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Abstract

When a small pattern graph does not occur inside a larger tar-
get graph, we can ask how to find “as much of the pattern as
possible” inside the target graph. In general, this is known
as the maximum common subgraph problem, which is much
more computationally challenging in practice than subgraph
isomorphism. We introduce a restricted alternative, where
we ask if all but k vertices from the pattern can be found in
the target graph. This allows for the development of slightly
weakened forms of certain invariants from subgraph isomor-
phism which are based upon degree and number of paths.
We show that when k is small, weakening the invariants
still retains much of their effectiveness. We are then able to
solve this problem on the standard problem instances used to
benchmark subgraph isomorphism algorithms, despite these
instances being too large for current maximum common sub-
graph algorithms to handle. Finally, by iteratively increasing
k, we obtain an algorithm which is also competitive for the
maximum common subgraph problem.

1 Introduction
The subgraph isomorphism problem is to find a copy of a
small pattern graph inside a larger target graph. The prob-
lem arises in many areas, including bioinformatics (Bonnici
et al. 2013), computer vision (Damiand et al. 2011; Sol-
non et al. 2015), malware detection (Bruschi, Martignoni,
and Monga 2006), compilers (Murray and Franke 2012;
Blindell et al. 2015), model checking (Sevegnani and Calder
2015), and pattern recognition (Conte et al. 2004), which
has lead to substantial research into how best to solve
the problem in practice (McGregor 1979; Ullmann 1976;
Cordella et al. 2004; Solnon 2010; Audemard et al. 2014;
McCreesh and Prosser 2015, and more). The problem comes
in two forms: in the non-induced variant, edges must be
mapped to edges, but the target may have “extra edges”,
whilst in the induced variant, non-edges must be mapped
to non-edges.

When a pattern cannot be found, we may wish to be
given a result which maps as many vertices of the pattern
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into the target as possible. In the induced case, this is
known as the maximum common induced subgraph prob-
lem (we discuss the non-induced case in Section 1.1). How-
ever, although recent subgraph isomorphism algorithms are
comfortable working with graphs with thousands of ver-
tices, the state of the art for the maximum common sub-
graph problem (McCreesh et al. 2016) becomes computa-
tionally infeasible at only 35 vertices when working with
unlabelled graphs. This is largely because strong inference,
based upon the degrees of vertices (Solnon 2010) and the
distances or paths between them (Audemard et al. 2014;
McCreesh and Prosser 2015), is possible with subgraph iso-
morphism, but not maximum common subgraph, and so the
state space in the former is much more restricted, whilst fil-
tering during search is vastly stronger.

In this work we discuss an intermediate problem, where
we must map all but k vertices of the pattern graph into
the target—we show an example in Figure 1. This in some
ways resembles the approximate subgraph matching model
of Zampelli, Deville, and Dupont (2005), although we allow
any vertex to be removed. We show that if k is reasonably
small (say, between 1 and 5), then weakened forms of degree
and path based filterings are still effective in pruning the ini-
tial search space and in providing additional constraints re-
spectively. We then show that combining these techniques
leads to a practical algorithm which can scale to work with
the families of graphs commonly used to benchmark sub-
graph isomorphism algorithms: depending upon the bench-
mark family, we can close a substantial portion of the in-
stances, and in many more cases, we can at least obtain an
upper bound. This is a significant improvement over state
of the art maximum common subgraph solvers, which can-
not even fit many of these instances in 64 GBytes of RAM.
Finally, we show that starting with k = 0 and iteratively in-
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Figure 1: The pattern graph P on the left cannot be found in
the target graph T , but if the central vertex in P is removed,
then a subgraph isomorphism exists.



creasing k gives a competitive algorithm for the maximum
common induced subgraph problem.

1.1 Definitions and Notations
Throughout, our graphs are undirected, but may have loops.
We write V(G) for the vertex set of a graph G, and E(G) for
its set of edges. We write NG(v) for the neighbourhood of a
vertex v in G, and v ∼G w to mean v is adjacent to w. The
degree of p, degG(p), is the number of vertices to which it
is adjacent. Where the graph is clear from the context, the
subscripts are omitted.

