Representations for Feature Extraction
in Multi-stage Document Ranking”. Inf. Retr. 16(6): 747–768. issn: 1386-4564. doi:
10.1007/s10791-012-9217-9.

Asadi, N., J. Lin, and M. Busch (2013). “Dynamic Memory Allocation Policies for Postings
in Real-time Twitter Search”. In: Proceedings of the 19th ACM International Conference
on Knowledge Discovery and Data Mining. ACM. 1186–1194. isbn: 978-1-4503-2174-7.
doi: 10.1145/2487575.2488221.

Asadi, N., J. Lin, and A. P. de Vries (2014). “Runtime Optimizations for Tree-Based
Machine Learning Models”. IEEE Trans. Knowl. Data Eng. 26(9): 2281–2292.

Baeza-Yates, R. and B. Ribeiro-Neto (2008). Modern Information Retrieval (2nd ed.)
Addison-Wesley. isbn: 9780321416919.

Barbay, J., A. López-Ortiz, and T. Lu (2006). “Faster Adaptive Set Intersections for Text
Searching”. In: Experimental Algorithms. Springer. 146–157. isbn: 978-3-540-34598-5.
doi: 10.1007/11764298_13.

Barroso, L. A., J. Clidaras, and U. Hölzle (2013). The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines (2nd ed.) Morgan & Claypool
Publishers. isbn: 9781627050098.

Barroso, L. A. and U. Hölzle (2007). “The Case for Energy-Proportional Computing”.
Computer. 40(12): 33–37. issn: 0018-9162. doi: 10.1109/MC.2007.443.

Bartell, B. T., G. W. Cottrell, and R. K. Belew (1994). “Automatic Combination of Multiple
Ranked Retrieval Systems”. In: Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Springer.
173–181. isbn: 0-387-19889-X.

Belkhir, L. and A. Elmeligi (2018). “Assessing ICT Global Emissions Footprint: Trends to
2040 & recommendations”. Journal of Cleaner Production. 177: 448–463. issn: 0959-6526.
doi: 10.1016/j.jclepro.2017.12.239.

Bendersky, M., W. B. Croft, and Y. Diao (2011). “Quality-biased Ranking of Web Docu-
ments”. In: Proceedings of the 4th ACM International Cconference on Web Search and
Data Mining. ACM. 95–104. isbn: 978-1-4503-0493-1. doi: 10.1145/1935826.1935849.

113

http://dx.doi.org/10.1145/2348283.2348320
http://dx.doi.org/10.1145/2396761.2398656
http://dx.doi.org/10.1007/s10791-012-9217-9
http://dx.doi.org/10.1145/2487575.2488221
http://dx.doi.org/10.1007/11764298_13
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1016/j.jclepro.2017.12.239
http://dx.doi.org/10.1145/1935826.1935849

Bendersky, M., D. Metzler, and W. B. Croft (2010). “Learning Concept Importance Using a
Weighted Dependence Model”. In: Proceedings of the 3rd ACM International Conference
on Web Search and Data Mining. ACM. 31–40. isbn: 978-1-60558-889-6. doi: 10.1145/
1718487.1718492.

Blanco, R., M. Catena, and N. Tonellotto (2016). “Exploiting Green Energy to Reduce
the Operational Costs of Multi-Center Web Search Engines”. In: Proceedings of the
25th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee. 1237–1247. isbn: 978-1-4503-4143-1. doi: 10.1145/
2872427.2883021.

Boldi, P. and S. Vigna (2005). “Compressed Perfect Embedded Skip Lists for Quick
Inverted-index Lookups”. In: Proceedings of the 12th International Conference on String
Processing and Information Retrieval. Springer. 25–28. isbn: 978-3-540-32241-2. doi:
10.1007/11575832_3.

Bonacic, C., C. Garcia, M. Marin, M. Prieto, F. Tirado, and C. Vicente (2008). “Improving
Search Engines Performance on Multithreading Processors”. In: High Performance
Computing for Computational Science - VECPAR 2008. Ed. by J. M. L. M. Palma,
P. R. Amestoy, M. Daydé, M. Mattoso, and J. C. Lopes. Springer. 201–213. isbn:
978-3-540-92859-1.

Bookstein, A., S. T. Klein, and T. Raita (1997). “Modeling Word Occurrences for the
Compression of Concordances”. ACM Trans. Inf. Syst. 15(3): 254–290. issn: 1046-8188.
doi: 10.1145/256163.256166.

Bortnikov, E., D. Carmel, and G. Golan-Gueta (2017). “Top-k Query Processing with
Conditional Skips”. In: Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee. 653–661. isbn:
978-1-4503-4914-7. doi: 10.1145/3041021.3054191.

Bosch, A. van den, T. Bogers, and M. de Kunder (2016). “Estimating Search Engine Index
Size Variability: a 9-year Longitudinal Study”. Scientometrics. 107(2): 839–856. issn:
1588-2861. doi: 10.1007/s11192-016-1863-z.

Breiman, L. (2001). “Random Forests”. Machine Learning. 45(1): 5–32. issn: 1573-0565.
doi: 10.1023/A:1010933404324.

Broccolo, D., C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and N. Tonellotto
(2013). “Load-sensitive Selective Pruning for Distributed Search”. In: Proceedings of the
22nd ACM International Conference on Information & Knowledge Management. ACM.
379–388. isbn: 978-1-4503-2263-8. doi: 10.1145/2505515.2505699.

Broder, A. Z., D. Carmel, M. Herscovici, A. Soffer, and J. Zien (2003). “Efficient Query
Evaluation using a Two-level Retrieval Process”. In: Proceedings of the 12th International
Conference on Information and Knowledge Management. ACM. 426–434. isbn: 1-58113-
723-0. doi: 10.1145/956863.956944.

114

http://dx.doi.org/10.1145/1718487.1718492
http://dx.doi.org/10.1145/1718487.1718492
http://dx.doi.org/10.1145/2872427.2883021
http://dx.doi.org/10.1145/2872427.2883021
http://dx.doi.org/10.1007/11575832_3
http://dx.doi.org/10.1145/256163.256166
http://dx.doi.org/10.1145/3041021.3054191
http://dx.doi.org/10.1007/s11192-016-1863-z
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/2505515.2505699
http://dx.doi.org/10.1145/956863.956944

Brown, E. W. (1995). “Fast Evaluation of Structured Queries for Information Retrieval”.
In: Proceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 30–38. isbn: 0-89791-714-6. doi:
10.1145/215206.215329.

Brutlag, J. and E. Schuman (2009). Performance Related Changes and their User Impact.
Buckley, C. and A. F. Lewit (1985). “Optimization of Inverted Vector Searches”. In:

Proceedings of the 8 Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 97–110. isbn: 0-89791-159-8. doi: 10.1145/
253495.253515.

Burges, C., T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender
(2005). “Learning to Rank Using Gradient Descent”. In: Proceedings of the 22nd In-
ternational Conference on Machine Learning. ACM. 89–96. isbn: 1-59593-180-5. doi:
10.1145/1102351.1102363.

Busch, M., K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin (2012). “Earlybird: Real-
Time Search at Twitter”. In: Proceedings of the 28th IEEE International Conference on
Data Engineering. IEEE. 1360–1369. isbn: 978-0-7695-4747-3. doi: 10.1109/ICDE.2012.
149.

Büttcher, S., C. Clarke, and G. V. Cormack (2010). Information Retrieval: Implementing
and Evaluating Search Engines. The MIT Press. isbn: 0262026511.

Cambazoglu, B. B. and C. Aykanat (2006). “Performance of Query Processing Implementa-
tions in Ranking-based Text Retrieval Systems Using Inverted Indices”. Inf. Process.
Manage. 42(4): 875–898. issn: 0306-4573. doi: 10.1016/j.ipm.2005.06.004.

Cambazoglu, B. B., H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt
(2010). “Early Exit Optimizations for Additive Machine Learned Ranking Systems”. In:
Proceedings of the 3rd ACM international conference on Web search and data mining.
ACM. 411–420. isbn: 978-1-60558-889-6. doi: 10.1145/1718487.1718538.

Cambazoglu, B. B. and R. A. Baeza-Yates (2015). Scalability Challenges in Web Search
Engines. Morgan & Claypool Publishers.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li (2007). “Learning to Rank: From Pairwise
Approach to Listwise Approach”. In: Proceedings of the 24th International Conference
on Machine Learning. ACM. 129–136. isbn: 978-1-59593-793-3. doi: 10.1145/1273496.
1273513.

