
Efficient and Effective Retrieval using Selective Pruning

Nicola Tonellotto
Information Science and Technologies Institute

National Research Council
56124 Pisa, Italy

nicola.tonellotto@isti.cnr.it

Craig Macdonald, Iadh Ounis
School of Computing Science

University of Glasgow
Glasgow, G12 8QQ, UK

{craig.macdonald,iadh.ounis}@glasgow.ac.uk

ABSTRACT

Retrieval can be made more efficient by deploying dynamic
pruning strategies such as Wand, which do not degrade ef-
fectiveness up to a given rank. It is possible to increase the
efficiency of such techniques by pruning more ‘aggressively’.
However, this may reduce effectiveness. In this work, we
propose a novel selective framework that determines the ap-
propriate amount of pruning aggressiveness on a per-query
basis, thereby increasing overall efficiency without signifi-
cantly reducing overall effectiveness. We postulate two hy-
potheses about the queries that should be pruned more ag-
gressively, which generate two approaches within our frame-
work, based on query performance predictors and query ef-
ficiency predictors, respectively. We thoroughly experiment
to ascertain the efficiency and effectiveness impacts of the
proposed approaches, as part of a search engine deploying
state-of-the-art learning to rank techniques. Our results on
50 million documents of the TREC ClueWeb09 collection
show that by using query efficiency predictors to target in-
efficient queries, we observe that a 36% reduction in mean
response time and a 50% reduction of the response times
experienced by the slowest 10% of queries can be achieved
while still ensuring effectiveness.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: Efficient & Effective Search Engines, Dynamic
Pruning, Learning to Rank, Query Efficiency Prediction

1. INTRODUCTION
Web search engines and other large-scale information re-

trieval (IR) systems are not just concerned with the quality
of search results (also known as effectiveness), but also with
the speed with which the results are obtained (efficiency).
These aspects form a natural tradeoff that all search engines
must address, in that many approaches that increase effec-
tiveness may have a corresponding impact on efficiency due
to their complex nature [35].

Increasingly, search engines deploy learning to rank ap-
proaches, whereby a learned model combines many features
into an effective approach for ranking [20]. Our work is
firmly placed in a learning to rank setting, where a typical
search engine consists of three phases of operation, as follows
(illustrated in Figure 1):

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

Inverted

Index

Dynamic

pruning (K,F)

Computation

of Features

Learned

Model

Features

Repository

Learning to Rank

Techinque
Training

Data

Query Results

Top K Retrieval Feature Extraction Learned Model Application

sample
sample

with features

K docs K docs

Figure 1: Phases of retrieval by a search engine.

Top K Retrieval: An initial ranking strategy selects K

documents from the inverted index, identified using a single
feature (often the BM25 weighting model) [7, 20]. Dynamic
pruning strategies such as Wand can be applied to efficiently
generate the set of K results (called the sample [20, 25]).

Feature Extraction: Computation of additional fea-
tures for each document in the sample, such as other weight-
ing models, including those calculated on different fields (an-
chor text, title, etc.) or query independent features (URL
length, PageRank, etc.).

Learned Model Application: Re-ranking of the sample
results by the application of a learned model, obtained by
earlier learning on training data, to increase effectiveness
compared to the sample [20].

The first phase of the retrieval process – where the K

documents of the sample are identified – is data intensive,
and hence, as we will later show, has the largest impact on
efficiency. For this reason, efficient retrieval strategies such
as the Wand dynamic pruning strategy can be deployed.
Indeed, Wand can enhance efficiency by avoiding the scor-
ing of documents that can never be retrieved in the top K

results, without degrading the effectiveness up to rank K,
known as safe-to-rank-K. Wand can be made more efficient
by reducing the number of documents K to be retrieved.
It is possible to further increase the efficiency of Wand by
applying the pruning more aggressively, but at loss of the
guaranteed safeness, with possible degradations in the ef-
fectiveness of the results. The Top K Retrieval phase also
impacts overall effectiveness in two manners: (i) Decreasing
K such that a smaller sample is obtained may miss relevant
documents at deeper ranks, which will have no chance of be-
ing re-ranked towards the top by the learned model, hence
degrading the overall effectiveness of the search engine; (ii)
The pruning aggressiveness used to obtain the sample may
also impact the resulting effectiveness after re-ranking by the
learned model, as the sample is no longer safe-to-rank-K.

In this work, we aim to ensure effective and efficient re-
trieval, by selecting which queries should be pruned more
aggressively. In particular, not all queries have similar effec-
tiveness. Moreover, not all queries have equal response time,

even with dynamic pruning [23] - yet search engine users
are not willing to wait long for queries to be answered [33].
Hence, our work addresses the following key question: for
which queries should the pruning be applied more aggres-
sively to obtain efficient yet effective retrieval? We exam-
ine two novel approaches for selecting queries that can be
aggressively pruned: those that are predicted to be easy,
and hence can tolerate a lower quality sample; and those
that are predicted to be particularly inefficient. We postu-
late that easier queries have more relevant documents highly
ranked within the sample, and hence can be more aggres-
sively pruned. On the other hand, targeting queries that will
be inefficient can attain more efficiency gains, but may have
more impact on effectiveness. Moreover, as the effectiveness
and efficiency of a query cannot be known before retrieval
commences, our approaches use pre-retrieval query perfor-
mance predictors [8] and query efficiency predictors [23], to
select an appropriate amount of pruning for each query.

The contributions of this work are as follows: We provide
an analysis on how the parameters affecting the aggressive-
ness of a dynamic pruning strategy impact on the effective-
ness of a learned model; Moreover, we propose a selective
pruning framework for identifying the appropriate pruning
setting of a dynamic pruning strategy on a per-query ba-
sis, to ensure efficient yet effective retrieval. Two methods
are proposed, based on predicting the effectiveness of the
query, or on predicting its efficiency. To the best of our
knowledge, this is the first work on the selective application
of dynamic pruning on a per-query basis. Experiments are
conducted on a standard TREC Web test collection of 50
million documents, deploying two learned models from two
learning to rank techniques. Our results show that marked
improvements in efficiency can be obtained while ensuring
effectiveness, with the strongest results being obtained when
the queries that are predicted to be inefficient are selected
for aggressive pruning.

The remainder of this paper is structured as follows: Sec-
tion 2 provides background material on dynamic pruning for
efficient retrieval; In Section 3, we review related work that
examined both efficiency and effectiveness; Section 4 intro-
duces the proposed framework for selectively determining
pruning on a per-query basis; Section 5 details the experi-
mental setup used in this paper; Section 6 analyses the effi-
ciency and effectiveness of different pruning settings for the
K and F parameters. Experiments and conclusions follow
in Sections 7 & 8, respectively.

2. BACKGROUND
Even in large search engines, the matching of documents

in the Top K Retrieval phase still uses the classical inverted
index data structure [14], by traversing the postings lists for
each query term. Moreover, due to its data intensive na-
ture [23], we will later show that this represents the largest
contribution to the time that a search engine takes to re-
trieve documents in response to a query.

Various techniques have been proposed that improve ef-
ficiency by pruning documents that are unlikely to be re-
trieved. For example, in [3], Anh & Moffat proposed a prun-
ing strategy that uses posting lists pre-sorted by the impact
of the postings. Alternatively, documents that are unlikely
to be retrieved can be removed from the index [5]. Both ap-
proaches can cause possible loss of effectiveness. However,
we focus on techniques that can be configured to be safe-

to-rank-K – i.e., cannot degrade retrieval effectiveness up to
a given rank K – and use docid sorted posting lists, since

this is deployed by at least one major commercial search
engine [14]. In particular, dynamic pruning strategies aim
to avoid the scoring of postings for documents that cannot
make the top K retrieved set.