A non-induced subgraph isomorphism from a graph P
(called the pattern) to a graph T (the target) is an injec-
tive mapping V(P ) � V(T ) which maps adjacent ver-
tices to adjacent vertices. An induced subgraph isomor-
phism P ↪→ T additionally maps non-adjacent vertices to
non-adjacent vertices. We define a k-less subgraph isomor-
phism from P to T to be a subgraph isomorphism from all
but k vertices of P to T ; this may be non-induced or in-
duced, written P k� T and P k↪→ T respectively. We write
p k 7→ t to mean that the pattern vertex p is mapped to the
target vertex v under either kind of mapping.

The complement of a (simple) graph P is the graph P .
Adjacent distinct vertices in P are non-adjacent in P while
non-adjacent vertices in P are adjacent in P . The loop com-
plement of a graph P is the graph P

(
. The construction of

P
(

is similar to that of P , however whenever a vertex has
a loop in P it does not in P

(
and vice versa. When solving

an induced subgraph isomorphism problem we make use of
the loop complement; we care about mapping vertices with
loops to vertices with loops, and vertices without loops to
vertices without loops. The following proposition follows
directly from the definitions.

Proposition 1. Let i be an assignment of vertices of T to
vertices of P . Then i satisfies the definition of P ↪→ T if
and only if i satisfies P � T and P

(
� T

(
simultaneously.

Similarly, i satisfies the definition of P k↪→ T if and only if
i satisfies both P k� T and P

(
k� T

(
.

A common induced subgraph of graphs G and H is a
graph P , together with two induced subgraph isomorphisms
to G and H; a maximum common induced subgraph is a
common induced subgraph with as many vertices as possi-
ble. An induced k-less subgraph isomorphism P k↪→ T is
equivalent to a common induced subgraph of P and T with
|V(P )| − k vertices.

If defined similarly, a maximum common non-induced
subgraph would allow us to select every vertex in the smaller
of the two graphs, and none of the edges. It is therefore
traditional to change the objective to maximise the number
of edges selected, rather than vertices, when a non-induced
common subgraph is sought—this problem is usually called
the maximum common partial subgraph problem instead
(Ndiaye and Solnon 2011). However, this is not what we
will be discussing in this paper: maximum common sub-
graph problems are symmetric in their inputs, but when dis-
cussing the non-induced case we are allowing extra edges
only in the target graph, not in the pattern.

1.2 Constraint Models and Algorithms
For both subgraph isomorphism and maximum common
subgraph, constraint programming is the best known ap-
proach1, although a reduction to the maximum clique prob-
lem is better when edge labels are present (Ndiaye and
Solnon 2011; McCreesh et al. 2016). For both problems,
we create a variable for each vertex in the pattern graph
(the smaller graph, in the case of maximum common sub-
graph), with domains ranging over the vertices in the target
graph (the larger graph). For maximum common subgraph,
each domain is given an additional ⊥ value, meaning “un-
mapped”.

Constraints are used to ensure that adjacent pairs of ver-
tices are mapped to adjacenct pairs of vertices. For the max-
imum common subgraph case, any pair of assignments with
⊥ as either value is also permitted. To handle the induced
case, rather than the usual approach of directly having con-
straints for non-adjacent pairs of vertices, we will be making
use of Proposition 1 by seeking a mapping i which simulta-
neously satisfies P � T and P

(
� T

(
. Finally, an “all

different except ⊥ constraint” ensures injectivity.
For subgraph isomorphism, this model can be enhanced

with domain filtering at the top of search, to reduce the initial
sizes of domains—we discuss this in Section 2. Subgraph
isomorphism also allows us to generate additional implied
constraints, which we discuss in Section 3. However, nei-
ther of these techniques are valid for the maximum common
subgraph problem.

There are three easy ways we might try to extend exist-
ing algorithms to handle the k-less problem. A non-induced
k-less subgraph isomorphism from P to T is equivalent to
a subgraph isomorphism between P and T , with k extra
universally-adjacent vertices added to T , and so we could try
solving subgraph isomorphism with a modified target graph.
However, using such an approach is not ideal, because it
would introduce symmetries; for induced k-less subgraph
isomorphisms, an approach based around adding vertices to
T cannot work at all. Another algorithmic approach could
be to try each way of removing k vertices from the pattern
graph, and solving each subgraph isomorphism problem in
turn. This approach might be feasible for k = 1, although
it would involve a lot of duplication of search effort, but for
larger values of k the number of searches which would have
to be made would grow very quickly. Finally, for the in-
duced case we could try adapting maximum common sub-
graph algorithms to solve the decision problem. However,
both the maximum common subgraph algorithm and the
clique encoding require O(|V(P )|2 |V(T )|2) memory (Mc-
Creesh et al. 2016), which is extremely problematic on the
instances with which we wish to work.

