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Abstract Web search engines are increasingly deploying many features, com-
bined using learning to rank techniques. However, various practical questions
remain concerning the manner in which learning to rank should be deployed.
For instance, a sample of documents with sufficient recall is used, such that re-
ranking of the sample by the learned model brings the relevant documents to
the top. However, the properties of the document sample such as when to stop
ranking – i.e. its minimum effective size – remain unstudied. Similarly, effective
listwise learning to rank techniques minimise a loss function corresponding to
a standard information retrieval evaluation measure. However, the appropriate
choice of how to calculate the loss function – i.e. the choice of the learning
evaluation measure and the rank depth at which this measure should be cal-
culated – are as yet unclear. In this paper, we address all of these issues by
formulating various hypotheses and research questions, before performing ex-
haustive experiments using multiple learning to rank techniques and different
types of information needs on the ClueWeb09 and LETOR corpora. Among
many conclusions, we find, for instance, that the smallest effective sample for a
given query set is dependent on the type of information need of the queries, the
document representation used during sampling and the test evaluation mea-
sure. As the sample size is varied, the selected features markedly change - for
instance, we find that the link analysis features are favoured for smaller doc-
ument samples. Moreover, despite reflecting a more realistic user model, the
recently proposed ERR measure is not as effective as the traditional NDCG as
a learning loss function. Overall, our comprehensive experiments provide the
first empirical derivation of best practices for learning to rank deployments.
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1 Introduction

Learning to rank (Liu 2009) is gaining increasing attention in information
retrieval (IR), with machine learning techniques being used to learn an appro-
priate combination of features into an effective ranking model. An increasing
amount of research is devoted to developing efficient and effective learning
techniques, while major search engines reportedly deploy ranking models con-
sisting of hundreds of features (Pederson 2010; Segalovich 2010).

Nevertheless, the manner in which learning to rank is deployed within real
settings has not seen published discussion. For instance, learning to rank in-
volves the use of a sample of top-ranked documents for a given query (Liu
2009), which are then re-ranked by the learned model before display to the
user. However, in the literature, the properties of an effective sample are not
clear. Indeed, despite his thorough treatment of existing learning to rank tech-
niques, Liu (2009) does not address in detail how the sample should be made
within an existing deployment, what document representation should be de-
ployed when generating the sample (e.g. in addition to the body of the doc-
ument, should anchor text be included or not?), nor how many documents it
should contain.

Typically, a standard weighting model, such as BM25 (Robertson et al
1992), is used to rank enough documents to obtain sufficient recall. Yet there is
a great variation in the literature and existing test collections about how many
documents should be re-ranked when learning models or deploying previously
learned models, with large sample sizes such as “tens of thousands” (Chapelle
et al 2011), 5000 (Craswell et al 2010), 1000 (Qin et al 2009) as well as small
samples such as 200 (Zhang et al 2009) or even 20 (Chapelle and Chang 2011)
observed. However, as we will show in this paper, such small samples can result
in learned models with significantly degraded effectiveness.

On the other hand, reducing the size of the sample has various efficiency
benefits. In particular, if document-at-a-time (DAAT) matching techniques
such as Wand (Broder et al 2003) are used to identify the sample of K docu-
ments within the search engine, then using a smaller K (i.e. a smaller sample)
can markedly increase efficiency compared to a larger K (Broder et al 2003).
Moreover, the number of feature computations are decreased for smaller K.
Lastly, for environments where learning time is critical, the use of smaller sam-
ples markedly reduces the learning time of many learning to rank techniques
such as AFS (Metzler 2007) and RankBoost (Freund et al 2003).

Another issue concerns the loss function that learning to rank techniques
deploy to produce effective models. In particular, listwise techniques, which di-
rectly use an IR evaluation measure for the loss function are often the most ef-
fective (Liu 2009). However, the choice of this learning evaluation measure and
the rank cutoff to which it is computed during learning may have a noticeable
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impact on the effectiveness of the learned model on unseen data. Nonetheless,
there has not been much work on such issues – for instance, while Robertson
(2008) provided theoretical speculations, Donmez et al (2009) observed that
matching the learning measure with the test measure results in the best test
accuracy in presence of “enough” training data. This was contradicted by Yil-
maz and Robertson (2010), who observed that “enough” training data may
not always be present. Overall, the lack of agreement in the existing literature
suggests the necessity of a thorough empirical study.

Our work is the first study into best practices in a real deployment of
learning to rank. In particular, the contributions of this work are three-fold:

1. We propose an experimental methodology for investigating the size of the
document sample as well as the choice and the rank cutoff of the evaluation
measure deployed during learning;

2. We thoroughly experiment with multiple learning to rank techniques across
several query sets covering both diverse information needs and corpora,
namely the existing LETOR v3.0 GOV learning to rank test collection and
the TREC Web track ClueWeb09 corpus;

3. From these experiments, we derive empirically identified recommendations
on the sample size and the learning evaluation measure. In particular, three
research themes are addressed in this paper, namely: the properties of the
sample; the role of the learning evaluation measure; and the interaction
between the learning evaluation measure cutoff and the sample size.

Through exhaustive experimentation across these three research themes, we
investigate how the effectiveness of the learned model is affected by:

– the document representation used to generate the sample and the size of
the sample;

– the learning to rank technique and the sample size;
– the type of information need and the sample size;
– the learning evaluation measure;
– the rank cutoff of the learning evaluation measure.

Among many conclusions, we find, for instance, that on the larger ClueWeb09
corpus the minimum effective sample can be as low as 10-20 documents for
the TREC 2009 and 2010 Web track queries. However, surprisingly, a sample
size of 1500 documents is necessary to ensure effective retrieval for naviga-
tional information needs on the same corpus. Moreover, for the same navi-
gational information needs, we also show the importance of including anchor
text within the document representation used to generate the sample. Finally,
the test evaluation measure is shown to be important, as evaluation by the
ERR cascade measure (Chapelle et al 2009) (which penalises redundancy)
is shown to permit smaller effective samples than for other measures such
as NDCG (Järvelin and Kekäläinen 2002) and MAP (Buckley and Voorhees
2000). As for the choice of the learning loss function, despite reflecting a more
realistic user model, ERR is not as effective as NDCG, even when ERR is the
target test measure. Indeed, our results provide additional insights into the
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ongoing aforementioned debate on whether the test measure is actually the
most suitable for learning.

The remainder of the paper is structured as follows: Section 2 discusses
related work and elaborates on the research themes that we study in this ar-
ticle; Section 3 describes the proposed experimental methodology that allows
hypotheses concerning our research themes for learning to rank techniques
to be validated; In Section 4, we define the experimental setup; Experimen-
tal results and analysis follow in Section 5; Concluding remarks are made in
Section 6.

2 Problem Definitions

Learning to rank is the application of machine learning techniques to gener-
ate a learned model combining different document features in an information
retrieval system (Liu 2009). For instance, learning to rank techniques are of-
ten applied by Web search engines, to combine various document weighting
models and other query-independent features (Pederson 2008). The form of
the model generated by different learning to rank techniques differs in nature:
for some, it is a vector of weights for linearly combining each feature (Met-
zler 2007; Xu and Li 2007); for others it can represent a learned neural net-
work (Burges et al 2005), or a series of regression trees (Weinberger et al
2010). Regardless of the applied technique, the general steps for obtaining
a learned model using a learning to rank technique are the following (Liu
2009):

0. Pooling: For each query in a training set, documents for which human rele-
vance assessments are obtained are identified using a pooling methodology.
By combining a diverse set of retrieval systems for each query (Voorhees
and Harman 2005), a high quality pool can be obtained.

1. Top K Retrieval: For a set of training queries, generate a sample of docu-
ments using an initial retrieval approach.

2. Feature Extraction: For each document in the sample, extract a vector of
feature values. A feature is a binary or numerical indicator representing
the quality of a document, or its relation to the query.

3. Learning: Learn a model by applying a learning to rank technique. Each
technique deploys a different loss function to estimate the goodness of
various combinations of features. Documents are labelled according to the
relevance assessments identified in step (0).

In practice, step (0) may have been performed separately – for instance, by
reusing relevance assessments created as part of the TREC evaluation forum
– or can be integrated into the general learning process, using active learn-
ing approaches to select additional documents to be assessed (Donmez and
Carbonell 2009; Long et al 2010).

Once a learned model has been obtained from the above learning steps, it
can be deployed within a search engine as follows:
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Fig. 1 The three steps when deploying a learned model in a search engine setting.

4. Top K Retrieval: For an unseen test query, a sample of documents is gen-
erated in the same manner as in step (1),

5. Feature Extraction: As in step (2), a vector of feature values is extracted
for each document in the sample. The set of features should be exactly the
same as for step (2).

6. Learned Model Application: The final ranking of documents for the query is
obtained by applying the learned model on every document in the sample,
and sorting by descending predicted score.

Figure 1 illustrates steps (4) - (6) of deploying a learned model in a search
engine setting.

Of all seven steps, feature extraction (steps (2) and (5)) defines the features
deployed by the search engine. As there are countless possible features from
the body of information retrieval (IR) literature, we assume a standard set of
features, therefore the efficient and effective calculation of these features are
not considered in this discussion. On the other hand, step (6) is a straightfor-
ward application of the learned model to the vectors of feature values for each
document in the sample (e.g. calculating the dot product of the document’s
feature values with the feature weights of the learned model to obtain the final
document score), and hence there is little that can be altered to vary efficiency
or effectiveness. Therefore, in this paper, we concentrate on the generation of
the sample (steps (1) and (4)) and on the actual learning process (step (3)).
In particular, the generation of a sample in step (1) is important, since for effi-
ciency reasons, it is impractical to apply learning to rank on the entire corpus,
nor even on the union of all documents containing any query term. Moreover,
efficiency benefits may be obtained by minimising the size of the sample, both
during learning and application.

However, the appropriate properties of the sample have not been the sub-
ject of much investigation. Moreover, the effectiveness of the model generated
in step (3) is of utmost importance. Indeed, learning to rank techniques that
deploy standard IR evaluation measures as their loss functions are often among
the most effective (Liu 2009). However, while the effectiveness of the learned
model is reported to depend on the choice of the measure (Robertson 2008),
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this aspect has not seen much empirical treatment within the learning to rank
literature, and - as mentioned in Section 1 - even brought inconsistent obser-
vations (Donmez et al 2009; Yilmaz and Robertson 2010). In the following,
we expand on both the role of the sample (Section 2.1) and the role of the
learning evaluation measure (Section 2.2), to form research themes around
which hypotheses and research questions are postulated. The hypotheses and
research questions of each research theme are later investigated in Section 5.

2.1 Sample

In this section, we define the motivations for sampling (Section 2.1.1), as well
as reviewing the manner in which the sampling is performed in the literature
(Section 2.1.2). We also review the tradeoff between the quality and the size
of the sample (Section 2.1.3), as well as how the sample has been obtained in
existing learning to rank test collections (Section 2.1.4). We use this discussion
to motivate several hypotheses and research questions, which are defined in
Section 2.1.4.

2.1.1 Why Sample?

The sample is a set of documents collected for each query, before learning
(step (1)) or before applying a learned model (step (4)). The motivations for
the sample primarily occur for the efficient application of a learned model, but
also has particular uses during learning, as detailed below. In the following, we
provide the motivations for the use of sampling, ordered by their importance,
across steps (4), (1) and also step (0).

Sampling for Applying a Learned Model (step (4)): As mentioned
above, a sample is used during the application of a learned model to reduce the
size of the number of documents for which features are calculated (Liu 2009),
by using an initial ranking approach to identify a set of documents that are
likely to contain the relevant documents (Liu (2009) refers to the sample as
a set of “possibly relevant documents”). Minimising the number of documents
for which features are calculated provides efficiency advantages, particularly
if some features are expensive to compute (e.g. proximity features (Metzler
and Croft 2005)). Moreover, when a document-at-a-time (DAAT) retrieval
strategy such as Wand (Broder et al 2003) is used to identify the sample
of documents in step (4), minimising the number of documents in the sample
benefits efficiency by permitting Wand to omit the scoring of more documents
that are unlikely to make the final sample (Broder et al 2003).

