Query Efficiency Prediction for Dynamic Pruning

Nicola Tonellotto
Information Science and Technologies Institute
National Research Council
Via G. Moruzzi 1, 56124 Pisa, Italy

nicola.tonellotto@isti.cnr.it

ABSTRACT

Dynamic pruning strategies are effective yet permit efficient
retrieval by pruning - i.e. not fully scoring all postings of all
documents matching a given query. However, the amount
of pruning possible for a query can vary, resulting in queries
with similar properties (query length, total numbers of post-
ings) taking different amounts of time to retrieve search re-
sults. In this work, we investigate the causes for inefficient
queries, identifying reasons such as the balance between in-
formativeness of query terms, and the distribution of re-
trieval scores within the posting lists. Moreover, we note
the advantages in being able to predict the efficiency of a
query, and propose various query efficiency predictors. Us-
ing 10,000 queries and the TREC ClueWeb09 category B
corpus for evaluation, we find that combining predictors us-
ing regression can accurately predict query response time.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

General Terms: Performance, Experimentation

Keywords: Efficiency, Dynamic Pruning, Predictors

1. INTRODUCTION

Not all queries submitted to a search engine take the same
time to complete. Ignoring transient effects such as query or
operating system caching, the number of postings scored has
a significant impact on the total retrieval time taken. Dy-
namic pruning strategies aim to improve efficiency by short-
cutting or omitting the scoring of the postings of documents
that will not be retrieved in the top k£ documents.

As a search engine may be processing multiple queries
concurrently, having a prediction on the completion time of
a query may have advantages in the scheduling of resources.
For instance, if there are multiple query servers serving the
same index shard, then a query can be routed to the query
server that will soon be idle. Similarly, if a query is predicted
to be expensive, then the search engine may reduce its ef-
fectiveness tolerance, thereby allowing increased efficiency.

Previous works in information retrieval have devised vari-
ous query performance predictors (8, 11, 12, 14], whereby the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LSDS-IR’11, October 28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0959-2/11/10 ...$10.00.

Craig Macdonald, ladh Ounis
School of Computing Science
University of Glasgow
Glasgow, G12 8QQ, UK
firstname.lasthame@glasgow.ac.uk

expected effectiveness performance of the retrieval system
when measured using relevance assessments and an evalua-
tion measure (e.g. Mean Average Precision) are aimed to
be predicted before evaluation has occurred. Various pre-
dictors have been proposed, some based on the statistics of
the query terms alone (pre-retrieval predictors), while other
post-retrieval predictors are calculated after the documents
have been ranked [12].

However, no existing work has aimed to predict the effi-
ciency performance of a search engine for a query. Hence,
inspired by the previous work on query performance predic-
tion, in this paper, we propose various novel query efficiency
predictors, which can predict the response time of a query.
The proposed predictors are inexpensive and pre-retrieval,
in that they are based on various statistics of the query terms
that can be conveniently calculated at indexing time.

The contributions of this paper are three-fold: we study
how the efficiency of various queries can differ, and identify
several reasons for inefficient queries; we propose the notion
of query efficiency prediction, while also proposing several
accurate predictors. Indeed, to the best of our knowledge,
this is the first work on query efficiency prediction.

The remainder of this paper is structured as follows: the
next section reviews the related work in terms of dynamic
pruning strategies, as well as existing work in query per-
formance predictors; Section 3 studies the problem of effi-
ciency; Section 4 proposes and evaluates various query ef-
ficiency predictors; concluding remarks follow in Section 5.
Details of the common experimental setup used throughout
this paper are provided in Appendix A.

2. RELATED WORKS

In the following, we define both the efficient retrieval con-
text of this work (Section 2.1), as well as background mate-
rial on prediction within information retrieval (Section 2.2).

2.1 Efficient Retrieval

To rank documents for a query by traversing posting lists,
there are two basic techniques, namely Document-at-a-time
(DAAT) and Term-at-a-time (TAAT) [7]. TAAT strategies
are more commonly used in traditional information retrieval
systems, and perform well for small corpora. For large cor-
pora, DAAT strategies have two advantages: they require
less memory at query time, and they exploit I/O parallelism
more effectively [4]. In this work, due to the size of the Web
corpus that we consider, we focus exclusively on DAAT.

