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Abstract. An instance of the classical stable marriage problem involves n

men and n women, and each person ranks all n members of the opposite sex
in strict order of preference. The effect of allowing ties in the preference lists
has been investigated previously, and three natural definitions of stability
arise. In this paper, we extend this study by allowing a preference list to
involve ties and/or be incomplete. We show that, under the weakest notion of
stability, the stable matchings need not be all of the same cardinality, and the
decision problem related to finding a maximum cardinality stable matching
is NP-complete, even if the ties occur in the preference lists of one sex only.
This result has important implications for practical matching schemes such as
the well-known National Resident Matching Program [9]. In the cases of the
other two notions of stability, Irving [5] has described algorithms for testing
whether a stable matching exists, and for constructing such a matching if
one does exist, where a preference list is complete but may involve ties. We
demonstrate how to extend these algorithms to the case where a preference
list may be incomplete and/or involve ties.

1 Introduction

The classical stable marriage problem (SM) has been extensively studied in the
literature. An instance of SM involves n men and n women, each of whom ranks
all the members of the opposite sex in strict order of preference. Given a complete
matching M of the men and women, we say that an unmatched pair (m, w) is a
blocking pair for M if m prefers w to his partner in M , and w prefers m to her
partner in M . A matching that admits no blocking pair is said to be stable, and
unstable otherwise. It is known that every instance of SM admits at least one
stable matching, and that such a matching may be found in O(n2) time using the
Gale/Shapley algorithm [2].

A generalisation of SM occurs when one or more persons involved might find
certain members of the opposite sex unacceptable. In this case, the members of the
opposite sex that such a person p vetoes are missing from the preference list of p.
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We say that person p is acceptable to person q if p appears on the preference list of
q, and unacceptable otherwise. We use SMI to stand for this variant of SM where
preference lists may be incomplete (for simplicity we assume that the numbers of
men and women are equal in a given instance of SMI). The revised notion of stability
may be defined as follows: given an instance of SMI, a matching M is stable if there
is no unmatched pair (x, y), each of whom is either unmatched in M and finds the
other acceptable, or prefers the other to his/her partner in M . A stable matching
for an instance of SMI may not be a complete matching. However, all men and
women in the instance may be partitioned into two sets, one containing the persons
matched in all stable matchings, and one containing the persons matched in none
[3, §1.4.2]. It is a simple matter to extend the Gale/Shapley algorithm to cope with
preference lists that may be incomplete.

An alternative natural extension of the original stable marriage problem arises
when each person need not rank all members of the opposite sex in strict order. It
is possible that each person involved might be indifferent among certain members of
the opposite sex, so that preference lists may involve ties (in this paper we restrict
attention to the case where the indifference takes the form of ties in the preference
lists, but it may be verified that all results are extendable to the general case where
the preference lists are arbitrary partial orders). We use SMT to stand for the
variant of SM where preference lists are complete but may involve ties. Three
possible definitions for stability are formulated in [5] for SMT. A matching M is
weakly stable if there is no couple (x, y), each of whom strictly prefers the other to
his/her partner in M . Also, a matching M is strongly stable if there is no couple
(x, y) such that x strictly prefers y to his/her partner in M , and y either strictly
prefers x to his/her partner in M or is indifferent between them. Finally, a matching
M is super-stable if there is no couple (x, y), each of whom either strictly prefers the
other to his/her partner in M or is indifferent between them.

By breaking the ties arbitrarily, an instance I of SMT becomes an instance I ′

of SM, and it is clear that a stable matching for I ′ is a weakly stable matching for
I. Thus a weakly stable matching for I may be found in O(n2) time, using the
Gale/Shapley algorithm, for example. It is straightforward to construct instances
of SMT which admit no strongly stable matching and/or no super-stable matching;
see [5] for further details. However, Irving [5] presents O(n4) and O(n2) algorithms
for determining whether a strongly stable matching and/or a super-stable matching
exists for a given instance of SMT respectively, and if they do in either case, the
algorithms will find such a matching.