All state-of-the-art safe dynamic pruning strategies [6,
30, 34]1 aim to avoid scoring parts of the posting lists,
to save disk access, decompression and score computation
costs. This mechanism is implemented by maintaining ad-
ditional information during retrieval, namely: a threshold τ ,
which is the minimum score that documents must achieve to
have a chance to be present in the final top K results; and,
for each query term, a term upper bound, which is the max-
imal contribution of that particular term to any document
score. The upper bound is usually obtained by pre-scanning
the posting lists of each term at indexing time, to record the
maximum score found in each posting list [21].

One such dynamic pruning strategy is Wand [6], which
represents the state-of-the-art in safe dynamic pruning [16].
Wand repeatedly calculates a pivot term, based on the terms
that the next document must contain to exceed threshold
τ . The next document containing the pivot term is the
pivot document, which will be the next document to be fully
scored. In this manner, Wand makes use of skipping [28]
forward in posting lists, which reduces posting list decom-
pression overheads, and can reduce IO, with resulting im-
provements in efficiency [16, 21]. Moreover, importantly for
our work, the overall tradeoff between efficiency and effec-
tiveness in Wand can be adjusted by changing parameters
affecting the threshold and the size of K. A key novelty of
our work is showing how these parameters can be automat-
ically selected for each query.

3. RELATED WORK
This paper proposes a selective framework for adjusting

the effectiveness and efficiency of Wand on a per-query ba-
sis. In particular, we build upon the experiments of Broder
et al. [6], who examined how the efficiency and effectiveness
of Wand are affected by increasing the aggressiveness of the
pruning. In particular, two parameters were shown to af-
fect the efficiency of Wand. Firstly, with a smaller K, the
threshold τ , i.e., the current minimum score that documents
must achieve to have a chance to be present in the final top
K results, is higher, and hence more pruning of low-scoring
documents can be achieved. Secondly, since a new document
is scored only when its approximate score beats the current
threshold τ , the threshold can be artificially increased by
using a new threshold τ ′ = F · τ , where F ≥ 1 is a tunable
parameter. In doing so, the dynamic pruning strategy is
not guaranteed to be safe-to-rank-K anymore, but new doc-
uments are scored only if they can achieve a score F times
greater than the current threshold τ , with resulting improve-
ments in efficiency. The experiments in [6] showed that in-
creasing F and decreasing K did increase efficiency, but that
effectiveness was impacted for a sufficiently large F . How-
ever, their work predates modern IR, where machine learned
models are applied directly on the ranking produced by the
dynamic pruning strategy. In contrast, in our work, we not
only show the impact of K and F on a Web corpus that is 30
times larger than that used in [6], but we also investigate the
impact of the pruning parameters on the effectiveness of a
learned model, where the lower ranks of the sample are also

1We omit the database-focused threshold algorithms of Fa-
gin et al. [15], which assume lists sorted by score, while we
assume docid-based sorting.

important. Moreover, we show how different K and F can
be selected on a per-query basis to attain efficient retrieval.

There exists some previous work on selective approaches
for information retrieval. For instance, Amati et al. [2] noted
that query expansion underperforms for difficult queries. By
identifying such difficult queries using query performance

predictors (QPP), they were able to selectively apply query
expansion, i.e. decide whether to apply query expansion
on a per-query basis. Similarly, Cronen-Townsend et al.
also used query performance predictors for selective query
expansion [13]. Plachouras & Ounis [31] applied different
retrieval approaches for Web search on a per-query basis.
Other recent work tackles the efficiency/effectiveness trade-
off. In particular, Wang et al. [35] devised a tradeoff metric
that measures both effectiveness and efficiency. By using
this within a learning to rank technique, they could identify
uni- and bi-gram query term“features” to discard within the
Sequential Dependence model [26], to balance efficiency and
effectiveness. However, as their work is not concerned with
more common document features, it is less widely applicable.

In a work applicable to document features for learning to
rank, Wang et al. [36] observed that the expense of applying
a feature was related to the number of documents on which
that feature was computed. As only the final top-ranked
documents are required, they adapted a learning to rank
technique such that it also selects how many low-ranked doc-
uments should be discarded before the application of each
feature. Hence the output of applying the learned model is
an effective ranking shorter than the input sample, with fea-
tures calculated on a reduced number of documents. In our
work, we will show that the initial Top K Retrieval is the
most expensive of the three phases. While the approach of
[36] places emphasis on reducing the number of documents
for feature calculations, we focus on adjusting the efficiency
and effectiveness of the Top K Retrieval phase.

Learned models encompassing additive regression trees,
such as those obtained from the LambdaMART [37] learn-
ing to rank technique, are more complex to apply than
those that are simple linear combinations of feature values
(e.g. [27]). For this reason, Cambazoglu et al. [7], showed
how such regression trees could be pruned at retrieval time -
although effectiveness could be slightly degraded. This work
is orthogonal to ours, in that it could be used to reduce the
duration of the Learned Model Application phase. However,
instead of pruning regression trees from the learned model,
our work aims to reduce the expense in identifying the doc-
uments in the first Top K Retrieval phase.

No work from the literature has examined the full picture
concerning the application of dynamic pruning within the
context of a learned model, such that the interplay between
effectiveness and efficiency is examined. Indeed, in the next
section, we propose a framework that selects an appropriate
K and F settings for Wand on a per-query basis, ensur-
ing effective yet efficient retrieval. Differing from previous
work, this framework varies the aggressiveness of the dy-
namic pruning strategy deployed in the Top K Retrieval
phase on a per-query basis, by making use of efficiency and
effectiveness predictions.

4. SELECTIVE PRUNING FRAMEWORK
Dynamic pruning techniques such as Wand permit the

efficient retrieval compared to an exhaustive scoring of all
documents containing occurrences of every query term. For
F = 1, the produced ranking is safe-to-rank-K. As men-
tioned above, Wand can prune documents more aggressively
by increasing a factor F on the current threshold τ , or by

retrieving less documents (reducing K). Changes to K and
F offer efficiency advantages, but can have disadvantages
in terms of effectiveness. For instance, if K is decreased,
the ranking up to K documents is still safe, however as the
sample may have less relevant documents for the learner to
identify, the learned model effectiveness can be degraded.
On the other hand, while increasing F no longer guarantees
that the document ranking will have the same effectiveness
as for F = 1, Broder et al. [6] showed that the top ranked
documents often remain unchanged for small values of F > 1
while still permitting efficiency benefits. However, as men-
tioned in Section 3, they did not consider the impact of
pruning on the effectiveness of learned models, which often
markedly re-rank documents from deep within the sample.

Our proposed selective pruning framework obtains effi-
ciency benefits by applying aggressive pruning for queries
where possible, based on appropriate selections of K and F

when generating the sample. In particular, the selection is
based upon two hypotheses about which queries can be more
aggressively pruned without damaging overall effectiveness.
For each of these hypotheses, based on a prediction for each
query, a selection of the appropriate K and F values is made.
The outline for the selective pruning framework is shown in
Algorithm 1: steps 2-4 follow the familiar outline of the three
retrieval phases from Figure 1; in step 1, instead of setting
K and F uniformly for all queries, the Select(•) function
selects appropriate values for each query, taking into account
a prediction from Predict(q) for query q.