However, the erhaustive scoring of every posting of ev-
ery query term can be improved upon for efficient retrieval.
Indeed, to attain the typical sub-second response times of
Web search engines, several strategies to enhance retrieval

efficiency have been proposed (e.g. [2, 4, 16, 18, 19]). In
particular, dynamic pruning strategies aim to eliminate the
scoring of documents that will not make it into the final top
k ranking, thereby benefiting efficiency. A safe-up-to-rank
k (safe) strategy identifies the same top k documents and
their relative ordering as an exhaustive scoring strategy.

All state-of-the-art safe dynamic pruning strategies [2,
4, 18, 19]1 aim to avoid scoring parts of the posting lists,
to save disk access, decompression and score computation
costs. This mechanism is implemented by maintaining ad-
ditional information during retrieval, namely: a threshold,
which is the minimum score that documents must achieve to
have a chance to be present in the final top k results; and for
each query term, a term upper bound, which is the maximal
contribution of that particular term to any document score.

Buckley and Lewit [5] and Turtle and Flood [19] proposed
safe dynamic pruning strategies for TAAT and DAAT scor-
ing respectively, dealing with document-sorted indexes. The
main logic behind these strategies is that the scoring of a
document can be terminated early once the pruning con-
dition holds, i.e. even if the document contained all yet
unscored query terms, it would still not exceed the thresh-
old and make it into the retrieved set of documents. For
instance, in DAAT, since all postings for the same docu-
ment are evaluated at the same time, it is possible to omit
the remaining score computations once the pruning condi-
tion holds. This is the essence of the DAAT MAXSCORE
strategy [19]: if the condition holds, all posting lists con-
taining the current docid are moved on to the next docid,
without the further processing of the remaining postings rel-
ative to the pruned docid. However, as at least one posting
for each document must be scored, for a single term query,
no pruning is possible.

In the DAAT WAND strategy [4], skips lists [16] are also ex-
ploited. For each document, WAND calculates a query upper
bound, summing up the upper bounds for the terms occur-
ring in the document. If the pruning condition is not satis-
fied, the document is fully scored. Otherwise, the next doc-
ument is processed. The selection of the next document to
score is optimised to facilitate skipping [4]. WAND represents
the current state-of-the-art safe DAAT dynamic pruning
techniques. For this reason, we only use WAND in this work.

2.2 Query Performance Prediction

The notion of predicting query difficulty refers to tech-
niques that infer the (effectiveness) performance of a given
query, without knowing the relevance assessment informa-
tion. There has been some previous work regarding the
query performance prediction issue. In [8], Cronen-Townsend
et al. proposed inferring query performance by using a clar-
ity score, which is the divergence of a term’s query language
model from its collection language model. Amati et al. [1]
proposed the query difficulty notion that measures how a
query term’s distribution in a pseudo relevance document
set diverges from randomness. In [12], He et al. proposed
and studied a set of pre-retrieval query performance predic-
tors (in the sense that their computation does not involve
the use of the relevance scores or content of retrieved doc-
uments, unlike clarity or query difficulty). An example of
a pre-retrieval predictor is Average inverse collection term
frequency (AvICTF) [12]:

"We omit the database-focused algorithms of Fagin et
al. [10], which assume random access on the list.

log, HQ mk;nc (1)
ql

where F' is the number of occurrences of a query term in
the whole collection and token. is the number of tokens in
the whole collection. ¢l is the query length, which is the
number of unique non-stop words in the query. The idea of
ICTF is similar to the inverse document frequency (IDF):
the frequency of a query term in the collection reflects its
contribution in retrieval. AvICTF infers query performance
by the average quality of the composing query terms of a
query Q. Moreover, as all of the statistics (F', gl and token.)
are known before retrieval commences, there is no need to
query the inverted index to compute this pre-retrieval pre-
dictor. Indeed, pre-retrieval predictors are advantageous as
they permit changes in the retrieval strategy before retrieval
commences [12]. In contrast, most post-retrieval predictors
require the scores or contents of retrieved documents (e.g. to
estimate a language model) or passes over the posting lists
to estimate the number of documents matching a query, or
the conditional probability of pairs of query terms.