Capannini, G., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto (2016).
“Quality versus Efficiency in Document Scoring with Learning-to-Rank Models”. Inf.
Process. Manage. 52(6): 1161–1177. issn: 0306-4573. doi: https://doi.org/10.1016/j.ipm.
2016.05.004.

115

http://dx.doi.org/10.1145/215206.215329
http://dx.doi.org/10.1145/253495.253515
http://dx.doi.org/10.1145/253495.253515
http://dx.doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1109/ICDE.2012.149
http://dx.doi.org/10.1109/ICDE.2012.149
http://dx.doi.org/10.1016/j.ipm.2005.06.004
http://dx.doi.org/10.1145/1718487.1718538
http://dx.doi.org/10.1145/1273496.1273513
http://dx.doi.org/10.1145/1273496.1273513
http://dx.doi.org/https://doi.org/10.1016/j.ipm.2016.05.004
http://dx.doi.org/https://doi.org/10.1016/j.ipm.2016.05.004

Carmel, D., D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek, and A. Soffer
(2001). “Static Index Pruning for Information Retrieval Systems”. In: Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM. 43–50. isbn: 1-58113-331-6. doi: 10.1145/383952.383958.

Carmel, D. and E. Yom-Tov (2010). Estimating the Query Difficulty for Information
Retrieval. Morgan & Claypool Publishers. isbn: 978-1-4503-0153- 4.

Catena, M. and N. Tonellotto (2017). “Energy-Efficient Query Processing in Web Search
Engines”. IEEE Trans. Knowl. Data Eng. 29(7): 1412–1425. issn: 1041-4347. doi:
10.1109/TKDE.2017.2681279.

Catena, M., O. Frieder, and N. Tonellotto (2018). “Efficient Energy Management in Dis-
tributed Web Search”. In: Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM. 1555–1558. isbn: 978-1-4503-6014-2.
doi: 10.1145/3269206.3269263.

Catena, M., C. Macdonald, and N. Tonellotto (2015). “Load-sensitive CPU Power Manage-
ment for Web Search Engines”. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 751–754.
isbn: 978-1-4503-3621-5. doi: 10.1145/2766462.2767809.

Chakrabarti, K., S. Chaudhuri, and V. Ganti (2011). “Interval-based Pruning for Top-k
Processing over Compressed Lists”. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering. IEEE. 709–720. isbn: 978-1-4244-8959-6. doi: 10.1109/
ICDE.2011.5767855.

Chapelle, O. and Y. Chang (2011). “Yahoo! Learning to Rank Challenge Overview”. Journal
of Machine Learning Research-Proceedings Track. 14: 1–24.

Chapelle, O., D. Metlzer, Y. Zhang, and P. Grinspan (2009). “Expected Reciprocal Rank
for Graded Relevance”. In: Proceedings of the 18th ACM Conference on Information
and Knowledge Management. ACM. 621–630. isbn: 978-1-60558-512-3. doi: 10.1145/
1645953.1646033.

Chen, R.-C., L. Gallagher, R. Blanco, and J. S. Culpepper (2017). “Efficient Cost-Aware
Cascade Ranking in Multi-Stage Retrieval”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
445–454. isbn: 978-1-4503-5022-8. doi: 10.1145/3077136.3080819.

Chierichetti, F., S. Lattanzi, F. Mari, and A. Panconesi (2008). “On Placing Skips Optimally
in Expectation”. In: Proceedings of the 1st International Conference on Web Search and
Data Mining. ACM. 15–24. isbn: 978-1-59593-927-2. doi: 10.1145/1341531.1341537.

Clarke, C. L., J. S. Culpepper, and A. Moffat (2016). “Assessing Efficiency-Effectiveness
Tradeoffs in Multi-stage Retrieval Systems without using Relevance Judgments”. Inf.
Retr. 19(4): 351–377. issn: 1386-4564. doi: 10.1007/s10791-016-9279-1.

116

http://dx.doi.org/10.1145/383952.383958
http://dx.doi.org/10.1109/TKDE.2017.2681279
http://dx.doi.org/10.1145/3269206.3269263
http://dx.doi.org/10.1145/2766462.2767809
http://dx.doi.org/10.1109/ICDE.2011.5767855
http://dx.doi.org/10.1109/ICDE.2011.5767855
http://dx.doi.org/10.1145/1645953.1646033
http://dx.doi.org/10.1145/1645953.1646033
http://dx.doi.org/10.1145/3077136.3080819
http://dx.doi.org/10.1145/1341531.1341537
http://dx.doi.org/10.1007/s10791-016-9279-1

Crane, M., J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman (2017). “A Comparison
of Document-at-a-Time and Score-at-a-Time Query Evaluation”. In: Proceedings of the
10th ACM International Conference on Web Search and Data Mining. ACM. 201–210.
isbn: 978-1-4503-4675-7. doi: 10.1145/3018661.3018726.

Crane, M. and J. Lin (2017). “An Exploration of Serverless Architectures for Information
Retrieval”. In: Proceedings of the International Conference on Theory of Information
Retrieval. ACM. 241–244. isbn: 978-1-4503-4490-6. doi: 10.1145/3121050.3121086.

Crane, M., A. Trotman, and R. O’Keefe (2013). “Maintaining Discriminatory Power in
Quantized Indexes”. In: Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management. ACM. 1221–1224. isbn: 978-1-4503-2263-8.
doi: 10.1145/2505515.2507860.

Croft, W. B., D. Metzler, and T. Strohman (2009). Search Engines: Information Retrieval
in Practice. Addison-Wesley. isbn: 0136072240.

Cronen-Townsend, S., Y. Zhou, and W. B. Croft (2002). “Predicting Query Performance”.
In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 299–306. isbn: 1-58113-561-0. doi:
10.1145/564376.564429.

Culpepper, J. S., C. L. A. Clarke, and J. Lin (2016). “Dynamic Cutoff Prediction in Multi-
Stage Retrieval Systems”. In: Proceedings of the 21st Australasian Document Computing
Symposium. ACM. 17–24. isbn: 978-1-4503-4865-2. doi: 10.1145/3015022.3015026.

Culpepper, J. S., F. Diaz, and M. D. Smucker (2018). “Research Frontiers in Information
Retrieval: Report from the Third Strategic Workshop on Information Retrieval in Lorne
(SWIRL 2018)”. SIGIR Forum. 52(1): 34–90. issn: 0163-5840. doi: 10.1145/3274784.
3274788.

Culpepper, J. S. and A. Moffat (2010). “Efficient Set Intersection for Inverted Indexing”.
ACM Trans. Inf. Syst. 29(1): 1:1–1:25. issn: 1046-8188. doi: 10.1145/1877766.1877767.

Dang, V., M. Bendersky, and W. B. Croft (2013). “Two-Stage Learning to Rank for
Information Retrieval”. In: Proceedings of the 35th European Conference on IR Research.
Springer. 423–434. isbn: 978-3-642-36972-8. doi: 10.1007/978-3-642-36973-5_36.

Daoud, C. M., E. S. de Moura, A. Carvalho, A. S. da Silva, D. Fernandes, and C. Rossi (2016).
“Fast Top-k Preserving Query Processing using Two-tier Indexes”. Inf. Process. Manage.
52(5): 855–872. issn: 0306-4573. doi: http://dx.doi.org/10.1016/j.ipm.2016.03.005.

Dato, D., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R.
Venturini (2016). “Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious
Regression Trees”. ACM Trans. Inf. Syst. 35(2): 15:1–15:31. issn: 1046-8188. doi:
10.1145/2987380.

Dean, J. (2009). “Challenges in Building Large-scale Information Retrieval Systems: Invited
Talk”. In: Proceedings of the 2nd ACM International Conference on Web Search and
Data Mining. ACM. 1–1. isbn: 978-1-60558-390-7. doi: 10.1145/1498759.1498761.