Instead, this paper introduces a new algorithm, inspired
by a state of the art subgraph isomorphism algorithm (Mc-
Creesh and Prosser 2015). The approach we discuss re-
quires only O(|V(P )|2 |V(T )|) space (this can be thousands

1Note that toolkits are not used in state of the art implementa-
tions, to facilitate better memory layouts and propagation queues,
although the algorithms are inspired by constraint programming.
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Figure 2: There is a non-induced isomorphism P � T from
the first graph to the second, using the highlighted vertices.
No such isomorphism exists between P and U , but there is
a 1-less isomorphism P 1� U which omits vertex b.

of times less than maximum common subgraph approaches,
once the constant factors and orders of T in our instances
are considered).

1.3 Experimental Setup
We perform our experiments on systems with dual Intel
Xeon CPU E5-2640 processors with 64GBytes of RAM,
running Ubuntu 14.04. Our algorithm was implemented in
C++2, and source code was compiled using GCC 5.3.0. We
used a timeout of 1,000 seconds for each instance. For com-
parison, we used the implementations of Ndiaye and Solnon
(2011) and McCreesh et al. (2016).

For datasets, we use the same 5,725 instances used in a re-
cent work on portfolios of algorithms for subgraph isomor-
phism (Kotthoff, McCreesh, and Solnon 2016). This collec-
tion includes randomly generated scale-free graphs (Zam-
pelli, Deville, and Solnon 2010), an assortment of real-world
graphs of varying sizes (Larrosa and Valiente 2002), ran-
domly generated graph pairs (using bounded degree, reg-
ular mesh, and uniform models; all are satisfiable), seg-
mented images (Solnon et al. 2015; Damiand et al. 2011),
meshes from modelling 3D objects (Damiand et al. 2011),
and graphs close to the satisfiable-unsatisfiable phase tran-
sition (McCreesh, Prosser, and Trimble 2016). All of these
instances are available in a simple text format3. Note that
many of these instances are much larger than were used in
the recent comparison of maximum common subgraph al-
gorithms by McCreesh et al. (2016): for unlabelled graphs,
they used pairs of graphs with up to 35 vertices in each,
whilst our dataset contains graphs with up to 6,671 ver-
tices. For the forward-checking algorithm described by Ndi-
aye and Solnon (2011), 1,560 of the instances cannot fit in
the amount of RAM we have available—we treat these in-
stances as having timed out. The situation for the clique en-
coding is even worse, and 3,653 of these instances do not fit
in 64GBytes of RAM. In contrast, for our algorithm, every
instance fits comfortably.

2 Domain Filtering Using Degrees
Let p be a vertex in a graph P . The degree of vertices gives
us an invariant, which may be used to eliminate some infea-
sible values from domains as follows.

2https://github.com/ciaranm/aaai17-between-subgraph-
isomorphism-and-maximum-common-subgraph-paper

3http://liris.cnrs.fr/csolnon/SIP.html

Proposition 2. Let p be a vertex in P and t a vertex in T .
For both non-induced and induced k-less subgraph isomor-
phisms, if p k 7→ t then deg(p)− k ≤ deg(t).

Proof. Let p be a vertex in P , and t a vertex in T , with
p 7→ t. Then by the definition of subgraph isomorphisms,
deg(p) ≤ deg(t). Let P ′ be P less k vertices and p a vertex
in P ′. Then

degP (p)− k ≤ degP ′(p) ≤ degP (p) ≤ deg(t).

The neighbourhood degree sequence (NDS) of a vertex
p, S(p), is the (non-ascending) sequence of degrees of its
neighbours. Zampelli, Deville, and Solnon (2010) showed
how this may be used for filtering in subgraph isomorphism.
We extend this for the k-less setting as follows.

Let S = (s1, . . . , sn) and T = (t1, . . . , tm) be two se-
quences. We say that S � T if n ≤ m and ∀si ∈ S there
exists a distinct tj ∈ T with si ≤ tj . When considering a k-
less subgraph isomorphism we say that S k� T if n−k ≤ m,
and if there exists some subsequence Sk of S containing up
to k members such that ∀si ∈ S \ Sk, there exists a distinct
tj ∈ T with si − k ≤ tj .