Later, machine learning has been applied to query per-
formance prediction [14, 15]. The recent work of Hauff [11]
studies query performance prediction in detail. However, all
work on query performance prediction thus far has focused
upon the prediction of effectiveness, ignoring the efficiency
that a query may achieve. In the following, we investigate
the causes of inefficient queries, as well as proposing and
evaluating several query efficiency predictors.

AvICTF =

3. EFFICIENCY OF DYNAMIC PRUNING

The time taken to retrieve a set of documents for a query
can be broken down as follows:
1. Pre-process the query (e.g. tokenisation, stemming).
2. Lookup the statistics of each query term in the lexicon.
3. Process the postings for each query term, accumulating
scores for each document to identify a final retrieved set.
4. Output the retrieved set with metadata (e.g. URLs).
For a given query, the scoring of postings (step 3) is the
largest variable of the response time of a query (step 4 is a
constant for k retrieved documents). Intuitively, the time
taken for processing the postings for each query term is pro-
portional to the length of the postings lists to be processed
and scored, but, as we will show, this component of the re-
sponse time largely depends on how much pruning occurs.

3.1 Posting Scoring

To illustrate the relationship between the total number
of postings and query response time, we measure both for
a stream of 10,000 queries from a real query log (see Ap-
pendix A for experimental setup). Figure 1 shows scatter
plots for total postings and response time for two strate-
gies, exhaustive DAAT and WAND. From Figure 1 (a), it
is clear that the correlation between query response times
and total postings is almost perfect for exhaustive DAAT,
independently from the number of terms in the query. This
correlation is explained by the fact that the strategy scores
every posting for each query term, without any pruning.
Overall, as the number of scored postings is equal to the
total number of postings for each query term, Figure 1 (a)
shows that the response time for exhaustive DAAT can be
easily predicted before retrieval time.

)

€}

0
Q
w
=
o
E X
F 4 R
g . ° 1term
EX'
§3 - = 2 terms
]
e« 3 terms
g
3 * 4 terms
g
5 terms

0 10

20
Total Postings (in millions)
(a) Exhaustive DAAT strategy.

30 40 50

60

Query Response Time (in secs)

IS

w
n

w

3 °1term

.
wn

"2terms
3 terms

N

* 4 terms

=
e}

x 5 terms

-

o
wn

40
Total Postings (in millions)
(b) WAND DAAT dynamic pruning strategy.

50 60

Figure 1: Total postings vs. Response times for two retrieval strategies.

However, in Figure 1 (b), the same correlation is not ob-
served for the WAND dynamic pruning strategy. In partic-
ular, single term queries still exhibit a strong correlation
between number of scored postings and response times. Yet
for many queries with more than one term, response time
can be markedly lower than other queries with the same
number of postings to score. These results are in line with
expectations, as clearly WAND is able to perform pruning for
many queries. However, the level of pruning achieved can
vary markedly, even between queries of the same length and
number of postings. In the next section, we identify reasons
for such variance.

3.2 Pruning

Dynamic pruning has a strong impact on the efficiency of
query processing. However, there are several factors that
influence how pruning is carried out at runtime. To quan-
tify this impact, we analyse the manner that WAND prunes
queries. In particular, from our 10,000 queries, we extracted
the 6,351 queries with more than one term (recall that no
pruning is possible for single term queries), and compute the
pruning ratio p, defined as the percentage of posting scored
by the WAND strategy and the total number of postings. A
value of p = 35% means that the 35% of the total number of
postings of the query were actually scored, while the remain-
ing 656% of the postings were pruned. The pruning ratios of
the 6,351 queries have been bucketed in buckets with size
10%, and the results are reported in Figure 2.

More than the 50% of the queries have a pruning ra-
tio of less than 10%, showing the efficiency potential of
WAND strategy in terms of postings pruned. We analysed
these queries, and found that efficiency is higher for longer
queries. Indeed, the variance in pruning behaviour for dif-
ferent queries can be explained by the distribution of scores
within the query terms’ posting lists. If high scoring docu-
ments are encountered at the beginning of the posting lists,
then the pruning condition is satisfied early, and a larger
number of postings can be pruned. For longer queries, the
threshold rises quicker, resulting in more pruning.

