or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.
The Design of Monty: a
Programming/Scripting Language

David A. Watt!

Department of Computing Science
University of Glasgow
Glasgow, Scotland, UK

Abstract

This paper describes the design of Monty, a language intended to be equally suit-
able for both scripting and conventional programming. Monty features an unusually
flexible type system in which all values are viewed as objects in a single-inheritance
class hierarchy, static and dynamic typing are smoothly integrated, and both non-
variant and covariant generic classes are supported. An interesting byproduct of
the design of Monty has been the light it has shed on the power of mutability as a
linguistic concept. Among other things, it turns out that the type-soundness of a
covariant generic class is closely related to the class’s mutability.

Key words: Programming language, scripting language, static
typing, dynamic typing, single inheritance, mutability, inclusion
polymorphism, parametric polymorphism, generic class, covariant
type parameterization.

1 Introduction

Programming languages and scripting languages have followed very different
historical development paths. Indeed, some authors [4,15] have argued that
programs and scripts are fundamentally different:

* Scripts are very high-level, while programs are relatively low-level.
* Scripts are dynamically typed, while programs are statically typed.

 Scripts are fast to develop (with concise syntax and a lightweight edit—
run cycle), while programs are slow to develop (with verbose syntax and a
heavyweight edit—compile-link—run cycle).

 Scripts are slow-running (being interpreted and containing dynamic type
checks), while programs are fast-running (being compiled into native code).

! Email: daw@dcs.gla.ac.uk

(©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

rviai &4

In reality, the boundary between programming and scripting languages is
blurred:

* Programming languages range from low-level (C) to high-level (Haskell,
Prolog).

* Scripting languages are very high-level only in specialized areas, such as
string pattern matching.

* Some scripting languages support a measure of static typing. Some pro-
gramming languages are dynamically typed (Lisp, Prolog, Smalltalk).

» While scripts are not explicitly compiled, they are usually (Perl, Python)
compiled behind the scenes. Some programming language IDEs have compile-
link-and-run commands that achieve the same effect.

» Not only most scripting languages (Perl, Python) but also some program-
ming languages (Prolog, Java) are compiled into interpretive code.

Python [17] is a language that comes close to straddling the boundary be-
tween programming and scripting. Among its features are built-in tuples,
arrays, lists, and dictionaries; string pattern matching using full regular-
expression notation; iteration over tuples and lists; exceptions; list comprehen-
sions; first-class functions; and a (crude) object model. These features betray
the influence of languages as diverse as Perl and Miranda. Python has a clean
concise syntax, and very good feature integration. Its core language is small
but powerful, and its rich module library provides very high-level functionality
such as string pattern matching.

To illustrate scripting, let us consider the following easily-stated problem.
An HTML document contains headings at different levels, e.g.:

<H1>Scripting Languages</H1>
<H2>Perl</H2>

<H2>Python</H2>

It is required to generate a “table of contents”, in which each heading’s title
is indented according to the heading’s level:

Scripting Languages
Perl
Python

Fig. 1 shows a Python script that solves this problem. This script is
extraordinarily concise and readable. It contains no type information at all,
since Python is dynamically typed.

By contrast, a Java program to solve the same problem would be rather less
concise. It would contain a lot of type information, some of it redundant. It
would be rather clumsy in its string pattern matching (even using the Pattern

2

rviai &4

def print_contents (filename)
file = open(filename)
html = file.read()
pattern = re.compile("<(H[1-91)>(.x?)</\\1>")
headings = pattern.findall(html)
for (tag, title) in headings :
level = eval(tagl[1])
print "\t" * (level-1) + title

Fig. 1. “Table of contents” script in Python

library class). Finally, it would need auxiliary methods.

Despite these differences, it is clear that programming and scripting lan-
guages are converging in most respects. Modern scripting languages such
as Python are absorbing programming language principles such as readable
syntax, rich control structures, rich data types, data abstraction, and rich li-
braries. On the other hand, scripting languages still tend to favor dynamic
typing and implicit variable declarations.

Convergence between programming and scripting languages is desirable
because it combines the advantages of both. Maintainability is important for
(non-throwaway) scripts as well as programs. Rapid development is desirable
for programs as well as scripts. Very high-level functionality is important for
both programs and scripts, although it need not necessarily be built into the
core language.