Proposition 3. If p k 7→ t, then S(p) k� S(t).

Proof. Let p k 7→ t. Then deg(p)− k ≤ deg(q), by Proposi-
tion 2, which implies that |S(p)| − k ≤ |S(t)|.

Also, p k 7→ t implies that for each q ∈ N(p) \ Pk, where
Pk is some subset of the vertices of P with |Pk| ≤ k,
we have q k 7→ u, where u ∈ N(t) and each u is distinct.
Then deg(q) − k ≤ deg(u), by Proposition 2. Hence
S(p) k� S(t).

Example 1. Consider the pattern graph P and the two tar-
get graphs T and U shown in Figure 2. The neighbourhood
degree sequence of pattern vertex p is S(p) = (3, 3, 2). We
highlight a subgraph in T which is non-induced isomorphic
to P . The vertex p can be mapped to q in the target graph
T , as S(q) = (5, 5, 4, 2, 2). There is a non-induced mapping
of the pattern graph P into U by removing b of P . This re-
moval changes the neighbourhood degree sequence of p in
the k-less version of P to S(p) = (2, 2).

Figure 2 also illustrates the three cases possible when fil-
tering by neighbourhood degree sequence. Removing vertex
d causes each entry in S(p) to be reduced; removing vertex
a removes an entry from S(p); and removing either of vertex
b or c causes both the size of S(p) to be reduced and an entry
in S(p) to be reduced.

Corollary 1. Since both S(p) and S(t) are non-ascending,
without loss of generality we can replace S \ Sk from the
definition of S k� T with the subsequence consisting of all
but the first k members of S.

Figure 3 demonstrates that Proposition 3 is effective in
practice: we show the amount of domain reduction we can
achieve at the top of search by using invariants and a fixed k,
compared to the search space size for the maximum common
induced subgraph problem. (The results on the non-induced
version show a similar but slightly weaker trend.) We look
at the product of the domain sizes, rather than the number of
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Figure 3: The amount of domain reduction achieved for the
induced problem, with increasing k. The y value shows for
how many instances we may reduce the initial search space
to be at most the x proportion of the size the search space
would be for the maximum common subgraph problem.

eliminations, as this better reflects the number of combina-
tions remaining to be considered.

Some other invariants do not translate. For example, an-
other rule which can be effective on regular graphs involves
counting the number of neighbours of a vertex which are
present in a triangle (McKay and Piperno 2014). Removing
a single vertex can alter this count arbitrarily, so we cannot
make use of this fact.

3 Filtering During Search Using Paths
As well as reasoning about degrees, we can also reason
about paths. A path between two vertices p and q is a se-
quence of edges which can be traversed from p to reach q.
We define paths(p, q, n) to be the number of paths of length
n between the vertices p and q.
Proposition 4. Let p, q ∈ V(P ) and t, u ∈ V(T ). If p k 7→ t
and q k 7→ u then paths(p, q, 2)− k ≤ paths(t, u, 2).

Proof. Let P2 be the set of all paths of length two between
p and q,

P2 = {((p, x), (x, q)) : (p, x), (x, q) ∈ E(P )}.
As we are looking at paths of length 2, the intermediate ver-
tices lie in both neighbour vertex sets of p and q. We can
rewrite P2 as

P2 = {((p, x), (x, q)) : x ∈ N(p) and x ∈ N(q)},
in other words the intermediate vertices lie in the intersec-
tion of the neighbour sets of p and q,

P2 = {((p, x), (x, q)) : x ∈ N(p) ∩N(q)}.
Therefore paths(p, q, 2) = |N(p) ∩N(q)| ≤ deg(p).

If we remove up to k vertices from the neighbourhood of
p, it will impact the intersection of the neighbourhoods of p
and q, and by Proposition 2, as p k 7→ t,

|N(p) ∩N(q)| − k ≤ deg(p)− k ≤ deg(t).

P :
p

T :

Figure 4: The pattern graph P on the left cannot be found in
the target graph T , but if the vertex p in P is removed, then
a subgraph isomorphism exists.