Sampling for Learning (step (1)): The use of a sample in learning has
some similar motivations to its use within a deployed search engine. Indeed,
even during learning, it is impractical to extract feature vectors for all doc-
uments in the corpus (Liu 2009). Following other supervised learning tasks
such as classification and regression, a sample constitutes representative train-
ing data from which an effective learned model can be obtained. However, in
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Fig. 2 Learning time (c.f. step (3)) for several learning to rank techniques, namely Au-
tomatic Feature Selection (AFS) (Metzler 2007), RankBoost (Freund et al 2003) and
RankNet (Burges et al 2005). Learning is applied for 75 features for a range of sample
sizes.

contrast to the other supervised tasks, in learning to rank, it is not the case
that every example document in the training data is independent and identi-
cally distributed (i.i.d). Indeed, the documents associated to each query in the
sample form a group - the groups are i.i.d., however, the documents within a
group are not i.i.d. (Li 2011). Instead, the documents should be identified in a
deterministic manner (Li 2011). Finally, the learning time of many learning to
rank techniques (step (3)) increases as the number of documents in the sample
increases. Indeed, Figure 2 shows the learning time for several learning to rank
techniques as the sample size increases. For instance, for the AFS learning to
rank technique (Metzler 2007) using NDCG@10 as the learning evaluation
measure, the learning time for a sample of 2000 documents is twice that for
1000 documents (1208 seconds vs. 604 seconds). Hence, if available resources
for offline learning are limited, it may be desirable to reduce the learning time
by constraining the size of the sample, providing there is no resulting loss in
effectiveness when using a smaller sample.

Sampling for Pooling (step (0)): Some work from the literature (e.g.
(Aslam et al 2009)) merge the notion of sampling for learning (step (1)) with
sampling for producing relevance assessments (step (0)). In particular, the
building of a high quality test collection involves the use of multiple different

retrieval systems contributing documents to an assessment pool for each query.
Each document in the pool is then assessed for its relevance. In this work, we
assume that high quality relevance assessments are already available. In this
way, we restrict the notion of sampling to refer only to the identification of
documents during steps (1) and (4) above, and not for identifying those that
should be assessed for relevance before learning can occur.

2.1.2 How to Sample?

Different strategies can be used to create the sample. For instance, in the
LETOR v3.0 learning to rank test collection (Qin et al 2009), the top 1000
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Relevant docid BM25 PageRank URL-length
✔ 20 4.9 3.8 3
✗ 45 4.8 3.9 8
✔ 19 4.3 3.7 2
✗ 8 4.1 3.3 5
✗ 38 4.0 3.3 3
...
✔ 7 0 1.3 5
✔ 4 0 3.8 5

Table 1 Example of biased sampling strategy.

documents are sampled using BM25 computed on a document representation
that includes the body of the documents and the anchor text of their incom-
ing hyperlinks. Cambazoglu et al (2010) also used BM25 to create the sample.
Liu (2009) does not provide any more details on how the sample should be
obtained, but instead, simply states that while using BM25 alone to produce
the sample is sufficient, it may not be the best approach. Hence, there are
no empirically established guidelines for how to sample, nor for the properties
of an effective sample for deploying learning to rank within a search engine.
In this work, we investigate the use of anchor text in the documentation rep-
resentation used by the sample, to determine its impact on the recall of the
sample, and the effectiveness of the resulting learned models.

In the earlier LETOR v2.0 test collection, the sample included relevant doc-
uments from the pooled TREC relevance assessments, in addition to the top-
ranked documents according to BM25. However, Minka and Robertson (2008)
noted a bias in this document sampling strategy. In particular, it was observed
that a learning to rank technique found a negative feature weight for BM25 to
be effective, as this allowed relevant documents not present in the BM25 sam-
ple to be easily identified. On the other hand, such a learned model would not
be effective on a sample obtained using BM25 alone, as it would rank highly
documents with low BM25 scores, despite the fact that these are likely to be ir-
relevant. To illustrate this sample selection bias, Figure 1 provides an example
learning sample with features, where a selection of top-ranked documents have
been identified using the BM25 weighting model within step (1). Two relevant
documents (docid 4 & 7) have been added to the sample, in the hope that their
presence will permit the learning to rank technique to learn how to rank these
documents highly. However, their presence can cause bias within the obtained
learned model, which may identify that these relevant documents can be highly
ranked simply by identifying documents with the lowest BM25 score. Such a
learned model would not perform well on a sample obtained from step (4) using
BM25 alone, as it would highly rank documents with the lowest BM25 scores.

Other works in the literature have made use of active learning in the iden-
tification of sample during learning (Donmez and Carbonell 2009; Long et al
2010). By adapting approaches previously used for sampling examples for
learning classifiers, it is shown that effective models can be obtained with less
documents considered during learning. However, neither of these works ex-
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amine how the properties of sample are affected, such that the distribution of
documents in the training samples remains comparable to that observed in the
sample on which the learned model will be applied, to ensure that sample selec-
tion bias does not occur. In this work, our realistic setting always ensures that
we obtain learned models from training samples that are identified in the same
manner as the samples for test queries. For this reason, we do not consider it
advantageous to sub-sample the learning samples, such as using active learning
approaches, as their impact on the generality of the models remains unclear.

Aslam et al (2009) compared different strategies for sampling documents,
by combining sampling for pooling and sampling for learning (steps (0) &
(1)). In particular, strategies that pooled documents from multiple different
retrieval systems (in this case participating systems in TREC 6-8) were found
to generate high quality document samples. However, we argue that using mul-
tiple retrieval systems to generate the sample for learning may incur a similar
bias to that reported by Minka and Robertson (2008) when the learned model
is deployed using features obtained from a single system. Moreover, such strate-
gies are not re-usable in a deployed search engine setting, as multiple different
systems are not necessarily available with which to generate the sample. In
this respect, Chapelle et al (2011) noted that such approaches from the learn-
ing to rank literature only consider “an offline reranking scenario”. Naturally,
the approach of Aslam et al (2009) could potentially be achieved using mul-
tiple retrieval models for generating the sample instead of multiple systems.
However, in practice, it is the diversity of entirely different retrieval systems
rather than different retrieval models that contribute to the quality of a test
collection pool (Beitzel et al 2004; Zobel 1998).

In this work, we aim to learn an effective model for a given search engine.
For this reason, we assume a realistic scenario, as identified from the literature,
which we summarise as follows: The sample for applying the learned model
(step (4)) should be generated by only a single feature (e.g. BM25) from the
single system at hand (Chapelle et al 2011); The sample for learning (step
(1)) should have the same number of documents as for applying the learned
model and generated using the same method (Liu 2009), to ensure a similar
distribution of documents in the training and test samples; We assume that
sampling for pooling (step (0)) has occurred independently of the learning
to rank process, such that relevance assessments are already available for the
documents in the sample, while to avoid sample selection bias, no additional
relevant documents are added to the sample (Minka and Robertson 2008).

2.1.3 Quality vs. Quantity

It is intuitive that the strategy used to create the sample of documents to
re-rank will impact on the effectiveness of the learned model. In particular, to
maximise the effectiveness of the learned model, the recall of the sample should
be as high as possible, as this maximises the potential for the learned model
to promote the relevant documents to the top of the ranking. To achieve this
objective, two alternative strategies are possible: either the approach used to
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generate the sample should be as effective as possible, or the sample should
be large enough to achieve sufficient recall.

The natural way to improve the effectiveness of the sample would be to
introduce more features into the ranking process, such that a sample with
higher recall for the same number of documents is obtained. However, this
induces a recursive application of learning to rank, i.e. learning to rank would
be required to generate a sample on which to apply learning to rank.

Instead – as discussed in Section 2.1.2 – the normal practice is to select
many documents ranked by a standard weighting model (e.g. BM25) (Cam-
bazoglu et al 2010; Qin et al 2009). By considering a large number of docu-
ments for the sample, the recall of the sample is increased, and it is hoped
that the learned model can re-rank highly the relevant documents that were
not present in the smaller sample. However, larger samples would typically
contain more irrelevant documents, with the proportion of newly identified
relevant documents compared to irrelevant ones diminishing as the size of the
sample increases. For some learning to rank techniques, we postulate that the
high imbalance between relevant and irrelevant documents brought by a large
sample may hinder the learning of an effective learned model.

In terms of the quality of the document sample, we consider that the choice
of the document representation used for obtaining the sample may have an
impact upon effectiveness. In particular, adding anchor text to the document
representation can alleviate the vocabulary mismatch problem (Plachouras
2006), while also permitting easier identification of the relevant documents
for navigational queries (Hawking et al 2004). However, adding anchor text
to the document representation used to generate the sample can significantly
change the documents retrieved in the sample, and may not lead to similar
improvements for non-navigational queries (Plachouras 2006).

In summary, a smaller, more precise sample could be used, but this boils
down to iterative applications of learning to rank. Instead, using a larger, less
precise sample leads to the same relevant documents being present as in a
smaller, more precise sample. However, a larger sample incurs the expense of
further irrelevant documents and decreased efficiency, in terms of deployment
and learning times (as illustrated by Figure 2). Hence, in the next section, we
discuss how the size of the sample has been addressed in previous works.

2.1.4 How much Quantity?

Assuming that the sample should be generated by a single system using a
standard weighting model - as per Section 2.1.2 - we aim to determine how
many documents should be considered in the sample to obtain sufficient recall
to allow effective learned models to be obtained.

In general, recall is an area which has seen less work within IR, primarily
because precision is deemed the most important aspect in many search appli-
cations. Notable exceptions are the types of information needs present within
the patent (Piroi and Zenz 2011) and legal search (Tomlinson and Hedin 2011)
domains where recall is an overriding important aspect. To this end, models are
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Table 2 Existing learning to rank test collections. Unspec. is stated when the relevant
literature does not specify the size of the corpus or the information need represented by the
test collection.

Test Collection
Corpus

Query Set
Information Num. Num. Ave. Ave.

Name Size Need Queries Features Sample Rel.

LETOR v3.0

GOV 1M NP03 Nav. 150 64 991.0 1.03
GOV 1M NP04 Nav. 75 64 984.5 1.05
GOV 1M HP03 Nav. 150 64 984.0 1.26
GOV 1M HP04 Nav. 75 64 992.1 1.10
GOV 1M TD03 Inf. 50 64 981.2 8.31
GOV 1M TD04 Inf. 75 64 988.6 14.88

Ohsumed 350K - Inf. 106 45 152.3 46.0

LETOR v4.0
GOV2 25M MQ2007 Unspec. 1,692 46 41.1 12.4
GOV2 25M MQ2008 Unspec. 784 46 19.4 5.2

MSLR Web Unspec. 10k Unspec. 10,000 136 120.0 59.47
MSLR Web Unspec. 30k Unspec. 30,000 136 119.6 59.9
Yandex IMAT 2009 Web Unspec. - Unspec. 9,124 245 10.6 4.9
Yahoo! LTR Challenge Web Unspec. - Unspec. 10,871 699 23.9 19.57

being developed to determine when to terminate a ranked list while ensuring
recall (Arampatzis et al 2009).

To provide an overview of the sample size used in the literature for various
types of information needs, Table 2 quantifies the samples in existing learning
to rank test collections. It also reports the type of information needs addressed
in each query set, in terms of informational (denoted Inf.), or navigational
(Nav.). For some test collections, the particular information need addressed is
not specified in the associated literature (Unspec.).

From Table 2 and the literature, we observe that two ranges of sample size
are commonly used:

– Large Samples (≥ 1000 documents): Samples of 1000 documents are
used by the early LETOR test collections (v3.0 and before) (Qin et al
2009). Indeed, for the TREC GOV collection, it was previously claimed
that 1000 documents are sufficient for combining BM25 and PageRank,
without loss of effectiveness (Craswell et al 2005). Craswell et al (2010) used
a sample of 5000 documents for retrieval from the 500 million documents of
the ClueWeb09 collection, but without justification. Chapelle et al (2011)
anecdotally report sample sizes of “tens of thousands of documents”.

– Small Samples (≤ 200 documents): From Table 2, we observe that
various learning to rank test collections have mean sample sizes of 120
documents or less (e.g. LETOR v4.0, MSLR), with some as few as 10
documents per query (Yandex), even when sampled from the entire Web.
Similarly, Zhang et al (2009) used a sample of 200 documents ranked by
BM25 and PageRank from a Web search engine.

It is noticeable that while for many of the query sets the type of information
need addressed is not specified, we expect these to include both information
and navigational needs, perhaps for the same query. Indeed, similar to recent
TREC Web track test collections (Clarke et al 2010, 2011), there is a trend
towards using multiple relevance label grades to address different possible in-
formation needs for the same query. For example, for the query ‘University
of Glasgow’, the University’s home page would be labelled 4 (‘perfect’), rep-
resenting the best answer for the navigational information need of a typical
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user, while the Wikipedia entry about the University would be labelled 3 (‘ex-
cellent’). Documents not discussing the University would be judged irrelevant
(labelled 0). The high mean numbers of relevant documents for query sets such
as MSLR, Yandex and Yahoo! LTR Challenge in Table 2 are indicative that
labelling with multiple relevance grades is used for these datasets. However,
we observe no relationship between the type of information need and the size
of the sample used within the existing learning to rank test collections.

Overall, there is clearly a lack of evidence on the appropriate size of the
document sample for effective learning. Hence, in this work, as the first of three
research themes, we formulate and validate several hypotheses relating to the
sample, allowing us to empirically determine the properties of an effective
sample. Firstly, we expect that, in general, sample size does have an impact
on effectiveness:

Hypothesis 1 The observed effectiveness of learned models can be affected by

different sample sizes.