Algorithm 1 Selective Pruning Framework

Input: The query q

Output: The top K ranked documents

1: {K, F} ← Select(Predict(q))

2: Sample S ← Wand(q,K,F)

3: Features T ← Extract(q,S)

4: Results A← Apply(T, Model(K,F))

We investigate two approaches – based on predicted ef-
fectiveness (Sections 4.1) and efficiency (Section 4.2) – for
selecting the settings of pruning parameters K and F for
Wand for each query. Each approach uses different instan-
tiations of both Select(•) and Predict(q).

4.1 Pruning Effective Queries
Marginally unsafe pruning (e.g. F = 2 or 3) by Wand

can leave the top-ranked documents unchanged [6]. More-
over, given the usual effectiveness of the weighting model
used to generate the sample, relevant documents are ex-
pected to appear at high ranks in the sample. However,
when the output of Wand is re-ranked as part of a learned
model, the learned model may rank highly documents that
were originally ranked quite low in the sample. Such lowly-
ranked sample documents are more likely to be omitted by
an aggressive unsafe setting of Wand, thereby possibly de-
grading the effectiveness of the learned model. We postulate
that some queries are ‘easier’ than others, where the applied
learned model does not have to re-rank relevant documents
from deep in the document ranking. In other words, K is
unnecessarily large for such queries, and their effectiveness
is less likely to be affected by more aggressive pruning. How-
ever, it is impossible to know a-priori how large a sample is
necessary for effective retrieval for a given query. Instead,
we turn to the field of pre-retrieval query performance pre-
diction [8], where various techniques have been developed
to predict the effectiveness of a query before retrieval com-
mences. Hence, we arrive at our first hypothesis:

Hypothesis 1. Queries that are predicted to be easier

should be more aggressively pruned to benefit response time

while minimising effectiveness degradations.

Based on this hypothesis, in Section 6, we propose a def-
inition for SelectQPP (•) using the predicted effectiveness
bE(q) of query q, as determined by pre-retrieval query per-
formance predictor(s) [19] (QPP).

4.2 Pruning Inefficient Queries
While efficiency may be improved by applying Wand com-

pared to an exhaustive scoring of all documents contain-
ing occurrences of every query term, the response time of
a query q (denoted R(q)) can markedly differ from another
query with similar surface characteristics (e.g. number of
query terms, length of posting lists) [23].

Given that some queries are particularly inefficient, they
should naturally be targeted for improving efficiency. The
key to this intuition is being able to predict the queries that
will be inefficient, and hence predict the response time of the

query, denoted bR(q). Indeed, the amount of pruning possi-
ble by Wand for different queries is variable, depending on
the distribution of scores among the postings of the con-
stituent query terms [23]. Essentially, the pruning difficulty
of a query is related to how quickly the threshold τ rises to
exclude documents as retrieval proceeds. Queries for which
the high value documents occur more towards the start of
the posting lists are more likely to be easier to prune [23].
However, as there is a universe of possible queries with dif-
ferent constituent terms, Macdonald et al. [23] showed that
an accurate model for predicting the response time of a given
query can be obtained by aggregating statistics for the con-
stituent query terms. These statistics - such as the number
of postings, and the number of postings with scores within
5% of the upper bound - can be calculated at indexing time,
and hence can be easily obtained as the query arrives, such
that the response time for a query can be quickly and accu-
rately predicted before retrieval commences. Hence, in this

work, we obtain bR(q) from response time estimates from
query efficiency predictors (QEP). The predicted response
time is then used to select the K and F values before the
IO-intensive dynamic pruning phase starts:2

Hypothesis 2. Queries that are predicted to take longer

to retrieve should be more aggressively pruned to benefit re-

sponse time while minimising effectiveness degradations.

Based on this hypothesis, in Section 6 we propose a defi-
nition for SelectQEP (•) using the predicted response time

of a query bR(q). In the following section, we provide the
experimental setup, which we use to obtain the empirical
analysis, from which the definitions for SelectQPP (•) and
SelectQEP (•) follow.

5. EXPERIMENTAL SETUP
In the following, we describe our experimental setup in

terms of the corpus and queries used (Section 5.1), and the
three retrieval phases described in Section 1: Top K Re-
trieval (Section 5.2), Feature Extraction (Section 5.3), and
Learned Model Application (Section 5.4). We describe how
efficiency is measured in Section 5.5. Finally, the setups for
query effectiveness and efficiency predictors are described in
Sections 5.6 & 5.7, respectively.

2Our experiments have found that an efficiency prediction
can be made in a few milliseconds.

5.1 Documents & Queries
The experiments in the following sections are conducted

using the large TREC ClueWeb09 category B corpus, which
consists of 50 million Web documents. ClueWeb09 provides
a larger, more realistic Web setting than other TREC Web
corpora, such as GOV2. Indeed, this corpus has both TREC
topics with relevance assessments, as well as a generally
available query log. As we wish to measure and analyse
both efficiency and effectiveness, we use two separate topics
sets, for measuring each in separation.

Best practices in efficiency experiments demand a large
number of queries, however the number used in the literature
can vary widely, from the 50-150 TREC topics used in [35]
to thousands of queries from commercial search engines used
in [7]. In this work, we use a set of consecutive user queries
from a generally available real search engine log, thereby
measuring the mean query response time for retrieval. In
particular, we select the first 1,000 queries of the MSN 2006
query log [12], without any stemming and without removing
standard stopwords. This amounts to 981 queries (queries
with no matching documents are discarded). This query set
exhibits all of the expected properties of a query log, such
as frequently repeated ‘head’ queries and a tail of infrequent
queries. The mean query length is 2.7 terms. For train-
ing/testing, the query set is split chronologically: 500 for
training, 481 for testing. Finally, we note that the LETOR
learning to rank datasets [20] are not suitable for our exper-
iments as they use a safe sample with fixed K = 1000.

A query set with relevance assessments is required for
measuring effectiveness. For this reason, we use the 150
topics of the TREC 2009-2011 Web tracks, which form a
test collection based on ClueWeb09 [10]. In particular, for
the purposes of learning to rank, these topics are mixed and
split into three equally sized training, validation and test
sets. Effectiveness is measured using NDCG@20, an official
TREC Web track measure [10].

5.2 Top K Retrieval Phase
We index ClueWeb09 using the Terrier IR platform,3 ap-

plying no stemming, and keeping all stopwords. Term posi-
tions are recorded within the compressed inverted index, as
well as terms from the URLs and titles of documents, and
any incoming anchor text, as separate fields [22]. We also
build skip lists for the inverted index [28], with a skip pointer
every 1,000 postings. The resulting index size is 126GB.

During the Top K Retrieval phase, the Wand [6] dy-
namic pruning strategy is used to select K documents, where
each document has been scored for each query using the
parameter-free DPH Divergence from Randomness weight-
ing model [1]. DPH is a parameter-free model that exhibits
similar effectiveness to BM25 without requiring any train-
ing [1]. As an effective default setting for Wand, we use the
safe F = 1, and K = 1000. The latter is the sample size
used in the LETOR learning to rank v3.0 datasets [20].

5.3 Feature Extraction Phase
We deploy 33 document features in the feature extrac-

tion phase of our ranking approach, covering the most typi-
cally applied categories of query independent (encompassing
URL, link analysis and content quality features) and query
dependent features (including term weighting models and
term dependence models). Indeed, many of these features
have been shown to create effective learned models on the
ClueWeb09 corpus [32]. Table 1 lists the deployed features.

