

Java Collections © 2001 D.A. Watt and D.F. Brown 6-1

Solutions to Exercises in Chapter 6

 6.3 Assuming that the stack is represented by an array, Figure S6.1 shows the
contents of symbolStack while the phrase ‘main (String[] args) {
System.out.print(arg[0]); }’ is being checked.

 6.4 Assuming that the stack is represented by an SLL, Figure S6.2 shows the
contents of symbolStack while the phrase ‘main (String[] args) {
System .out.print(arg[0]); }’ is being checked.

 6.5 Add the following accessor to the stack contract of Program 6.6:

 public Object get (int d);
 // Return the element at depth d in this stack, counting the topmost element
 // as having depth 1. Throw a NoSuchElementException if d < 1 or
 // d > stack depth.

Add the following to the array implementation of Program 6.8:

 public Object get (int d) {
 if (d < 1 || d > depth)
 throw new NoSuchElementException();
 return elems[depth-d];
 }

Add the following to the SLL implementation of Program 6.10:

 public Object get (int d) {
 if (d < 1)
 throw new NoSuchElementException();
 SLLNode curr = top;
 for (int i = 1; i < d; i++) {
 if (curr == null)
 throw new NoSuchElementException();
 curr = curr.succ;
 }
 return curr.element;
 }

 6.6 To make the array implementation of Program 6.8 deal with an overflow by
throwing an exception:

 public void addLast (Object elem)
 throws StackException {
 // Add elem as the top element on this stack.
 // Throw a StackException if there is no room.
 if (depth == elems.length)
 throw new StackException();
 elems[depth++] = elem;
 }

This assumes that StackException is a subclass of Exception.

 6.7 An implementation of pairs of bounded stacks is shown in Program S6.3.

 6.13 To reorder a train from input to output, using spur:

Java Collections © 2001 D.A. Watt and D.F. Brown 6-2

1. For c = 1, …, n, repeat:
 1.1. Set loc[c] to input.
2. For c = 1, …, n, repeat:
 2.1. Let here be loc[c].
 2.2. If here is input:
 2.2.1. While the top car number in input is not c, repeat:
 2.2.1.1. Move car c' from input to spur.
 2.2.1.2. Set loc[c'] to spur.
 2.2.2. Move car c from input to output.
 2.3. If here is spur:
 2.3.1. While the top car number in spur is not c, repeat:
 2.3.1.1. Move car c' from spur to input.
 2.3.1.2. Set loc[c'] to input.
 2.3.2. Move car c from spur to output.
3. Terminate.

 6.14 Suppose that we have s spurs, numbered 0, …, s–1. Then we can assign cars to
spurs according to their car numbers. For example, we can assign car c to the spur
numbered (c modulo s). On average, each spur will contain only about 1/s times
as many cars as in Exercise 6.13, and the excess number of car movements will be
reduced by about 1/s.

Figure S6.1 Stack contents in Algorithm 6.4 (array representation with maxdepth = 6).

‘(’
0

depth=1

2

3

4

5 After scanning

‘main(’:

‘(’
0

‘[’
1

depth=2

3

4

5 After scanning

‘String[’:

‘(’
0

depth=1

2

3

4

5 After scanning

‘]’:

depth=0

1

2

3

4

5 After scanning

‘args)’:

‘{’
0

depth=1

2

3

4

5 After scanning

‘{’:

‘{’
0

‘(’
1

depth=2

3

4

5 After scanning

‘System.out.
print(’:

‘{’
0

‘(’
1

depth=2

3

4

5 After scanning

‘0]’:

‘{’
0

depth=1

2

3

4

5 After scanning

‘)’:

depth=0

1

2

3

4

5 After scanning

‘;}’:

‘{’
0

‘(’
1

‘[’
2

depth=3

4

5 After scanning

‘arg[’:

Java Collections © 2001 D.A. Watt and D.F. Brown 6-3

Figure S6.2 Stack contents in Algorithm 6.4 (SLL representation).

public class TwinStack {

 // Each TwinStack object is a pair of bounded stacks whose elements are
 // objects. The stacks are identified as LEFT and RIGHT.