The main obstacle to complete convergence seems to be the issue of static
vs dynamic typing. Static typing enables compilers to certify absence of type
errors and to generate efficient object code. Dynamic typing is costly in run-
time checks. However, dynamic typing provides flexibility that is essential in
many scripting applications. Scripts must be able to process heterogeneous
data, often derived from web forms or databases.

There have been few attempts explicitly to combine static and dynamic
typing in a single programming language. Programming language designers
tend to choose one or the other (nearly always static typing), and to impose
their preference on all programmers.

But consider an object-oriented language with a single-inheritance class
hierarchy:

o If a variable’s declared type is a class C with no subclasses, the variable will
always contain an object of that class C.2 These objects may be provided
with class tags, but these tags need never be inspected.

 If the variable’s declared type is a class C' with one or more subclasses, the
variable may contain an object of class C' or any of its subclasses. These
objects must be provided with class tags, and these tags are tested by certain

2 More precisely, the variable will contain a reference to an object.

3

rviai &4

operations to avoid run-time type errors.

 If the variable’s declared type is the class Object at the top of the hierarchy,
then the variable may contain an object of any class.

Thus object-oriented languages actually support a measure of dynamic
typing. In fact, their type system combines static and dynamic typing rather
smoothly. The programmer is able to choose the degree of dynamic typing, by
locating each individual variable at a particular point in the class hierarchy.
Thus static and dynamic typing need not be mutually exclusive: they can be
seen as opposite ends of a spectrum.

If a language integrates static and dynamic typing, the compiler can still
type-check each part of the program, but now there are three possible answers:
well-typed (will not fail with a type error), ill-typed (will fail with a type error),
or dynamic-typed (might fail with a type error, depending on the run-time
state).

The rest of this paper is structured as follows. Section 2 is an overview
of the Monty language. Section 3 introduces mutability as a linguistic con-
cept. Section 4 shows how Monty supports generic classes. Section 5 studies
Monty’s type system, focusing on generic classes. Section 6 briefly considers
key implementation problems for Monty, namely data representation, static
vs dynamic typing, and implementation of generic classes. Section 7 is an
overview of related work. Section 8 concludes by sketching the possible future
evolution of Monty.

2 Overview of Monty

If a single language is to be suitable for both scripting and conventional pro-
gramming, it should meet the following requirements:

» The language should have a concise (but not cryptic) syntax. This is to
facilitate both rapid development and maintenance of code.

* The language should have a simple and uniform semantics. This is to facil-
itate learning — particularly important for inexperienced script-writers.

* The language should smoothly integrate static and dynamic typing. This
is to enable programmers to choose between the security and efficiency of
static typing and the flexibility of dynamic typing.

* The language should have a rich easy-to-use library. This is to support
the very high-level functionality, such as string pattern matching, that is so
useful in scripting applications.

* The language should enable the programmer to choose either fast compi-
lation into portable interpretive code or (possibly optimized) compilation
into fast native code. The former is to support rapid development of pro-
grams and scripts, the latter to support development of efficient application
programs.

rviai &4

proc printContents (filename: String)
val file := I0.open(filename)
val html := file.readAll()
val pattern := Pattern("<(H[19])>(.*7)</\\1>")
val headings := pattern.findAll(html)
for hdg in headings
val tag := hdg[0]
val title := hdgl[1]
val level := Int.parse(tag.charAt(1))
I0.print ("\t" * (level 1) + title)

Fig. 2. “Table of contents” script in Monty

func least (vals)
var min := vals.get(0)
for i in 1 .. vals.size() - 1
val elem := vals.get(i)
if elem < min :
min := elem
return min

Fig. 3. Dynamically typed function in Monty

The programming/scripting language Monty® has been designed to meet
these exacting requirements. It has concise but readable syntax. Declarations
are compulsory, but the types of variables, parameters, and functions may be
omitted (their default type being Object). Monty provides a rich variety of
object types, including collections. It provides a rich set of control structures,
including iteration over collections. It will have a rich class library, supporting
very high-level functionality such as string pattern matching.