In this paper, we focus on the stable marriage problem incorporating both exten-
sions described above. Thus a stable marriage instance now comprises preference
lists, each of which may involve ties and/or be incomplete. We use SMTI to stand
for this variant of SM. The criteria for stability described above for SMI and SMT
imply three conditions for stability within the context of SMTI. That is, given a
matching M for an instance of SMTI, M is weakly stable if there is no unmatched
pair (x, y), each of whom is either unmatched in M and finds the other acceptable,
or strictly prefers the other to his/her partner in M . Also, M is strongly stable if
there is no unmatched pair (x, y) such that (i) either x is unmatched in M and finds
y acceptable, or x strictly prefers y to his/her partner in M , and (ii) either y is
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unmatched in M and finds x acceptable, or y strictly prefers x to his/her partner
in M , or y is indifferent between x and his/her partner in M .1 Finally, M is super-
stable if there is no unmatched pair (x, y), each of whom is either unmatched in M
and finds the other acceptable, or strictly prefers the other to his/her partner in M ,
or is indifferent between them. In each case, such a pair (x, y) that causes M to
be fail the stability criterion is called a blocking pair with respect to the notion of
stability concerned.

Given an instance of SMI, it is a consequence of [3, Theorem 1.4.2] that all stable
matchings are of the same size. Similarly, given an instance of SMT, it is clear that
all weakly stable matchings are complete, and by inspection of Algorithm STRONG
(respectively SUPER) in [5], all strongly stable (respectively super-stable) matchings
are complete, assuming that one exists. However, for a given instance of SMTI, all
weakly stable matchings need not be of the same size, a fact that does not appear
to have been noted explicitly in the literature previously. As a simple example,
consider the following instance involving two men, m1, m2, and two women, w1, w2.
Man m1 finds only woman w1 acceptable, and man m2 strictly prefers woman w1

to woman w2. Woman w1 is indifferent between man m1 and man m2, and woman
w2 finds only man m2 acceptable. There are two weakly stable matchings for this
instance, namely {(m2, w1)} and {(m1, w1), (m2, w2)}.

Thus the question arises as to whether there exists an efficient algorithm to
find a maximum cardinality weakly stable matching for a given instance of SMTI.
This question has particular significance within the context of matching graduating
medical students to hospitals. As is current practice with the National Resident
Matching Program [9] in the U.S. and the Canadian Resident Matching Service
[1], hospitals must rank a possibly large number of applicants in strict order of
preference. A given hospital may be indifferent among several of its applicants,
and might prefer to include ties in its preference list. With the SPA (Scottish
Pre-registration house officer Allocations) matching scheme soon to be introduced
[6], hospitals may include ties in their preference lists, but these ties are broken
arbitrarily so that all preference lists are strict. However, the previous example
indicates that breaking the ties in different ways can affect the sizes of the subsequent
stable matchings. Since the objective is always to match as many applicants as
possible, we seek a strategy to break the ties so as to maximise the cardinality of
the consequent stable matchings. (Note that weak stability is the stability criterion
that is relevant here, since as previously mentioned, a given instance of SMTI may
admit no strongly stable and/or super-stable matching.) We prove in Section 2 that
the decision problem related to finding the maximum size of weakly stable matching
for a given instance of SMTI is NP-complete.

However, there is more structure in the cases of strong stability and super-
stability. In contrast with the case for weak stability, we show in Section 3 that, for a
given instance of SMTI, the set of people may be partitioned into two sets, those who
are matched in all strongly stable matchings, and those who are matched in none.
A similar result holds for super-stability (noted in Section 4). Building on these
results, we present O(n4) and O(n2) algorithms in Sections 3 and 4 for determining,
given an instance of SMTI, whether a strongly stable matching and/or a super-stable

1Our definition of strong stability incorporates the assumption that a person would strictly
prefer to be matched to somebody acceptable to him/her, rather than be unmatched.
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matching exists respectively, and if one does in either case, the algorithms will find
such a matching. These algorithms extend those of Irving [5] for SMT.

Related work. Ronn [7, 8] was possibly the first to investigate the algorithmic effect
of introducing ties into the preference lists of instances of various stable matching
problems. Ronn’s criterion for stability was weak stability; Irving [5] was the first
to define the strong stability and super-stability concepts. Spieker [10] shows that
the set of super-stable matchings for a given instance of SMT forms a distributive
lattice. (It is a well-known theorem that the set of all stable matchings for a given
instance of SM forms a distributive lattice.) We will show in this paper that this
result also carries over to SMTI – see Section 5.