However, more than 10% of the queries are not pruned at
all (i.e. pruning ratio 100%). Most of these queries (571)
consist of two query terms. This pruning “difficulty” has
two main causes. Firstly, most of these queries have a very
small total number of postings, so it is difficult to process

10000 (3535

1000

100

Number of queries

10

10

20 30 40 50 60 70
Pruning Ratio (in %)
Figure 2: The bucketed pruning ratios for WAND

using 6,351 queries with more than one term.

80 90 100

enough of them to achieve a high enough threshold to start
pruning. Secondly, when the total number of postings is
large, one of the two terms has a very low discriminative
power, i.e. a term with a very low IDF and consequently
a very low maximum score. In these cases, the strategy is
forced to behave like in single term queries, where the single
term is the most discriminative (high IDF) one, with the
other just adding some background noise.

In summary, WAND performs a very good job at pruning
postings. However, the query length and the total number
of postings is not enough to predict WAND’s query response
time (this was also noted earlier by Baeza-Yates et al. [3]
in the context of query caching). Instead, the number of
documents that are actually scored is the central statistic
to be predicted. To some extent, this is similar to query
performance prediction, which aim to determine how many
documents represent a good match for the query terms, and
hence predict the effectiveness of the system for the query.
Hence, inspired by this previous work in query performance
prediction, we posit that various statistics of the query terms
that can be obtained offline can be used to predict the re-
sponse time of a query. In the following section, we propose
and evaluate various statistics for predicting query efficiency.

4. PREDICTING EFFICIENCY

Having an accurate estimate of the efficiency of a query
can be useful to a search engine in many ways. For instance,

in a distributed setting, if the predicted availability of query
servers can be scheduled by the broker, then a new query
could be sent to the query server expected to be idle soonest.
Moreover, if a query is estimated to take a long time to
complete, advanced ranking functionalities may be turned
off to ensure that a target response time is still met. For
instance, the requirement of top-k safeness may be diluted
(e.g. by reducing the term upper bounds [4]), such that
results that are slightly degraded in effectiveness are received
in a timely manner.

To be of use, efficiency predictors must be pre-retrieval
- i.e. available before retrieval has commenced, and easily
obtained at retrieval time. Indeed, a post-retrieval efficiency
predictor is of no use, as the response time of the query is
known after retrieval has occurred! Hence, our efficiency
predictors are based on the available statistics of the query
terms (frequency, number of postings, IDF etc). In particu-
lar, in this work, we assume that this precludes statistics of
pairs of query terms (e.g. phrases, joint probabilities), even
though some search engines may record additional posting
lists for some phrases [22].

In the remainder of this section, we propose many effi-
ciency predictors (Section 4.1), which we then evaluate com-
pared to the response times of 6,351 queries (Section 4.2),
both in isolation (Section 4.3) and when combined using a
machine learned regression model (Section 4.4).

4.1 Query Efficiency Predictors

All of our proposed query efficiency predictors are based
on various statistics of the constituent terms of each query.
Each statistic is then aggregated in different manners (e.g.
sum, mean) to form different predictors. However, we rely
on more than frequency counts and IDF. In particular, dy-
namic pruning strategies require that an upper bound be
obtained on the weighting model score. This is normally
identified at indexing time, by scoring the postings lists of
all terms [7]. Assuming this is the case, we then have an
opportunity to calculate other term-based statistics, such as
the maximum, mean and standard deviation of the scores
observed for each posting list, as well the number of docu-
ments that would be inserted into the top k, if there was
only a single query term in that query.

For each term-based statistic, we create several query ef-
ficiency predictors by aggregating using six different statis-
tical functions: sum, max, mean, range, variance and stan-
dard deviation. The top part of Table 1 provides the full
list of term statistics that we calculate. From this table, we
highlight some representative term statistics:

Postings: The number of postings in a term’s posting
list. The sum of this statistic is the number of postings
scored for an exhaustive DAAT, and the upper bound on
the number of postings that would be scored by WAND.

Maxima: A term which has fewer maxima in the score
distribution may be easier to prune. This statistic can easily
be obtained for each term at indexing time while the term
upper bounds are being computed.

Promotions into k: If this query term was the only query
term, how many documents containing this term would make
it into the top k retrieved. A term with a low number of pro-
motions probably has its highest value documents towards
the start of the posting list.