Next, depending on the presence of anchor text within the document rep-
resentation used for the sample, the few relevant documents for navigational
information needs may be easier to find than the larger number of relevant doc-
uments for informational information needs. In particular, the choice of docu-
ment representation to use when sampling will likely impact on the documents
identified in the sample. Moreover, the most suitable document representation
for sampling may vary across different types of information needs. For instance,
if the document representation used by the weighting model for obtaining the
sample does consider anchor text, then the navigational pages with quality
anchor text in their incoming hyperlinks are more likely to be retrieved in the
sample (Hawking et al 2004; Plachouras and Ounis 2004). However, we pos-
tulate that using anchor text may reduce the number of relevant documents
identified for more informational queries. Hence, we hypothesise that:

Hypothesis 2 The observed effectiveness of learned models can be affected

by the type of information need observed in the queries, and the used docu-

ment representation for generating the samples, regardless of the size of these

samples.

Moreover, the choice of learning to rank technique may also have an impact on
the effective choice of the sample size. For instance, pairwise learning to rank
techniques aim to reduce the number of incorrectly ranked pairs of documents.
However, as larger sample sizes exhibit less balance between relevant and ir-
relevant documents, there are larger number of document pairs for which no
preference relation exists, which may degrade the effectiveness of these learning
to rank techniques. Hence, we hypothesise that:

Hypothesis 3 The observed effectiveness of learned models depends on the

deployed learning to rank technique and the sample size.

Finally, as discussed above in Section 2.1.1, minimising the size of the sam-
ple without significant degradations compared to an effective sample size has
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marked efficiency benefits. In particular, when applying the learned model,
minimising the number of sample documents to be identified during matching
reduces the response time, while also reducing the time required to calculate
features for all documents in the sample. Moreover, smaller sample sizes reduce
the learning time for most learning to rank techniques (see Figure 2). For these
reasons, the identification of the smallest sample size for obtaining effective
retrieval performance is desirable, which we aim to answer in the following
research question:

Research Question 1 What are the aspects that define the smallest sample

size for an effective learned model?

2.2 Learning Evaluation Measure

Besides investigating the properties of an effective sample, we are also inter-
ested in the effective configuration of learning to rank techniques. Indeed, for
listwise learning to rank techniques, the evaluation measure deployed during
learning can impact on the effectiveness of the learned models (Xu and Li
2007). In the following, we review and discuss the use (Section 2.2.1), prop-
erties (Section 2.2.2) and choice of evaluation measures during learning (Sec-
tion 2.2.3). This discussion is used to motivate hypotheses concerning our
second and third research themes, which address the role of the learning evalu-
ation measure, and the effect of the interaction between the learning evaluation
measure cutoff and the sample size.

2.2.1 Need for Evaluation Measures in Learning

In the process of learning a model, a learning to rank technique will attempt
many different combinations of features, and evaluate them as per the defined
loss function. Listwise learning to rank techniques, which directly deploy IR
evaluation measures as their loss function (e.g. AFS (Metzler 2007) and Ada-
Rank (Xu and Li 2007)) are reported to be particularly effective (Liu 2009).

Many evaluation measures have been defined in the literature, with differ-
ent properties. However, their role within learning has not been the subject
of an in-depth investigation. Indeed, in a keynote presentation, Croft (2008)
speculated that different optimisations might be needed for different measures.
In the following, we discuss the attributes of evaluation measures, and their
impact when a measure is used for learning.

2.2.2 Properties of Evaluation Measures

In general, IR evaluation measures – such as Mean Average Precision (MAP)
(Buckley and Voorhees 2000) and normalised Discounted Cumulative Gain
(NDCG) (Järvelin and Kekäläinen 2002) – are not continuous. This is be-
cause each measure may or may not ‘react’ to a swap in the positions of two
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documents, depending on the relevance of the two documents and their re-
spective positions in the ranked list. Moreover, measures are computed to a
pre-determined cutoff rank, after which they do not consider the retrieved
documents. For instance, precision only considers the number of relevant doc-
uments occurring before the cutoff, but not the order of the documents before
the cutoff, nor the order after.

The responsiveness of a measure to swaps in the ranking is known as its
informativeness (Robertson 2008). For example, consider a ranking of four
documents for a query, of which one is highly relevant, two relevant, and one
irrelevant. Of the 4! = 24 possible rankings of these four documents, precision
can only give one possible value (0.75), and mean reciprocal rank (MRR)
can give two (1 or 0.5). In contrast, MAP and NDCG are more informative
measures, as they discriminate between the effectiveness of more of the 24
possible rankings, producing four and nine different values, respectively.

2.2.3 Evaluation Measures For Effective Learning

Given a measure on the test queries that we wish to improve, it is not nec-
essarily the case that we should also aim to maximise this measure during
the learning process (He et al 2008; Robertson 2008). Indeed, the informative-
ness of the learning measure will have a direct impact on the learned model,
and hence a measure used for testing may not be sufficiently informative to
guide the learning process. For instance, as precision at k does not react to
many swaps in the document ranking during learning, it may not be able to
differentiate between two possible models whose performance characteristics
are actually quite different (e.g. consider two models that place a highly rele-
vant document ranked at rank 1 and rank k, respectively). In contrast, when
graded relevance assessments are available, NDCG and ERR are more infor-
mative measures, as they can differentiate between the relevant documents of
different relevance grades (e.g. consider the ordering of a pair of documents,
one highly relevant, one marginally relevant).

Next, the rank cutoff also affects the usefulness of the measure. For in-
stance, by only considering documents to rank k, a measure cannot differen-
tiate between ranking models that place a relevant document at rank k + 1
or rank k + 100 – even if the former is more likely to be an effective model
on unseen data (Robertson 2008). However, for a given sample of documents,
using larger cutoffs during learning also degrades the efficiency of the learning
to rank technique. For example, in Figure 2, it takes AFS using NDCG@1000
approximately twice as long to learn a model as AFS using NDCG@10 (e.g.
2097 seconds vs 6097 seconds for 5000 document samples). Moreover, as most
IR evaluation measures are ‘top-heavy’, they react less to changes deeper in
the ranking, meaning that we expect diminishing returns in the effectiveness
of the resulting model as the evaluation cutoff is increased.

The impact of the choice of measure and cutoff in listwise learning to rank
techniques have not been the subject of much literature. An exception is the
work of He et al (2008), who compared the sensitivity of different measures for
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training under different levels of incompleteness. However, the training was
conducted in the setting of hyper-parameters of retrieval models (e.g. the b

hyper-parameter of BM25), rather than the now more typical learning to rank
environment. Robertson (2008) speculated on the effect of the informativeness
of the training measure, without however providing empirical evidence. Don-
mez et al (2009) found that given enough training queries, for a given test
measure, the same measure should be the most suitable for learning. Later,
Yilmaz and Robertson (2010) challenged this finding, noting that sufficient
queries are not always available. Our work further aids the understanding of
this area, by investigating the choice of the learning evaluation measure within
a learning to rank setting, across multiple search tasks, and with even sparser
amounts of training queries.

As our second research theme, we formulate several hypotheses relating to
the choice of the learning evaluation measure within a listwise learning to rank
technique (step (3)). Firstly, based on the different informativeness of various
evaluation measures, we hypothesise the following:

Hypothesis 4 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by the choice of the learning

evaluation measure.

For a large sample, increasing the rank cutoff of the learning evaluation mea-
sure increases the informativeness of the measure by allowing it to potentially
respond to more swaps between relevant and irrelevant documents. It follows
that by using a measure with improved informativeness, a learning to rank
technique may identify a yet unseen feature combination that works well for
some pairs of document in the sample, which is not observed for the smaller
rank cutoff. This may be useful later for improving the effectiveness of an un-
seen query, where the relevant documents are pushed to the top ranks, due to
the additional feature combination. Hence, we hypothesise that:

Hypothesis 5 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by the choice of the rank

cutoff of the learning evaluation measure.

Lastly, as our third and final research theme, we combine the two investigations
within this work concerning the sample size (step (1) & (4)) and the rank
cutoff of the selected learning evaluation measure (step (3)), to investigate the
dependence between the two. Consider the evaluation of 4 documents discussed
above. If the sample is also of 4 documents, then there are only 4! = 24 possible
rankings that can be produced. However, if the sample size is larger, say 5,
then there are 5! = 120 possible rankings, even though the evaluation measure
will only consider the ordering of the top-ranked 4 documents. The size of the
increased space for the possible re-ranking should increase the chances that an
effective learned model can be identified. For this reason, our last hypothesis
is the following:

Hypothesis 6 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by both the choice of the

rank cutoff of the learning evaluation measure and the size of the samples.
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Table 3 How experimental variables are varied or fixed for each research question on a
given query set.

Research Themes

Experimental Variables Type Sample Size
Learning Measure Learning Cutoff

& Cutoff & Sample Size
Train & Test Sample Size Independent 1st Factor Fixed 1st Factor
Learning Measure Independent Fixed 1st Factor Fixed
Learning Measure Cutoff Independent Fixed 1st Factor 1st Factor
Learning to rank technique Independent 2nd Factor 2nd Factor Fixed
Sample Document Representation Independent Other Factor Fixed Fixed
Test Measure Dependent Fixed Fixed Fixed

In the following, we define the experimental methodology (Section 3), as
well as the experimental setup (Section 4) permitting the investigation of our
three research themes. Recall that these three research themes address the role
of the sample, the role of the learning evaluation measure, and how the sample
size and the learning evaluation measure interact, respectively. Experimental
results are reported and discussed in Section 5.

3 Methodology

In this section, we define the methodology that permits the identification of
best practices for the three research themes mentioned above. As discussed in
Section 2.1.2, we assume that the learned model will be deployed on a single
retrieval system, with the sample generated by using a standard weighting
model. For learning, documents in the sample are labelled using high quality
relevance assessments (e.g. from TREC) that are already available.

We investigate the research questions and hypotheses of our three re-
search themes across different scenarios, including different types of informa-
tion needs, learning to rank techniques, and corpora. To investigate each of
our research questions, we perform empirical experiments using multiple query
sets on several learning to rank test collections. In particular, query sets are
paired into training and testing sets with no overlap of queries. For instance,
for a given query set (HP04, NP04 etc.), LETOR v3.0 GOV prescribes 5 folds,
each with separate training and testing query sets. On a given testing query
set, the test evaluation measure and its rank cutoff are pre-defined - to use the
experimental design terminology, this is the dependent variable. Then, on the
corresponding training query set, the “factor of interest” (independent vari-

able) for a particular learning to rank technique is varied (namely sample size,
or evaluation measure and cutoff). For each setting of a learning to rank tech-
nique (e.g. sample size, learning evaluation measure and cutoff), a model is
learned. The effectiveness of this learned model is then evaluated on the test
query set using the test evaluation measure. By comparing across different
learning settings, the impact of the factor being varied can be assessed.

Within this framework, the columns of Table 3 detail the experimental de-
sign for each of our three research themes on a given pair of training/testing
query sets. In particular, to investigate the role of the sample size, the original
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samples for the train and test query sets are both cropped to various different
sizes, while maintaining their ordering of documents. Moreover, as discussed in
Section 2.1.2, we ensure that a learned model is not deployed on a sample that
has a different size from that with which it was learned. Using this method-
ology, we can vary the sample size as the primary factor in the experiment,
thereby simulating the smaller samples used by other learning to rank test col-
lections. However, the learning evaluation measure and cutoff (only applicable
for listwise learning to rank techniques) as well as the test evaluation measure
are held fixed. In this way, we can observe the impact of sample size on the
effectiveness of the learned model. Moreover, as the conclusion may change for
different learning to rank techniques or depending on the document represen-
tation used by the sampling strategy (i.e. anchor text or not), we vary these
as additional “second” or “other” factors of interest.

To investigate our second research theme concerning the role of the learning
evaluation measure for listwise learning to rank techniques, following Table 3,
we firstly fix the sample size, as well as the evaluation measure for testing.
The primary factors in this experiment are the learning evaluation measure
and the rank cutoff – we vary both of these concurrently, to allow any de-
pendent effects between the choice of the learning evaluation measure and the
rank cutoff to be examined. Furthermore, as a second experimental factor,
this experiment is conducted for different listwise techniques, to examine if
the conclusions change for different techniques.

Lastly, for our third research theme, we vary both the sample size and
the learning measure cutoff within a single experiment, to determine if there
is any dependence between these factors. Hence, as shown in Table 3, both
the sample size and the learning evaluation measure rank cutoff form the (1st
factor) independent variables of interest.

For each set of experiments, to measure if there is a significant dependence
between effectiveness and the first or second factors, we use within-subject
ANOVAs (Coolican 1999) to measure the probability that the observed results
are caused by the null hypothesis for each factor. In particular, each query is a
subject, where the dependent variable (the test evaluation measure) is observed
after each variation of the independent variables. Indeed, by using ANOVAs,
we can measure that the observed variance across the different independent
variables is not due to a type I error.