Preliminaries. Henceforth, when the term blocking pair is used, the appropriate
notion of stability will be given by the title of the section in which the term is
used. Also, we assume that a person p is acceptable to a person q if and only if
q is acceptable to p. The pair (m, w) is called a weakly stable pair if (m, w) ∈ M
for some weakly stable matching M . In this case, m is a weakly stable partner of
w, and vice-versa. The definitions of strongly stable/super-stable pair and strongly
stable/super-stable partner are analagous. We use the term head of a man’s list to
denote the set of one or more women, tied in his list, whom he strictly prefers to all
other women in his list. Similarly we use the term tail of a woman’s list to denote
the set of one or more men, tied in her list, to whom she strictly prefers all other
men in her list.

2 Weak stability

In this section we prove that the existence of an algorithm to find a maximum
cardinality weakly stable matching for a given instance of SMTI is unlikely. We
demonstrate NP-completeness for the following decision problem, a given instance
of which involves ties in the preference lists of the women only:

Name: weak stability smti.
Instance: n men and n women, preference list of women for each man, preference
list of men for each woman, and integer K ∈ Z

+. (A man’s preference list may
be incomplete; a woman’s preference list may be incomplete and/or involve
ties.)
Question: Does the given instance admit a weakly stable matching M with
|M | ≥ K?

Our transformation begins from the following problem:

Name: exact maximal matching.
Instance: Graph G = (V, E) and integer K ∈ Z

+.
Question: Does G have a maximal2 matching M with |M | = K?

exact maximal matching is NP-complete, even for subdivision graphs of graphs
with maximum degree three. This fact is implicit from the NP-completeness of the
following decision problem for the same class of graphs:

2A matching M in a graph G is maximal if no proper superset of M is a matching in G.
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Name: minimum maximal matching.
Instance: Graph G = (V, E) and integer K ∈ Z

+.
Question: Does G have a maximal matching M with |M | ≤ K?

The NP-completeness of minimum maximal matching for the subdivision graphs
of graphs of maximum degree three was established by Horton and Kilakos [4]. 3

Theorem 2.1 weak stability smti is NP-complete.

Proof: Clearly weak stability smti is in NP. For, given a set M , we may easily
verify that M is a matching for the given instance, and that |M | ≥ K. Furthermore,
it is straightforward to verify in polynomial time that no unmatched pair (m, w)
blocks M .

To show NP-hardness, we transform from exact maximal matching for the
subdivision graphs of graphs where no vertex degree exceeds three. Let G = (V, E)
and K ∈ Z

+ be an instance of this problem. Then G is the subdivision graph of
some graph G′ = (V ′, E ′), so that V = V ′ ∪ E ′ and

E = {(e, v) : e ∈ E ′ ∧ v ∈ V ′ ∧ v is incident to e in G′}.

Also G has a bipartition (U, W ), where U = E ′ and W = V ′. Thus every vertex
in U has degree two in G, and every vertex in W has degree at most three in G.
Without loss of generality we may assume that G′ is connected and is not a forest,
so that |E ′| ≥ |V ′|, i.e. |U | ≥ |W |. Again without loss of generality, we may assume
that |U | = |W | (for if |U | = |W | + r for some r > 0, then we may add r vertices
a1, . . . , ar to U , and 2r vertices b1, . . . , br, c1, . . . , cr to W , where ai is adjacent to bi

and ci for each i (1 ≤ i ≤ r); clearly every vertex in the new set U has degree two
in the new graph, every vertex in the new set W has degree at most three in the
new graph, and G has a maximal matching of size K if and only if the transformed
graph has a maximal matching of size K + r). Finally, without loss of generality,
we may assume that K ≤ n, where n = |U | = |W |.

Let U = {m1, m2, . . . , mn} and W = {w1, w2, . . . , wn}. We construct an instance
I of weak stability smti as follows: let U ∪U ′∪X be the set of men, and let W ∪
Y ∪ Z be the set of women, where U ′ = {m′

1, m
′
2, . . . , m

′
n}, X = {x1, x2, . . . , xn−K},

Y = {y1, y2, . . . , yn−K} and Z = {z1, z2, . . . , zn}. Assume that ji and ki are two
sequences such that ji < ki, {mi, wji

} ∈ E and {mi, wki
} ∈ E (1 ≤ i ≤ n). For any

wj (1 ≤ j ≤ n), let Mj contain the men mi such that {mi, wj} ∈ E, and let M ′
j

contain the men m′
i such that {mi, wj} ∈ E and j = ki. Clearly |M ′

j| ≤ |Mj| ≤ 3.
Create preference lists for each person as follows:

mi : zi wji
wki

all yj in any order (1 ≤ i ≤ n)

m′
i : zi wki

(1 ≤ i ≤ n)