117

http://dx.doi.org/10.1145/3018661.3018726
http://dx.doi.org/10.1145/3121050.3121086
http://dx.doi.org/10.1145/2505515.2507860
http://dx.doi.org/10.1145/564376.564429
http://dx.doi.org/10.1145/3015022.3015026
http://dx.doi.org/10.1145/3274784.3274788
http://dx.doi.org/10.1145/3274784.3274788
http://dx.doi.org/10.1145/1877766.1877767
http://dx.doi.org/10.1007/978-3-642-36973-5_36
http://dx.doi.org/http://dx.doi.org/10.1016/j.ipm.2016.03.005
http://dx.doi.org/10.1145/2987380
http://dx.doi.org/10.1145/1498759.1498761

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990).
“Indexing by Latent Semantic Analysis”. J. Am. Soc. Inf. Sc. 41(6): 391–407. issn:
1097-4571. doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft (2017). “Neural Ranking
Models with Weak Supervision”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 65–74. isbn:
978-1-4503-5022-8. doi: 10.1145/3077136.3080832.

Demaine, E. D., A. López-Ortiz, and J. I. Munro (2000). “Adaptive Set Intersections,
Unions, and Differences”. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM. 743–752. isbn: 0-89871-453-2.

Deveaud, R., M.-D. Albakour, C. Macdonald, and I. Ounis (2015). “Experiments with
a Venue-Centric Model for Personalisedand Time-Aware Venue Suggestion”. In: Pro-
ceedings of the 24th ACM International on Conference on Information and Knowledge
Management. ACM. 53–62. isbn: 978-1-4503-3794-6. doi: 10.1145/2806416.2806484.

Dimopoulos, C., S. Nepomnyachiy, and T. Suel (2013a). “A Candidate Filtering Mecha-
nism for Fast Top-k Query Processing on Modern Cpus”. In: Proceedings of the 36th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 723–732. isbn: 978-1-4503-2034-4. doi: 10.1145/2484028.2484087.

Dimopoulos, C., S. Nepomnyachiy, and T. Suel (2013b). “Optimizing Top-k Document
Retrieval Strategies for Block-max Indexes”. In: Proceedings of the 6th ACM International
Conference on Web Search and Data Mining. ACM. 113–122. isbn: 978-1-4503-1869-3.
doi: 10.1145/2433396.2433412.

Ding, S. and T. Suel (2011). “Faster Top-k Document Retrieval Using Block-max Indexes”.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 993–1002. isbn: 978-1-4503-0757-4. doi:
10.1145/2009916.2010048.

Diriye, A., R. White, G. Buscher, and S. Dumais (2012). “Leaving So Soon?: Understanding
and Predicting Web Search Abandonment Rationales”. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management. ACM. 1025–1034.
isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2398399.

Doszkocs, T. E. (1982). “From Research to Application: The Cite Natural Language
Information Retrieval System”. In: Proceedings of the 5th Annual ACM Conference on
Research and Development in Information Retrieval. Springer. 251–262. isbn: 0-387-
11978-7.

Elias, P. (1974). “Efficient Storage and Retrieval by Content and Address of Static Files”.
J. ACM. 21(2): 246–260. issn: 0004-5411. doi: 10.1145/321812.321820.

Elias, P. (1975). “Universal Codeword Sets and Representations of the Integers”. IEEE
Trans. Inf. Theory. 21(2): 194–203. issn: 0018-9448. doi: 10.1109/TIT.1975.1055349.

118

http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1145/3077136.3080832
http://dx.doi.org/10.1145/2806416.2806484
http://dx.doi.org/10.1145/2484028.2484087
http://dx.doi.org/10.1145/2433396.2433412
http://dx.doi.org/10.1145/2009916.2010048
http://dx.doi.org/10.1145/2396761.2398399
http://dx.doi.org/10.1145/321812.321820
http://dx.doi.org/10.1109/TIT.1975.1055349

Fano, R. M. (1971). “On the Number of Bits Required to Implement an Associative Memory”.
Memorandum 61, Computer Structures Group, MIT, Cambridge, MA.

Fontoura, M., V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien (2011). “Evaluation
Strategies for Top-k Queries over Memory-Resident Inverted Indexes”. Proc. VLDB
Endow. 4(12): 1213–1224.

Fox, E. A. and J. A. Shaw (1994). “Combination of Multiple Searches”. In: Proceedings of
the 2nd Text REtrieval Conference (TREC-2). NIST. 243–252.

Frachtenberg, E. (2009). “Reducing Query Latencies in Web Search Using Fine-Grained
Parallelism”. World Wide Web. 12(4): 441. issn: 1573-1413. doi: 10.1007/s11280-009-
0066-4.

Freire, A., C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda (2012). “Scheduling
Queries Across Replicas”. In: Proceedings of the 35th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. ACM. 1139–1140. isbn:
978-1-4503-1472-5. doi: 10.1145/2348283.2348508.

Freire, A., C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda (2013). “Hybrid Query
Scheduling for a Replicated Search Engine”. In: Proceedings of the 35th European
Conference on IR Research. Springer. 435–446. isbn: 978-3-642-36973-5. doi: 10.1007/
978-3-642-36973-5_37.

Freire, A., C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda (2014). “A Self-adapting
Latency/Power Tradeoff Model for Replicated Search Engines”. In: Proceedings of the
7th ACM International Conference on Web Search and Data Mining. ACM. 13–22. isbn:
978-1-4503-2351-2. doi: 10.1145/2556195.2556246.

Freire, A., C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda (2015). “Queuing Theory-
based Latency/Power Tradeoff Models for Replicated Search Engines”. J. UCS. 21(13):
1790–1809. issn: 0948-695X. doi: 10.3217/jucs-021-13-1790.

Freund, Y., R. Iyer, R. E. Schapire, and Y. Singer (2003). “An Efficient Boosting Algorithm
for Combining Preferences”. J. Mach. Learn. Res. 4(Dec.): 933–969. issn: 1532-4435.

Friedman, J. H. (2001). “Greedy Function Approximation: a Gradient Boosting Machine”.
Ann. Statist. 29(5): 1189–1232. doi: 10.1214/aos/1013203451.

Goldstein, J., R. Ramakrishnan, and U. Shaft (1998). “Compressing Relations and Indexes”.
In: Proceedings of the 14th International Conference on Data Engineering. IEEE. 370–
379. isbn: 0-8186-8289-2. doi: 10.1109/ICDE.1998.655800.

Golomb, S. (1966). “Run-length Encodings”. IEEE Trans. Inf. Theor. 12(3).
Goodwin, B., M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He (2017).

“BitFunnel: Revisiting Signatures for Search”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
605–614. isbn: 978-1-4503-5022-8. doi: 10.1145/3077136.3080789.

119

http://dx.doi.org/10.1007/s11280-009-0066-4
http://dx.doi.org/10.1007/s11280-009-0066-4
http://dx.doi.org/10.1145/2348283.2348508
http://dx.doi.org/10.1007/978-3-642-36973-5_37
http://dx.doi.org/10.1007/978-3-642-36973-5_37
http://dx.doi.org/10.1145/2556195.2556246
http://dx.doi.org/10.3217/jucs-021-13-1790
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/ICDE.1998.655800
http://dx.doi.org/10.1145/3077136.3080789

Greenberg, A., J. Hamilton, D. A. Maltz, and P. Patel (2008). “The Cost of a Cloud:
Research Problems in Data Center Networks”. SIGCOMM Comput. Commun. Rev.
39(1): 68–73. issn: 0146-4833. doi: 10.1145/1496091.1496103.

Harman, D. and G. Candela (1990). “Retrieving Records from a Gigabyte of Text on a
Minicomputer using Statistical Ranking”. J. Am. Soc. Inf. Sc. 41(8): 581–589. issn:
1097-4571.

Hazelwood, K., S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L.
Xiong, and X. Wang (2018). “Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective”. In: Proceeding of the IEEE International Symposium on
High Performance Computer Architecture. IEEE. 10. isbn: 978-1-5386-3659-6. doi:
10.1109/HPCA.2018.00059.

He, B. and I. Ounis (2006). “Query Performance Prediction”. Inf. Syst. 31(7): 585–594.
issn: 0306-4379. doi: 10.1016/j.is.2005.11.003.

He, X., J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and
J. Q. Candela (2014). “Practical Lessons from Predicting Clicks on Ads at Facebook”. In:
Proceedings of the 8th International Workshop on Data Mining for Online Advertising.
ACM. 5:1–5:9. isbn: 978-1-4503-2999-6. doi: 10.1145/2648584.2648589.

Heaps, H. S. (1978). Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, Inc. isbn: 0123357500.

Hennessy, J. L. and D. A. Patterson (2011). Computer Architecture: A Quantitative Approach
(5th ed.) Morgan Kaufmann Publishers Inc. isbn: 012383872X.