As |N(p) ∩N(q)| ≤ deg(p) ≤ |N(t) ∩N(u)| ≤ deg(t), we
have

|N(p) ∩N(q)| − k ≤ deg(p)− k

≤ |N(t) ∩N(u)|
≤ deg(t)

which tells us

paths(p, q, 2)− k ≤ paths(t, u, 2).

Corollary 2. For a graph G, let Gn,` be the graph with ver-
tex set V(G), and edges between vertices p and q if there are
at least n simple paths of length exactly ` between p and q in
G. Then any k-less subgraph isomorphism P k� T induces
a new k-less subgraph isomorphism Pn+k,2

k� Tn,2 using
the same vertex assignments.

Unlike in conventional subgraph isomorphism, we cannot
extend this filtering to look at paths of length three: as the
example in Figure 4 shows, removing a single vertex can
delete arbitrarily many such paths. We could instead count
paths of any length which are vertex disjoint, although cal-
culating this appears to be too expensive to be beneficial in
practice.

To allow for fast propagation, rather than calculating paths
dynamically like Audemard et al. (2014), we follow the ap-
proach of McCreesh and Prosser (2015) and construct sup-
plemental graphs, and find a mapping which is simultane-
ously a non-induced subgraph isomorphism between every
supplemental graph pair. We use paths of length 2, looking
at whether there are at least 1, 2, and 3 in the target graph
(and so whether there are at least 1 + k up to 3 + k in the
pattern). We then investigate whether this leads to new con-
straints being generated.

By an assignment, we mean considering mapping a pat-
tern vertex p to a target vertex t (and not ⊥) which does
not violate any loop constraints. An assignment pair is two
assignments with distinct p and distinct t, which we say is
permitted if it does not violate any adjacency constraint. We
define the permitted assignment pair ratio to be the propor-
tion of assignment pairs which are permitted. Given this, in
Figure 5 we scatter plot the permitted assignment pair ratio
with and without supplemental graphs4.

For k = 0, we see many points above the x − y diag-
onal, which shows that for many instances, we are able to

4Because of the large sizes of the domains, we randomly sample
one million pairs rather than considering every pair. In some cases,
we have nearly a thousand domains, each with nearly ten thousand
values—a complete quadratic calculation involving even a trivial
arithmetic operation on this would take many hours.
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Figure 5: For the induced problem, the proportion of pairs of assignments from the filtered domains which are not permitted
simultaneously, without path constraints on the x-axis and with path constraints on the y-axis, for increasing values of k.

create a substantial number of new constraints at the top of
search; on the other hand, there are also points on the diago-
nal, which shows that sometimes this technique provides no
benefit. (Occasionally, points fall below the x− y diagonal.
This is because the use of neighbourhood degree sequence
reasoning on supplemental graphs can also lead to increased
domain filtering, which could in turn eliminate a higher pro-
portion of forbidden than permitted assignment pairs.) For
k = 1 and k = 2, the proportion of points above the diago-
nal diminishes, but we are still able to create new constraints
for many instances. By the time k = 3, most of the benefit is
disappearing—although sometimes we are still able to make
a difference, and bear in mind that sometimes adding just
one new constrained pair can vastly reduce the search space.

4 A New Algorithm
Algorithm 1 integrates these techniques into a full algorithm.
This is derived from an algorithm due to McCreesh and
Prosser (2015), which in a recent evaluation of using port-
folios of subgraph isomorphism algorithms was the single
strongest solver (Kotthoff, McCreesh, and Solnon 2016).

The algorithm performs a constraint-based search. We
have a set D containing a variable Dv for each vertex v in
the pattern graph. Each variable has a domain containing
one value for every vertex in the target graph. The algorithm
is bit-parallel: each Dv is stored using bitset, and all graphs
are stored as adjacency matrices.

In line 8 we use the reasoning from Section 2 to eliminate
infeasible initial values from the domains. We do not use
iterated label filtering (Zampelli, Deville, and Solnon 2010)
to recalculate neighbourhood degree sequences if any ver-
tices are not present in any target domain after construction:
preliminary experiments indicated that this happened very
rarely on our instances.

To handle unmapped vertices, on line 9 we include k addi-
tional wildcard⊥ values in each domain (rather than a single
value which may be used k times).