Fig. 2 shows a Monty script that solves the “table of contents” problem
of Section 1. The expression “Pattern(...)” constructs a Pattern object
from a regular expression. The expression “pattern.findAll(html)” uses
that Pattern object to compute all substrings of html that match the regular
expression; it yields a list of arrays of strings, where each array in the list
contains a tag (e.g., “H1”) and the corresponding title (e.g., “Scripting Lan-
guages”). The loop “for hdg in headings : ...” iterates over the list. This
Monty script is slightly less concise than Python (Fig. 1); just as concise as
Perl (but much more readable!); and much more concise than Java.

Monty has been most strongly influenced by Java and Python. Monty’s
syntactic style is similar to Python’s: the extent of a loop, method, or class
body is defined by indentation. The syntax of Monty is summarized in the
appendix.

3 Monty is named after Monty Python, not The Full Monty!
)

rviai &4

immutable class Date :
private val y: Int
private val m: Int
private val d: Int

public cons (y: Int, m: Int, d: Int)

this.y =y
this.m :=m
this.d :=d

public virtual func toString (): String :
return ... + "/" + (this.y % 100).toString()

Fig. 4. Date class in Monty

The script of Fig. 2 contains little explicit type information. Each val
declaration declares a read-only variable, whose type can be inferred from its
initializer. Similarly, the type of the loop control variable hdg can be inferred
from the type of the collection over which it iterates.

Monty has a single-inheritance class hierarchy, in which the top class is
Object. All values are (notionally) objects, including Bool, Char, Int, and
Real values. An expression like “m+n” is just syntactic sugar for a method call,
in which the method is named “+”, the receiver object is the value of m, and the
argument is the value of n. This design keeps the language’s semantics simple
and uniform, and avoids a troublesome Java-like dichotomy between primitive
and object types. Of course, efficient data representation is important; this
will be discussed in Section 6.

Fig. 3 illustrates dynamic typing in Monty. The least function assumes
that its parameter vals is an array, list, or other integer-indexed collection.
More precisely, it assumes that vals is equipped with a size method, and
with a get method that uses its Int argument to select an element of the
collection. Moreover, the least function assumes that the collection’s ele-
ments are equipped with a “<” method. The least function will throw a
NoSuchMethodError exception if either of these assumptions proves to be
false.

Figs. 4, 5, and 6 show examples of class declarations in Monty. In most
respects these resemble Java class declarations. The keyword val declares an
instance variable that can be initialized by a constructor but cannot subse-
quently be updated. The keyword var declares an instance variable that can
be updated at any time. The keyword cons declares a constructor. The key-
word func declares a method that returns a value. The keyword proc declares
a method that returns no value.

Fig. 7 shows part of the Monty class hierarchy, including some built-in
classes (Object, Exception, String, Number, Int, Real, Array<X>) and some

6

rviai &

immutable class Person extends Object
private val name: String
private val dob: Date “ date of birth

public cons (name: String, dob: Date)
this.name := name
this.dob := dob

public virtual func toString (): String :
return this.name + " DOB: " + this.dob.toString()

immutable class Employee extends Person :
private val eid: Int = employee id
private val pay: Int 7 annual pay

NN N N N N N NN NN N NN N NN N NN N NN N N NN

class Student extends Person :
private val sid: Int ~ student id
private var deg: String ~ degree programme

public cons (name: String, dob: Date, sid: Int)
public virtual func toString (): String :
public proc enrol (deg: String)

this.deg := deg

public proc print ()

Fig. 5. Person class and subclasses in Monty

declared classes.

3 Mutability

Mutability is an important practical concept in object-oriented programming.
Whether a class is to be mutable strongly influences not only the design of the
class but also the data representation. The Python specification [17] distin-
guishes between immutable values (such as primitive values and tuples thereof)
and mutable values (such as arrays), and insists that the keys in a dictionary

7

rviai &

class Stack : ” heterogeneous bounded stacks
private var depth: Int
private var elems: Array<Object>

public cons ()
this.depth :
this.elems

0
Array<0bject>(10)

public proc push (x) :
this.elems[this.depth] := x
this.depth +:= 1

public func pop (O
this.depth -:=1
return this.elems[this.depth]

Fig. 6. Heterogeneous Stack class in Monty

Exception
String
Int

Number
Real

Date

Person

Undergrad !

Student !

Stack !

Array<Xx> !