3In fact Horton and Kilakos proved that minimum edge dominating set is NP-complete for
this class of graphs. The minimum edge dominating set problem is to determine, given a graph
G = (V, E) and an integer K ∈ Z

+, whether G contains an edge dominating set of size at most
K. A set of edges S is an edge dominating set in G if every edge in E\S is adjacent to some edge
in S. It is known that minimum maximal matching and minimum edge dominating set are
polynomially equivalent; indeed the size of a minimum maximal matching of a given graph G is
equal to the size of a minimum edge dominating set of G [11].
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xi : all wj in any order (1 ≤ i ≤ n − K)

wj : (members of Mj and M ′
j) (x1 . . . xn−K) (1 ≤ j ≤ n)

yj : (m1 . . . mn) (1 ≤ j ≤ n − K)

zj : (mj m′
j) (1 ≤ j ≤ n)

In a preference list, persons within parentheses are tied. To complete the construc-
tion of the instance, we set the target value to be K ′ = 3n − K. Clearly the
maximum size of weakly stable matching for this instance is K ′. We claim that G
has a maximal matching of size exactly K if and only if the stable marriage instance
admits a weakly stable matching of size K ′.

For, suppose that G has a maximal matching M , where |M | = K. We construct
a matching M ′ in I as follows. For each edge {mi, wj} in M , if j = ji, then we
add (mi, wji

) and (m′
i, zi) to M ′. If j = ki, then we add (m′

i, wki
) and (mi, zi) to

M ′. There remain 2(n − K) men of the form mpi
, m′

pi
(1 ≤ i ≤ n − K) who are

as yet unmatched. Add (mpi
, yi) and (m′

pi
, zpi

) to M ′ (1 ≤ i ≤ n − K). Similarly
there remain n − K women of the form wqi

(1 ≤ i ≤ n − K) who are as yet
unmatched. Add (xi, wqi

) to M ′ (1 ≤ i ≤ n − K). Clearly M ′ is a matching of size
2K + 2(n − K) + (n − K) = K ′. It remains to show that M ′ is weakly stable.

It is straightforward to verify that no man of the form xi, and no woman of the
form yj or zj, can be involved in a blocking pair of M ′.

No unmatched pair (mi, wj) blocks M ′. For if this occurs, then (mi, yk) ∈ M ′

for some yk. Thus no edge of M is incident to mi. Hence by maximality of M ,
(m∗

l , wj) ∈ M ′ for some m∗
l , where m∗

l ∈ {ml, m
′
l}. But wj is indifferent between mi

and m∗
l . Hence (mi, wj) does not block M ′.

Additionally, no unmatched pair (m′
i, wj) blocks M ′, for either (m′

i, zi) ∈ M ′ or
(m′

i, wki
) ∈ M ′ holds. Thus M ′ is weakly stable.

Conversely suppose that M ′ is a weakly stable matching for I, where |M ′| = K ′.
Then everybody has a partner in M ′. For each i (1 ≤ i ≤ n), at most one of mi and
m′

i is matched to a woman of the form wj in M ′, for otherwise zi is unmatched, a
contradiction. Thus

M = {{mi, wj} ∈ E : 1 ≤ i, j ≤ n ∧ ((mi, wj) ∈ M ′ ∨ (m′
i, wj) ∈ M ′)}

is a matching in G. There are exactly n − K men mri
(1 ≤ i ≤ n − K) who have

a partner among the yk in M ′. Since man m′
ri

must have zri
as his partner in M ′

(1 ≤ i ≤ n − K), then |M | = K.
To complete the proof, it remains to show that M is maximal. For, suppose not.

Then there is some edge {mi, wj} in G such that no edge of M is incident on either
mi or wj. Thus (mi, yk) ∈ M ′ for some yk, and (wj, xl) ∈ M ′ for some xl. But then
(mi, wj) blocks M ′, for mi strictly prefers wj to yk, and wj strictly prefers mi to xl.
This contradiction to the weak stability of M ′ implies that M is indeed maximal.

A simpler transformation exists, also starting from exact maximal matching, if
we allow ties to occur in the preference lists of both sexes (we return to this issue
in Section 5).
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3 Strong stability

We begin this section by demonstrating that, for a given instance of SMTI, the set
of people may be partitioned into two sets, those matched in all strongly stable
matchings, and those matched in none.