Järvelin, K. and J. Kekäläinen (2002). “Cumulated Gain-based Evaluation of IR Techniques”.
ACM Trans. Inf. Syst. 20(4): 422–446. issn: 1046-8188. doi: 10.1145/582415.582418.

Jeon, M., Y. He, S. Elnikety, A. L. Cox, and S. Rixner (2013). “Adaptive Parallelism
for Web Search”. In: Proceedings of the 8th ACM European Conference on Computer
Systems. ACM. 155–168. isbn: 978-1-4503-1994-2. doi: 10.1145/2465351.2465367.

Jeon, M., S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner (2014).
“Predictive Parallelization: Taming Tail Latencies in Web Search”. In: Proceedings of the
37th International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 253–262. isbn: 978-1-4503-2257-7. doi: 10.1145/2600428.2609572.

Jia, X.-F., A. Trotman, and R. O’Keefe (2010). “Efficient Accumulator Initialisation”. In:
Proceedings of the 15th Australasian Document Computing Symposium. 44–51.

Jin, X., T. Yang, and X. Tang (2016). “A Comparison of Cache Blocking Methods for
Fast Execution of Ensemble-based Score Computation”. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 629–638. isbn: 978-1-4503-4069-4. doi: 10.1145/2911451.2911520.

120

http://dx.doi.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/HPCA.2018.00059
http://dx.doi.org/10.1016/j.is.2005.11.003
http://dx.doi.org/10.1145/2648584.2648589
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/2465351.2465367
http://dx.doi.org/10.1145/2600428.2609572
http://dx.doi.org/10.1145/2911451.2911520

Joachims, T. (2002). “Optimizing Search Engines Using Clickthrough Data”. In: Proceedings
of the 8th ACM International Conference on Knowledge Discovery and Data Mining.
ACM. 133–142. isbn: 1-58113-567-X. doi: 10.1145/775047.775067.

Jonassen, S. and S. E. Bratsberg (2011). “Efficient Compressed Inverted Index Skipping
for Disjunctive Text-Queries”. In: Proceedings of the 33rd European Conference on IR
Research. Springer. 530–542. isbn: 978-3-642-20161-5. doi: 10.1007/978-3-642-20161-
5_53.

Jones, R., B. Rey, O. Madani, and W. Greiner (2006). “Generating Query Substitutions”.
In: Proceedings of the 15th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee. 387–396. isbn: 1-59593-323-9. doi:
10.1145/1135777.1135835.

Kane, A. and F. W. Tompa (2018). “Split-Lists and Initial Thresholds for WAND-based
Search”. In: The 41st International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM. 877–880. isbn: 978-1-4503-5657-2. doi:
10.1145/3209978.3210066.

Kaszkiel, M. and J. Zobel (1998). “Term-ordered Query Evaluation Versus Document-
ordered Query Evaluation for Large Document Databases”. In: Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM. 343–344. isbn: 1-58113-015-5. doi: 10.1145/290941.291031.

Kaszkiel, M., J. Zobel, and R. Sacks-Davis (1999). “Efficient Passage Ranking for Document
Databases”. ACM Trans. Inf. Syst. 17(4): 406–439. issn: 1046-8188. doi: 10.1145/
326440.326445.

Kayaaslan, E., B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and C. Aykanat (2011).
“Energy-price-driven Query Processing in Multi-center Web Search Engines”. In: Proceed-
ings of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM. 983–992. isbn: 978-1-4503-0757-4. doi: 10.1145/2009916.
2010047.

Kim, S., Y. He, S.-w. Hwang, S. Elnikety, and S. Choi (2015). “Delayed-Dynamic-Selective
(DDS) Prediction for Reducing Extreme Tail Latency in Web Search”. In: Proceedings
of the 8th ACM International Conference on Web Search and Data Mining. ACM. 7–16.
isbn: 978-1-4503-3317-7. doi: 10.1145/2684822.2685289.

Kim, Y. and J. Lin (2018). “Serverless Data Analytics with Flint”. In: Proceedings of
the 11th IEEE International Conference on Cloud Computing. IEEE. 451–455. isbn:
9781538672365. doi: 10.1109/CLOUD.2018.00063.

Kohavi, R. (1994). “Bottom-Up Induction of Oblivious Read-Once Decision Graphs:
Strengths and Limitations”. In: Proceedings of the 12th National Conference on Artificial
Intelligence, (AAAI). AAAI. 613–618. isbn: 0-262-61102-3.

121

http://dx.doi.org/10.1145/775047.775067
http://dx.doi.org/10.1007/978-3-642-20161-5_53
http://dx.doi.org/10.1007/978-3-642-20161-5_53
http://dx.doi.org/10.1145/1135777.1135835
http://dx.doi.org/10.1145/3209978.3210066
http://dx.doi.org/10.1145/290941.291031
http://dx.doi.org/10.1145/326440.326445
http://dx.doi.org/10.1145/326440.326445
http://dx.doi.org/10.1145/2009916.2010047
http://dx.doi.org/10.1145/2009916.2010047
http://dx.doi.org/10.1145/2684822.2685289
http://dx.doi.org/10.1109/CLOUD.2018.00063

Kyriazis, D., C. Doulkeridis, P. Gouvas, R. Jimenez-Peris, A. J. Ferrer, L. Kallipolitis,
P. Kranas, G. Kousiouris, C. Macdonald, R. McCreadie, et al. (2018). “BigDataStack: A
Holistic Data-Driven Stack for Big Data Applications and Operations”. In: Proceedings
of the IEEE International Congress on Big Data. 237–241. isbn: 978-1-5386-7232-7. doi:
10.1109/BigDataCongress.2018.00041.

Lacour, P., C. Macdonald, and I. Ounis (2008). “Efficiency Comparison of Document
Matching Techniques”. In: Proceedings of the Efficiency Issues in Information Retrieval
Workshop at ECIR 2008. Ed. by R. Blanco and F. Silvestri. Dept of Computing Science,
University of Glasgow.

Lafferty, J. and C. Zhai (2001). “Document Language Models, Query Models, and Risk
Minimization for Information Retrieval”. In: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
111–119. isbn: 1-58113-331-6. doi: 10.1145/383952.383970.

Langley, P. and S. Sage (1994). “Oblivious Decision Trees and Abstract Cases”. In: Working
Notes of the AAAI-94 Workshop on Case-Based Reasoning. AAAI. 113–117.

Lemire, D. and L. Boytsov (2015). “Decoding Billions of Integers Per Second Through
Vectorization”. Softw. Pract. Exper. 45(1): 1–29. issn: 0038-0644. doi: 10.1002/spe.2203.

Lester, N., A. Moffat, W. Webber, and J. Zobel (2005). “Space-Limited Ranked Query
Evaluation Using Adaptive Pruning”. In: Proceedings of the 6th International Conference
on Web Information Systems Engineering. Springer. 470–477. isbn: 978-3-540-32286-3.
doi: 10.1007/11581062_37.

Lettich, F., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R.
Venturini (2018). “Parallel Traversal of Large Ensembles of Decision Trees”. IEEE Trans.
Par. Dist. Sys. 14. issn: 1045-9219. doi: 10.1109/TPDS.2018.2860982.

Li, P., C. J. C. Burges, and Q. Wu (2007). “McRank: Learning to Rank Using Multiple
Classification and Gradient Boosting”. In: Proceedings of the 20th International Confer-
ence on Neural Information Processing Systems. Curran Associates Inc. 897–904. isbn:
978-1-60560-352-0.

Lillis, D., F. Toolan, R. Collier, and J. Dunnion (2006). “ProbFuse: A Probabilistic Ap-
proach to Data Fusion”. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 139–146.
isbn: 1-59593-369-7. doi: 10.1145/1148170.1148197.

Lin, J. (2015). “Building a Self-Contained Search Engine in the Browser”. In: Proceedings
of the International Conference on The Theory of Information Retrieval. ACM. 309–312.
isbn: 978-1-4503-3833-2. doi: 10.1145/2808194.2809478.

Lin, J. and A. Trotman (2015). “Anytime Ranking for Impact-Ordered Indexes”. In:
Proceedings of the International Conference on The Theory of Information Retrieval.
ACM. 301–304. isbn: 978-1-4503-3833-2. doi: 10.1145/2808194.2809477.