List<X> !

Set<X>

Key: ! = mutable

Fig. 7. Part of the Monty class hierarchy

are immutable. In the Java API specification?, the contracts for the Map
classes similarly insist that keys in a map are immutable. However, neither
Python nor Java enforces such immutability.

In my view, mutability should be recognized as a linguistic concept. During
the design of Monty, the usefulness of the mutability concept has cropped up
repeatedly, sometimes unexpectedly.

Many of Monty’s built-in classes are immutable, including Bool, Char, Int,
Real, String, and Object itself. A Monty class declaration may annotate the
class as immutable; this asserts that no object of the class can ever change

4

rviai &4

class List <X> :
private var size: Int
private var elems: Array<X>

public cons (maxsize: Int)
this.size := 0
this.elems := Array<X>(maxsize)

public proc add (x: X)
if this.size = this.elems.size()
val elems2 := Array<X>(2 * this.size)
elems2.copy(0, this.elems)
this.elems := elems2
this.elems[this.size] := x
this.size +:= 1

Fig. 8. Generic List<X> class in Monty

state once constructed.

The compiler should attempt to verify such a class’s immutability. A suf-
ficient condition for immutability is that the class has only val instance vari-
ables (which prevents update by assignment) whose own types are immutable
(which prevents update by method calls). Note that mutability of a class is
inherited by all its subclasses. In Fig. 7, mutable classes are marked.

The importance of mutability will become clear in Sections 5 and 6.

4 Generics

Early versions of Java did not support generics, and this was widely recog-
nized as a serious weakness. If a program needed a homogeneous set (say)
with components all of the same class, the programmer had to settle for a
heterogeneous set, of class Set, with arbitrary objects as components. In
other words, the programmer was forced to use dynamic typing, with all of
its disadvantages but none of its advantages.

Java 5 has largely eliminated this weakness by introducing generic classes.
Our programmer can now achieve a homogeneous set by declaring a generic
class Set<X>, and then instantiating it as in Set<Person> or Set<Date>. Un-
fortunately, Java 5 generic classes can be instantiated only at object types; an
instantiation at a primitive type, such as Set<int>, would be illegal.

Monty is required to enable but not to force the use of dynamic typing.
If a program must be efficient and type-safe, it should be possible to make
it completely statically typed. Therefore Monty also supports generic classes.

5 Monty insists on deep immutability: an immutable object cannot contain a mutable

object.

rviai &4

immutable class Set <X> :
private

public cons ()
~ construct an empty set

public func contains (x: X): Bool :
~ return true iff x is a member of this set

public func choose (): X :
” return an arbitrary member of this set

public func plus (x: X): Set<X> :
~ return the union of this set and {x}

public func union (s: Set<X>): Set<X>
” return the union of this set and s

Fig. 9. Generic Set<X> class in Monty

Examples are the built-in class Array<X>, and the classes List<X> and Set<X>
whose declarations are outlined in Figs. 8 and 9.

In the declaration of Set<X>, the type parameter X denotes the unknown
type of the set members. This generic class may be instantiated at any type,
so Set<Person>, Set<Date>, and Set<Int> are all legal.

An instantiated generic class may be used to specify the type of a variable
or to construct an object, as in:

var dict: Set<String>
dict := Set<String>()

An object construction may use a generic class instantiated with any type,
including a type parameter. For example:

s := Set<X>()

constructs a Set<X> object, where X is replaced by the actual type that it
denotes. An object construction may not use a naked type parameter, so
“X(...)” isillegal. This does not seem to be a serious restriction in practice.

Monty treats Array<X> exactly like any other generic class, so an array
object construction such as “Array<X>(8)” is perfectly legal. (By contrast,
the object construction “new X[8]” is not fully supported in Java 5.)