Moreover, as discussed in Section 3.2, some query perfor-
mance (effectiveness) predictors may also indicate efficiency,
as they attempt to measure how well covered the query is

Predictor [
Predictors from Term-Based Statistics

Arithmetic, geometric, harmonic means of score

Max score

Approximation of max score

Variance of score

Postings

Maxima

Maxima > avg score

Postings with max score

Postings with 5% of max score

Postings with score within 5% of final k£ threshold

Promotions into k

IDF

3

(S CC e e == = Y = Y sey

Query Performance (Effectiveness) Predictors
AvVICTF [13]
AvIDF [13]
Gamma [13]
Similarity Collection Query [21]
TOTAL

L

o0
©

Table 1: All tested query effectiveness predictors.
Term-based statistics are aggregated into efficiency
predictors using 6 different functions: sum, max,
mean, range, variance and standard deviation.

in the corpus. Hence, we also consider five pre-retrieval per-
formance predictors, as listed in second part of Table 1.

While not all term-based statistics and their resulting pre-
dictors in Table 1 are likely to match query response time,
it is possible that a regression technique could learn an ap-
propriate combination. In the remainder of this section, we
define the experimental setup, before evaluating the predic-
tors in isolation, and when a combination of predictors is
learned using regression.

4.2 Experimental Setup: Predicting

We address two research questions in the following ex-
periments: (i) How accurate are our proposed predictors at
predicting efficiency (Section 4.3); and (ii) Can an accurate
regression model for query efficiency prediction be obtained
by combining multiple predictors (Section 4.4)?

To address these research questions, we use the 6,351
queries with more one query term (we discard the few queries
with more than 5 terms, while as as per Section 3.1, the pre-
diction of the efficiency of single term queries is trivial as no
pruning takes place). We split this query set in half chrono-
logically, to form training and testing sets. The training set
will be used to train the regression models in Section 4.4,
while all results are reported on the testing set.

Accuracy is measured by Pearson’s correlation r (—1 <
r < 1) between the prediction and actual response times
for all queries (1 is a perfect correlation). In addition, when
regression is applied, we also report the root mean square er-
rors (RMSEs) when on the test queries for regression trained
on single and all predictors respectively. The RMSE measure
— which should be minimised for more accurate predictions
— is more suited to measuring the accuracy of predicting re-
sponse times, as we are interested in obtaining a prediction
of response time, rather than just the relative ranking of
queries by their predicted efficiency.

4.3 Results: Single Predictors

The most effective six efficiency predictors, as well as the
five query performance predictors, and their respective cor-
relations for different query lengths are shown in Table 2.
From the table, we note that the most accurate efficiency

predictors are based on the number of postings (e.g. sum #
postings). Predictors based on # maxima are also accurate,
mainly because they are highly correlated with those based
on # postings. This is expected, as a docid sorted index
typically has no trend on score distribution, so # maxima
— % # entries. Query performance predictors exhibit some
strong correlations, with some (e.g. » = —0.85) almost as
strong as the proposed efficiency predictors - this illustrates
that there is indeed a connection between query effective-
ness prediction and efficiency prediction. Overall, while the
total number of postings appears to be the most accurate,
we know from Section 3 that it is not effective for all queries,
hence in the next section, we determine if the prediction can
be improved by combining predictors using regression.

4.4 Results: Combined Predictors

Given that a single predictor is not able to fully capture
the query response time behaviour when dynamic pruning
is used, we now investigate our second research question. In
particular, we use a multiple linear regression approach [20]
to make statistical predictions about the query response
time by combining all 89 predictors from Table 1. We es-
timate the coefficients for the multi-linear regression of the
real response times on the predictors in the train set, and we
compute the predicted response times for the test set queries
using these coefficients.

The correlations for the trained model on the test queries
are reported in Table 3, while a detailed comparison of our
statistical pre-retrieval prediction w.r.t. response time is
shown in Figure 3. Additionally, Tables 2 & 3 also report
the RMSE of single predictors when trained by regression.