3http://terrier.org/

Type Features Total

QD
Weighting models (DPH [1], PL2 [1], BM25, Dirichlet

21
Language Models, Matching Query Terms [32])

QD Fields-based model (PL2F [22]) 1
QI URL/link analysis features (e.g. PageRank, Outlinks) 3

QI
Quality features (e.g. spamminess [11], field lengths,

5
fraction of stopwords, table text [4])

QI Click feature (click count) 1
QD term dependence/proximity models (MRF [26], pBiL [29]) 2

Table 1: Deployed features for document ranking.

While query independent features are retained in mem-
ory, the calculation of additional query dependent features
after the first phase has ended requires access to the post-
ings of the query terms. To facilitate this, we adapt Wand

such that the matched postings of any document making the
top K are retained in memory; any document expelled from
the top K (due to another higher scoring document) has
its retained postings discarded. As the postings contain fre-
quencies, positions and field information, additional query
dependent features can be efficiently calculated.

5.4 Learned Model Phase
We create learned models for the 33 document feature us-

ing 2 different learning to rank techniques namely:
Automatic Feature Selection (AFS) [27] obtains a

weight for the linear combination of the most effective fea-
ture at each iteration to the features selected in the previous
iteration(s). In our implementation, we use simulated an-
nealing to find the combination weight for each feature that
maximises NDCG. The weight of a newly selected feature
is obtained without retraining the weights of those features
already selected. The set of feature weights with the highest
performing iteration on the validation data is chosen (in this
manner, the validation data is used to determine the correct
number of AFS iterations, as suggested by [20]).

LambdaMART [37] deploys gradient boosted regression
trees internally, while considering NDCG values within the
training of the trees. We use the Jforests implementation [18].4

A LambdaMART approach was the winning entry in the
2011 Yahoo! learning to rank challenge [9]. The model with
the highest validation performance is chosen.

5.5 Measuring Efficiency
All efficiency experiments are made with a dual quad-core

Intel Xeon 2.4GHz, with 32GB RAM, using a single mono-
lithic index. Indeed, following Wang et al. [35], we did not
use a distributed retrieval setting over multiple smaller in-
dices coordinated by a broker (as might be deployed in a
real-world system) as we did not wish to consider unrelated
issues such as network latencies. Hence, while our query re-
sponse times may be larger than would suffice for an interac-
tive environment, this does not detract from the generality
of the proposed selective pruning framework.

The mean response times (MRTs) of each of the retrieval
phases for K = 1000 F = 1 are as follows: Top K Retrieval
(12.9 s); Feature Extraction (18 ms); Learned Model Appli-
cation (AFS: 0.71 ms; LambdaMART: 17.44 ms). Consider-
ing the fact that [35] directly uses the compression library of
Terrier, our larger MRT for the first phase compared to [35]
is expected as our index contains 4 additional frequencies
per posting (for each field: title, body, anchor text & URL).
Moreover, these response times justify our focus on the first
retrieval phase to benefit efficiency, as the learned model ap-
plication costs are negligible. Indeed, in applying the learned
models of LambdaMART, we do not use the tree pruning
method of Cambazoglu et al. [7], as the Feature Extraction

4http://code.google.com/p/jforests/

Time (sec)

F
re

q
u
e
n
c
y

0 10 20 30 40

0
1
0
0

2
0
0

(a) 2 terms

Time (sec)

F
re

q
u
e
n
c
y

0 20 40 60 80

0
2
0

4
0

(b) 4 terms

Figure 2: Response time distributions for 2 and 4
terms queries (boxes), and fitted log-normal distri-
butions (dashed lines).

and Learned Model Application phases have an insignificant
duration compared to the initial Top K Retrieval phase.

5.6 Effectiveness Prediction
Two forms of effectiveness prediction have been proposed

in the literature [8]: pre-retrieval predictors are calculated
solely on statistics from the query, without resorting to in-
verted index access [19]; in contrast, post-retrieval predic-
tors have more evidence, such as the scores or contents of
the retrieved documents [13]. In this work, as we require to
estimate the effectiveness of a query before retrieval com-
mences such that K and F parameters can be selected,
we deploy only existing well-known pre-retrieval predictors,
namely: AvICTF, AvIDF, γ1 and γ2 [19], Similarity Collec-
tion Query (SCQ), Normalised SCQ and Maximal SCQ [38].
These seven performance predictors are combined to es-

timate the effectiveness bE(q) of query q, by using gradi-
ent boosted regression trees (GBRT) [17] targeting NDCG,
based on the 50 training and 50 validation effectiveness queries.

5.7 Efficiency Prediction
Query efficiency prediction [23] allows the response time

of a query R(q) to be accurately predicted before retrieval

commences, denoted bR(q). Following Macdonald et al. [23],
we calculate various statistics of each term at indexing time
(e.g. maximum score, number of postings, number of post-
ing with score less than 5% from maximum score), which
are then combined into features using aggregated functions
such as SUM and MAX for each constituent term of a query
(more details can be found in [23]). We deploy GBRT [17] to
learn the accurate response time predictions, based on the
500 efficiency training queries.

6. ON PRUNING AGGRESSIVENESS
In Section 4, we postulated two hypotheses concerning

how query performance and efficiency predictions can be
used to select which queries should be aggressively pruned by
Wand. In this section, we aim to identify suitable definitions
for Select(•) within the selective pruning framework of Al-
gorithm 1. To do so, instead of considering all possible values
K > 1 and F ≥ 1, we use a set of discrete candidate settings
that exhibit either good effectiveness or efficiency. In the fol-
lowing, we identify the candidate settings of K and F that
the framework can select from in response to a query – this
is in line with the methodology applied in previous experi-
ments in identifying candidates within selective approaches
(e.g. [2, 31]). Finally, we use the results of this analysis to in-
stantiate definitions for SelectQPP (•) and SelectQEP (•).

To illustrate the potential for a selective approach that
tackles inefficient queries (i.e. Hypothesis 2), Figure 2 shows
the distribution of response times of Wand for queries of
two different lengths. Other query lengths produce simi-

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

M
R

T
 (

s
e

c
)

F

K=20
K=100

K=1000

(a) 2 terms

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

M
R

T
 (

s
e

c
)

F

K=20
K=100

K=1000

(b) 4 terms

Figure 3: Efficiency of different F and K for 2 and
4 terms queries.

lar, scaled distributions. From this, we can see that the
response times for each query length approximately follow
a log-normal distribution (shown as dashed lines), with a
number of queries taking considerably longer than the most
frequent response time. These are the queries that we target
by the application of the selective pruning framework.

In the following, we analyse the impact of K and F on
Wand efficiency (Section 6.1) and effectiveness (Section 6.2).
In Section 6.3, we propose definitions for the SelectQPP (•)
and SelectQEP (•) functions.

6.1 Impact on Efficiency
The K and F parameters depict the aggressiveness of

pruning, and hence the resulting efficiency of Wand. Broder
et al. [6] previously showed the efficiency impact of these pa-
rameters on a small corpus. In contrast, we examine these
parameters on the 30 times larger ClueWeb09 corpus.

Reducing K: Reducing the K parameter of Wand for a
given query causes the threshold τ to rise more quickly, with
the effect of allowing pruning to occur more often. This ben-
efits efficiency, as the number of scored postings is reduced
and more skipping can be performed. Figure 3 shows the
efficiency, measured by the mean response time (MRT) in
seconds of the Top K Retrieval phase across the 981 real
queries, for two different query lengths. The Wand strategy
is used to retrieve the sample (with representative sample
sizes of K = {20, 100, 1000}). From Figure 3, we can see
that smaller K values have decreased mean response times.