10

rviai &4

5 Type System

In this section we will use the following notation for the type of an instance
method m:

m:T — (Ty x ... xT,) = Ty

where T is the type of the receiver object (denoted by this); 73, ..., and
T, are the parameter types; and Tj is the result type. For example, in class
Stack:

push:Stack — Object — ()
pop:Stack — () — Object
and in class Set<X>:

contains:Set<X> — X — Bool
union: Set<X> — Set<X> — Set<X>

We will also use the following notation for type equivalence and subtyping:

» T1=T, means that 7} is equivalent to T (every T} object is a Ty object, and
vice versa)

o T1CT, means that 77 is a subtype of Ty (every T3 object is a T object)

The fundamental theorems of object-oriented programming are as follows.
For every variable V' of static type 7} we have the following invariant: V'
always contains null or an object of type ToCTy. If an expression F has
static type Tr, then evaluation of E (if it terminates) always yields either null
or an object of type ToCTEg. In the assignment “V := E”, the compiler checks
that TgCTy. It follows that TpoCTy,, so upholding V’s invariant.

A language’s type system is sound if no well-typed program will ever fail
due to a run-time type error (other than a failed downcast).

Subtype relationships between non-generic classes are straightforwardly
determined by the class hierarchy. For example, Int C Number, since Int is a
subclass of Number.

Nonvariant and Covariant Generic Classes

When we consider a generic class such as Set<X>, what (if any) type relation-
ship exists between the instantiations Set<7}> and Set<75>?

In Java 5, there may be a subtype relationship between instantiations
of X[1 (which in some respects resembles a built-in generic class), but not
between instantiations of declared generic classes. For example:

(1) Integer[] C Number[]
(2) Set<Integer> ¢ Set<Number>

The subtype relationship (1) is a legacy from Java 1. Unfortunately it is
not type-sound. A program could assign an Integer[] array to a Number[]
variable, and subsequently attempt to store a Float object in the Integer[]

11

rviai &4

array. Of course this would be a type error, but (unlike all other type errors
in Java) it would be detected by a run-time type check.

In order to ensure that there is no similar unsoundness for declared generic
classes, Java 5 insists that Set<77> and Set<7,> are incomparable unless
T1=T5. In other words, Java 5 insists that all declared generic classes G{X)
are nonvariant, not covariant:

» If G(X) is nonvariant, then G(T) C G(T") if and only if T =T".
» If G(X) is covariant, then G(T) C G(T") if and only if ' C T".

Although Java 5’s insistence on nonvariance can be justified on type-
theoretic grounds, intuitively it seems unnatural. The subtype relationships
(1) and (2) are surely the wrong way round. A particular Set<Number> object
could be populated entirely with Integer members, so it seems perfectly rea-
sonable to treat a Set<Integer> object as if it were a Set<Number> object.
In other words, we would like to allow some generic classes, such as Set<X>,
to be covariant.

Perhaps the most important innovation in Monty is that it treats all im-
mutable generic classes as covariant. Recall that Array<X> is mutable while
Set<X> is immutable. Thus we have the following subtype relationships in
Monty:

3) Array<Int> Z Array<Number>
y y
(4) Set<Int> C Set<Number>

A couple of examples should clarify the reason for making a distinction be-
tween mutable and immutable generic classes. Assume the following simplified
API for Array<X>:

class Array<X> :
public func get (i: Int): X :
. ~ return this[i]
public proc set (i: Int, x: X)
~ store x in this[il

Consider the following application code:

var ints: Array<Int> := ...
var nums: Array<Number>
var r: Real := ...
nums := ints ~ ill-typed
. nums.get(7) ~ well-typed; type is Number
nums.set (7, r) well-typed

~

The assignment “nums := ints” isill-typed since Array<Int> ¢ Array<Number>.
It would be unsound to treat it as well-typed just because Int C Number. The
subsequent method call “nums.set(7, r)” would store a Real object in an
Array<Int> array.

Now assume the declaration of Set<X> in Fig. 9, and consider the following

12

rviai &4

application code:

var ints: Set<Int> := ...
var nums: Set<Number>
var r: Real := ...
nums := ints ~ well-typed
. nums.contains(r) ~ well-typed; type is Bool
. nums.plus(r) ~ well-typed; type is Set<Number>

Here the assignment “nums := ints” is well-typed since Set<Int> C Set<Number>.
Since Set<X> is an immutable class, no method call can change a Set object’s
state, although a method call can return a new Set object. The method call
“nums .plus (r)” returns a new Set<Number> object, although its receiver ob-
ject happens to be a Set<Int> object, so it does not matter that Real Z Int.
To make this work, however, we must define the semantics of method calls
with care.