On analysing Table 3, we observe that, for all query lengths,
correlations increase and RMSEs decrease when the multi-
linear regression is applied to learn a combination of pre-
dictors. Indeed, near perfect correlations as high as 0.98
are observed. This is mirrored in Figure 3, where query re-
sponse time is seen to be accurately predicted across most
queries. Outliers tend to occur for queries of 3 terms or
longer, where the actual response time was up to 0.25 sec-
onds longer than predicted. Overall, we conclude query ef-
ficiency can be successfully tackled as a regression problem,
leading to improved pre-retrieval knowledge of the likely re-
sponse time of a query.

S. CONCLUSIONS

This work performs a first investigation into predicting
how long a search engine may take to process a query when
dynamic pruning strategies are used. After analysing the
efficiency of a state-of-the-art pruning strategy for different
queries, we proposed various novel query efficiency predic-
tors, which for a given query, can predict the amount of
time taken to process the query. All of these predictors
are inexpensive, in that they are based on various statis-
tics of the query terms that can be conveniently calculated
at indexing time and hence do not require retrieval to take
place. We proposed a multiple linear regression approach
to combine multiple predictors and obtain a more accurate
query efficiency prediction in terms of response time. After
training, for all query lengths, our model was able to in-
crease correlations and reduce RMSEs between actual and
predicted response time. In particular, near perfect correla-
tions (r = 0.98) are obtained for two terms queries.

In the future, we will examine if the efficiency of other
dynamic pruning strategies can be predicted (e.g. TAAT

Correlations RMSEs
lq| | Best single | Regression | Best single | Regression
2 0.83 0.98 0.20 0.07
3 0.80 0.89 0.17 0.13
4 0.86 0.93 0.19 0.14
5 0.87 0.91 0.26 0.22

Table 3: Correlation and RMSEs for different query
lengths on the 50% of the 6,351 non-single term
queries for the best predictor in Table 2 and the
regression combined predictors.

and DAAT MAXSCORE), as well as contrasting and com-
paring efficiency prediction between disk and memory based
indices. We foresee a great potential for query efficiency pre-
diction. For instance, we intend to run simulations to deter-
mine how distributed query traffic could be better balanced
among replicated query servers if the expected termination
time of the query was known.

6. REFERENCES

[1] G. Amati, C. Carpineto, and G. Romano. Query difficulty,
robustness, and selective application of query expansion. In
Proceedings of ECIR 2004.

[2] V. N. Anh and A. Moffat. Impact transformation: effective
and efficient web retrieval. In Proceedings of SIGIR 2002.

[3] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. Design Trade-Offs for
Search Engine Caching. Transactions on the Web,
2(4):20-28, 2008.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and

J. Zien. Efficient query evaluation using a two-level

retrieval process. In Proceedings of CIKM 2003.

C. Buckley and A. F. Lewit. Optimization of inverted

vector searches. In Proceedings of SIGIR 1985.

N. Craswell, R. Jones, G. Dupret, and E.Viegas, editors.

Proceedings of the Web Search Click Data Workshop at

WSDM 20009.

[7] W. B. Croft, D. Metzler, and T. Strohman. Search Engines
— Information Retrieval in Practice. Addison-Wesley, 2009.

[8] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting
query performance. In Proceedings of SIGIR 2002.

[9] P. Elias. Universal codeword sets and representations of the
integers. Transactions on Information Theory, 21(2):194 —
203, 1975.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and
System Sciences, 66(4):614-656, 2003.

[11] C. Hauff. Predicting the Effectiveness of Queries and
Retrieval Systems. PhD thesis, Univ. of Twente, 2010.

[12] B. He and I. Ounis. Inferring query performance using
pre-retrieval predictors. In Proceedings of the SPIRE 2004.

[13] B. He and I. Ounis. Query performance prediction.
Information Systems, 31(7):585-594, 2006.

[14] K. Kwok, L. Grunfeld, H. Sun, P. Deng, and N. Dinstl.
TREC 2004 robust track experiments using PIRCS. In
Proceedings of TREC 2004.

[15] S. Luo and J. Callan. Using sampled data and regression to
merge search engine results. In Proceedings of SIGIR 2002.

[16] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. Transactions on Information Systems,
14(4):349-379, 1996.

[17] L. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald,
and C. Lioma. Terrier: A high performance and scalable
information retrieval platform. In Proceedings of the OSIR
Workshop 2006.

[18] M. Persin. Document filtering for fast ranking. In
Proceedings of SIGIR 1994.