Increasing F : Instead of reducing the number of re-
trieved documents to increase the threshold value, the thresh-
old factor F can be used to directly increase the threshold.
Indeed, increasing F requires that documents have to con-
tain more query terms before they will be fully scored and
admitted to the top K result set. Figure 3 also shows the
benefit of different representative threshold factors (F =
{1, 2, 5, 10}). Clearly, increasing F from 1 to 2 produces a
marked efficiency benefit for shorter queries, however, this
benefit is less marked for longer queries when K is large.

Recall that we are interested in identifying settings of K

and F that lead to overall efficiency benefits. Figure 4 shows
the reduction in MRT for various settings across various
query lengths, compared to an initial, standard safe setting
of K = 1000, F = 1. From the figure, we observe that in-
creasing F from 1 to 2 has the most significant benefit on
efficiency (up to 40% reduction in response time). However,
F = 5 does not show as much benefit over F = 2. There-
after, MRT improvements are only obtained for reducing K.
Therefore the most efficient settings of Wand are K = 20
for some F > 1.

6.2 Impact on Effectiveness
Increasing F also results in an unsafe and possibly de-

graded effectiveness, as documents that should have been

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

F
ra

c
ti
o

n
 o

f
K

=
1

0
0

0
 F

=
1

 M
R

T

Query Length

K=20 F=1
K=20 F=2
K=20 F=5

K=100 F=1
K=100 F=2
K=100 F=5

K=1000 F=2
K=1000 F=5

Figure 4: Efficiency improvements: Fraction of
MRT exhibited by K = 1000, F = 1 achieved by vari-
ous settings of K and F over 1000 queries.

retrieved in the top K may be omitted. Broder et al. [6]
also showed how this impacted on the retrieval effectiveness,
when directly measured on the resulting set of documents.
However, in our scenario employing learning to rank, the
output of K documents from Wand is used as the sample
for re-ranking by the learned model. Indeed, varying K also
has an impact on the resulting effectiveness of the model.
For instance, a sample of size K = 20 used as input to a
learned model will usually have lower effectiveness in terms
of NDCG@20 than a sample of size K = 100, as the larger
sample is likely to have higher recall, such that more relevant
documents can be re-ranked within the top 20.

Figure 5 shows the effectiveness across the test set of the
TREC Web track 2009-2011 queries for various K and F val-
ues. In particular, in Figure 5 (a), the NDCG@20 for three
different sample sizes is plotted as F is varied. We firstly
note that the K = 20, K = 100 and K = 1000 samples
are super-imposed, as they identically rank documents up
to rank 20. However, with respect to the threshold factor,
effectiveness across all K values is reduced as F increases. In
general, unsafe ranking does not impact on effectiveness to
rank 20 for small values of F , which is in line with the find-
ings of earlier experiments by Broder et al. [6]. In terms of
recall, Figure 5 (b) shows that both reducing K and increas-
ing F reduces the number of relevant documents identified.

In Figures 5 (c) & (d), the performances of the resulting
learned models are shown for the AFS and LambdaMART
learning to rank techniques, respectively. For different set-
tings of K and F , we created new learned models for each
learner. This is motivated in that the learned models are de-
pendent on the size of the input sample of documents being
ranked, since the probability of relevance within the sam-
ple increases as the sample size decreases [25]. For example,
a learned model obtained on a small sample may apply a
feature such as PageRank more aggressively than a learned
model obtained from a larger sample. Note that retaining
multiple learned models within the search engine is not a sig-
nificant overhead, as they are lightweight to store and use
at querying time, while their learning is conducted offline.

On analysing Figures 5 (c) & (d), we find that, in general,
models from the two learners result in markedly increased
effectiveness compared to the corresponding sample of the
same K and F (Figure 5 (a)). The models are also affected
by the decreasing recall of the sample, either as K decreases,
or as F increases. In particular, analysing the impact of F ,
we find that effectiveness is generally decreased for F >

2. However, the effectiveness of a learned model obtained

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

@
2

0

F

K=20
K=100

K=1000

(a) Sample

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1 2 3 4 5 6 7 8 9 10

R
e

le
v
a

n
t

R
e

tr
ie

v
e

d

F

K=20
K=100

K=1000

(b) Sample Recall

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

@
2

0

F

K=20
K=100

K=1000

(c) AFS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

@
2

0

F

K=20
K=100

K=1000

(d) LambdaMART

Figure 5: Effectiveness of the sample and learned models for different F and K.

for F = 2 is often comparable (or better) than for F =
1. This is caused by the indeterminate nature of unsafe
retrieval: unsafeness does not necessarily imply degraded
effectiveness by Wand. Indeed, an irrelevant document that
is pruned from the sample for F = 2 may cause another
relevant document to be retrieved that normally would not
appear in the top K [24]. When evaluating the output of
Wand directly using NDCG@20 (as in Figure 5 (a)), the
impact of unsafe retrieval is not marked, as it rarely affects
the top 20 documents. However, the effect of unsafe retrieval
is, to some extent, magnified by the application of a learned
model, which by re-ranking can promote documents from
very low ranks in the sample.

Finally, we analyse the impact of K in Figures 5 (c) & (d).
As expected, the learned models exhibit higher performance
for K = 1000. Reducing this to K = 100 has some impact,
but not as marked as for K = 20. This shows the importance
of having sufficient relevant documents in the sample for an
effective learned model, necessitating using a K as large as
possible. Overall, we conclude that when evaluating for high
precision (such as NDCG@20), adding a learned model to
the output of Wand increases overall effectiveness. How-
ever, the learned models are also more sensitive to a large
degree of unsafe retrieval (i.e. F > 2). Decreasing the num-
ber of K sample documents considered for re-ranking by the
learned model also results in degraded effectiveness.

6.3 Definitions for Sele
t
A search engine can take advantage of our observation

that accurate search results can still be obtained when an
unsafe ranking is used as input to the learned model (Sec-
tion 6.2). However, while the use of degraded unsafe samples
are desirable to ensure efficiency (Section 6.1), they should
be avoided to maximise overall learned model effectiveness.

To use these observations for selecting appropriate Wand

settings on a per-query basis, we firstly decide on the K

and F values that are appropriate for candidate settings
within the definitions of Select(•). Based on our analysis
of Figures 3 & 4, we identify K = 20, F = 2 as a setting
that produces the highest efficiency benefit with the least
aggressive pruning. However, this setting can markedly de-
grade the effectiveness of learned models (see Figure 5 (c)
and (d)). On the other hand, the K = 1000, F = 1 setting
is safe, effective, but inefficient. Hence, K = 1000, F = 1
and K = 20, F = 2 form our candidate settings for Wand

that can be selected by definitions of Select(•). Next, we
propose definitions for Select(•) for our two hypotheses.

Selecting on Predicted Effectiveness

Our first hypothesis suggests that when a query is expected
to be easier, where relevant documents are likely to be ranked
highly in the sample, then the effectiveness of safe retrieval is
likely to be sufficiently high, that unsafe retrieval can be ap-
plied to increase efficiency without perceivable effectiveness

degradation. In contrast, if the query is expected to have few
relevant documents, or that these are deeply ranked within
the sample, then safe retrieval should be applied to preserve
effectiveness. To support this, we examined the Spearman’s
ρ correlation between the effectiveness of learned models cre-
ated from K = 1000, F = 1 and K = 20, F = 2. Across
the 50 effectiveness test queries, we observed ρ = 0.73 for
AFS and ρ = 0.81 for LambdaMART, suggesting that easier
queries remain effective even when aggressively pruned. To
estimate the difficulty of each query, we apply a combination
of 7 pre-retrieval query performance predictors, as described
in Section 5.6. Hence, for a newly arrived query q, we com-

pare the estimated effectiveness bE(q) with a threshold ǫ to
select an appropriate candidate setting of K and F :

SelectQPP (Predict(q)) =


{20, 2} if bE(q) > ǫ

{1000, 1} otherwise

If the predicted effectiveness bE(q) of query q is higher than
threshold ǫ, the correct results are expected to be highly
ranked in the sample, and hence effective retrieval should
still be obtained with aggressive pruning (K = 20, F = 2).
Otherwise, a safe but less efficient setting is selected for
Wand. 0 < ǫ < 1 controls the number of queries aggres-
sively pruned, where increasing ǫ reduces the number of ap-
plications of K = 20, F = 2.

