

Java Collections © 2001 D.A. Watt and D.F. Brown 4-1

Solutions to Exercises in Chapter 4

 4.1 To access the kth element of the SLL headed by first, counting the first element
as 0:

1. Set curr to first.
2. Repeat k times:
 2.1. If curr is null, terminate with answer none.
 2.2. Set curr to node curr’s successor.
3. Terminate with answer curr.

This algorithm follows between 1 and n links, i.e., (n+1)/2 links on average. Its
time complexity is O(n).

 4.2 To access the kth element of the DLL headed by (first, last), counting the first
element as 0:

1. Let n be the length of the DLL headed by (first, last).
2. If 2k < n:
 2.1. Set curr to first.
 2.2. Repeat k times:
 2.2.1. If curr is null, terminate with answer none.
 2.2.2. Set curr to node curr’s successor.
3. If 2k ≥ n:
 2.1. Set curr to last.
 2.2. Repeat n–1–k times:
 2.2.1. If curr is null, terminate with answer none.
 2.2.2. Set curr to node curr’s predecessor.
4. Terminate with answer curr.

If the DLL’s length is immediately available, step 1 follows 0 links. Either step 2
or 3 follows between 0 and (n–1)/2 links, i.e., (n–1)/4 links on average. This
algorithm’s time complexity is O(n).

If the DLL’s length is not immediately available, step 1 would have to follow n
links, so it would be better just to mimic the algorithm of Exercise 4.1.

 4.3 To reverse the elements of the SLL headed by first:

1. Set curr to first and set pred to null.
2. While curr is not null, repeat:
 2.1. Let succ be node curr’s successor.
 2.2. Set node curr’s successor to pred.
 2.3. Set pred to curr.
 2.4. Set curr to succ.
3. Set first to pred.
4. Terminate.

This algorithm follows n links, so its time complexity is O(n). Its space
complexity is O(1).

 4.4 To reverse the elements of the DLL headed by (first, last):

1. Set curr to first.
2. While curr is not null, repeat:
 2.1. Let succ be node curr’s successor.
 2.2. Swap node curr’s predecessor and successor links.
 2.2. Set curr to succ.
3. Swap first and last.
4. Terminate.

Java Collections © 2001 D.A. Watt and D.F. Brown 4-2

This algorithm follows n links, so its time complexity is O(n). Its space
complexity is O(1).

 4.5 To test whether the SLL headed by first is a palindrome:

1. Let n be the length of the SLL headed by first.
2. Copy characters in reverse order from the first n/2 nodes of the SLL
 headed by first into another SLL headed by prefix, and let suffix be a
 link to the next node of the SLL headed by first.
3. If n is odd, set suffix to node suffix’s successor.
4. Let matched be the result of testing whether the SLL headed by prefix
 matches the SLL headed by suffix.
5. Terminate with answer matched.

To copy characters in reverse order from the first k nodes of the SLL headed by
first into another SLL headed by prefix, and let suffix be a link to the next node of
the SLL headed by first:

1. Set curr to first, and set prefix to null.
2. Repeat k times:
 2.1. Insert node curr’s character before the first node of the SLL
 headed by prefix.
 2.2. Set curr to node curr’s successor.
3. Set suffix to curr.
4. Terminate with answers prefix and suffix.

To test whether the SLL headed by prefix matches the SLL headed by suffix:

1. Set p to prefix, and set s to suffix.
2. While p and s are not null, repeat:
 2.1. If node p’s character ≠ node s’s character, terminate with answer
 false.
 2.2. Set p to node p’s successor, and set s to node s’s successor.
3. Terminate with answer true.

The main algorithm performs n/2 character comparisons. Step 1 follows either 0
or n links, depending on whether the SLL’s length is immediately available or
not. Step 2 follows n/2 links. Step 4 follows n/2 links in each of two SLLs. In
total, the algorithm follows either 3n/2 or 5n/2 links.

 4.6 To test whether the DLL headed by (first, last) is a palindrome:

1. Set p to first, and set s to last.
2. While p and s are not the same node, repeat:
 2.1. If node p’s character ≠ node s’s character, terminate with answer
 false.
 2.2. If node p is node s’s predecessor, terminate with answer true.
 2.2. Set p to node p’s successor, and set s to node s’s predecessor.
3. Terminate with answer true.

The algorithm performs n/2 character comparisons. It follows n/2 successor links
and n/2 predecessor links. In total, it follows about n links.

 4.8 If a sorted DLL contains words in alphabetical order, it would be advantageous
to search the DLL right-to-left when the target word’s initial letter is in the
second half of the alphabet.

 4.9 To find which if any node of the unsorted DLL headed by (first, last) contains an
element equal to target (version that searches simultaneously from both ends):

Java Collections © 2001 D.A. Watt and D.F. Brown 4-3

1. If first and last are null, terminate with answer none.
2. Set p to first, and set s to last.
3. Repeat:
 3.1. If target is equal to node p’s element, terminate with answer p.
 3.2. If target is equal to node s’s element, terminate with answer s.
 3.3. If p and s are the same node, or node p is node s’s predecessor,
 terminate with answer none.
 3.4. Set p to node p’s successor, and set s to node s’s predecessor.