 // This stack pair is represented as follows:
 // The LEFT stack’s depth is held in depthL, and its elements occupy the
 // subarray elems[0…depthL–1], in bottom-to-top order.
 // The RIGHT stack’s depth is held in depthR, and its elements occupy
 // the subarray elems[max–depthR…max–1], in top-to-bottom order.
 private Object[] elems;
 private int depthL, depthR;

 public static final byte LEFT = 0, RIGHT = 1;

 //////////// Constructor ////////////

 public ArrayStack (int max) {
 // Construct a stack pair, in which both stacks are initially empty, whose
 // total depth will be bounded by max.
 elems = new Object[max];
 depthL = depthR = 0;
 }

 //////////// Accessors ////////////

 public boolean isEmpty (byte id) {
 // Return true if and only if stack id in this stack pair is empty.
 switch (id) {
 case LEFT:
 return (depthL == 0);
 case RIGHT:
 return (depthR == 0);
 }
 }

Program S6.3 Implementation of pairs of bounded stacks (continued on next page).

‘(’
After scanning
‘main(’:

After scanning
‘String[’:

After scanning
‘]’:

After scanning
‘args)’:

After scanning
‘{’:

After scanning
‘System.out.
print(’:

After scanning
‘0]’:

After scanning
‘)’:

After scanning
‘;}’:

After scanning
‘arg[’:

‘(’ ‘[’

‘(’

‘{’

‘{’ ‘(’

‘{’ ‘(’ ‘[’

‘{’ ‘(’

‘{’

Java Collections © 2001 D.A. Watt and D.F. Brown 6-4

 public Object getLast (byte id) {
 // Return the element at the top of stack id in this stack pair. Throw a
 // NoSuchElementException if that stack is empty.
 switch (id) {
 case LEFT:
 if (depthL == 0)
 throw new NoSuchElementException();
 return elems[depthL-1];
 case RIGHT:
 if (depthR == 0)
 throw new NoSuchElementException();
 return elems[elems.length-depthR];
 }
 }

 //////////// Transformers ////////////

 public void clear (byte id) {
 // Make stack id in this stack pair empty.
 switch (id) {
 case LEFT:
 for (int i = 0; i < depthL; i++)
 elems[i] = null;
 depthL = 0;
 break;
 case RIGHT:
 for (int j = 1; j <= depthR; j++)
 elems[elems.length-j] = null;
 depthR = 0;
 }
 }

 public void addLast (byte id, Object elem) {
 // Add elem as the top element on stack id in this stack pair.
 if (depthL + depthR == elems.length)
 expand();
 switch (id) {
 case LEFT:
 elems[depthL++] = elem;
 break;
 case RIGHT:
 elems[elems.length-(++depthR)] = elem;
 }
 }

Program S6.3 Implementation of pairs of bounded stacks (continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 6-5

 public Object removeLast (byte id) {
 // Remove and return the element at the top of stack id in this stack pair.
 // Throw a NoSuchElementException if that stack is empty.
 Object topElem;
 switch (id) {
 case LEFT:
 if (depthL == 0)
 throw new NoSuchElementException();
 topElem = elems[--depthL];
 elems[depthL] = null;
 break;
 case RIGHT:
 if (depthR == 0)
 throw new NoSuchElementException();
 topElem = elems[elems.length-depthR];
 elems[elems.length-(depthR--)] = null;
 }
 return topElem;
 }

 //////////// Auxiliary method ////////////

 private void expand () {
 // Make the elems array longer.
 Object[] newElems = new Object[2*elems.length];
 for (int i = 0; i < depthL; i++)
 newElems[i] = elems[i];
 for (int j = 1; j <= depthR; j++)
 newElems[newElems.length-j] =
 elems[elems.length-j];
 elems = newElems;
 }

}

Program S6.3 Implementation of pairs of bounded stacks (continued).