Selecting on Predicted Efficiency

Hypothesis 2 suggests that when a query will not take a long
time to complete, safe retrieval can be applied. In contrast,
if the query terms have long postings lists and the query is
difficult to prune, then the safe retrieval would take a signif-
icant amount of time, and more aggressive pruning should
be applied. To decide which queries should be aggressively
pruned, we recall that the response time distributions in Fig-
ure 2 follow log-normal distributions for each query length.
With this in mind, we fit a log-normal distribution for each
query length, centred around the geometric mean Gl for a
given query length l. Gl represents a time above which we
consider a query to be inefficient, obtained from the 500 ef-
ficiency training queries (see Section 5.1), while inefficient
queries are identified using the query efficiency predictors,
as described in Section 5.7. Hence, for a newly arrived query

q, if the predicted response time bR(q) of the query is above
the geometric mean, we select a more aggressive candidate
K and F setting to increase the efficiency of the query:

SelectQEP (Predict(q)) =


{20, 2} if bR(q) > c · Gl

{1000, 1} otherwise

where 0 ≤ c ≤ 1 is a parameter for adjusting the threshold
above which a query will be aggressively pruned.

In the next section, by instantiating either SelectQPP (•)
or SelectQEP (•) into the selective pruning framework of
Algorithm 1, we evaluate the efficiency and effectiveness im-
pacts of the two proposed definitions for Select(•).

7. EXPERIMENTS
In the following, we experiment to validate Hypotheses 1

and 2 in Sections 7.1 and 7.2, respectively, using the experi-
mental setup defined in Section 5. In particular, we compare
both approaches to the efficiency and effectiveness of four
Uniform settings of K and F . These include the candidate
settings of K = 1000, F = 1 and K = 20, F = 2, as well as
two other settings (K = 1000, F = 2; K = 100, F = 2) from
Section 6.2 that represent good tradeoffs of efficiency and ef-
fectiveness. Indeed, effectiveness is measured by NDCG@20
on 50 TREC Web track queries, while efficiency is mea-
sured by the mean and 90th percentile response times on
the 481 efficiency queries (denoted MRT and 90%tl-RT, re-
spectively). 90%tl-RT is an indicator of the response time
suffered by users for the slowest 10% of queries. Follow-
ing [35], we measure the significance of improvements by a
learned model over the effectiveness of the unlearned safe
sample (NDCG@20 0.224 from Figure 5 (a)), thereby us-
ing a common basis for all significance tests. In general, we
consider a successful approach to be one with a significant
improvement over the unlearned safe sample, while minimis-
ing MRT and 90%tl-RT.

7.1 Selecting on Predicted Effectiveness
Table 2 reports the efficiency and effectiveness of the uni-

form settings of K and F , as well as our selective approach
based on query performance prediction. From the top part of
the table, we observe that while the effectiveness of the uni-
form settings varies, an effective AFS learned model can sig-
nificantly improve over the unlearned safe sample with p <

0.01 (denoted **), and an effective LambdaMART model
can achieve a significant improvement over the sample at the
5% level (p < 0.05, denoted *). Hence, successful selective
approaches should achieve such effectiveness improvements
as a minimum – for both learners, this cannot be achieved
with MRTs lower than 10.6 seconds.

To investigate the selective approach using query perfor-
mance predictors – namely SelectQPP (•) – Table 2 reports
the effectiveness, efficiency and percentage of queries ag-
gresively pruned for various settings of the query perfor-
mance predictor threshold ǫ. Indeed, recall that increasing
ǫ decreases the number of predicted easy queries that will
be aggressively pruned. The query performance prediction
deployed in this work is a supervised combination of pre-
retrieval predictors, and hence requires training data - as
detailed in Section 5.6, we use the 50 training and 50 valida-
tion queries to learn to predict the NDCG@20 of the learned
model. For this reason, the reported response times for
SelectQPP (•) differ across the learned models in Table 2.

On examining the results, we note that for ǫ = 0.25 for
AFS and ǫ = 0.2 for LambdaMART (denoted with dashed
underlines in Table 2), significant NDCG@20 improvements
over the safe sample can be obtained, with marked reduc-
tions in response time compared to the uniform setting of
K = 1000, F = 2. In particular, for AFS, by aggressively
pruning 77% of the 481 efficiency queries, a response time of
9.3s can be achieved, which is comparable to K = 100, F =
2, while still achieving higher NDCG@20 on the 50 effective-
ness queries. For LambdaMART, a MRT of 9.0s is achieved
– again, better than K = 100, F = 2 while still signifi-
cantly improving over the effectiveness of the unlearned sam-
ple. In general, the results across AFS and LambdaMART
are similar, with LambdaMART achieving the significantly
improved effectiveness over the unlearned safe sample with
slightly more aggressive pruning. In terms of 90th percentile

response time, SelectQPP (•) is unable to improve upon the
uniform K = 100, F = 2 setting, suggesting that while the
aggressive pruning of predicted easy queries can enhance ef-
ficiency without significantly degrading effectiveness, it does
not directly target the particularly inefficient queries.

Overall, we conclude that although selectively applying
aggressive pruning on a per-query basis by using query per-
formance predictors can improve response times while as-
suring effectiveness, it does so in a conservative manner. In
contrast, in the next section, we show how directly target-
ing the inefficient queries is a more suitable approach for
selective pruning.

7.2 Selecting on Predicted Efficiency
We now report the experimental results for SelectQEP (•).

The deployed query efficiency predictors and the estimation
of Gl require training data. These are trained on the 500 ef-
ficiency training queries, and efficiency results are reported
on the separate testing set of 481 queries.

Table 3 reports both the efficiency and effectiveness re-
sults of our selective framework based on query efficiency
prediction for estimating response times. To examine if the
accuracy of the efficiency predictors impact upon the selec-
tive pruning framework, we report results when the actual
response times are assumed to be known, i.e., using a perfect
response time predictor R(q), in addition to estimated re-

sponse time bR(q).5 We vary the c parameter of SelectQEP

to measure its impact on efficiency and effectiveness.
On examining Table 3, we note that varying the c pa-

rameter indeed affects efficiency and effectiveness, with the
lowest c value providing the best response times but not at-
taining the significant improvements in effectiveness over the
unlearned safe sample. In particular, we observe that with
c = 1 (dashed underline in Table 3), very low response times
can be achieved without aggressively pruning all queries,
while still retaining high effectiveness by the learned mod-
els. For instance, for the AFS learner with the predicted
response time, a MRT of 8.4s is achieved, which is close to
the lower bound of 8.1s exhibited by the uniform aggressive
pruning (K = 20, F = 2), while only aggressively prun-
ing 35% of queries. Compared to the uniform safe setting
(K = 1000, F = 1), this represents a 36% improvement in
MRT. Moreover, we note that the 90th percentile response
time drops 50% compared to the uniform safe setting of
K = 1000, F = 1 and 24% compared to K = 100, F = 2
(19.3s vs. 38.3s and 24.9s, respectively). This attests that
selecting K and F for each query based on predicted re-
sponse time indeed targets the most inefficient queries.