Lemma 3.1 For a given instance of SMTI, let M and M ′ be two strongly stable
matchings. Then for any person p in the instance, p is matched in M if and only if
p is matched in M ′.

Proof: We suppose that p is some man m; the argument for the case that p is a
woman is similar. Suppose that m is matched in M , to w say, and m is unmatched
in M ′. Then w has a partner m′ 6= m in M ′, such that w strictly prefers m′ to m,
for otherwise (m, w) blocks M ′. Similarly, m′ has a partner w′ 6= w in M , such that
m′ strictly prefers w′ to w, for otherwise (m′, w) blocks M .

We claim that there is a sequence 〈mj〉j≥0 of men, and a sequence 〈wj〉j≥0 of
women, such that, for each i ≥ 1,

1. m0, . . . , mi, w0, . . . , wi are distinct people.

2. (mi, wi−1) ∈ M ′ and (mi, wi) ∈ M .

3. mi strictly prefers wi to wi−1.

We prove the claim by induction on i. The base case i = 1 clearly holds with
m0 = m, m1 = m′ and w0 = w, w1 = w′. Suppose that some r ≥ 1 is given, and
assume that the claim is true for i = r. We show that the claim holds for i = r + 1.
Woman wr has a partner, mr+1 say, in M ′, such that wr strictly prefers mr+1 to mr,
for otherwise (mr, wr) blocks M ′. Clearly mr+1 6= mj for any j (1 ≤ j ≤ r), and
also mr+1 6= m0 as m0 = m is unmatched in M ′. Additionally mr+1 has a partner,
wr+1 say, in M , such that mr+1 strictly prefers wr+1 to wr, for otherwise (mr+1, wr)
blocks M . Clearly wr+1 6= wj for any j (0 ≤ j ≤ r). This completes the induction
step.

As the sequence of distinct men and women is infinite, we reach an immediate
contradiction. Hence m is matched in M ′.

For a given instance of SMTI, Algorithm STRONG2 shown in Figure 1 determines
whether a strongly stable matching exists, and if so will find such a matching. This
algorithm is an extension of Algorithm STRONG in [5]. We require to define some
terminology used in the description of Algorithm STRONG2. By delete the pair
(m, w), we mean that m should be deleted from the preference list of w, and w
should be deleted from the preference list of m. Given a bipartite graph G = (V, E)
with bipartition V = X ∪ Y and a subset Z of X, the neighbourhood of Z, NG(Z),
is the set of vertices in Y adjacent to at least one vertex in Z. The deficiency of Z,
δ(Z), is defined by δ(Z) = |Z|−NG(Z). The deficiency of G, δ(G), is the maximum
deficiency over all subsets of X. It is a classical result that the maximum size of
matching in G is equal to |X| − δ(G). A subset Z of X such that δ(Z) = δ(G), and
such that no Z ′ ⊂ Z satisfies δ(Z ′) = δ(G), is called a critical subset of X. Clearly
Z may be empty; also it may be shown that there is a unique critical subset of X.
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assign each person to be free;
for each woman w do

proposed(w) := false;
repeat

while some man m is free and has a nonempty list do

for each woman w at the head of m’s list do

begin

m proposes, and becomes engaged, to w;
proposed(w) := true;
for each strict successor m′ of m on w’s list do

begin

if m′ is engaged to w then

break the engagement;
delete the pair (m′, w)

end

end;
let G be the current engagement graph;
Z := critical set of men in G;
U := NG(Z);
for each woman w ∈ U do

begin

break all engagements involving w;
for each man m at the tail of w’s list do

delete the pair (m,w)
end

until U = ∅;
let M be a maximum matching in G;
if some woman w is unmatched in M and proposed(w) then

no strongly stable matching exists
else

M is a strongly stable matching in the original instance;

Figure 1: Algorithm STRONG2.

In order to establish the correctness of Algorithm STRONG2, a number of lem-
mas follow. Henceforth, a person p’s preference list at the termination of Algorithm
STRONG2 will be referred to as the reduced list of p.

Lemma 3.2 If the pair (m, w) is deleted during an execution of Algorithm STRONG2,
then that pair cannot block any matching output by Algorithm STRONG2, compris-
ing pairs that are never deleted.