4 Experimental Setup

Our experiments across the three research themes are conducted using the
methodology defined in Section 3, and are reported in Section 5. In this sec-
tion, we describe the setting of these experiments, structured in three subsec-
tions: Section 4.1 describes the learning to rank test collections used in our
experiments, Section 4.2 provides an overview of the used learning to rank
techniques, and Section 4.3 describes how we vary the experimental setup for
the various factors identified in Section 3.
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4.1 Learning to Rank Test Collections

As detailed in Section 3, we experiment with document samples of various
sizes. To this end, the learning to rank test collections that we apply must
have sufficiently large original samples to allow cropping into smaller samples.

Of all learning test collections in Table 2, we consider that only the LETOR
v3.0 GOV query sets have sufficiently large samples (∼1000 documents per
query (Qin et al 2009)) to allow smaller sample sizes to be investigated. Each
of the six query sets is split into five folds for the purposes of cross validation
(train, validation and test), and have binary relevance assessments as well as
a common set of 64 features. We select three query sets from TREC 2004,
covering different types of information needs with the same number of queries:
HP04 (home page) and NP04 (named page) query sets both represent navi-
gational information needs with single relevant documents; while TD04 (topic
distillation) is an informational query set.1

However, as discussed in Section 2.1.4, the LETOR v3.0 GOV query sets
do not exhibit the largest sample sizes seen in the literature (5000 documents
per query sampled from the ClueWeb09 collection (Craswell et al 2010)). To
investigate whether such large samples are necessary, and to strengthen our
conclusions, we create a new, larger and more modern learning to rank test col-
lection. In particular, the TREC 2009 Million query track has various queries
sampled from the logs of a Web search engine, while the TREC 2009 & 2010
Web tracks addressed queries that are faceted or ambiguous in nature (which
can mix informational and navigational interpretations for each query), also
sampled from the logs of a Web search engine. We select three such mixed query
sets of queries from these recent TREC tracks that include graded relevance
assessments:

– MQ09: 70 queries from the TREC 2009 Million query track (Carterette
et al 2010).

– WT09: 50 queries from the TREC 2009 Web track (Clarke et al 2010).
– WT10: 48 queries from the TREC 2010 Web track (Clarke et al 2011).

Lastly, we use a query log to create a purely navigational query set, so that we
can directly compare and contrast results with the purely navigational HP04
and NP04 query sets from LETOR v3.0:

– NAV06: 150 ‘head’ queries with the highest clickthrough into ClueWeb09
documents as suggested by Macdonald and Ounis (2009), obtained from
the MSN 2006 query log (Craswell et al 2009).

The underlying document corpus for the MQ09, WT09, WT10 and NAV06
query sets is the TREC ‘category B’ ClueWeb09 Web crawl (CW09B). This
corpus comprises 50 million English documents, aimed at representing the
first tier of a commercial search engine index. We index these documents us-
ing the Terrier retrieval system (Ounis et al 2006), including anchor text from

1 We collectively refer to HP04, NP04 and TD04 as the GOV query sets.
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Fig. 3 Precision@k for the CW09B query sets. Lowest ranked relevant document found at
rank 3.9 × 106. WT09 & WT10 are super-imposed.

incoming hyperlinks. For each query, we use a light version of Porter’s En-
glish stemmer and the DPH (Amati et al 2008) Divergence from Randomness
weighting model to extract large original document samples for each query
set. As we are not aware of the particular parameter settings used for BM25
when sampling in the LETOR v3.0 query sets, using DPH permits compara-
ble sample effectiveness to BM25, without the need to train any parameter,
as DPH is parameter free (Amati et al 2008).

To cover a wide range of sample sizes, we aim to sample as many documents
as possible from CW09B for each query. However, as noted in Section 2.1.1, the
learning time of various learning to rank techniques increases with sample size.
To keep our experiments feasible, we investigate the number of relevant doc-
uments identified for the query sets when the number of retrieved documents
is unconstrained. Figure 3 reports the precision@k, for k up to the size of the
corpus (50 million documents). We note that after rank k = 5000, precision
falls below 0.01, meaning that, on average, for every additional 100 documents
retrieved, at most 1 more relevant document will be retrieved. Moreover, from
Figure 2, running AFS for the WT09 query set using 5000 documents can take
over 1.5 hours. For these reasons, we deem an original sample of 5000 docu-
ments to be sufficient for these experiments. Indeed, on a detailed inspection
of the experiments conducted for Figure 3, we find that all three query sets
have 80-90% recall at 5000 documents compared to an exhaustive sampling
comprising the union of all documents containing any query term.

Next, recall that our experiments consider the role of anchor text in the
document representation used to identify the sample and its impact on retrieval
effectiveness for different types of informational need. We firstly highlight the
document representation that we consider. Figure 4 illustrates the fields of
an example document, in terms of the title, body, URL and anchor text. In
the GOV query sets, the documents in the sample are obtained by computing
BM25 on all fields, including anchor text. To facilitate analysing the impact
of the document representation used in the sampling, the document samples
identified using DPH on the CW09B query sets are created using two different
document representations, without and with the presence of anchor text. When



20 Craig Macdonald et al.

Fig. 4 Document representation used within our work.

sampling with anchor text, the ranking of documents in the sample changes,
making it more likely that the homepage documents with much anchor text
will be highly ranked for a corresponding navigational query, such as the query
‘Bing’ for the example document in Figure 4.

For the CW09B query sets, we calculate a total of 75 document features
for all documents in the samples, covering most of the features used in the
learning to rank literature (Qin et al 2009). These features are summarised in
Table 4 and organised into the following five classes:

– Standard weighting models (WM) computed on each field of each
document, namely title, body, anchor-text and URL. We use four weight-
ing models, namely BM25 (Robertson et al 1992), PL2 (Amati 2003),
DPH (Amati et al 2008) and LM with Dirichlet smoothing (Zhai and Laf-
ferty 2001). We note that the chosen document representation for generat-
ing the sample does not have an impact on the availability of the four fields
- for instance, we may use a document representation without anchor text
for generating the sample, but we can still calculate WM features based
on the anchor text.

– Link analysis-based features (LA) typically identify authoritative doc-
uments. We deploy PageRank and incoming and outgoing link counts.

– Proximity weighting models (WMP) boost documents where the
query terms occur in close proximity. We deploy proximity language mod-
els (Metzler and Croft 2005) and DFR models (Peng et al 2007) based on
Markov Random Fields.

– URL features (URL) (e.g. short URLs) are often a useful feature for
identifying homepages (Kraaij et al 2002).

– Spam documents are present in the realistic CW09B corpus. We include
the fusion score by Cormack et al (2011) as a feature.
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Table 4 Features deployed for the three query sets of our new CW09B learning to rank
test collection.

Class Feature Description Total
LA Absorbing Absorbing Model score (Plachouras et al 2005) 2
LA Edgerecip No. of reciprocal links (Becchetti et al 2006) 2
LA Inlinks No. of inlinks 2
LA Outlinks No. of outlinks 2
LA InvPageRank PageRank transposed score 2
LA PageRank PageRank score (Page et al 1998) 2
SPAM SpamFusion Spam likelihood (Cormack et al 2011) 2
URL URLDigits No. of digits in domain and host 4
URL URLComps No. of host, path, and query components 6
URL URLLength Length of host, path, and query string 6
URL URLType Root, subroot, path, file (Kraaij et al 2002) 2
URL URLWiki Whether URL is from Wikipedia 2
WM BM25 BM25 score (Robertson et al 1992) 5
WM DPH DPH score (Amati et al 2008) 5
WM LM LM score (Dirichlet) (Zhai and Lafferty 2001) 5
WM PL2 PL2 score (Amati 2003) 5
WM MQT No. of matching query terms 5
WMP MRF MRF dependence score (Metzler and Croft 2005) 8
WMP pBiL DFR dependence score (Peng et al 2007) 8
TOTAL 75

All parameters of the document features (e.g. b in BM25, c in PL2, µ in
LM with Dirichlet smoothing) remain at their recommended settings, as im-
plemented by the Terrier retrieval platform, namely b = 0.75, c = 1, and
µ = 2500. Finally, as different features are measured on different scales, we
follow the common practice (Liu 2009) (and in line with LETOR (Qin et al
2009)) to normalise all features to lie between 0 and 1 for each query.

4.2 Learning to Rank Techniques

Various learning to rank approaches in the literature fall into one of three cate-
gories, namely pointwise, pairwise and listwise (Liu 2009). In this work, we de-
ploy learning to rank techniques representative of each of the three categories,
all of which are either freely available as open source or widely implemented:

– GBRT (Pointwise), also known as Gradient Boosted Regression Trees,
produces a set of regression trees that aim to predict the label of documents
in the training data (Friedman 2000). The tree learned at each iteration
only needs to find the difference between the target label and the prediction
of the previous tree(s). We use the RT-Rank implementation (Weinberger
et al 2010)2. However, going further than the open source implementation,
we choose the number of trees that performs highest on the validation data
as the final learned model.

– RankBoost (Pairwise) constructs a linear combination of weak rankers
(in our case the various document features), based on a loss function defined

2 https://sites.google.com/site/rtranking/
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as the exponential difference between the labels of pairs of documents (Fre-
und et al 2003).

– RankNet (Pairwise) constructs a neural network, based on a loss func-
tion encapsulating the cross entropy of pairs of objects being correctly
ranked (Burges et al 2005).

– LambdaMART (Pairwise/Listwise3) also deploys boosted regression
trees internally, but the training of the trees consider NDCG4 to obtain
the gradient of the surrogate loss function between pairs of documents (Wu
et al 2008). We use the implementation of the Jforests open source pack-
age (Ganjisaffar et al 2011)5. A LambdaMART approach was the winning
entry in the Yahoo! learning to rank challenge (Chapelle and Chang 2011).
The model of the highest performing iteration on the validation data is
chosen.

– AFS (Listwise), also known as Automatic Feature Selection, obtains a
weight for the linear combination of the most effective feature at each it-
eration, which is then added to the set of features selected in the previous
iteration(s) (Metzler 2007). In our implementation, we use simulated an-
nealing (Kirkpatrick et al 1983) to find the combination weight for each
feature that maximise NDCG@1000. Note that such weights are obtained
one by one, with no retraining of the weights of those already selected fea-
tures. When validation data is used, the model of the highest performing
iteration as measured using the same evaluation measure on the validation
data is chosen (in this manner, the validation data is used to determine
the correct number of AFS iterations, as suggested by Liu (2009)).

– AdaRank (Listwise) optimises feature weights by applying boosting (Xu
and Li 2007). In particular, at each iteration, a distribution of the impor-
tance of each query is updated, and the weight of the feature that improves
the overall performance of those queries, after weighting by the importance
distribution, is added to the model. A feature can be selected multiple
times and its weight consequently updated. As suggested by Liu (2009),
we use validation data to set the number of iterations, so as to prevent the
overfitting of models on the training set.

4.3 Experimental Factors

In order to address the hypotheses and research questions identified in Sec-
tions 2.1.4 & 2.2.3, we analyse the outcome of various learning to rank settings
on a corresponding test query set. Table 5 details how the query sets are used
for training, validation and testing for the learning to rank test collection based
on the GOV and CW09B corpora. In particular, for the GOV query sets, we
use the 5 folds prescribed in LETOR v3.0, including the splits of the topics
into separate training, validation and testing sets for each fold; we report the

3 LambdaMART is both pairwise and listwise according to Li (2011).
4 It is not trivial to change LambdaMART to arbitrary learning measures.
5 http://code.google.com/p/jforests/
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Table 5 Applied training, validation and testing query sets.

Task Type Corpus Folds
Query Sets Test

Training Validation Test Measure
Navigational GOV 5 HP04 HP04 HP04 MRR
Navigational GOV 5 NP04 NP04 NP04 MRR
Informational GOV 5 TD04 TD04 TD04 MAP
Mixed CW09B 1 MQ09 MQ09 WT09 NDCG@20
Mixed CW09B 1 WT09 WT09 WT10 ERR@20
Navigational CW09B 1 NAV06 NAV06 NAV06 MRR

mean over all of the test topics from all folds. For the CW09B corpus, we
retain a setting as realistic to a TREC deployment as possible. In particular,
for WT10, we use the query set from the preceding TREC year (i.e., WT09)
for training (60%) and validation (40%). As no training queries were available
for WT09, we use queries from the TREC 2009 Million Query track (MQ09)
for training (60%) and validation (40%). Similarly, we split the 150 NAV06
queries into equal sets, to form a single fold with separate training, validation
and testing query subsets.

Table 5 also records the test evaluation measure used to test the effec-
tiveness of the learned models on each query set. Indeed, for the GOV query
sets, the measure used for each query set matches the official measure used
by the corresponding TREC Web track (Craswell and Hawking 2004). For the
CW09B query sets, NDCG@20 was used for the evaluation measure in TREC
2009 (Clarke et al 2010), while for TREC 2010, ERR@20 was used (Clarke
et al 2011). In the following experiments, we use both measures, and for com-
pleteness, we additionally use MAP for both WT09 and WT10 query sets. For
the NAV06 navigational query set, we report mean reciprocal rank (MRR).