Meanwhile the NDCG@20 of the AFS learned model for
c = 1 still significantly improves over the unlearned safe
sample at p < 0.01 - indeed, this is 21% higher than for
K = 20, F = 2 (0.287 vs. 0.238), and 16% higher than
the good uniform tradeoff setting of K = 100, F = 2 (viz.
0.247). For LambdaMART, similar results are observed,
with the c = 1 setting offering a good tradeoff of effectiveness
and efficiency. We note one exception for LambdaMART,
where c = 0.5 still offers a significant improvement over
the unlearned safe sample performance, but by a smaller
absolute margin (9%). Finally, comparing the results us-

ing actual and predicted response times (R(q) vs. bR(q)), we
note that using R(q) only results in small improvements in

5Unlike in Table 2, the efficiency results of Table 3 are not
dependent on the effectiveness of the learner on the train-
ing queries, thus the efficiency results are identical for both
learners.

AFS LambdaMART
MRT 90%tl-RT (%agg.) NDCG@20 (%agg.) MRT 90%tl-RT (%agg.) NDCG@20 (%agg.)

Uniform: same setting of K and F for all queries
K = 1000 F = 1 12.9 38.3 - 0.296∗∗ 12.9 38.3 - 0.272∗ -
K = 1000 F = 2 10.6 29.1 - 0.308∗∗ 10.6 29.1 - 0.273∗ -
K = 100 F = 2 9.6 24.9 - 0.247∗ 9.6 24.9 - 0.256 -
K = 20 F = 2 8.1 17.8 - 0.238∗ 8.1 17.8 - 0.239 -

SelectQPP (bE(q)): selective pruning framework applied using query performance predictors
ǫ = 0.05 8.6 25.2 (97%) 0.238∗ (100%) 8.1 17.8 (97%) 0.239 (100%)
ǫ = 0.1 9.0 26.2 (93%) 0.238 (94%) 8.6 25.2 (94%) 0.237 (96%)
ǫ = 0.15 9.2 26.4 (89%) 0.246∗ (91%) 8.9 26.2 (90%) 0.245 (94%)
ǫ = 0.2 9.2 26.4 (85%) 0.248∗ (83%) 9.0 26.2 (82%) 0.246∗ (87%)
ǫ = 0.25 9.3 26.4 (77%) 0.258∗∗ (74%) 9.0 26.2 (75%) 0.241 (81%)
ǫ = 0.3 9.7 27.0 (65%) 0.268∗ (64%) 9.2 26.4 (69%) 0.250∗ (70%)
ǫ = 0.35 10.4 32.4 (48%) 0.276∗∗ (51%) 9.3 26.4 (56%) 0.248 (60%)
ǫ = 0.4 11.3 34.2 (33%) 0.293∗∗ (38%) 9.8 26.4 (45%) 0.251∗ (51%)

Table 2: Efficiency and effectiveness results of the selective pruning framework using query performance
predictors. Significant improvements in effectiveness compared to the uniform application of the K = 1000
F = 1 sample (NDCG@20 0.224), as measured by the paired-t test, are denoted by * (p < 0.05) and **
(p < 0.01). The percentage of queries that experience aggressive pruning are shown in parentheses, denoted
(%agg).

 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.3

 0.31

 8 9 10 11 12 13

N
D

C
G

@
2

0

Mean Response Time

SELECT_QPP
SELECT_QEP

Uniform

(a) AFS

 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29

 0.3
 0.31

 8 9 10 11 12 13

N
D

C
G

@
2

0

Mean Response Time

SELECT_QPP
SELECT_QEP

Uniform

(b) LambdaMART

Figure 6: Comparison of efficiency and effectiveness
for Hypotheses 1& 2 selective pruning approaches.

MRT, 90%tl-RT and NDCG, suggesting that our predicted
response times are sufficiently accurate.

Overall, with respect to our second hypothesis, we find
that the proposed approach for selective pruning based on
estimated response times attains impressive efficiency ben-
efits while still attaining high effectiveness, thereby validat-
ing Hypothesis 2. In particular, the results in this section
suggest that queries that are predicted to be particularly
inefficient typically represent those that can be more ag-
gressively pruned, thereby ensuring efficiency, without dam-
aging overall effectiveness. To aid in the comparison of our
two selective approaches based on Hypotheses 1 & 2, Fig-
ure 6 shows the efficiency and effectiveness of each approach,
where points nearest to the top-left are both efficient and ef-
fective. Indeed, we can see that the approach of Hypothesis
2 is markedly better for ensuring efficient yet effective re-
trieval on a per-query basis. In contrast, the approach of
Hypothesis 1 is only slightly markedly more efficient and
effective than the various used uniform settings. We posit
that the success of selective pruning by query efficiency pre-
diction can be explained in that the queries that take longer
have longer posting lists (posting list length has a marked
impact on efficiency [23]). Such queries may have more rel-
evant documents, which are more likely to be found in the
top-ranked sample, in contrast to more efficient queries.

8. CONCLUSIONS
This work proposed a selective pruning framework for en-

suring efficient yet effective retrieval, by appropriately set-
ting the pruning parameters of Wand on a per-query basis,

before re-ranking the results using a learned model. Two al-
ternative approaches are proposed within our selective prun-
ing framework for selecting queries to prune, by using query
performance predictors to identify easier queries, and by us-
ing query efficiency predictors to identify inefficient queries.
Our experimental results showed that using the proposed
selective pruning framework in conjunction with query effi-
ciency predictors to select the queries to aggressively prune
gave the best overall results. In particular, it could improve
mean response time by 36% and the response time expe-
rienced by the slowest 10% of queries by 50%, while still
maintaining significantly high effectiveness.

Our proposed selective pruning framework can have fur-
ther applications. In particular, when the search engine is re-
ceiving a high volume of queries, pruning can be made more
aggressive to ensure that a maximum allowed response time
is adhered to. We will address this in future work. More-
over, we would like to investigate loss functions that permit
efficiency and effectiveness to be considered within a learned
approach for obtaining appropriate K and F settings on a
per-query basis. A key practical challenge in this respect is
the availability of large query sets with corresponding rele-
vance assessments, to permit efficiency and effectiveness to
be measured for the same queries.

9. REFERENCES
[1] G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso,

G. Gambosi. FUB, IASI-CNR and Univ. of Tor Vergata at
TREC 2007 Blog track. In Proc. of TREC, 2007.

[2] G. Amati, C. Carpineto, G. Romano. Query Difficulty,
Robustness, and Selective Application of Query Expansion.
In Proc of ECIR, 2004.

[3] V. N. Anh, A. Moffat. Pruned query evaluation using
pre-computed impact scores. In Proc. of SIGIR, 2006.

[4] M. Bendersky, W. B. Croft, Y. Diao. Quality-biased
ranking of web documents. In Proc. of WSDM, 2011.

[5] R. Blanco. Index compression for information retrieval
systems. PhD thesis, Univ. of A Coruna, 2008.

[6] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Zien.
Efficient query evaluation using a two-level retrieval
process. In Proc of CIKM, 2003.

[7] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen,
C. Liao, Z. Zheng, J. Degenhardt. Early exit optimizations
for additive machine learned ranking systems. In Proc. of
WSDM, 2010.

AFS LambdaMART
MRT 90%tl-RT (%agg.) NDCG@20 (%agg.) MRT 90%tl-RT (%agg.) NDCG@20 (%agg.)