Proof: Let M be a matching output by Algorithm STRONG2, comprising pairs
that are never deleted, and suppose that (m, w) is deleted during execution of the
algorithm. If w is matched in M , then w strictly prefers her partner in M to m,
since m is a strict successor of any undeleted entries in the reduced list of w. Hence
(m, w) does not block M in this case. Now suppose that w is unmatched in M . It is
clear that, in order for the pair (m, w) to be deleted by the algorithm, w must have
received a proposal from some man during the execution of the algorithm. Since
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w is unmatched in M , the algorithm would have reported that no strongly stable
matching exists, rather than outputting M , a contradiction.

Lemma 3.3 A matching output by Algorithm STRONG2 is strongly stable.

Proof: Suppose that some execution of Algorithm STRONG2 outputs a matching
M , and suppose that M is blocked by some pair (m, w). Then m and w are accept-
able to each other, so that each is on the original preference list of the other. By
Lemma 3.2, the pair (m, w) has not been deleted. Hence each is on the reduced list
of the other.

At the termination of the main loop of Algorithm STRONG2, U = ∅. Let G
be the engagement graph at this point. Every man x who is engaged in G to some
woman is matched in M . For otherwise x ∈ Z by Lemma 4.6 of [5], and thus
U 6= ∅, a contradiction. Similarly every woman y who is engaged in G to some
man is matched in M . For otherwise the algorithm reports that no strongly stable
matching exists, since y has received a proposal, a contradiction.

As the reduced list of m is nonempty, m is engaged to one or more women in
G. Hence by the previous paragraph, m has a partner, w′ say, in M . Now w 6= w′,
as (m, w) blocks M . If m strictly prefers w to w′, then the pair (m, w) has been
deleted, since w′ is at the head of the reduced list of m, a contradiction. Thus m is
indifferent between w and w′, so that m proposed to w during the execution of the
algorithm. Thus w is engaged to m in G, for otherwise the pair (m, w) would have
been deleted, a contradiction. Again by the previous paragraph, w has a partner, m′

say, in M . But (m, w) blocks M , so that w strictly prefers m to m′. Hence the pair
(m′, w) would have been deleted as a result of m proposing to w, a contradiction.

Lemma 3.4 No strongly stable pair is ever deleted during an execution of Algorithm
STRONG2.

Proof: The proof of this lemma is almost identical to that of Lemma 4.4 in [5]; only
minor modifications of the latter proof are required in order to cope with the case
that a preference list may be incomplete. We omit the details.

Lemma 3.5 If, during the execution of Algorithm STRONG2, some woman w re-
ceives a proposal and is unmatched in the maximum matching M , then no strongly
stable matching exists for the given instance.

Proof: Let m be a man who proposes to w during execution of the algorithm and
let G be the engagement relation at the termination of the algorithm. Suppose, for
a contradiction, that there is a strongly stable matching M ′ for the given instance.
Suppose firstly that w is unmatched in M ′. If m is unmatched in M ′ then (m, w)
blocks M ′, since m and w are mutually acceptable. Thus m has a partner, x say, in
M ′. If m strictly prefers x to w, then in order for m to propose to w, the strongly
stable pair (m, x) would have been deleted by the algorithm, a contradiction to
Lemma 3.4. Thus either m is indifferent between w and x, or m strictly prefers w
to x. In either case (m, w) blocks M ′.

Thus w has a partner, m′ say, in M ′ (possibly m = m′). Now m′ is engaged to
some woman in G. For if not, then the reduced list of m′ is empty, so that m′ has
no stable partners by Lemma 3.4, a contradiction. Since M matches every man who
is engaged to at least one woman in G (shown in the second paragraph of the proof
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of Lemma 3.3), then m′ has a partner, w′ say, in M . As (m′, w) /∈ M , then w 6= w′.
If m′ strictly prefers w to w′, then the strongly stable pair (m′, w) would have been
deleted in order for m′ to propose to w′, a contradiction to Lemma 3.4. Thus m′ is
either indifferent between w′ and w, or m′ strictly prefers w′ to w.

We claim that there is a sequence 〈mj〉j≥1 of distinct men, and a sequence 〈wj〉j≥0

of distinct women, such that, for each i ≥ 1,

1. m1, . . . , mi, w0, . . . , wi are distinct people.

2. (mi, wi−1) ∈ M ′ and (mi, wi) ∈ M .

3. mi is either indifferent between wi and wi−1, or mi strictly prefers wi to wi−1.