122

http://dx.doi.org/10.1109/BigDataCongress.2018.00041
http://dx.doi.org/10.1145/383952.383970
http://dx.doi.org/10.1002/spe.2203
http://dx.doi.org/10.1007/11581062_37
http://dx.doi.org/10.1109/TPDS.2018.2860982
http://dx.doi.org/10.1145/1148170.1148197
http://dx.doi.org/10.1145/2808194.2809478
http://dx.doi.org/10.1145/2808194.2809477

Lin, J. and A. Trotman (2017). “The Role of Index Compression in Score-at-a-Time Query
Evaluation”. Inf. Retr. 1–22. issn: 1573-7659. doi: 10.1007/s10791-016-9291-5.

Ling, X., W. Deng, C. Gu, H. Zhou, C. Li, and F. Sun (2017). “Model Ensemble for Click
Prediction in Bing Search Ads”. In: Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Conferences Steering Committee.
689–698. isbn: 978-1-4503-4914-7. doi: 10.1145/3041021.3054192.

Liu, T.-Y. (2009). “Learning to Rank for Information Retrieval”. Found. and Tr. in IR.
3(3): 225–331.

Liu, X., Z. Zhang, B. Hou, R. J. Stones, G. Wang, and X. Liu (2018). “Index Compression
for BitFunnel Query Processing”. In: Proceedings of the 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 921–924.
isbn: 978-1-4503-5657-2. doi: 10.1145/3209978.3210086.

Lo, D., L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis (2014). “Towards
Energy Proportionality for Large-scale Latency-critical Workloads”. In: Proc. ISCA.
IEEE. 301–312. isbn: 978-1-4799-4394-4. doi: 10.1145/2678373.2665718.

Lu, X., A. Moffat, and J. S. Culpepper (2015). “On the Cost of Extracting Proximity
Features for Term-Dependency Models”. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management. ACM. 293–302. isbn:
978-1-4503-3794-6. doi: 10.1145/2806416.2806467.

Lucarella, D. (1988). “A Document Retrieval System based on Nearest Neighbour Searching”.
J. of Inf. Sc. 14(1): 25–33.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto (2015a). “Speeding Up
Document Ranking with Rank-based Features”. In: Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
895–898. isbn: 978-1-4503-3621-5. doi: 10.1145/2766462.2767776.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini
(2015b). “QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles
of Regression Trees”. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM. 73–82. isbn: 978-1-4503-
3621-5. doi: 10.1145/2766462.2767733.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini (2016).
“Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles”.
In: Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 833–836. isbn: 978-1-4503-4069-4. doi:
10.1145/2911451.2914758.

Macdonald, C., R. McCreadie, and I. Ounis (2018). “Agile Information Retrieval Experi-
mentation with Terrier Notebooks”. In: Proceedings of DESIRES 2018.

123

http://dx.doi.org/10.1007/s10791-016-9291-5
http://dx.doi.org/10.1145/3041021.3054192
http://dx.doi.org/10.1145/3209978.3210086
http://dx.doi.org/10.1145/2678373.2665718
http://dx.doi.org/10.1145/2806416.2806467
http://dx.doi.org/10.1145/2766462.2767776
http://dx.doi.org/10.1145/2766462.2767733
http://dx.doi.org/10.1145/2911451.2914758

Macdonald, C., R. McCreadie, R. Santos, and I. Ounis (2012a). “From Puppy to Maturity:
Experiences in Developing Terrier”. In: Proceedings of the Open Source Information
Retrieval Workshop.

Macdonald, C., I. Ounis, and N. Tonellotto (2011). “Upper-bound Approximations for
Dynamic Pruning”. ACM Trans. Inf. Syst. 29(4): 17:1–17:28. issn: 1046-8188. doi:
10.1145/2037661.2037662.

Macdonald, C., R. L. Santos, and I. Ounis (2013a). “The Whens and Hows of Learning to
Rank for Web Search”. Inf. Retr. 16(5): 584–628. issn: 1386-4564. doi: 10.1007/s10791-
012-9209-9.

Macdonald, C., R. L. Santos, and I. Ounis (2012b). “On the Usefulness of Query Features
for Learning to Rank”. In: Proceedings of the 21st ACM International Conference on
Information and Knowledge Management. ACM. 2559–2562. isbn: 978-1-4503-1156-4.
doi: 10.1145/2396761.2398691.

Macdonald, C., R. L. Santos, I. Ounis, and B. He (2013b). “About Learning Models with
Multiple Query-dependent Features”. ACM Trans. Inf. Syst. 31(3): 11:1–11:39. issn:
1046-8188. doi: 10.1145/2493175.2493176.

Macdonald, C. and N. Tonellotto (2017). “Upper Bound Approximations for BlockMaxWand”.
In: Proceedings of the International Conference on the Theory of Information Retrieval.
ACM. 273–276. isbn: 9781450344906. doi: 10.1145/3121050.3121094.

Macdonald, C., N. Tonellotto, and I. Ounis (2012c). “Effect of Dynamic Pruning Safety on
Learning to Rank Effectiveness”. In: Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 1051–1052.
isbn: 978-1-4503-1472-5. doi: 10.1145/2348283.2348464.

Macdonald, C., N. Tonellotto, and I. Ounis (2012d). “Learning to Predict Response Times
for Online Query Scheduling”. In: Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 621–630.
isbn: 978-1-4503-1472-5. doi: 10.1145/2348283.2348367.

Macdonald, C., N. Tonellotto, and I. Ounis (2017). “Efficient and Effective Selective Query
Rewriting with Efficiency Predictions”. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM. 495–
504. isbn: 978-1-4503-5022-8. doi: 10.1145/3077136.3080827.

Mackenzie, J., J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin (2018).
“Query Driven Algorithm Selection in Early Stage Retrieval”. In: Proceedings of the 11th
ACM International Conference on Web Search and Data Mining. ACM. 396–404. isbn:
978-1-4503-5581-0. doi: 10.1145/3159652.3159676.

Mackenzie, J., F. Scholer, and J. S. Culpepper (2017). “Early Termination Heuristics for
Score-at-a-Time Index Traversal”. In: Proceedings of the 22nd Australasian Document
Computing Symposium. ACM. 8:1–8:8. isbn: 978-1-4503-6391-4. doi: 10.1145/3166072.
3166073.

124

http://dx.doi.org/10.1145/2037661.2037662
http://dx.doi.org/10.1007/s10791-012-9209-9
http://dx.doi.org/10.1007/s10791-012-9209-9
http://dx.doi.org/10.1145/2396761.2398691
http://dx.doi.org/10.1145/2493175.2493176
http://dx.doi.org/10.1145/3121050.3121094
http://dx.doi.org/10.1145/2348283.2348464
http://dx.doi.org/10.1145/2348283.2348367
http://dx.doi.org/10.1145/3077136.3080827
http://dx.doi.org/10.1145/3159652.3159676
http://dx.doi.org/10.1145/3166072.3166073
http://dx.doi.org/10.1145/3166072.3166073

Mallia, A., G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini (2017). “Faster
BlockMax WAND with Variable-sized Blocks”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
625–634. isbn: 978-1-4503-5022-8. doi: 10.1145/3077136.3080780.

Manmatha, R., T. Rath, and F. Feng (2001). “Modeling Score Distributions for Combining
the Outputs of Search Engines”. In: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM. 267–
275. isbn: 1-58113-331-6. doi: 10.1145/383952.384005.

Manning, C. D., P. Raghavan, and H. Schütze (2008). Introduction to Information Retrieval.
Cambridge University Press. isbn: 0521865719.

Maron, M. E. and J. L. Kuhns (1960). “On Relevance, Probabilistic Indexing and Information
Retrieval”. J. ACM. 7(3): 216–244. issn: 0004-5411. doi: 10.1145/321033.321035.

McCreadie, R., D. Albakour, J. Manotumruksa, C. Macdonald, and I. Ounis (2016). “Search-
ing the Internet of Things”. Building Blocks for IoT Analytics: 39–80.

Metzler, D. and W. B. Croft (2005). “A Markov Random Field Model for Term Depen-
dencies”. In: Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 472–479. isbn: 1-59593-034-5.
doi: 10.1145/1076034.1076115.

Metzler, D. and W. B. Croft (2007). “Linear Feature-based Models for Information Retrieval”.
Inf. Retr. 10(3): 257–274. issn: 1573-7659. doi: 10.1007/s10791-006-9019-z.