Aside from the deployed learning to rank technique, there are four factors
in our experiments that we defined in Section 3, namely: the size of the sam-
ple; the document representation used to generate the sample; the learning
evaluation measure using within the loss function of the AFS and AdaRank
listwise learning to rank techniques; and the rank cutoff of the learning eval-
uation measure. Indeed, as per the methodology prescribed in Section 3, we
differentiate between the test evaluation measure, which remains fixed, and
the learning evaluation measure used by a listwise learning to rank technique,
which we vary. The settings for each of the factors in our experiments are as
follows:

– Sample Document Representation - For GOV, BM25 with anchor
text, as provided by LETOR v3.0. For CW09B, DPH with or without an-
chor text, as illustrated in Figure 4.

– Sample Size - We experiment with different sample sizes, up to the max-
imum permitted by the original samples of size 1000 for GOV and 5000 for
CW09B:
GOV = {10, 20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};
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Table 6 All factors in our experiments.

GOV CW09B
Learners GBRT, RankBoost, RankNet, LambdaMART, AFS, AdaRank
Sample Document Model BM25 DPH
& Representation with anchor text with/without anchor text
Sample Size {10, 20, 50, 100, 200, 300, 400, {10, 20, 50, 100, 500, 1000,

500, 600, 700, 800, 900, 1000} 1500, 2000, 3000, 4000, 5000}
Learning Evaluation Measure P,MAP,MRR,NDCG,ERR
Learning Evaluation Measure {10, 20, 50, 100, 200, 300, 400, {10, 20, 50, 100, 500, 1000
Cutoffs 500, 600, 700, 800, 900, 1000} 1500, 2000, 3000, 4000, 5000}

CW09B = {10, 20, 50, 100, 500, 1000, 1500, 2000, 3000, 4000, 5000}.

– Learning Evaluation Measures - We experiment with a selection of
standard measures for use within the loss functions of the listwise learn-
ing to rank techniques, which may be different from the test evaluation
measure used to assess the retrieval performance of the resulting learned
model:
Precision (P), Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), normalised Discounted Cumulative Gain (NDCG) (Järvelin and
Kekäläinen 2002) and Expected Reciprocal Rank (ERR) (Chapelle et al
2009).

– Learning Evaluation Measure Cutoffs - We also vary the rank cutoff
of the learning evaluation measures. The cutoff values used for both GOV
and CW09B are the same values used for the sample size, as follows:
GOV = {10, 20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};
CW09B = {10, 20, 50, 100, 500, 1000, 1500, 2000, 3000, 4000, 5000}.

Our chosen sample sizes (and cutoffs) cover small and large sizes observed
in existing learning to rank test collections and in the literature. For the learn-
ing evaluation measures, we include both standard measures such as precision
and MAP, in addition to measures that consider graded relevance judgements
(NDCG and ERR). Moreover, due to the interaction of the sample size with
the learning evaluation measure cutoff, the learning settings that would pro-
duce identical results are omitted. For example, if sample size is 500, MAP
to rank 1000 (i.e. MAP@1000) is identical to MAP@500. All experimental
factors, along with the deployed learners, are summarised for both GOV and
CW09B in Table 6.

5 Results

In the following, we experiment to address each of our three research themes:
Section 5.1 addresses the theme concerning the properties of the sample; Sec-
tion 5.2 addresses the learning evaluation measure and cutoff research theme;



The whens and hows of learning to rank for web search 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10  100  1000

M
R

R

Sample Size

GBRT
LambdMART

RankBoost
RankNet

AFS(NDCG@10)
AdaRank(NDCG@10)

(a) HP04 (5 folds)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10  100  1000

M
R

R

Sample Size

(b) NP04 (5 folds)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10  100  1000

M
A

P

Sample Size

(c) TD04 (5 folds)

Fig. 5 Effect on test performance (in terms of MRR or MAP) on the LETOR GOV query
sets of different sample sizes, learned using various learning to rank techniques. Key is
common to (a) - (c).

Section 5.3 analyses the final research theme concerning the dependence be-
tween the sample size and the learning evaluation measure cutoff, as well as
the features selected in the obtained learned models.

5.1 Sample Size

Figures 5 - 7 show the impact of different sample sizes on the test performance,
for the GOV (Figure 5), as well as the CW09B query sets, without and with the
use of anchor text when generating the sample (Figures 6 & 7, respectively). In
each figure, the test performance of a learning to rank technique is represented
by a line. For the listwise techniques - based on insights that we will discuss
in Section 5.2 - in this section, we fix the learning measure and rank cutoff to
NDCG@10.

We firstly make some general observations from Figures 5 - 7. With respect
to sample size, a common trend can be observed across all figures: retrieval
performance generally increases as the sample size increases, but stabilises after
a sufficiently large sample. However, the size at which effectiveness stabilises
can vary widely: for some query sets, all but the smallest sample sizes appear to
be effective - indeed, for the HP04 query set (Figure 5(a)), even 10 documents
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Fig. 6 Effect on test effectiveness on the CW09B query sets of different sample sizes,
obtained using the document representation that does not include anchor text, learned
using various learning to rank techniques. Key is common to (a) - (g).
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Fig. 7 Effect on test effectiveness on the CW09B query sets of different sample sizes,
obtained using the document representation that includes anchor text, learned using various
learning to rank techniques. Key is common to (a) - (g).
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appears to be very effective; yet for other query sets, effectiveness continues to
rise until much larger samples - e.g. 1000 in Figure 6(d). At the extreme end,
we note that for the NAV06 query set without anchor text (Figure 6(g)), a
marked rise in effectiveness occurs when sample size reaches 5000. Moreover,
across all query sets, the trends exhibited by the RankNet learning to rank
technique represent outliers, which we discuss further below.

In the following, we expand upon this analysis, by examining each of the
query sets and learning to rank techniques in turn (Sections 5.1.1 & 5.1.2),
before concluding on each of our defined hypotheses in Section 5.1.3.

5.1.1 Query Set Analysis

Taking each query set in turn, we make observations about the relationship
between sample size and effectiveness across these different query sets. Firstly,
for the navigational query sets HP04 and NP04 (Figures 5(a) & 5(b)), we note
that a reasonable performance is obtained at small sample sizes, suggesting
that most of the relevant documents that can be ranked highly by the learned
models have been obtained within a sample of that size. In particular, the
LambdaMART learning to rank technique achieves its highest HP04 MRR at
sample size 10, while other techniques are all competitive from size 50. On the
NP04 query set, sample sizes of 50 or larger are most effective. In contrast, for
topic distillation TD04 (Figure 5(c)), samples up to 400-600 documents are
required before the most effective models are obtained. This larger sample size
is expected, as topic distillation represents information needs that are more
informational in nature, and suggests that relevant documents may appear at
lower ranks in the samples for this query set.

The results for the ClueWeb09 query sets (WT09, WT10 and NAV06) are
reported twice: in Figure 6, documents are sampled using a document represen-
tation that does not consider anchor text; in Figure 7, the sampling document
representation includes anchor text in addition to the title, URL and body
fields. Moreover, the results for WT09 and WT10 query sets are reported for
each of the three test evaluation measures, namely ERR@20, NDCG@20 and
MAP. Indeed, while the used evaluation measure changed between the TREC
2009 and TREC 2010 Web tracks from NDCG@20 to ERR@20 (see Table 5),
we find that the choice of measure for testing impacts on the obtained con-
clusions, hence we provide figures for both, while adding the classical MAP
measure permits observations about how sample size impacts effectiveness at
deeper ranks.

Overall, we note that smaller samples result in lower effectiveness for the
ClueWeb09 query sets. However, the degradation observed is dependent on the
test evaluation measure being used. Indeed, for ERR@20, an effective model
is obtainable with a sample size of 20-50 documents. However, for NDCG@20,
in general, maximal effectiveness is not achieved for samples smaller than 100
(WT09) or 1000 (WT10). For MAP, 1000-3000 documents is necessary for
maximal effectiveness. These results show that the choice of test measure is
important when making a decision on sample size. Indeed, the ERR measure
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discounts the contributions of documents that appear after highly relevant doc-
uments, hence relevant documents retrieved further down the ranking matter
less for ERR than, for example, NDCG. This explains why smaller sample
sizes are more effective for ERR than NDCG. In contrast, MAP needs the
largest sized samples, explained by its recall component.

For the purely navigational NAV06 query set, the trend is markedly differ-
ent from the WT09 and WT10 sets, whereby large improvements are obtained
for very large sample sizes. In particular, when anchor text is not used (Fig-
ure 6(g)), a sample size of 5000 markedly improves over smaller sample sizes, as
many of the relevant documents are not found in these smaller samples. When
the anchor text document representation is used for sampling (Figure 7(g)),
more relevant documents are found in the smaller samples, resulting in in-
creased effectiveness for smaller samples, due to the ability of anchor text to
identify homepages (Hawking et al 2004). However, the trends for NAV06 do
not mirror the HP04 and NP04 samples on the GOV corpus, in that a sample
size of 50 is still insufficient for fully effective retrieval, even with the inclusion
of anchor text in the document representation used for generating the sample.

The need for bigger samples for CW09B than GOV suggests that relevant
documents occur at deeper ranks in the sample than for GOV, and hence the
sample must be larger to compensate, even for navigational information needs.
Indeed, we note that CW09B is approximately 50 times larger than the GOV
corpus. It also appears to represent a more difficult corpus, i.e. identifying rele-
vant documents is comparatively more challenging. For instance, the presence
of spam documents in CW09B – as discussed by Cormack et al (2011) – will
likely cause relevant documents to be ranked after spam in the sample. On the
other hand, in Figure 7(g), the benefit of extending past size 2000 is less pro-
nounced, suggesting that the sample size of 5000 used by Craswell et al (2010)
is perhaps unnecessary for information needs that are purely navigational in
nature.

5.1.2 Learning to Rank Technique Analysis

Taking each learning to rank technique in turn, we can make observations
about their suitability for different sample sizes. To aid in this analysis, Table 7
shows the mean and standard deviation of the effectiveness of each learning
to rank technique, for each query set and test evaluation measure.

In general, all techniques behave similarly with the exception of RankNet.
Indeed, RankNet (denoted by in Figures 5 - 7) generally does not perform
as high as other techniques for the GOV query sets, while for WT09 and WT10,
it degrades retrieval performance for all sample sizes larger than 20 when eval-
uated using NDCG@20 or ERR@20 measures, and 100 for MAP. This suggests
that it is unable to resolve the additional pairwise constraints that are expo-
nentially added as sample size increases. For the navigational query sets with
less relevant documents, the number of pair constraints are less, and hence
RankNet exhibits less sensitivity. In contrast to RankNet, RankBoost ( )
– also a pairwise technique – performs similarly to other learning to rank



30 Craig Macdonald et al.

Table 7 For each query set and test evaluation measure, the mean performance of each
learning to rank technique, across all sample sizes. The highest performing learning to rank
technique in each row is highlighted. The last row shows the average of all numbers in each
column.

Query
Test Technique

Set
Evaluation LambdaMART GBRT RankNet RankBoost AFS AdaRank
Measure Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

HP04 MRR .671 .022 .491 .094 .241 .128 .641 .031 .701 .022 .718 .028
NP04 MRR .571 .036 .441 .070 .371 .117 .521 .031 .521 .040 .659 .031
TD04 MAP .198 .045 .181 .044 .051 .028 .171 .040 .161 .033 .181 .037
WT09 ERR@20 .147 .014 .121 .009 .091 .024 .141 .013 .131 .002 .131 .008
WT09 NDCG@20 .272 .052 .231 .036 .151 .049 .272 .052 .251 .019 .261 .027
WT09 MAP .141 .069 .121 .054 .041 .030 .153 .071 .141 .050 .151 .053
WT10 ERR@20 .101 .016 .101 .016 .051 .045 .111 .017 .119 .018 .101 .014
WT10 NDCG@20 .161 .040 .161 .042 .071 .065 .171 .044 .202 .045 .171 .033
WT10 MAP .081 .044 .081 .047 .021 .014 .081 .044 .098 .044 .091 .038
NAV06 MRR .153 .091 .141 .098 .071 .057 .121 .066 .141 .081 .121 .057
WT09a ERR@20 .121 .016 .061 .031 .081 .022 .101 .010 .111 .019 .101 .004
WT09a NDCG@20 .211 .044 .101 .055 .141 .041 .191 .034 .222 .038 .181 .013
WT09a MAP .111 .053 .051 .022 .031 .023 .101 .046 .122 .043 .091 .029
WT10a ERR@20 .116 .029 .101 .022 .031 .031 .111 .028 .111 .021 .111 .011
WT10a NDCG@20 .189 .067 .161 .050 .051 .045 .181 .063 .161 .036 .161 .029
WT10a MAP .092 .055 .081 .050 .021 .012 .081 .051 .071 .028 .071 .033
NAV06a MRR .231 .098 .181 .087 .081 .064 .171 .072 .236 .094 .161 .062
Means .211 .047 .161 .049 .091 .047 .191 .042 .201 .037 .201 .030

techniques, showing somewhat more robustness to larger sample sizes. Never-
theless, from Figures 5 - 7, the performances of both RankBoost and RankNet
are relatively better for smaller sample sizes on the CW09B query sets than
for the GOV query sets. This is likely due to the use of graded relevance as-
sessments, which allow more pairwise preferences to be better expressed than
for binary relevance assessments with the same size of sample.