We prove the claim by induction on i. The base case i = 1 clearly holds with
m1 = m′ and w0 = w, w1 = w′. Suppose that some r ≥ 1 is given, and assume that
the claim is true for i = r. We show that the claim holds for i = r+1. Suppose that
wr is unmatched in M ′. Now mr is acceptable to wr, and either mr strictly prefers
wr to wr−1, or mr is indifferent between wr and wr−1. Hence (mr, wr) blocks M ′, a
contradiction. Thus wr has a partner, mr+1 say, in M ′. Clearly mr+1 6= mj for any
j (1 ≤ j ≤ r). Now mr+1 is engaged in G, for if not, then the reduced list of mr+1 is
empty, so that mr+1 has no stable partners by Lemma 3.4, a contradiction. As above,
M matches every man who is engaged to at least one woman in G, so that mr+1 has
a partner, wr+1 say, in M . Clearly wr+1 6= wj for any j (1 ≤ j ≤ r), and wr+1 6= w0

as w0 = w is unmatched in M . If mr+1 strictly prefers wr to wr+1, then the strongly
stable pair (mr+1, wr) would have been deleted in order for mr+1 to propose to wr+1,
a contradiction to Lemma 3.4. Thus mr+1 is either indifferent between wr+1 and wr,
or mr+1 strictly prefers wr+1 to wr. This completes the induction step.

As the sequence of distinct men and women is infinite, we reach an immediate
contradiction. Thus no strongly stable matching exists for the given instance.

Theorem 3.6 For a given instance of SMTI, Algorithm STRONG2 determines
whether or not a strongly stable matching exists. If such a matching does exist,
all possible executions of the algorithm find one in which every man has as good a
partner, and every woman as bad a partner, as in any strongly stable matching.

Proof: Let I be the given instance of SMTI. Clearly the main loop of Algorithm
STRONG2 terminates. For, if U 6= ∅, then at least one pair (m, w) is deleted, where
w ∈ U and m is a member of the critical set of men. Thus, each man’s list is bound
to become empty eventually; in this case, U = ∅.

Let M be a maximum matching in the final engagement relation G. If some
woman who is unmatched in M received a proposal during execution of the algo-
rithm, then I has no strongly stable matching by Lemma 3.5. If there is no such
woman, then the algorithm outputs the matching M . By Lemma 3.3, M is a strongly
stable matching.

Finally, if M ′ is any strongly stable matching for I, and M is the matching
generated by the algorithm, then every man M has as good a partner in M as in
M ′, and every woman has as bad a partner in M as in M ′. This fact is a consequence
of Lemmas 3.1 and 3.4.

The O(n4) time bound computed by Irving for Algorithm STRONG in [5] also
applies to Algorithm STRONG2.
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assign each person to be free;
for each woman w do

proposed(w) := false;
repeat

while some man m is free and has a nonempty list do

for each woman w at the head of m’s list do

begin

m proposes, and becomes engaged, to w;
proposed(w) := true;
for each strict successor m′ of m on w’s list do

begin

if m′ is engaged to w then

break the engagement;
delete the pair (m′, w)

end

end;
for each woman w who is multiply engaged do

begin

break all engagements involving w;
for each man m at the tail of w’s list do

delete the pair (m,w);
end;

until each man is either engaged or has an empty list;
let M be a maximum matching in the engagement relation;
if some woman w is unmatched in M and proposed(w) then

no super-stable matching exists
else

M is a super-stable matching in the original instance;

Figure 2: Algorithm SUPER2.

4 Super-stability

We begin this section by demonstrating that the analagous result to Lemma 3.1
holds in the super-stability case. That is, for a given instance of SMTI, the set of
people may be partitioned into two sets, those matched in all super-stable matchings,
and those matched in none.

Lemma 4.1 For a given instance of SMTI, let M and M ′ be two super-stable match-
ings. Then for any person p in the instance, p is matched in M if and only if p is
matched in M ′.

Proof: The proof is identical to that of Lemma 3.1.

For a given instance of SMTI, Algorithm SUPER2 shown in Figure 2 determines
whether a super-stable matching exists, and if so will find such a matching. As
before, this algorithm is an extension of Algorithm SUPER in [5]. The terms delete
the pair (m, w) and reduced list, defined in Section 3, are defined analagously here.

We establish the correctness of Algorithm SUPER2, following a similar approach
to that of Section 3.
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Lemma 4.2 If the pair (m, w) is deleted during an execution of Algorithm SUPER2,
then that pair cannot block any matching output by Algorithm SUPER2, comprising
pairs that are never deleted.

Proof: The proof is identical to that of Lemma 3.2.