We begin by trying to infer domain deletions. The
propagate function looks for domains which contain ei-
ther only a single value, or only wildcards—we call such
a domain effectively-unit. If such a domain Dv exists, we
eliminate its value from every other domain, and then prop-
agate adjacency: for each domain corresponding to a vertex
adjacent to v, we eliminate any value from its domain which
is not adjacent to v (treating wildcards as being adjacent to

all vertices). If a domain wipeout occurs, we return failure.
We deal with the additional constraints discussed in Sec-

tion 3 by constructing supplemental graphs, as in the Mc-
Creesh and Prosser (2015) algorithm. This is done on line 4:
the variable L contains a list of pattern / target pairs, and fol-
lowing Corollary 2, we will search for a mapping which is
simultaneously a subgraph isomorphism between every pair
in this list. We also do degree-based reasoning using each of
these graph pairs.

If no effectively-unit domains remain, we attempt
stronger propagation for the all-different constraint. Our
allDifferent function is the bit-parallel propagator
taken from McCreesh and Prosser (2015), and is not the
usual matching-based propagator (Régin 1994) which guar-
antees generalised arc consistency. Because we use multiple
wildcard values, we do not need to modify the algorithm to
allow a single wildcard value to be used more than once.
This propagation could create new effectively-unit domains;
if so, we repeat the process.

If propagation is unable to prove unsatisfiability, we
search. We pick the smallest domain (line 16) and try giving
it each of its remaining values in turn. We use the value the
ordering heuristic from the original algorithm; wildcards are
treated as having degree zero, in an attempt to maximising
the expected number of solutions remaining during search
(McCreesh, Prosser, and Trimble 2016). We introduce a
symmetry break (line 18) to try only a single wildcard value
for each variable.

To handle the induced case, we make use of Proposition 1
(line 4). We considered using path reasoning on complement
graphs, but this is expensive to calculate and provides little
benefit in practice on these instances. We also do not strip
isolated vertices as the original algorithm did, as this is not
a valid simplification in the induced case, and we do not use
conflict-directed backjumping as in our experiments it had
very little effect for k > 0.

5 Empirical Evaluation
We now evaluate our algorithm and show that it is effec-
tive in practice, even on the larger subgraph isomorphism
instances. In the first two plots of Figure 6 we give cumula-
tive distributions for the induced and non-induced problems,
with k ranging from 0 to 5 (we discuss the dotted lines in this
plot in Section 5.1). The results are strong: with k = 0 we
may solve nearly every instance, whilst even at k = 5 we



1 klessSubgraphIsomorphism (
Graph P , Graph T , Int k)→ Bool

2 begin
3 if |V(P)|+ k > |V(T )| then return false
4 L←

[
(P, T ), (P(, T() only if we want induced,

(P1+k,2, T 1,2), (P2+k,2, T 2,2), (P3+k,2, T 3,2)
]

5 foreach v ∈ V(P) do
6 Dv ← V(T )
7 foreach (P, T ) ∈ L do
8 Dv ← {w ∈ Dv :

v ∼P v ⇒ w ∼T w ∧
SP (v) k� ST (w)}

9 Dv ← Dv ∪ k distinct wildcard values
10 if propagate(L, D) then
11 return search(L, {E ∈ D : |E| > 1}, k)
12 else return false

13 search (GraphPairs L, Domains D, Int k)→ Bool
14 begin
15 if D = ∅ then return true
16 Dv ← the smallest domain in D
17 foreach v′ ∈ Dv ordered by static degree in T do
18 if v′ is not the first wildcard we have tried then
19 continue
20 D′ ← clone(D)
21 D′

v ← {v′}
22 if propagate(L, D’) then
23 if search(L, {E ∈ D′ : |E| > 1}, k) then
24 return true

25 propagate (GraphPairs L, Domains D)→ Bool
26 begin
27 while true do
28 if no effectively-unit domains remain (treating all

wildcard values as a single value) then
29 if not allDifferent(D) then
30 return false

31 if no effectively-unit domains remain then
32 return true
33 Dv ← an effectively-unit domain from D
34 v′ ← the single value in Dv , or an arbitrary wild-

card value if there is more than one
35 foreach Dw ∈ D \ {Dv} do
36 Dw ← Dw \ {v′}
37 foreach (P, T ) ∈ L do
38 if v ∼P w then
39 Dw ← Dw ∩ (NT (v

′) ∪ wildcards)