GBRT ( ) produces a robust retrieval performance, giving a reason-
able effectiveness at small sample sizes. However, for WT09, its performance
is not comparable to other effective techniques for larger sample sizes. On
the other hand, the state-of-the-art LambdaMART ( ) exhibits effective
performances across all sample sizes and query sets.

Lastly, the AFS and AdaRank listwise techniques also produce robust and
effective overall performances. On the GOV query sets, AdaRank ( ) is
generally more effective. On HP04 and TD04, the difference is not marked, but
it is more marked for NP04. However, for WT09, WT10 and NAV06, AdaRank
is less effective for very large samples (≥ 1000), while AFS is more stable.

To conclude, while RankNet exhibits the worst overall performance in
Table 7, LambdaMART followed by AFS and AdaRank are the most effec-
tive techniques across all sample sizes. These performances are in line with
LambdaMART’s top performance in the Yahoo! Learning to Rank Challenge
(Chapelle and Chang 2011), and the observations concerning the effectiveness
of listwise techniques reported by Liu (2009).

5.1.3 Hypotheses Analysis

To address each of the hypotheses and research questions defined in Sec-
tion 2.1.4, we deploy ANOVAs. In particular, Table 8 presents the p values of
the within-subject ANOVAs computed over all queries within a given query
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Table 8 ANOVA p values for different query sets and evaluation measures as sample sizes
or learners are varied. * denotes a p value of less than 5%, ** denotes a p value less than
1%.

Query
Test p value

Set
Evaluation Learning Technique Sample Size Technique × Sample Size
Measure - Hypothesis 1 Hypothesis 3

HP04 MRR 0.00508** 0.58472 4.661e-12**
NP04 MRR 0.33373 0.03319* 3.618e-15**
TD04 MAP 0.60300 8.101e-11** 0.07133
WT09 ERR@20 0.8641 0.4333 0.5598
WT09 NDCG@20 0.9097 0.7989 0.5502
WT09 MAP 0.6594 2.733e-06** 0.2220
WT10 ERR@20 0.7825 0.1165 0.4441
WT10 NDCG@20 0.8310 0.1164 0.8359
WT10 MAP 0.7101 2.275e-06** 0.4241
NAV06 MRR 0.9282 4.429e-05** 0.6942
WT09a ERR@20 0.13107 0.03584* 1.187e-05**
WT09a NDCG@20 0.1400 0.3281 1.784e-06**
WT09a MAP 0.0909035 0.0009944** 0.0002281**
WT10a ERR@20 0.9773 0.2160 0.8562
WT10a NDCG@20 0.94809 0.07734 0.52887
WT10a MAP 0.2986 1.598e-06** 0.0690
NAV06a MRR 0.8600 1.797e-06** 0.8043

set, while varying the sample size and learning to rank technique. The a suffix
denotes when the sample for a query set was obtained using anchor text. For
example, WT09a MAP represents the ANOVA calculated across all WT09
queries, learning to rank techniques, and sample sizes, where the sample docu-
ment representation includes anchor text, and the queries are evaluated using
the MAP test evaluation measure. From the ANOVAs, we exclude RankNet,
for the reasons stated in Section 5.1.2, as we found that its high variance under
large samples introduced sensitivities to sample size not present for the other
learning to rank techniques.

In Hypothesis 1, we postulated that sample size should affect retrieval per-
formance. On consideration of the Sample Size column of Table 8, we find that
sample size significantly impacts on the NP04, TD04 and NAV06 query sets, as
well as WT09 and WT10 for only the MAP test evaluation measure (a single
outlier is WT09a evaluated by ERR@20, which is explained below). Indeed,
for MAP, deeper samples are required than for other measures. In general,
the results in Table 8 assert the importance of the sample size for effective
learning, and mirror our general observations across Figures 5 - 7. Overall, we
conclude that Hypothesis 1 is generally validated.

Hypothesis 2 is concerned with the types of information needs. In par-
ticular, we argued that the impact of the sample size will vary for different
information needs, while also postulating that the use of anchor text in the
sampling document representation could affect the results. From Figure 5(a),
we observed that for the navigational HP04 query set, a deep sample is not
required for effective results. This is mirrored in Table 8, where we find that
sample size has no significant impact for HP04 effectiveness. This contrasts
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with, for example, the informational TD04 query set, where a significant de-
pendence (p = 8.101e−11) is observed, as would be expected from Figure 5(c).
However, for the NAV06 query set, a significant dependence on sample size is
observed, regardless of whether anchor text is present in the sampling docu-
ment representation. Indeed, anchor text markedly improves the effectiveness
of smaller samples for navigational queries - e.g. while in Figure 5(a) the trend
for HP04 is nearly flat, NAV06 (Figure 7(g)) has a markedly improved effec-
tiveness for sample sizes 100-4000 when anchor text is used. However, anchor
text for NAV06 does not exhibit the flat trend observed for HP04, suggest-
ing that large samples are still necessary on the larger ClueWeb09 corpus, as
illustrated by the significant p values for NAV06 and NAV06a in the Sample
Size column of Table 8 (p = 4.429e − 05 and 1.797e − 06, respectively). To
illustrate this, Table 9 reports the recall measure for samples with sizes 1000
and 5000, with and without anchor text. For the entirely navigational NAV06
query set, more relevant documents are ranked in the top 1000 documents of
the sample when using anchor text, explaining the improved effectiveness.

On the other hand, for the mixed queries of WT09 and WT10, comparing
across Figures 6 and 7, the general magnitude of effectiveness values are mostly
unchanged by the addition of anchor text. We note a greater variation between
the performances of different learning to rank techniques on WT09 when an-
chor text is deployed, suggesting that for these queries, anchor text produces a
noisier sample, in which some learning to rank techniques struggle to properly
rank relevant documents. This is manifested by significant values for WT09a

in Table 8 (e.g. p = 0.03584). This may be due to the contrasting nature of
the WT09 query set and its corresponding MQ09 training queries. However, in
general, from Table 9, we see that sampling with anchor text reduces the recall
for the mixed Web track query sets. The likely cause of this is that anchor text
is often spammed to improperly manipulate Web search results (Castillo et al
2006), which may explain the adverse effect of the anchor text samples on
recall. On the other hand, for the GOV corpus that only contains documents
and links administered by various US government departments, there are less
adversarial issues relating to anchor text.

In summary, we find that Hypothesis 2 is partially validated: the impact
of the sample size can depend on the type of information need, while the
presence of anchor text is important for assuring the effectiveness of smaller
sample sizes for navigational queries.

Hypothesis 3 stipulates that the effectiveness of learned models depends
on both the choice of the learning to rank technique and the sample size.
To analyse this hypothesis, we use the last column of Table 8, which denotes
significant dependencies on both of these independent variables. In general,
we observe significant dependencies between effectiveness and the learning to
rank technique only for the HP04 and NP04 query sets, as well as WT09a.
On inspection of the corresponding figures for these query sets (namely Fig-
ures 5(a) & (b) and Figure 7(a), (c) & (e)), this observation can be explained
as follows: For these query sets and corresponding test evaluation measures,
there are learning to rank techniques that markedly degrade in performance for
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Table 9 Recall of samples of size 1000 and 5000 for the ClueWeb09 query sets, as the
presence of anchor text in the sample document representation is varied.

Query Set ↓ 1000 5000
Anchor Text → ✗ ✔ ✗ ✔

WT09 58.2% 55.2% 78.6% 75.9%
WT10 31.6% 30.2% 38.9% 37.5%
NAV06 20% 34% 56% 48%

large sample sizes (e.g. GBRT, in addition to the excluded RankNet), thereby
diverging from the other effective techniques. Overall, we find Hypothesis 3 to
be partially validated, as GBRT, and in fact RankNet, markedly degrade in
effectiveness for large sample sizes.

For completeness, Table 8 also reports the ANOVA p values for the depen-
dence of effectiveness on the selection of learning to rank technique alone. In
the results shown in the Learning Technique column of Table 8, a significant
dependence is only exhibited for the HP04 query set. Indeed, on inspection
of the corresponding Figure 5(a) for HP04, we observe a concordance in the
relative ordering of the learning to rank techniques across the sample sizes.
Hence, the choice of the learning to rank technique has a significant impact
on retrieval effectiveness for this query set. For all other query sets, there is
no significant dependence between the selected learning to rank technique and
effectiveness, showing that many learning to rank techniques have very similar
performances.

Finally, Research Question 1 is concerned with identifying what aspects
may have an impact on the smallest effective sample size. To address this
research question, Table 10 reports the minimum sample size for each learn-
ing to rank technique, query set and test measure that does not result in a
significantly degraded performance compared to the sample size that is most
effective. On analysing this table, we note that the mean minimum sample size
varies across both query sets and test evaluation measures. For instance, the
informational TD04 query set needs a large sample to ensure effectiveness is
not significantly degraded from the best achieved, while the navigational HP04
exhibits effective results across all learning to rank techniques with a sample
of only 10 documents. Evaluating the Web track query sets using NDCG@20
and ERR@20 measures permit small effective samples (with ERR@20 needing
smaller samples than NDCG@20), while the smallest effective sample for MAP
is markedly larger, due to its emphasis on recall. For the NAV06 query set, the
single relevant document for each query necessitates deep samples, but sam-
ple size could be reduced by using anchor text within the sampling document
representation (see Table 10, NAV06 and NAV06a rows). However, for the
other ClueWeb09 query sets, namely WT09 and WT10, adding anchor text
did not markedly change the smallest effective sample size. Lastly, some learn-
ing to rank techniques were less sensitive than others: for instance, RankNet
prefers a small sample, but this is mainly due to its ineffective performance at
large sample sizes; AFS and the state-of-the-art LambdaMART require sim-
ilarly large samples (mean approx. 1200), while AdaRank and GBRT were
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Table 10 Smallest sample size not statistically degraded from the most effective sample
size for a given query set, test evaluation measure and learning to rank technique. Signif-
icant differences are measured using the paired t-test, with p < 0.01. The a subscript for
ClueWeb09 query sets denotes when anchor text is used within the sampling document
representation.

Query
Measure Mean

Technique
Set GBRT LambdaMART RankBoost RankNet AFS AdaRank

HP04 MRR 10.0 10 10 10 10 10 10
NP04 MRR 65.0 200 20 50 50 20 50
TD04 MAP 425.0 400 800 700 50 100 500
WT09 ERR@20 13.3 10 20 10 10 10 20
WT09 NDCG@20 25.0 20 20 20 20 20 50
WT09 MAP 500 2175.0 2000 1500 50 5000 4000
WT10 ERR@20 20.0 10 20 10 10 50 20
WT10 NDCG@20 543.3 50 2000 100 10 1000 100
WT10 MAP 1933.3 1500 4000 1000 100 4000 1000
NAV06 MRR 5000 5000 5000 5000 5000 5000 5000
WT09a ERR@20 20.0 10 50 10 20 20 10
WT09a NDCG@20 25.0 20 50 20 20 20 20
WT09a MAP 525.0 50 1000 500 100 1000 500
WT10a ERR@20 188.3 50 500 500 10 20 50
WT10a NDCG@20 678.3 500 1000 500 20 2000 50
WT0a MAP 1591.7 1500 4000 1000 50 1500 1500

NAV06a MRR 1083.3 1500 1500 1000 1000 1000 500
Means 842.5 666.5 1293.5 701.8 384.1 1221.8 787.1

effective with smaller samples (mean approx. 600-700). Overall, we conclude
that while the smallest effective sample size can depend on a number of fac-
tors (sampling document representation, type of information need), using test
evaluation measures that focus on the top-ranked documents (e.g. ERR@20
rather than MAP) can reduce the size of the minimum effective sample. More-
over, using anchor text when sampling for navigational information needs can
reduce the minimum size of an effective sample without a marked impact on
other information need types.

5.1.4 Summary

Our detailed experiments have permitted various conclusions to be drawn with
respect to the sample size. In the following, we list the hypotheses and research
question from Section 2.1.4, and summarise our findings for each.

Hypothesis 1 The observed effectiveness of learned models can be affected by

different sample sizes.