[19] H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Information Processing and Management,
31(6):831-850, 1995.

5

6

2 terms 3 terms 4 terms 5 terms
Predictor r RMSE r RMSE r RMSE r RMSE
mean # maxima 0.82 0.20 0.80 0.17 0.86 0.19 0.86 0.27
mean # maxima > avg score | 0.83 0.20 0.80 0.17 0.86 0.19 0.87 0.26
mean # postings 0.82 0.20 0.80 0.17 0.86 0.19 0.85 0.28
sum # maxima 0.83 0.20 0.80 0.17 0.86 0.20 0.86 0.27
sum # maxima > avg score 0.82 0.20 0.80 0.17 0.86 0.19 0.87 0.26
sum # postings 0.82 0.20 0.80 0.17 0.86 0.19 0.85 0.28
AvVICTF -0.61 0.36 -0.54 0.30 -0.66 0.42 -0.60 0.59
AvIDF -0.61 0.38 -0.56 0.34 -0.67 0.48 -0.61 0.68
Gammal -0.16 0.40 -0.12 0.37 -0.26 0.53 -0.05 0.72
Gamma?2 0.02 0.36 0.09 0.32 -0.04 0.46 0.16 0.65
SCQ -0.72 0.37 -0.80 0.32 -0.85 0.44 -0.85 0.63

Table 2: The

top 6 most accurate efficiency predictors, and all

previous query performance predictors.

accuracy is shown for different lengths of queries in terms of Pearson r correlation and RMSE.

2 terms queries

Using Predictors = = =Optimal
4.00 .

3.50
3.00 -
2.50 -

2.00 3

1.50

Predicted Response Times
\

1.00 i
0.50

0.00

0.00 1.00 2.00

Actual Response Times

3.00

4 terms queries

Using Predictors = = =Optimal
3.00 -

2.50 -
2.00 e

1.50 -7

Predicted Response Times
Y

1.00 B 20
0.50

0.00 <4
000 050 100 150 2.00

Actual Response Times

2.50

4.00

3.00

Predicted Response Times

Predicted Response Times

3 terms queries

Using Predictors = = =Optimal

2.50 -
.
-
-
2.00 S
-, ‘< s
1.50 i
4
o
o8
1.00
0.50
0.00
0.00 0.50 1.00 1.50 2.00 2.50
Actual Response Times
5 terms queries

Using Predictors = = =Optimal
3.50 -
3.00 et

-
2.50 ra—
2.00 s
p
I - d
1.50 e
1.00 o
0.50 P
0.00 %%
000 050 100 150 200 250 3.00 3.50

Actual Response Times

Figure 3: Predicted vs. actual response times for different query lengths.

[20] S. Weisberg. Applied Linear Regression. Wiley, 3rd ed.,
2005.

[21] Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval
query performance prediction using similarity and
variability evidence. In Proceedings of ECIR 2008.

[22] M. Zhu, S. Shi, N. Yu, and J.-R. Wen. Can phrase indexing
help to process non-phrase queries? In Proceedings of
CIKM 2008.

APPENDIX
A. EXPERIMENTAL SETUP

All experiments are conducted using a 50 million docu-
ment subset TREC ClueWeb09 corpus (known as category
B). We index this corpus using the Terrier information re-
trieval platform [17]2, applying Porter’s English stemmer,
and removing standard stopwords. In the posting lists of

’http://terrier.org/

the inverted index, docids are encoded using Elias Gamma-
encoded deltas [9] and term frequencies using Elias Unary [9].
Each posting list also includes skip points [16], one every
1,000 postings. The resulting inverted index size is 22GB.
For testing retrieval efficiency, we use a port of the Ter-
rier’s retrieval infrastructure written in C++, and extract
a stream of user queries from a real search engine log. In
particular, we select the first 10,000 queries of the MSN
2006 query log [6], applying Porter’s English stemmer and
removing standard stopwords (empty queries are removed).
Documents are ranked for each query using BM25, with the
default parameter settings, while the number of documents
retrieved is set to k = 1,000. All experiments are made using
a dual quad-core Intel Xeon 2.6GHz, with 8GB RAM and a
2TB SATAZ2 disk containing the index, measuring the query
response time as well as the number of postings scored.