Uniform: same setting of K and F for all queries
K = 1000 F = 1 12.9 38.3 - 0.296∗∗ - 12.9 38.3 - 0.272∗ -
K = 1000 F = 2 10.6 29.1 - 0.308∗∗ - 10.6 29.1 - 0.273∗ -
K = 100 F = 2 9.6 24.9 - 0.247∗ - 9.6 24.9 - 0.256 -
K = 20 F = 2 8.1 17.8 - 0.238∗ - 8.1 17.8 - 0.239 -

SelectQEP (R(q)): selective pruning framework applied using actual response times
c = 0.1 8.1 17.8 (99%) 0.240∗ (98%) 8.1 17.8 (99%) 0.240 (98%)
c = 0.25 8.1 17.8 (98%) 0.240∗ (98%) 8.1 17.8 (98%) 0.240 (98%)
c = 0.5 8.1 17.8 (77%) 0.245∗∗ (89%) 8.1 17.8 (77%) 0.244∗ (89%)
c = 0.75 8.1 19.0 (51%) 0.248∗ (68%) 8.1 19.0 (51%) 0.242 (68%)
c = 1 8.2 19.0 (36%) 0.290∗∗ (32%) 8.2 19.0 (36%) 0.268∗ (32%)
c = 1.25 8.4 19.3 (31%) 0.296∗∗ (23%) 8.4 19.3 (31%) 0.272∗ (23%)
c = 1.5 8.7 19.3 (25%) 0.296∗∗ (23%) 8.7 19.3 (25%) 0.272∗ (23%)
c = 2 9.1 21.9 (20%) 0.296∗∗ (17%) 9.1 21.9 (20%) 0.274∗ (17%)

SelectQEP (bR(q)): selective pruning framework applied using predicted response times
c = 0.1 8.1 17.8 (100%) 0.240∗ (98%) 8.1 17.8 (100%) 0.240 (98%)
c = 0.25 8.1 17.8 (95%) 0.240∗ (98%) 8.1 17.8 (95%) 0.240 (98%)
c = 0.5 8.1 18.9 (78%) 0.245∗∗ (89%) 8.1 18.9 (78%) 0.244∗ (89%)
c = 0.75 8.1 19.0 (53%) 0.248∗ (70%) 8.1 19.0 (53%) 0.242 (70%)
c = 1 8.4 19.3 (35%) 0.287∗∗ (34%) 8.4 19.3 (35%) 0.264∗ (34%)
c = 1.25 8.5 19.3 (31%) 0.293∗∗ (28%) 8.5 19.3 (31%) 0.266∗ (28%)
c = 1.5 8.9 19.3 (25%) 0.296∗∗ (21%) 8.9 19.3 (25%) 0.272∗ (21%)
c = 2 9.2 21.0 (19%) 0.296∗∗ (21%) 9.2 21.0 (19%) 0.272∗ (21%)

Table 3: Results of the selective pruning framework using query efficiency predictors. Notation as in Table 2.

[8] D. Carmel and E. Yom-Tov. Estimating the Query
Difficulty for Information Retrieval. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 2(1), 2010.

[9] O. Chapelle, Y. Chang. Yahoo! learning to rank challenge
overview. J. Machine Learning: Workshop and Conference
Proceedings, 14:1–24, 2011.

[10] C. L. A. Clarke, N. Craswell, I. Soboroff, G. V. Cormack.
Overview of the TREC 2010 Web Track. In Proc. of
TREC, 2010.

[11] G. V. Cormack, M. D. Smucker, C. L. A. Clarke. Efficient
and effective spam filtering and re-ranking for large Web
datasets. Inf. Retr., 14(5):441–465, 2011.

[12] N. Craswell, R. Jones, G. Dupret, E.Viegas, editors. Proc.
of the Web Search Click Data Workshop at WSDM 2009.

[13] S. Cronen-Townsend, Y. Zhou, W.B. Croft. A Framework
for Selective Query Expansion. In Proc. of CIKM, 2004.

[14] J. Dean. Challenges in building large-scale information
retrieval systems: invited talk. In Proc. of WSDM, 2009.

[15] R. Fagin, A. Lotem, M. Naor. Optimal aggregation
algorithms for middleware. J. Computer and System
Sciences, 66(4):614–656, 2003.

[16] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu,
J. Zien. Evaluation strategies for top-k queries over
memory-resident inverted indexes. Proc. VLDB
Endowment, 4(12):1213–1224, 2011.

[17] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29:1189–1232, 2000.

[18] Y. Ganjisaffar, R. Caruana, C. Lopes. Bagging
gradient-boosted trees for high precision, low variance
ranking models. In Proc. of SIGIR, 2011.

[19] B. He, I. Ounis. Inferring query performance using
pre-retrieval predictors. In Proc. of SPIRE, 2004.

[20] T.-Y. Liu. Learning to rank for IR. Foundation and Trends
in IR, 3(3):225–331, 2009.

[21] C. Macdonald, I. Ounis, N. Tonellotto. Upper bound
approximations for dynamic pruning. ACM Trans. Inf.
Sys., 29(4):1–28, 2011.

[22] C. Macdonald, V. Plachouras, B. He, C. Lioma, I. Ounis.
Univ. of Glasgow at WebCLEF 2005: Experiments in
per-field normlisation and language specific stemming. In
Proc. of CLEF, 2005.

[23] C. Macdonald, N. Tonellotto, I. Ounis. Learning to predict
response times for online query scheduling. In Proc. of
SIGIR, 2012.

[24] C. Macdonald, N. Tonellotto, I. Ounis. Effect of dynamic
pruning safety on learning to rank effectiveness. In Proc. of
SIGIR, 2012.

[25] C. Macdonald, R. Santos, I. Ounis. The whens and hows of
learning to rank. Information Retrieval, 2012.

[26] D. Metzler, W. B. Croft. A Markov random field model for
term dependencies. In Proc. of SIGIR, 2005.

[27] D. Metzler. Automatic feature selection in the Markov
random field model for information retrieval. In Proc. of
CIKM, 2007.

[28] A. Moffat, J. Zobel. Self-indexing inverted files for fast text
retrieval. ACM Trans. Inf. Sys., 14(4):349–379, 1996.

[29] J. Peng, C. Macdonald, B. He, V. Plachouras, I. Ounis.
Incorporating term dependency in the DFR framework. In
Proc. of SIGIR, 2007.

[30] M. Persin. Document filtering for fast ranking. In Proc. of
SIGIR, 1994.

[31] V. Plachouras, I. Ounis. Usefulness of hyperlink structure
for query-biased topic distillation. In Proc. of SIGIR, 2004.

[32] R. L. T. Santos, C. Macdonald, I. Ounis. Intent-aware
search result diversification. In Proc. of SIGIR, 2011.

[33] E. Shurman, J. Brutlag. Performance related changes and
their user impacts. In Velocity: Web Performance and
Operations Conf., 2009.

[34] H. Turtle, J. Flood. Query evaluation: strategies and
optimizations. Inf. Proc. Mngmnt, 31(6):831–850, 1995.

[35] L. Wang, J. Lin, D. Metzler. Learning to efficiently rank. In
Proc. of SIGIR, 2010.

[36] L. Wang, J. Lin, D. Metzler. A cascade ranking model for
efficient ranked retrieval. In Proc. of SIGIR, 2011.

[37] Q. Wu, C. J. C. Burges, K. M. Svore, J. Gao. Ranking,
boosting, and model adaptation. Technical Report
MSR-TR-2008-109, Microsoft, 2008.

[38] Y. Zhao, F. Scholer, Y. Tsegay. Effective pre-retrieval query
performance prediction. In Proc. of ECIR, 2008.