Typing and semantic rules for FGJ (Featherweight Generic Java, a tiny
subset of Java 5) are given in [8]. Consider the method call “nums.plus(r)”,
and note the type of the plus method in class Set<X>:

(5) plus:Set<X> — X — Set<X>

According to FGJ’s typing rules, X in (5) would be statically instantiated to
Number, consistent with the fact that nums has static type Set<Number>, so
the method call’s static type would be Set<Number>. According to FGJ’s
semantic rules, however, X would be dynamically instantiated to Int, since
the receiver object turns out to have dynamic type Set<Int>. Fortunately,
this inconsistency cannot arise in FGJ (or Java 5) because all generic classes
such as Set<X> are nonvariant, so nums can never contain a Set<Int> object.
Monty’s typing and semantic rules are similar to FGJ’s, except for a
subtle difference in the semantic rule for method calls. In the method call
“nums.plus(r)”, X in (5) is both statically and dynamically instantiated
to Number, giving Set<Number> — Number — Set<Number>. This is con-
sistent with the receiver object’s dynamic type Set<Int> (since Set<Int>
C Set<Number>), with the argument’s dynamic type Real (since Real C
Number), and with the statically-determined result type Set<Number>.

Soundness

Consider a generic class G{X) equipped with a method m with a parameter
of type X:

class G(X) :
private var v:X

public proc m (..., z:X, ...)

13

rviai &4

Focus on the parameter x of type X. The method m could use the corre-
sponding argument to change the receiver object’s state (e.g., by “this.v :=
z”). The type of method m is:

m:G(X) > (.. x X x...)—>...

Now consider the method call:
O.m(C..., A, ...)

where O is an expression yielding the receiver object, and A is an expression
yielding the argument corresponding to x. This method call will be treated
as follows:

» At compile-time: Suppose that O’s static type is G(T'). The instantiation
of method m’s type is then G(T) — (... x T x ...) — So A’s static
type should be a subtype of T'.

* At run-time: The argument’s dynamic type could be any type T, C 7. The
receiver object’s dynamic type could be any type G(T,) C G(T). If G(X) is
nonvariant, G(T,) C G(T') only if T, = T. Here there is no problem, since
T, C T.. But if G(X) is covariant, G{T,) C G(T) if T, C T. Here there is
a potential problem, since T, € T,. The potential problem becomes a real
problem if m stores its argument in an instance variable such as v. Since
the receiver object’s dynamic type is G(T.), the instance variable this.v
has type T, and it would be unsound to allow a value of type T, € T, to
be stored in that variable. However, this problem cannot arise if G(T') is
immutable.

This informal argument suggests that covariant generic classes are type-
sound provided that they are immutable. However, this conjecture remains to
be proved (see Section 8).

Bounds on Type Parameters

A Monty type parameter may be bounded. For example:

class Group <P extends Person> :

Inside this class body, we can assume that P C Person, so any call to a
Person method with a receiver object of type P is well-typed. Group<P> may
be instantiated only at class Person and subclasses thereof.

By default, a type parameter’s bound is Object. For example, the Set
class of Fig. 9 could have been written:

class Set <X extends Object> :

6 Here we assume static typing, for the sake of simplicity.

14

rviai &4

In general, Monty follows Java 5 in permitting a type parameter to be
bounded by an ordinary class or by an instantiation of a generic class (but
not by a naked type parameter).

6 Implementation

This paper is concerned primarily with the language design, but it is appropri-
ate here to mention briefly some implementation issues that have influenced
the design. The implementation of Monty will be explored more fully in a
future paper.

Representation of Objects

The canonical representation of an object is a reference to a heap-allocated
record comprising the object’s class tag and its instance variables. This boxed
tagged representation allows objects of different class to be used interchange-
ably.

Of course, the tagged boxed representation is extremely unwieldy for prim-
itive objects such as Ints. Fortunately we can do better. For example, a
variable of type Int will always contain an Int object, and a collection of
type Array<Int> will contain only Int objects, so these Int objects need no
class tags. In general, an unboxed untagged representation is suitable for such
objects.