Mitra, B., F. Diaz, and N. Craswell (2017). “Learning to Match Using Local and Distributed
Representations of Text for Web Search”. In: Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences Steering
Committee. 1291–1299. isbn: 978-1-4503-4913-0. doi: 10.1145/3038912.3052579.

Moffat, A. and J. Zobel (1994). “Fast Ranking in Limited Space”. In: Proc. IEEE Conf. on
Data Engineering. IEEE. 428–437. isbn: 0-8186-5402-3. doi: 10.1109/ICDE.1994.283064.

Moffat, A. and J. Zobel (1996). “Self-Indexing Inverted Files for Fast Text Retrieval”. ACM
Trans. Inf. Syst. 14(4): 349–379.

Moffat, A., J. Zobel, and R. Sacks-Davis (1994). “Memory Efficient Ranking”. Inf. Process.
Manage. 30(6): 733–744. issn: 0306-4573. doi: 10.1016/0306-4573(94)90002-7.

Montague, M. and J. A. Aslam (2001). “Relevance Score Normalization for Metasearch”.
In: Proceedings of the 10th International Conference on Information and Knowledge
Management. ACM. 427–433. isbn: 1-58113-436-3. doi: 10.1145/502585.502657.

Montague, M. and J. A. Aslam (2002). “Condorcet Fusion for Improved Retrieval”. In:
Proceedings of the 11th International Conference on Information and Knowledge Man-
agement. ACM. 538–548. isbn: 1-58113-492-4. doi: 10.1145/584792.584881.

Nenkova, A. and K. McKeown (2011). “Automatic Summarization”. Found. and Tr. in IR.
5(2–3): 103–233. issn: 1554-0669. doi: 10.1561/1500000015.

125

http://dx.doi.org/10.1145/3077136.3080780
http://dx.doi.org/10.1145/383952.384005
http://dx.doi.org/10.1145/321033.321035
http://dx.doi.org/10.1145/1076034.1076115
http://dx.doi.org/10.1007/s10791-006-9019-z
http://dx.doi.org/10.1145/3038912.3052579
http://dx.doi.org/10.1109/ICDE.1994.283064
http://dx.doi.org/10.1016/0306-4573(94)90002-7
http://dx.doi.org/10.1145/502585.502657
http://dx.doi.org/10.1145/584792.584881
http://dx.doi.org/10.1561/1500000015

Noreault, T., M. Koll, and M. J. McGill (1977). “Automatic Ranked Output from Boolean
Searches in SIRE”. J. Am. Soc. Inf. Sc. 28(6): 333–339. issn: 1097-4571. doi: 10.1002/
asi.4630280605.

Ottaviano, G., N. Tonellotto, and R. Venturini (2015). “Optimal Space-time Tradeoffs for
Inverted Indexes”. In: Proceedings of the 8th ACM International Conference on Web
Search and Data Mining. ACM. 47–56. isbn: 978-1-4503-3317-7. doi: 10.1145/2684822.
2685297.

Ottaviano, G. and R. Venturini (2014). “Partitioned Elias-Fano Indexes”. In: Proceedings
of the 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM. 273–282. isbn: 978-1-4503-2257-7. doi: 10.1145/2600428.
2609615.

Pang, L., Y. Lan, J. Guo, J. Xu, J. Xu, and X. Cheng (2017). “DeepRank: A New Deep
Architecture for Relevance Ranking in Information Retrieval”. In: Proceedings of the
27th ACM on Conference on Information and Knowledge Management. ACM. 257–266.
isbn: 978-1-4503-4918-5. doi: 10.1145/3132847.3132914.

Pedersen, J. (2010). “Query Understanding at Bing”. In: Proceedings of the 33rd Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval.

Peng, F., N. Ahmed, X. Li, and Y. Lu (2007). “Context Sensitive Stemming for Web Search”.
In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 639–646. isbn: 978-1-59593-597-7.
doi: 10.1145/1277741.1277851.

Perry, S. A. and P. Willett (1983). “A Review of the Use of Inverted Files for Best Match
Searching in Information Retrieval Systems”. J. Inf. Sc. 6(2–3): 59–66.

Persin, M. (1994). “Document Filtering for Fast Ranking”. In: Proceedings of the 17th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Ed. by W. B. Croft and C. J. van Rijsbergen. ACM. isbn: 0-387-19889-X.

Persin, M., J. Zobel, and R. Sacks-Davis (1996). “Filtered Document Retrieval with
Frequency-sorted Indexes”. J. Am. Soc. Inf. Sci. 47(10): 749–764. issn: 0002-8231.
doi: 10.1002/(SICI)1097-4571(199610)47:10<749::AID-ASI3>3.3.CO;2-U.

Petri, M., J. S. Culpepper, and A. Moffat (2013). “Exploring the Magic of WAND”. In:
Proceedings of the 18th Australasian Document Computing Symposium. ACM. 58–65.
isbn: 978-1-4503-2524-0. doi: 10.1145/2537734.2537744.

Ponte, J. M. and W. B. Croft (1998). “A Language Modeling Approach to Information
Retrieval”. In: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 275–281. isbn: 1-58113-015-5.
doi: 10.1145/290941.291008.

Pugh, W. (1990). “Skip Lists: A Probabilistic Alternative to Balanced Trees”. Commun.
ACM. 33(6): 668–676. issn: 0001-0782. doi: 10.1145/78973.78977.

126

http://dx.doi.org/10.1002/asi.4630280605
http://dx.doi.org/10.1002/asi.4630280605
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1145/2600428.2609615
http://dx.doi.org/10.1145/2600428.2609615
http://dx.doi.org/10.1145/3132847.3132914
http://dx.doi.org/10.1145/1277741.1277851
http://dx.doi.org/10.1002/(SICI)1097-4571(199610)47:10<749::AID-ASI3>3.3.CO;2-U
http://dx.doi.org/10.1145/2537734.2537744
http://dx.doi.org/10.1145/290941.291008
http://dx.doi.org/10.1145/78973.78977

Putnam, A., A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H.
Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A.
Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger (2014). “A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services”. In: Proceeding of the 41st Annual International Symposium on
Computer Architecuture. IEEE. 13–24. isbn: 978-1-4799-4394-4. doi: 10.1145/2678373.
2665678.

Qin, T., T.-Y. Liu, J. Xu, and H. Li (2010). “LETOR: A Benchmark Collection for Research
on Learning to Rank for Information Retrieval”. Inf. Retr. 13(4): 346–374. issn: 1573-
7659. doi: 10.1007/s10791-009-9123-y.

Ramaswamy, V., R. Konow, A. Trotman, J. Degenhardt, and N. Whyte (2017). “Document
Reordering is Good, Especially for e-Commerce”. In: Proceedings of Workshop on
eCommerce.

Rice, R. and J. Plaunt (1971). “Adaptive Variable-Length Coding for Efficient Compression
of Spacecraft Television Data”. IEEE Trans. Comm. Tech. 19(6): 889–897. issn: 0018-
9332. doi: 10.1109/TCOM.1971.1090789.

Rigutini, L., T. Papini, M. Maggini, and F. Scarselli (2011). “SortNet: Learning to Rank
by a Neural Preference Function”. IEEE Trans. Neur. Netw. 22(9): 1368–1380. issn:
1045-9227. doi: 10.1109/TNN.2011.2160875.

Rijsbergen, C. van (1979). Information Retrieval (2nd ed.) Butterworths, London. isbn:
9780408709293.

Risvik, K. M., Y. Aasheim, and M. Lidal (2003). “Multi-Tier Architecture for Web Search
Engines”. In: Proceedings of the 1st Latin American Web Congress. IEEE. 132–143. isbn:
0-7695-2058-8. doi: 10.1109/LAWEB.2003.1250291.

Risvik, K. M., T. Chilimbi, H. Tan, K. Kalyanaraman, and C. Anderson (2013). “Maguro, a
System for Indexing and Searching over Very Large Text Collections”. In: Proceedings of
the 6th ACM International Conference on Web Search and Data Mining. ACM. 727–736.
isbn: 978-1-4503-1869-3. doi: 10.1145/2433396.2433486.

Robertson, S. E., S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford (1994). “Okapi
at TREC-3”. In: Proceedings of the 3rd Text REtrieval Conference. NIST. 109–126.