Generally Validated: Sample size has a significant impact on all query sets
except the navigational HP04. The choice of test evaluation measure can affect
the impact of sample size - for instance, for the WT09 and WT10 query sets
evaluated by NDCG@20, sample size did not have significant impact, while
for MAP it did.

Hypothesis 2 The observed effectiveness of learned models can be affected

by the type of information need observed in the queries, and the used docu-

ment representation for generating the samples, regardless of the size of these

samples.
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Partially validated: Adding anchor text to the NAV06 query set improved
retrieval performance for smaller sample sizes. For the mixed WT09 and WT10
query sets, sample size was not significantly important.

Hypothesis 3 The observed effectiveness of learned models depends on the

deployed learning to rank technique and the sample size.

Partially validated: The effectiveness of the learned models depends on the
sample size for some learning to rank techniques, namely GBRT and RankNet.

Research Question 1 What are the aspects that define the smallest sample

size for an effective learned model?

The test evaluation measure, the type of information need and the learning to
rank technique have all been shown to have an impact on the size of the small-
est effective sample. In particular, from Table 10, we found that the smallest
effective sample size was generally 10-50 documents for the navigational query
sets on the GOV (LETOR) test collection, while 400 documents were neces-
sary for the informational TD04 query set. For the TREC Web track query
sets of mixed information needs on the much larger ClueWeb09 corpus, 20-
50 documents were sufficient for effective ERR@20 performances, while larger
samples were required for some techniques and query sets to ensure effective
NDCG@20 (e.g. LambdaMART: 20 documents for WT09 vs. 2000 documents
for WT10). Furthermore, for an effective MAP performance, samples of 2000
documents were necessary across all learning to rank techniques. For the navi-
gational query set on ClueWeb09, we found that it was important to use anchor
text in the sampling document representation to ensure effective retrieval at
sample sizes smaller than 5000 documents.

In summary, to ensure effective retrieval across different types of informa-
tion needs for the ClueWeb09 corpus, our results suggest that a sample for
learning to rank is created using at least 1500 documents obtained using a
document representation that includes both the body of the document and
the anchor text of incoming hyperlinks, or at least 2000 documents when not
using anchor text, to ensure maximum effectiveness.

5.2 Learning Evaluation Measure & Cutoff

For listwise learning to rank techniques, we postulated in Section 2.2.3 that
the choice of the learning evaluation measure and rank cutoff used within their
loss function may have an impact on the effectiveness of the resulting learned
model. This section addresses this second research theme, by identifying ap-
propriate measures and cutoffs for listwise learning to rank techniques. For
these experiments, as described in Section 3, we fix the sample size. In par-
ticular, following the results of Section 5.1, we choose the maximal sample
sizes (1000 for GOV, 5000 for CW09B), as these have the highest potential
to perform well across all query sets, while the sample document representa-
tion for CW09B is fixed to exclude anchor text (again, this is also an effective
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Fig. 8 Effect on test measure effectiveness on the HP (in terms of MRR) and TD (MAP)
GOV query sets of different learning evaluation measures and rank cutoffs, using AFS or
AdaRank. Sample size 1000. NP figures are omitted, as these are very similar to HP.

setting across all query sets). In the following, we present and analyse our
experiments, firstly, in a graphical manner (Section 5.2.1), and secondly in an
empirical manner (Section 5.2.2). We then summarise whether our hypotheses
from Section 2.2.3 were validated (Section 5.2.3).

5.2.1 Graphical Analysis

Figure 8 (GOV query sets) and Figure 9 (CW09B query sets) show the impact
of using different learning evaluation measures with different rank cutoffs for
AFS and AdaRank on the effectiveness for the various query sets. For reasons
of brevity, we omit figures for the NP04 and NAV06 query sets, as the trends
observed are identical to HP04 (Figure 8(a) & (b)).

Firstly, on analysis of the navigational HP04 query set (Figure 8(a) &
(b)), is it clear that the learning evaluation measure and its rank cutoff do
not impact greatly the effectiveness of the learned models, with the exception
of the precision measure (P). Indeed, as expected, the low informativeness of
the precision (P) measure makes it unsuitable for use as a learning evaluation
measure at all but the smallest depths. For the other measures, the variability
is much lower across different cutoff depths, and the measures have widely
similar performances. This is due to the very few relevant document for each
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Fig. 9 Effect of different learning evaluation measures and rank cutoffs on test ERR@20
on the WT09 and WT10 CW09B query sets (NAV06 shows a similar pattern to the other
HP04 and NP04 navigational query sets), learned using AFS and AdaRank. Sample size
5000.

query in this set (see Table 2), which ensures that the various measures can
only respond to changes where the relevant document moves up or down in
the ranking.

For the more informational TD04 query set (Figure 8(c) & (d)), there is
more contrast between the performance of the various learning evaluation mea-
sures than for HP04. In particular, for both AFS and AdaRank, MRR and the
related ERR measures are very similar in performance, and their rank cutoff
has little impact on the effectiveness of the learned model. In contrast, learned
models obtained using the MAP and NDCG learning evaluation measures ex-
hibit generally higher performance than ERR and MRR, due to their higher
informativeness.

On analysing WT09 and WT10 query sets in Figure 9, we observe a higher
variance in effectiveness for some learning evaluation measures across different
sample sizes for these query sets than for TD04. In particular, some learned
models using precision can be effective, but such occurrences are fairly seldom
and appear to occur randomly. Once again, MAP and NDCG appear to be
effective learning evaluation measures, with the effectiveness of NDCG increas-
ing as rank cutoff increases for WT09 using AFS (Figure 9(a)). In contrast,
with their focus on the first-ranked relevant documents, the ERR and MRR
learning evaluation measures show little variance in effectiveness as rank cutoff
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Table 11 For AFS and AdaRank, mean and standard deviation of the test performance
measure of learned models obtained using different learning evaluation measures across all
rank cutoffs. The highest performing learning to rank technique in each row is highlighted.
The last row shows the average of all numbers in each column.

Query
Test Measure

Learning Evaluation Measure

Set
ERR NDCG MAP MRR P

Mean σ Mean σ Mean σ Mean σ Mean σ

AFS
HP04 MRR .713 .008 .724 .013 .697 .005 .717 .008 .412 .140
NP04 MRR .405 .042 .423 .035 .412 .037 .415 .037 .220 .154
TD04 MAP .182 .004 .220 .017 .220 .019 .175 .002 .151 .050
WT09 ERR@20 .136 .000 .158 .012 .141 .009 .133 .001 .122 .022
WT09 NDCG@20 .271 .002 .309 .022 .285 .016 .263 .001 .242 .049
WT09 MAP .188 .002 .205 .012 .193 .010 .176 .001 .168 .035
WT10 ERR@20 .132 .002 .129 .006 .132 .007 .138 .007 .083 .042
WT10 NDCG@20 .198 .002 .234 .013 .248 .010 .209 .005 .141 .070
WT10 MAP .097 .000 .135 .003 .137 .002 .098 .001 .096 .027
NAV06 MRR .422 .030 .422 .030 .422 .030 .422 .030 .161 .087

AdaRank
HP04 MRR .730 .007 .724 .014 .723 .003 .740 .004 .439 .160
NP04 MRR .669 .002 .673 .013 .670 .002 .679 .001 .308 .194
TD04 MAP .196 .003 .198 .011 .209 .004 .193 .004 .174 .044
WT09 ERR@20 .133 .001 .139 .003 .141 .003 .134 .000 .134 .017
WT09 NDCG@20 .260 .001 .272 .004 .274 .003 .261 .000 .270 .035
WT09 MAP .184 .001 .190 .002 .192 .002 .184 .000 .185 .021
WT10 ERR@20 .087 .000 .104 .013 .103 .009 .110 .001 .105 .019
WT10 NDCG@20 .148 .000 .172 .014 .175 .012 .162 .001 .164 .027
WT10 MAP .097 .000 .113 .005 .116 .007 .089 .001 .105 .012
NAV06 MRR .260 .000 .258 .003 .241 .012 .241 .012 .171 .094

Means
.275 .005 .290 .012 .287 .010 .277 .006 .193 .065

increases. However, we note that the WT10 learned models are more markedly
effective for MRR than ERR - an observation not found for the other query
sets.

5.2.2 Empirical Analysis

To aid in the cross-comparison of measures, for both AFS and AdaRank,
Table 11 shows the mean and standard deviation of the test performance
measure across all cutoffs for a given learning evaluation measure. For instance,
the lines for ERR ( ) in Figures 8 & 9 are summarised in the ERR column
of Table 11. The last row in Table 11 reports the average in each column, to
indicate the trends across the different learning evaluation measures.

Comparing the learning evaluation measures, we observe from Table 11 –
similar to the performances observed in Figures 8 & 9 – that Precision (P)
provides the lowest performance, and the highest variance, as the learned mod-
els it produces are not always effective (the high variance is explained in that
some models consist of only a single effective feature, while in other scenarios
a low quality model is obtained). Of the other measures, NDCG and MAP are
overall the most effective learning evaluation measures, followed by MRR and
ERR in certain cases.

Breaking this down by query set, for the HP04 and NP04 navigational sets,
we observe from Table 11 that NDCG is the most effective learning evaluation
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Table 12 ANOVA p values for different query sets and evaluation measures as learning
evaluation measure and cutoffs are varied.

Query Test
p value

Set Measure
Learning Evaluation Learning Evaluation Learning Evaluation

Measure Measure Cutoff Measure × Cutoff
Hypothesis 4 Hypothesis 5 -

AFS
HP04 MRR 2e-16** 0.06317 0.11763
NP04 MRR 2.2e-16** 0.2936 4.936e-07**
TD04 MAP 5.213e-09** 0.340027 0.002777**
WT09 ERR@20 0.1266 0.5082 0.5630
WT09 NDCG@20 0.2587 0.6254 0.7079
WT09 MAP 0.5921 0.7468 0.8490
WT10 ERR@20 6.408e-09** 0.1529 0.2954
WT10 NDCG@20 0.001968** 0.281312 0.413536
WT10 MAP 0.2141 0.3738 0.9089
NAV06 MRR 6.098e-07** 0.3730 0.8111

AdaRank
HP04 MRR 2.2e-16** 0.0194766* 0.0006706**
NP04 MRR 2.2e-16** 0.0004233** 2.522e-09**
TD04 MAP 0.0007071** 0.0265877* 0.0183190*
WT09 ERR@20 0.5336 0.9631 0.9986
WT09 NDCG@20 0.9796 0.9392 0.9969
WT09 MAP 0.9956 0.7389 0.9899
WT10 ERR@20 0.001188** 0.543233 0.352908
WT10 NDCG@20 0.4031 0.8359 0.7595
WT10 MAP 0.03274* 0.62433 0.91968
NAV06 MRR 0.4288 0.6982 0.9766

measure for AFS, followed by MRR (mean performances of 0.724 and 0.717,
respectively, for HP04, 0.423 and 0.415 for NP04). While it is expected that the
informative NDCG measure produces the most effective models, the promising
performances of MRR and the related ERR measure suggest that, for these
query sets, learning using just the top of the ranking is sufficient to obtain
effective learned models. This is also true for AdaRank learned models, with
MRR exhibiting the most effective learned models for both query sets (0.740
and 0.679).

For the informational TD04 query set, MAP and NDCG are effective
choices, with similar results observed for the WT09 and WT10 mixed query
sets, regardless of the test evaluation measure. Indeed, for WT09 and WT10,
it is not the case that learning using the test evaluation measure results in
the most effective models when evaluated using the test measure. This is par-
ticularly true for learning using ERR, which always results in lower quality
models than NDCG, even when evaluated by ERR@20 (for instance, for AFS,
models learned using NDCG have mean ERR@20 of 0.158, versus 0.136 for
ERR as a learning evaluation measure). Moreover, this agrees with the theo-
retical speculations of Robertson (2008), and validates the results of Yilmaz
and Robertson (2010) across many more query sets and in a reproducible set-
ting. The observed results also confirm the earlier work of He et al (2008), but
which was not conducted within a learning to rank setting.
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Comparing the AdaRank and AFS listwise learning to rank techniques,
from Table 11, we observe that the mean performances for both techniques
are broadly similar - in line with Table 7. However, by using a cell-by-cell
comparison, we find AdaRank to perform slightly better than AFS, while also
exhibiting an overall lower variance.

Overall, we observe the following ranking of learning evaluation measures:
NDCG ≥ MAP ≥ {ERR,MRR} ≫ P, and hence recommend NDCG as the
most effective learning measure. For making an appropriate choice of measure,
high effectiveness should be regarded as more important than low variance.
Indeed, while ERR has a low variance, it performs lower than MAP or NDCG.
Even for the effective MAP and NDCG measures, the variance was low sug-
gesting that to permit effective learning, evaluating using a small cutoff (e.g.
10) is sufficient, due to the top-heavy nature of most evaluation measures.
Moreover, from Figure 2, we note that smaller rank cutoffs provide efficiency
advantages by markedly reducing learning time.