40 if Dw = ∅ then return false

41 allDifferent (Domains D)→ Bool
42 begin
43 (H, A, n)← (∅, ∅, 0)
44 foreach Dv ∈ D from smallest to largest do
45 Dv ← Dv \H
46 (A, n)← (A ∪Dv, n+ 1)
47 if Dv = ∅ or |A| < n then return false
48 if |A| = n then (H, A, n)← (H ∪A, ∅, 0)
49 return true

Algorithm 1: A bit-parallel algorithm for the k-less subgraph isomorphism problem.
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Figure 6: In the first two plots we show the cumulative number of instances solved over time, for the induced and non-induced
problems, with different values of k. We also show the results of iteratively increasing k until a solution is found, and in
the induced case, the performance of two leading maximum common subgraph algorithms. In the third plot we show results
comparing iteratively increasing k with our algorithm to other approaches on maximum common induced subgraph instances.
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Figure 7: The proportion of instances, in different families,
which become satisfiable for increasing values of k. The
“larger” instances are those where we can prove unsatisfia-
bility for k = 5, whilst the gap between the top of the bar
and the top of the graph is the fraction of instances where a
timeout was reached for at least one value of k.

can solve over 4, 000 instances in both variants.

But are we learning anything about the results—that is,
are there instances for which k = 0 is unsatisfiable, but that
are satisfiable for small k? For the problem families which
do not consist entirely of satisfiable instances, we plot this in
Figure 7. In the “phase” family, which consists of instances
crafted to be extremely difficult to solve, we are not able
to answer this question, and in the “scalefree” family we
see no satisfiable instances with low but not zero k (this is
simply due to there being many vertices with loops in some
pattern graphs, but no loops at all in the targets). However,
in several of the remaining families we can more than dou-
ble the number of instances for which exact solutions are
known, and gain upper bounds on many more. This is par-
ticularly interesting for the “images-CVIU11” family due to
Damiand et al. (2011), where the size of the solution has a
direct real-world interpretation in terms of closeness of im-
age matching.

5.1 Solving From the Top Down
What would happen if we used our approach to solve the
maximum common induced problem? We could simply start
at k = 0, and increase k until a solution is found. This would
be tackling the problem in the opposite direction from ex-
isting approaches, which work by attempting to construct
larger and larger solutions. The dotted lines in Figure 6
show this approach: “k ↓” is our algorithm, whilst “FC” and
“clique” are the two algorithms discussed by McCreesh et
al. (2016). Recalling the disclaimer in Section 1.3 regarding
instances not fitting in the 64GBytes of RAM we have avail-
able, we see that our approach is able to close over twice
as many of these instances as the previous state of the art.
(The same conclusion holds even if every instance which is
satisfiable with k = 0 is removed from the dataset.)

What about if we use instances designed for the maximum
common subgraph problem? In the third plot in Figure 6 we
again compare these approaches, but using the first ten in-
stances from each family of a standard benchmark set (Santo
et al. 2003; Conte, Foggia, and Vento 2007), selecting undi-
rected, unlabelled graphs with up to 50 vertices—this gives
us a total of 4,110 instances. In these instances the num-
ber of vertices in the pattern and target graphs is the same,
which is not ideal for our algorithm (although our invariants
are still effective in many cases). Nonetheless, we are by a
small margin the single strongest solver. Interestingly, our
algorithm tends to have complementary performance to the
clique approach, which suggests that there is scope for an al-
gorithm which runs both an upper bound and a constructive,
lower bound approach simultaneously or in parallel, stop-
ping when the two bounds meet in the middle.

6 Conclusion
By considering a restricted variation of the problem, we have
been able to go some of the way towards tackling the max-
imum common subgraph problem on much larger graphs
than have previously been possible. We saw that some in-
variants from the subgraph isomorphism problem can still
be used, albeit in a weakened form, with considerable effect
when a small number of vertices can be removed. We have
by no means cracked the problem completely—our results
are still far from where we would like them to be for use
in real-world applications, and many instances remain open.
However, for many of the open instances we are at least able
to get upper bounds on the result for the first time.

In future work, we will combine this approach with ex-
isting lower bounding construction methods, to deliver a
hybrid algorithm. We also intend to allow restrictions on
which vertices may or may not be removed, similar to the
approach of Zampelli, Deville, and Dupont (2005), but with
much stronger filtering now being possible.
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