Rojas, O., V. Gil-Costa, and M. Marin (2013a). “Distributing Efficiently the Block-Max
WAND Algorithm”. Procedia Computer Science. 18: 120–129. issn: 1877-0509. doi:
http://dx.doi.org/10.1016/j.procs.2013.05.175.

Rojas, O., V. Gil-Costa, and M. Marin (2013b). “Efficient Parallel Block-Max WAND
Algorithm”. In: Proceedings of the 19th Euro-Par International Conference. Springer.
394–405. isbn: 978-3-642-40047-6. doi: 10.1007/978-3-642-40047-6_41.

127

http://dx.doi.org/10.1145/2678373.2665678
http://dx.doi.org/10.1145/2678373.2665678
http://dx.doi.org/10.1007/s10791-009-9123-y
http://dx.doi.org/10.1109/TCOM.1971.1090789
http://dx.doi.org/10.1109/TNN.2011.2160875
http://dx.doi.org/10.1109/LAWEB.2003.1250291
http://dx.doi.org/10.1145/2433396.2433486
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.175
http://dx.doi.org/10.1007/978-3-642-40047-6_41

Rossi, C., E. S. de Moura, A. L. Carvalho, and A. S. da Silva (2013). “Fast Document-at-a-
time Query Processing Using Two-tier Indexes”. In: Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
183–192. isbn: 978-1-4503-2034-4. doi: 10.1145/2484028.2484085.

Sadakane, K. and H. Imai (1999). “Text Retrieval by Using k-word Proximity Search”. In:
Proceedings of the International Symposium on Database Applications in Non-Traditional
Environments. IEEE. 183–188. isbn: 0-7695-0496-5. doi: 10.1109/DANTE.1999.844958.

Salton, G., A. Wong, and C. S. Yang (1975). “A Vector Space Model for Automatic Indexing”.
Commun. ACM. 18(11): 613–620. issn: 0001-0782. doi: 10.1145/361219.361220.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley. isbn: 0-201-12227-8.

Scholer, F., H. E. Williams, J. Yiannis, and J. Zobel (2002). “Compression of Inverted
Indexes For Fast Query Evaluation”. In: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
222–229. isbn: 1-58113-561-0. doi: 10.1145/564376.564416.

Shan, D., S. Ding, J. He, H. Yan, and X. Li (2012). “Optimized Top-k Processing with
Global Page Scores on Block-max Indexes”. In: Proceedings of the 5th ACM International
Conference on Web Search and Data Mining. ACM. 423–432. isbn: 978-1-4503-0747-5.
doi: 10.1145/2124295.2124346.

Sharp, T. (2008). “Implementing Decision Trees and Forests on a GPU”. In: Proc. Computer
Vision. Springer. 595–608. isbn: 978-3-540-88693-8. doi: 10.1007/978-3-540-88693-8_44.

Shieh, W.-Y., T.-F. Chen, J. J.-J. Shann, and C.-P. Chung (2003). “Inverted File Compres-
sion Through Document Identifier Reassignment”. Inf. Process. Manage. 39(1): 117–131.
issn: 0306-4573. doi: 10.1016/S0306-4573(02)00020-1.

Silverstein, C., H. Marais, M. Henzinger, and M. Moricz (1999). “Analysis of a Very Large
Web Search Engine Query Log”. SIGIR Forum. 33(1): 6–12. issn: 0163-5840. doi:
10.1145/331403.331405.

Silvestri, F. (2007). “Sorting out the Document Identifier Assignment Problem”. In: Pro-
ceedings of the 29th European Conference on IR Research. Springer. 101–112. isbn:
978-3-540-71494-1. doi: 10.1007/978-3-540-71496-5_12.

Silvestri, F., S. Orlando, and R. Perego (2004). “Assigning Identifiers to Documents to
Enhance the Clustering Property of Fulltext Indexes”. In: Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 305–312. isbn: 1-58113-881-4. doi: 10.1145/1008992.1009046.

Smeaton, A. F. and C. J. van Rijsbergen (1981). “The Nearest Neighbour Problem in
Information Retrieval: An Algorithm Using Upperbounds”. In: Proceedings of the 4th
Annual International ACM SIGIR Conference on Information Storage and Retrieval.
ACM. 83–87. isbn: 0-89791-052-4. doi: 10.1145/511754.511767.

128

http://dx.doi.org/10.1145/2484028.2484085
http://dx.doi.org/10.1109/DANTE.1999.844958
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1145/564376.564416
http://dx.doi.org/10.1145/2124295.2124346
http://dx.doi.org/10.1007/978-3-540-88693-8_44
http://dx.doi.org/10.1016/S0306-4573(02)00020-1
http://dx.doi.org/10.1145/331403.331405
http://dx.doi.org/10.1007/978-3-540-71496-5_12
http://dx.doi.org/10.1145/1008992.1009046
http://dx.doi.org/10.1145/511754.511767

Snowdon, D. C., S. Ruocco, and G. Heiser (2005). “Power Management and Dynamic
Voltage Scaling: Myths and Facts”. In: Proc. Workshop on Power Aware Real-time
Computing.

Sorokina, D. and E. Cantú-Paz (2016). “Amazon Search: The Joy of Ranking Products”. In:
Proceedings of the 39th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 459–460. isbn: 978-1-4503-4069-4. doi:
10.1145/2911451.2926725.

Stepanov, A. A., A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi (2011). “SIMD-
based Decoding of Posting Lists”. In: Proceedings of the 20th ACM International
Conference on Information and Knowledge Management. ACM. 317–326. isbn: 978-1-
4503-0717-8. doi: 10.1145/2063576.2063627.

Strohman, T. (2007). “Efficient Processing of Complex Features for Information Retrieval”.
Strohman, T. and W. B. Croft (2006). “Low Latency Index Maintenance in Indri”. In:

Proceedings of the Open Source Information Retrieval Workshop.
Strohman, T. and W. B. Croft (2007). “Efficient Document Retrieval in Main Memory”. In:

Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 175–182. isbn: 978-1-59593-597-7. doi:
10.1145/1277741.1277774.

Strohman, T., H. Turtle, and W. B. Croft (2005). “Optimization Strategies for Complex
Queries”. In: Proceedings of the 28th International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 219–225. isbn: 1-59593-034-5. doi:
10.1145/1076034.1076074.

Tang, X., X. Jin, and T. Yang (2014). “Cache-conscious Runtime Optimization for Ranking
Rnsembles”. In: Proceedings of the 37th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 1123–1126. isbn: 978-1-4503-
2257-7. doi: 10.1145/2600428.2609525.

Tatikonda, S., B. B. Cambazoglu, and F. P. Junqueira (2011). “Posting List Intersection
on Multicore Architectures”. In: Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 963–972.
isbn: 978-1-4503-0757-4. doi: 10.1145/2009916.2010045.

Teymorian, A., O. Frieder, and M. A. Maloof (2013). “Rank-energy Selective Query For-
warding for Distributed Search Systems”. In: Proceedings of the 2nd ACM International
Conference on Information & Knowledge Management. ACM. 389–398. isbn: 978-1-
4503-2263-8. doi: 10.1145/2505515.2505710.

Tonellotto, N., C. Macdonald, and I. Ounis (2010). “Efficient Dynamic Pruning with
Proximity Support”. In: Proceedings of the 8th Workshop on Large-Scale Distributed
Systems for Information Retrieval. 31–35.

129

http://dx.doi.org/10.1145/2911451.2926725
http://dx.doi.org/10.1145/2063576.2063627
http://dx.doi.org/10.1145/1277741.1277774
http://dx.doi.org/10.1145/1076034.1076074
http://dx.doi.org/10.1145/2600428.2609525
http://dx.doi.org/10.1145/2009916.2010045
http://dx.doi.org/10.1145/2505515.2505710

Tonellotto, N., C. Macdonald, and I. Ounis (2011). “Effect of Different Docid Orderings
on Dynamic Pruning Retrieval Strategies”. In: Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
1179–1180. isbn: 978-1-4503-0757-4. doi: 10.1145/2009916.2010108.

Tonellotto, N., C. Macdonald, and I. Ounis (2013). “Efficient and Effective Retrieval Using
Selective Pruning”. In: Proceedings of the 6th ACM International Conference on Web
Search and Data Mining. ACM. 63–72. isbn: 978-1-4503-1869-3. doi: 10.1145/2433396.
2433407.