Finally, we address our hypotheses concerning the evaluation measure choice
(Hypothesis 4) and rank cutoff (Hypothesis 5). Similar to Section 5.1 above,
this is achieved with the aid of ANOVAs, which are reported in Table 12. By
analysing the Learning Evaluation Measure column of Table 12, we observe
significant dependencies on the selected measure for AFS and AdaRank for 6
and 5 out of 9 query sets, respectively. This suggests that the choice of mea-
sure can have an impact on effectiveness, particularly for the GOV query sets,
partially upholding Hypothesis 4.

This observation about the GOV query sets is also mirrored in the results
of the Learning Evaluation Measure Cutoff column of Table 12, with AdaRank
showing significant dependence on the rank cutoff. However, the results for the
CW09B query sets do not exhibit significant dependencies on evaluation mea-
sure cutoff, which is explained by the higher variance and lack of concordance
of learning to rank techniques across different cutoffs for these query sets. In-
deed, only from inspection of Figures 8 & 9 do we note the dependence of
effectiveness on the cutoff of the precision measure. Overall, we conclude that
due to the focus of most evaluation measures on the top-ranked documents,
only for the precision measure can Hypothesis 5 be validated.

5.2.3 Summary

Our detailed experiments have permitted various conclusions to be drawn
with respect to the choice of learning evaluation measure rank cutoff. Below,
we summarise our findings for the hypotheses we defined in Section 2.2.3:

Hypothesis 4 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by the choice of the learning

evaluation measure.

Partially validated: The choice of learning evaluation measure can significantly
impact the effectiveness of learned models from listwise learning to rank tech-
niques, but only for some types of information needs. In particular, for naviga-
tional queries with very few relevant documents, all measures except precision
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are comparably effective. However, for query sets with informational needs,
measures such as MAP and NDCG are the most effective. Overall, regardless
of the measure used to evaluate the effectiveness of the learned model, our re-
sults suggest that NDCG is an effective choice as a learning evaluation measure
for a listwise learning to rank technique, due to its informative nature.

Hypothesis 5 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by the choice of the rank

cutoff of the learning evaluation measure.

Partially validated: For the precision measure, there is a clear dependence be-
tween the learning evaluation measure rank cutoff and the effectiveness of the
resulting learned models (see Figures 8 & 9). On the other hand, significant
dependencies between rank cutoff and effectiveness are only observed for Ada-
Rank on the GOV query sets, which can be considered as outliers. Therefore,
given the reduced learning time achievable when using a smaller rank cutoff
(see Figure 2), our results suggest that 10 is a suitable rank cutoff for the
learning evaluation measure of a listwise learning to rank technique.

5.3 Sample Size and Learning Evaluation Measure Cutoff

In the preceding sections, we have examined the research themes concern-
ing the sample size and the evaluation measure cutoff in independence, by
fixing one while varying the other. However, in this section, we vary both con-
currently to determine if there is dependence between these factors, thereby
addressing our final research theme and its corresponding Hypothesis 6. This
is performed by analysing the resulting performance of a learned model as
the two factors are varied (Section 5.3.1), and by comparing the weights as-
signed to features in the learned models (Section 5.3.2). We summarise our
observations in Section 5.3.3.

5.3.1 Graphical and Empirical Analysis

For the WT10 query set (our most recent CW09B query set), we fix the learn-
ing to rank technique to AdaRank trained by NDCG, on a sample obtained
using a document representation without anchor text. Indeed, based on the re-
sults in Section 5.1, AdaRank is an effective learning to rank technique, while
based on Section 5.2, NDCG is the most effective learning measure, particu-
larly on the CW09B query sets. Finally, the results in Section 5.1 show that
anchor text has little impact on the results for WT10.

To measure the dependence between the sample size and the learning eval-
uation measure cutoff, we vary both as independent variables, and observe
the resulting effectiveness as the dependent variable. Figure 10 presents the
resulting NDCG@20 surface - the triangular shape is caused by the omission
of points where the measure cutoff exceeds sample size. From this figure, we
observe that effectiveness increases as sample size increases towards 1000, but
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Fig. 10 Surface plot for WT10 NDCG@20 performance, when learned using Ada-
Rank(NDCG).

decreases past 1000 (as expected from Figure 6(d) for AdaRank). With re-
spect to the measure cutoff, the surface is flat across all sample sizes. This
suggests that there is no dependence between sample size and measure cut-
off. Indeed, using a within-subject ANOVA, a p value of 0.809 validates the
lack of a significant dependence between effectiveness and the two independent
variables.

5.3.2 Learned Model Comparison Analysis

Another method to determine the impact of the sample size and the learning
measure cutoff is to compare and contrast the trained models. In particular,
the AdaRank learning to rank technique calculates a weight αf for each fea-
ture, where unselected features have αf = 0. From this, the vector α contains
the weights for all features. We normalise this vector to magnitude 1. Next,
these weights are grouped by the five feature classes defined in Section 4.1
(weighting models, link analysis, etc.). Then by summing the absolute feature
weights for all features with that class, we can determine the importance to
the learned model, known as mass, of the features of that class:

mass(class) =
∑

f∈features(class)

|αf | (1)

where features(class) is the set of features belonging to that class from Sec-
tion 4.1. Finally, we can compare models by measuring the difference in mass
for each class of features between the two models.

We choose three points from the test performances for WT10 shown in
Figure 10:
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Fig. 11 Relative feature mass for different feature classes and different learning settings.

– sample size of 10; learned using NDCG@10, denoted in Figure 10 by ⊙;
– sample size of 1000; learned using NDCG@10, denoted by ×;
– sample size of 1000; learned using NDCG@1000, denoted by +.

By comparing the corresponding learned models, we can examine the dif-
ference in feature weight mass between different sample sizes, and between
different learning evaluation measure cutoffs. In particular, the left hand side
of Figure 11 shows the difference in feature weight mass between the learned
models with sample size of 10 learned using NDCG@10 and sample size of
1000 learned using NDCG@10. A positive difference denotes a feature group
stronger in the former model. Similarly, the right hand side shows the differ-
ence in feature weight mass in models using sample size of 1000 learned using
NDCG@1000 and sample size of 1000 learned using NDCG@10.

From Figure 11 (left), we observe that the link analysis features have
markedly more emphasis in the models obtained for sample size 10. This is
explained as follows: with a small sample size, the link analysis features can
be applied more aggressively, as the probability of relevance of the sample of
documents being re-ranked is high (even if the effectiveness of the sample is
lower). In contrast, for a larger sample, the probability of relevance of the doc-
uments in the sample is lower, and hence the weighting models are regarded
as a stronger features. For example, consider a sample of two documents with
two features: BM25 (used to identify the sample), and PageRank. For such a
sample, it may be effective to re-rank the two documents entirely by PageR-
ank, as it is likely that the second ranked document is relevant. However, there
is much more potential to damage effectiveness by re-ranking a sample of 1000
documents by PageRank, as the likelihood of relevance of the document with
the highest PageRank (potentially at rank 1000) is lower. This also explains
why learned models obtained from a small sample should not be applied on
larger samples and vice versa.

In Figure 11 (right), we observe that for a large sample, the overall weights
given to the feature groups are more similar, whether NDCG@10 or NDCG@1000
is used for learning. However, for models obtained using NDCG@1000, URL
and proximity features play more of a role at getting relevant documents re-
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trieved at the deeper ranks. The disparity between the most highly weighted
feature classes from the different settings gives support to the fact that models
emphasising different features are obtained according to the selected sample
size and learning evaluation measure cutoff, even if the effectiveness of the
models are similar.

5.3.3 Summary

Through the above experiments and analysis, the dependence between the
sample size and the learning evaluation measure has addressed our final hy-
pothesis from Section 2.2.3:

Hypothesis 6 The observed effectiveness of the learned model obtained from

a listwise learning to rank technique can be affected by both the choice of the

rank cutoff of the learning evaluation measure and the size of the samples.

Partially validated: We find that the choice of the learning evaluation measure
cutoff for an effective model is not dependent on the sample size. Yet the
models selected for different sample sizes and for different learning evaluation
measures differ in the selected features. In particular, link analysis is a strong
feature for ranking a small sample of 10 documents. However, for a large
sample, when a learning evaluation measure with a large rank cutoff is used,
link analysis features are introduced to improve the effectiveness of the ranking
at lower ranks. Still, these features are not important for ordering the top-
ranked documents. Overall, this suggests that using a larger sample does not
require a larger rank cutoff for the learning evaluation measure used by the
listwise learning to rank technique.

6 Conclusions

This study investigated how best to deploy learning to rank to obtain ef-
fective learned models, across different information need types, learning to
rank techniques and corpora. It represents a larger and more thorough study
than any currently present in the literature, investigating practical issues that
arise when deploying learning to rank. In particular, we define three research
themes, with corresponding hypotheses and research questions. In the first
theme, we address the size and constitution of the sample for learning to rank
(when to stop ranking). Moreover, in the second research theme, we address
the choice of the learning evaluation measure and the corresponding rank cut-
off for listwise learning to rank techniques (how to evaluate the learned models
within the loss function of listwise learning to rank techniques). Lastly, our
final research theme investigates the dependence between the sample size and
the learning evaluation measure rank cutoff.

Overall, we found that when to stop ranking – the smallest effective sample
– varied according to several factors: the information need, the evaluation mea-
sure used to test the models, and the presence of anchor text in the document
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representation used for sampling. In particular, from Table 10, we found that
the smallest effective sample size was 10-50 documents for navigational infor-
mation needs on the GOV (LETOR) test collection, while 400 documents were
necessary for the topic distillation query set. For the TREC Web track query
sets of mixed types of information needs on the much larger ClueWeb09 cor-
pus, samples with as little as 20 documents are sufficient for effective ERR@20
performances. Some techniques and query sets were shown to require larger
samples (up to 2000 documents) for effective NDCG@20. Furthermore, for an
effective MAP performance, samples of 2000 documents were shown to be nec-
essary for all learning to rank techniques. For the navigational query set on
ClueWeb09, we found that it was important to use anchor text in the sampling
document representation to ensure effective retrieval at sample sizes smaller
than 5000 documents – indeed, a sample size of at least 1500 documents guar-
antees effective retrieval for all query sets using this representation. These
results suggest that deep samples are necessary for effective retrieval in large
Web corpora, indeed deeper than some recent learning to rank test collections
such as those listed in Table 2. In addition, our experiments also showed that
the effectiveness of learned models are generally dependent on the sample size
(Hypothesis 1), partially dependent on the type of information need and the
sample document representation (Hypothesis 2), and partially dependent on
the choice of the learning to rank technique and the sample size (Hypothesis 3).

With respect to our second research theme addressing how the loss function
for listwise learning to rank techniques should be defined – i.e. the choice of
learning evaluation measures deployed by listwise learning to rank techniques
– we found that the choice of the learning evaluation measure can indeed have
an impact upon the effectiveness of the resulting learned model (Hypothesis
4), particularly for informational needs. Indeed, our results show that NDCG
and MAP are the most effective learning evaluation measures, while the less
informative ERR was not as effective, even when the test performance is eval-
uated by ERR. For the learning evaluation measure rank cutoff (Hypothesis
5), we only found the effectiveness of learned models to be markedly impacted
by the rank cutoff for the precision measure.

Finally, for our third research theme, we showed that while there is no
dependence between the learning measure cutoff and the sample size in terms
of the effectiveness of the learned model (Hypothesis 6), the weights of the
selected features can markedly differ between small and large samples, and
between small and large learning evaluation measure cutoffs.

To summarise our empirical findings for applying learning to rank on a large
Web corpus such as ClueWeb09, where evaluation is conducted using a measure
such as NDCG@20 or MRR, our results suggest that the sample should contain
no less than 1500 documents, and be created using a document representation
that considers anchor text in addition to the content of the document, so as to
ensure effective retrieval for both informational and navigational information
needs (Section 5.1.4). If a listwise learning to rank technique is used to obtain
the learned model, then our results suggest that NDCG@10 represents a suit-
ably informative learning evaluation measure to achieve an effective learned
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model (Section 5.2.3). Lastly, the importance of different classes of features
within a learned model are dependent on both the sample size and the rank
cutoff of the learning evaluation measure (Section 5.3.3).

This work used a total of six learning to rank techniques that are widely im-
plemented or freely available, which are representative of the various families
(pointwise, pairwise and listwise), as well as of different types of learned models
(linear combination, neural network, or regression tree). The used learning to
rank techniques includes the state-of-the-art LambdaMART technique, which
won the Yahoo! 2011 learning to rank challenge (Chapelle and Chang 2011).
While some other learning to rank techniques have been proposed in the litera-
ture (as reviewed by Liu (2009)), the breadth of those learning techniques that
we experimented with and their wide deployment in the literature and public
evaluation forums leads us to strongly believe that our results should generalise
to the learned models obtained from other learning to rank techniques.
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