It is well known [10,11,16] that an unboxed untagged representation is pos-
sible for primitive values (and values of certain other built-in types). However,
we can generalize this observation: the compiler can choose an unboxed un-
tagged representation for any immutable final class whose objects are small
and fixed in size. Examples of such classes are Monty’s built-in classes Int
and Real, and also declared classes such as Date (Fig. 4). On the other hand,
Person and Student objects must have a boxed tagged representation (since
Person is not final and Student is mutable).

The use of an unboxed representation for class C' entails an implicit bozing
operation whenever an object of class C is upcast to a superclass, and an
implicit unboring operation whenever an object is downcast to class C.

The use of unboxed representations for some classes implies a change from
reference semantics to copy semantics for these classes. This is justified be-
cause reference semantics and copy semantics are essentially indistiguishable
for immutable classes.

Static vs Dynamic Typing

In order to facilitate dynamic typing, Monty allows downcasts as well as up-
casts to be implicit. The compiler can easily insert downcasts where required.

The critical implementation problem is a method call in which the inferred
type of the receiver object is a class that, whilst not equipped with the named

15

rviai &4

method, has one or more subclasses that are so equipped.
For example, consider the Person class and subclasses of Fig. 5 and the
following application code:

p: Person := ...
p.enrol("BA")

The Person class does not have an enrol method, but its Student subclass
(alone) does have such a method. This method call can be implemented simply
by inserting a downcast (in effect):

((Student)p) .enrol("BA")
Now consider the following application code:

p: Person := ...
p-print()
The Person class does not have a print method, but both its Employee

and Student subclasses do have such methods. This method call can be
implemented by translating it (in effect) into a type-case command:

typecase p :
when e: Employee :
e.print ()
when s: Student
s.print()
else
throw NoSuchMethodError ()

Implentation of Generic Classes

Generic classes can be implementated in two very different ways:”

* The type-erasing translation generates a single class file that will be shared
by all possible instantiations of the generic class.

* The specializing translation generates a specialized class file for each distinct
instantiation of the generic class.

The type-erasing translation in effect translates a generic class such as
Set<X> to a non-generic class Set. At run-time, all objects of type Set<Date>,
Set<String>, and so on are represented as objects of class Set, and are tagged
accordingly. No information about type arguments exists at run-time.

The specializing translation in effect translates each instantiation of a
generic class to a distinct non-generic class. For example Set<Date> would be
translated to Set$Date, Set<String> to Set$String, and so on. Information
about type arguments is encoded in the names of the generated classes.

7 In [13] these implementations are (somewhat confusingly) called the homogeneous trans-
lation and heterogeneous translation, respectively.

16

rviai &4

Monty has been designed in such a way as to allow the compiler to choose
freely between these implementations. For this reason Monty imposes some
restrictions on the use of type parameters. A type test or cast may name only
an uninstantiated class. For example:

if t is Set
tests whether the value of t is an object of some class Set<...>. And:
s := (Set) t

checks that the value of t is an object of some class Set<. . .>, before assigning
that object to s. A cast or class test may not use a type parameter, so “(X)x”,
and “(Set<X>)t” “x is X”, “t is Set<X>”, are all illegal. These restrictions
are necessary to enable the type-erasing translation to work.

7 Related Work

Amber [1,6] is one of the few explicit attempts to combine static and dynamic
typing in a single programming language. While being generally statically
typed, Amber also provides a special type dynamic. A value of any ordinary
type can be injected into dynamic, when it acquires a type tag; later the
value can be projected out in a type-safe manner. This feature is useful for
persistent storage of values of different types, but it does not achieve a smooth
integration of static and dynamic typing.

Python [17] might yet evolve into a true programming/scripting language.
Its data model has already evolved to the stage where all values are classified
as objects. However, Python’s object model is just too dynamic for conven-
tional programming: any object can gain and lose instance variables at any
time. Python still lacks the option of static typing, which is important for
conventional programming. The Python website® includes much discussion
about how static typing might be retrofitted (not an easy task), but at the
time of writing this has not actually happened.

There have been numerous proposals for extending Java with generic classes
[2,3,5,7,9,12,13]. In the end, the Generic Java proposal [5] was adapted slightly
and incorporated into Java 5.