Trofimov, I., A. Kornetova, and V. Topinskiy (2012). “Using Boosted Trees for Click-through
Rate Prediction for Sponsored Search”. In: Proceedings of the 6th International Workshop
on Data Mining for Online Advertising and Internet Economy. ACM. 2:1–2:6. isbn:
978-1-4503-1545-6. doi: 10.1145/2351356.2351358.

Trotman, A. (2014). “Compression, SIMD, and Postings Lists”. In: Proceedings of the 19th
Australasian Document Computing Symposium. ACM. 50:50–50:57. isbn: 978-1-4503-
3000-8. doi: 10.1145/2682862.2682870.

Trotman, A. and J. Lin (2016). “In Vacuo and In Situ Evaluation of SIMD Codecs”. In:
Proceedings of the 21st Australasian Document Computing Symposium. ACM. 1–8. isbn:
978-1-4503-4865-2. doi: 10.1145/3015022.3015023.

Tu, Z., M. Li, and J. Lin (2018). “Pay-Per-Request Deployment of Neural Network Models
Using Serverless Architectures”. In: Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics. ACL. 6–10. isbn: 978-1-948087-
28-5. doi: 10.18653/v1/N18-5002.

Turtle, H. and J. Flood (1995). “Query Evaluation: Strategies and Optimizations”. Inf.
Process. Manage. 31(6): 831–850. issn: 0306-4573. doi: http://dx.doi.org/10.1016/0306-
4573(95)00020-H.

Van Essen, B., C. Macaraeg, M. Gokhale, and R. Prenger (2012). “Accelerating a Random
Forest Classifier: Multi-core, GP-GPU, or FPGA?” In: Proceedings of the IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines. IEEE.
232–239. isbn: 978-1-4673-1605-7. doi: 10.1109/FCCM.2012.47.

Vigna, S. (2013). “Quasi-succinct Indices”. In: Proceedings of the 6th ACM International
Conference on Web Search and Data Mining. ACM. 83–92. isbn: 978-1-4503-1869-3. doi:
10.1145/2433396.2433409.

Vogt, C. C. and G. W. Cottrell (1998). “Predicting the Performance of Linearly Combined IR
Systems”. In: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM. 190–196. isbn: 1-58113-015-5.
doi: 10.1145/290941.290991.

130

http://dx.doi.org/10.1145/2009916.2010108
http://dx.doi.org/10.1145/2433396.2433407
http://dx.doi.org/10.1145/2433396.2433407
http://dx.doi.org/10.1145/2351356.2351358
http://dx.doi.org/10.1145/2682862.2682870
http://dx.doi.org/10.1145/3015022.3015023
http://dx.doi.org/10.18653/v1/N18-5002
http://dx.doi.org/http://dx.doi.org/10.1016/0306-4573(95)00020-H
http://dx.doi.org/http://dx.doi.org/10.1016/0306-4573(95)00020-H
http://dx.doi.org/10.1109/FCCM.2012.47
http://dx.doi.org/10.1145/2433396.2433409
http://dx.doi.org/10.1145/290941.290991

Wang, J., E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu (2013). “The Impact of Solid State
Drive on Search Engine Cache Management”. In: Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
693–702. isbn: 978-1-4503-2034-4. doi: 10.1145/2484028.2484046.

Wang, L., J. Lin, and D. Metzler (2010). “Learning to Efficiently Rank”. In: Proceedings of the
33rd International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 138–145. isbn: 978-1-4503-0153-4. doi: 10.1145/1835449.1835475.

Wang, L., J. Lin, and D. Metzler (2011). “A Cascade Ranking Model for Efficient Ranked
Retrieval”. In: Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 105–114. isbn: 978-1-4503-0757-4.
doi: 10.1145/2009916.2009934.

White, R. W. (2016). Interactions with Search Systems. Cambridge University Press. isbn:
9781139525305.

Williams, H. E. and J. Zobel (1999). “Compressing Integers for Fast File Access”. The
Computer Journal. 42: 193–201.

Witten, I. H., A. Moffat, and T. C. Bell (1999). Managing Gigabytes (2nd ed.) Morgan
Kaufmann Publishers Inc. isbn: 1-55860-570-3.

Wong, W. Y. P. and D. L. Lee (1993). “Implementations of Partial Document Ranking
Using Inverted Files”. Inf. Process. Manage. 29(5): 647–669.

Wu, D., F. Zhang, N. Ao, G. Wang, X. Liu, and J. Liu (2010). “Efficient Lists Intersection
by CPU-GPU Cooperative Computing”. In: IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum. IEEE. 1–8. isbn: 978-1-4244-6533-0.
doi: 10.1109/IPDPSW.2010.5470886.

Wu, H. and H. Fang (2014). “Analytical Performance Modeling for Top-K Query Processing”.
In: Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management. ACM. 1619–1628. isbn: 978-1-4503-2598-1. doi: 10.1145/
2661829.2661931.

Xu, J. and H. Li (2007). “AdaRank: A Boosting Algorithm for Information Retrieval”. In:
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 391–398. isbn: 978-1-59593-597-7. doi:
10.1145/1277741.1277809.

Yan, H., S. Ding, and T. Suel (2009a). “Compressing Term Positions in Web Indexes”.
In: Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 147–154. isbn: 978-1-60558-483-6. doi:
10.1145/1571941.1571969.

Yan, H., S. Ding, and T. Suel (2009b). “Inverted Index Compression and Query Process-
ing with Optimized Document Ordering”. In: Proceedings of the 18th International
Conference on World Wide Web. International World Wide Web Conferences Steering
Committee. 401–410. isbn: 978-1-60558-487-4. doi: 10.1145/1526709.1526764.

131

http://dx.doi.org/10.1145/2484028.2484046
http://dx.doi.org/10.1145/1835449.1835475
http://dx.doi.org/10.1145/2009916.2009934
http://dx.doi.org/10.1109/IPDPSW.2010.5470886
http://dx.doi.org/10.1145/2661829.2661931
http://dx.doi.org/10.1145/2661829.2661931
http://dx.doi.org/10.1145/1277741.1277809
http://dx.doi.org/10.1145/1571941.1571969
http://dx.doi.org/10.1145/1526709.1526764

Yin, D., Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng, C.
Nobata, J.-M. Langlois, and Y. Chang (2016). “Ranking Relevance in Yahoo Search”.
In: Proceedings of the 22nd ACM International Conference on Knowledge Discovery and
Data Mining. ACM. 323–332. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939677.

Zobel, J. and A. Moffat (2006). “Inverted Files for Text Search Engines”. ACM Comp. Surv.
38(2). issn: 0360-0300. doi: 10.1145/1132956.1132959.

Zobel, J., A. Moffat, and K. Ramamohanarao (1998). “Inverted Files Versus Signature Files
for Text Indexing”. ACM Trans. Database Syst. 23(4): 453–490. issn: 0362-5915. doi:
10.1145/296854.277632.

Zukowski, M., S. Heman, N. Nes, and P. Boncz (2006). “Super-Scalar RAM-CPU Cache
Compression”. In: Proceedings of the 22nd International Conference on Data Engineering.
IEEE. 59–70. isbn: 0-7695-2570-9. doi: 10.1109/ICDE.2006.150.

132

http://dx.doi.org/10.1145/2939672.2939677
http://dx.doi.org/10.1145/1132956.1132959
http://dx.doi.org/10.1145/296854.277632
http://dx.doi.org/10.1109/ICDE.2006.150

	Introduction
	Modern Infrastructure Foundations
	Data Structures
	Query Processing
	Summary

	Dynamic Pruning Query Processing
	Introduction to Dynamic Pruning
	TAAT Optimisations
	DAAT Optimisations
	Block-based Dynamic Pruning
	Limitations of Dynamic Pruning
	Summary

	Query Efficiency Prediction for Dynamic Pruning
	Implementations of Query Efficiency Prediction
	Delayed Query Efficiency Prediction
	Query Efficiency Prediction Applications
	Summary

	Impact-Sorted Indexes
	Data Structures
	Query Processing
	Summary

	Learning-to-Rank & Cascades
	Candidate Generation for Learning-to-Rank
	Feature Calculation in Learning-to-Rank
	Application of Learning-to-Rank Models
	Summary

	Open Directions & Conclusions
	Summary
	Signatures
	Energy Efficiency
	Modern Hardware Architectures
	Clouds and New Software Paradigms
	Real-Time and Social Media Search

	Acknowledgements
	References