On a successful search, this algorithm performs between 1 and n comparisons,
i.e., (n+1)/2 comparisons on average. On an unsuccessful search, it performs n
comparisons. Thus it is no better than the original unsorted DLL linear search
algorithm.

This algorithm’s time complexity is O(n).

 4.10 To find which if any node of the sorted DLL headed by (first, last) contains an
element equal to target (version that searches simultaneously from both ends):

1. If first and last are null, terminate with answer none.
2. Set p to first, and set s to last.
3. Repeat:
 3.1. If target is equal to node p’s element, terminate with answer p.
 3.2. If target is equal to node s’s element, terminate with answer s.
 3.3. If p and s are the same node, or node p is node s’s predecessor,
 or target is less than node p’s element, or target is greater than
 node s’s element, terminate with answer none.
 3.4. Set p to node p’s successor, and set s to node s’s predecessor.

On a successful or unsuccessful search, this algorithm performs between 1 and n
comparisons, i.e., (n+1)/2 comparisons on average. Thus it is no better than the
original sorted DLL linear search algorithm.

This algorithm’s time complexity is O(n).

 4.11 To find which if any node of the unsorted SLL headed by first contains an
element equal to target (version that moves the node to the front of the SLL):

1. Set pred to null.
2. For each node curr of the SLL headed by first, repeat:
 2.1. If target is equal to node curr’s element:
 2.1.1. If pred is not null:
 2.1.1.1. Set node pred’s successor to node curr’s
 successor.
 2.1.1.2. Set node curr’s successor to first.
 2.1.1.3. Set first to curr.
 2.1.2. Terminate with answer curr.
 2.2. Set pred to curr.
3. Terminate with answer none.

If the same x is searched for 50 times out of the next 100 searches, x will be the
first or second element in the SLL for most of the time, so each of the 50
searches for x will perform only 1 or 2 comparisons. Each of the remaining 50
searches (if successful) will perform about n/2 comparisons on average. The total
number of comparisons for the 100 searches will be about 100 + 25n.

If we use the original unsorted SLL search algorithm, each of the 100 searches (if
successful) will perform about n/2 comparisons on average. The total number of
comparisons will be about 50n. Thus the above algorithm is faster for all but
small values of n.

 4.12 To delete the node containing element elem in the SLL headed by first:

Java Collections © 2001 D.A. Watt and D.F. Brown 4-4

1. Set pred to null.
2. For each node curr of the SLL headed by first, repeat:
 2.1. If target is equal to node curr’s element:
 2.1.1. Let succ be node curr’s successor.
 2.1.2. If pred is null, set first to succ.
 2.1.3. If pred is not null, set node pred’s successor to succ.
 2.1.4. Terminate.
 2.2. Set pred to curr.
3. Terminate.

To delete the node containing element elem in the DLL headed by (first, last):

1. For each node curr of the DLL headed by (first, last), repeat:
 2.1. If target is equal to node curr’s element:
 2.1.1. Let pred and succ be node curr’s successor and
 predecessor, respectively.
 2.1.2. If pred is null, set first to succ.
 2.1.3. If pred is not null, set node pred’s successor to succ.
 2.1.4. If succ is null, set last to pred.
 2.1.5. If succ is not null, set node succ’s predecessor to pred.
 2.1.6. Terminate.
3. Terminate.

 4.14 To sort the SLL headed by first (selection sort version):

1. For each node curr of the SLL headed by first, repeat:
 1.1. Set p such that node p contains the least element in the SLL
 headed by curr.
 1.2. If p ≠ curr, swap node p’s element and node curr’s element.
2. Terminate.

To sort a DLL, a similar algorithm can be used.

 4.15 To sort the SLL headed by first (quick-sort version):

1. If neither first nor first’s successor is null:
 1.1. Partition the SLL headed by first into three separate SLLs, such
 that the SLL headed by center contains a single element pivot,
 the SLL headed by left contains only elements less than or equal
 to pivot, and the SLL headed by right contains only elements
 greater than or equal to pivot.
 1.2. Sort the SLL headed by left.
 1.3. Sort the SLL headed by right.
 1.4. Let lastleft be the last node of the SLL headed by left.
 1.5. Set node lastleft’s successor to center, and set node center’s
 successor to right.
2. Terminate.

To sort a DLL, a similar algorithm can be used.

 4.16 To insert elem after node pred in the SLL headed by first:

1. Let succ be node pred’s successor.
2. Make ins a link to a newly-created node with element elem and
 successor succ.
3. Set node pred’s successor to ins.
4. Terminate.

(Note: If we wish to insert elem before the SLL’s first node, pred will be the
dummy node.)

To delete node del in the nonempty SLL headed by first:

Java Collections © 2001 D.A. Watt and D.F. Brown 4-5

1. Let succ be node del’s successor.
2. Let pred be node del’s predecessor.
3. Set node pred’s successor to succ.
4. Terminate.

(Note: Like the corresponding step of Algorithm 4.17, step 2 must find the
predecessor by traversing the SLL from its first node.)

The above algorithms are neater than the original algorithms, but they have the
same time complexities, O(1) and O(n) respectively.