Lemma 4.3 A matching output by Algorithm SUPER2 is super-stable.

Proof: Suppose that some execution of Algorithm SUPER2 outputs a matching M ,
and suppose that M is blocked by some pair (m, w). Then m and w are acceptable
to each other, so that each is on the original preference list of the other. By Lemma
4.2, the pair (m, w) has not been deleted. Hence each is on the reduced list of the
other.

Let G be the engagement relation at the termination of the algorithm. Clearly
each man x who is engaged in G to some woman is matched in M , since each woman
has degree at most one in G. Similarly each woman y who is engaged in G to some
man is matched in M . For otherwise the algorithm reports that no super-stable
matching exists, since y has received a proposal, a contradiction.

As the reduced list of m is nonempty, m is engaged to one or more women in
G. Hence by the previous paragraph, m has a partner, w′ say, in M . Now w 6= w′,
as (m, w) blocks M . If m strictly prefers w to w′, then the pair (m, w) has been
deleted, since w′ is at the head of the reduced list of m, a contradiction. Thus m is
indifferent between w and w′, so that m proposed to w during the execution of the
algorithm. Hence w is engaged to m in G, for otherwise the pair (m, w) would have
been deleted, a contradiction. By the previous paragraph, w has a partner in M ;
since w is engaged to at most one man, then this partner is m. Thus (m, w) ∈ M ,
a contradiction.

Lemma 4.4 No super-stable pair is ever deleted during an execution of Algorithm
SUPER2.

Proof: The proof of this lemma is almost identical to that of Lemma 3.3 in [5]; only
minor modifications of the latter proof are required in order to cope with the case
that a preference list may be incomplete. We omit the details.

Lemma 4.5 If, during the execution of Algorithm SUPER2, some woman receives
a proposal and is unmatched in the maximum matching M , then no super-stable
matching exists for the given instance.

Proof: The proof is identical to that of Lemma 3.5.

Theorem 4.6 For a given instance of SMTI, Algorithm SUPER2 determines whether
or not a super-stable matching exists. If such a matching does exist, all possible ex-
ecutions of the algorithm find one in which every man has as good a partner, and
every woman as bad a partner, as in any strongly stable matching.

Proof: Let I be the given instance of the SMTI. Clearly the main loop of the
algorithm terminates. For, if some man m is free and has a nonempty list at the
end of some iteration of the main loop, then m proposes to some woman w at the
head of his list during the next iteration. Either m is engaged at the end of the this

12



iteration, or the pair (m, w) is deleted. Thus we are guaranteed that eventually the
termination condition will be satisfied.

Let M be a maximum matching in the final engagement relation. If some woman
who is unmatched in M received a proposal during execution of the algorithm, then
I has no super-stable matching by Lemma 4.5. If there is no such woman, then
Algorithm SUPER2 outputs the matching M . By Lemma 4.3, M is a super-stable
matching.

Finally, if M ′ is any strongly stable matching for I, and M is the matching
generated by the algorithm, then every man M has as good a partner in M as in
M ′, and every woman has as bad a partner in M as in M ′. This fact is a consequence
of Lemmas 4.1 and 4.4.

The O(n2) time bound computed by Irving for Algorithm SUPER in [5] also applies
to Algorithm SUPER2.

5 Conclusion and open problems

As mentioned in Section 2, an instance of the NP-complete problem weak stabil-

ity smti contains ties only on the women’s side. Thus, with women representing
hospitals, a natural restriction of the problem arises if, in an applicant-hospital
matching scheme, we ask each hospital to rank some applicants in strict order, but
then permit indifference among the remaining applicants, so that each tie will oc-
cur at the tail of some hospital’s list. Our transformation as it stands does not
prove NP-completeness for this restriction of weak stability smti, however we
conjecture that this restricted version of the problem is NP-complete nevertheless.

As previously mentioned, the set of all super-stable matchings for a given instance
of SMT forms a distributive lattice. A consequence of Lemma 4.1 is that this result
also holds for SMTI. However, no such result holds for weakly stable matchings:
Roth [9] constructs an instance of SMTI, comprising three men and three women,
which admits no man-optimal or woman-optimal weakly stable matching. Regarding
strongly stable matchings, Spieker’s results in [10] may be easily adapted to show
that the set of all such matchings for a given instance of SMTI forms a distributive
lattice, if ties occur in the preference lists of one sex only. It remains open to
characterise the structure in the general case.
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