The language NextGen [7] was the first proposed extension of Java to
support covariance. In NextGen each individual type parameter of a generic
class may be annotated as either nonvariant or covariant.® However, there
is a restriction: if a type parameter X is covariant, none of the generic class’s
methods may have a parameter of type X. In practice, this restriction is very
severe, ruling out generic container classes such as Set<X>. In this paper we
have argued that such generic classes can be allowed without loss of type-

8

9 Contravariant type parameters were also considered as a possible future extension to

NextGen. However, contravariance would be difficult to implement using JVM technology.

17

rviai &4

soundness.

A more radical idea is to allow type arguments in generic class instan-
tiations (as opposed to type parameters in generic class declarations) to be
annotated as nonvariant or covariant. This idea was first presented in [9], and
has found its way into Java 5 in the form of wildcards. Consider the following
mutable Mset class:

class Mset<X> :
public proc add (x: X)
. ” make x a member of this set
public func contains (x: X): Bool :
” return true iff x is a member of this set

An example of nonvariant instantiation is:
var numsl: Mset<Number>

The variable nums1 may be assigned only a Mset<Number> object. An example
of covariant instantiation is:

var nums2: Mset<? extends Number>

The variable nums2 may be assigned a Mset<Number>, Mset<Int>, or Mset<Real>
object. There is, however, a restriction on method calls in the context of
such a covariant instantiation. The method call “nums2.add(r)” would be
considered ill-typed, since the add method has a parameter of type X. This
restriction is necessary, otherwise the add method might store its argument
(whose dynamic type could be Real) in some component of the receiver ob-
ject (whose dynamic type could be Mset<Int>). Unfortunately, the method
call “nums2.contains(r)” would be considered ill-typed for the same reason,
since the contains method also has a parameter of type X. But this method
does not update the receiver object. This restriction on method calls in the
context of a covariant instantiation is sufficient but not necessary to ensure
type-soundness.
The Java 5 collections library uses workarounds like the following:

class Set<X> {
public boolean contains (Object x) {
public X choose () {..
public Set<X> plus (X x) {...
public Set<X> union (Set<? extends X> s) {...

W

}

The contains method has a parameter of type Object (instead of the more
natural ”X”), allowing its argument to be any object. The union method has
a parameter of type Set<? extends X> (instead of the more natural Set<X>),
allowing its argument to be a set whose elements are of a subtype of X. We
have seen that the Monty Set<X> class of Fig. 9 allows application code a
similar degree of flexibility rather more naturally.

18

rviai &4

Scala [14] foreshadows some of Monty’s key ideas. In Scala all values are
objects; the difference is that the Scala class hierarchy is explicitly partitioned
into value classes (which have unboxed representations) and reference classes
(which have boxed representations). In [14] it is observed that covariance
of immutable generic classes is type-sound. However, mutability is not a
linguistic concept in Scala, which restricts covariance in much the same way
as NextGen.

So Scala (like Java 5) needs a workaround like the following:

class Set[X] {
public def contains (x: Object): boolean
public def choose (): X = ...
public def plus (x: X): Set[X]
public def union (s: Set[Y <: X]): Set[X]

}

to allow application code a similar degree of flexibility to that which arises
naturally with the Monty Set<X> class of Fig. 9. (“<:” is Scala’s notation for
“is a subtype of”.)

8 Conclusion

The design of Monty is work in progress. At present Monty lacks some im-
portant features that are commonly found in more mature object-oriented
languages, such as interfaces, packages, overloading, and reflection.

Two experimental implementations of the Monty core language have been
initiated. The first (largely complete) translates Monty into Java, using the
type-erasing translation. The other (just started) will translate Monty into
JVM code, using the specializing translation.

The type system and semantics of the Monty core language are currently
being formalized. A particular challenge will be to prove the soundness of
Monty’s type system. For this purpose a tiny subset of Monty will be used,
akin to FGJ [8], but including assignment in order to explore the implications
of mutability.

This paper has identified mutability as a useful linguistic concept. How-
ever, more work needs to be done on the role of mutability and covariance in
Monty. It is striking that Monty allows a generic class to be covariant only if it
is immutable, whereas NextGen [7] and Scala [14] allow a generic class’s type
parameter X to be covariant only if the class has no method with a parameter
of type X. Since it seems that each of these restrictions is sufficient to ensure
type-soundness, both of them must be stronger than necessary.

I believe that a weaker condition would be sufficient to ensure type-soundness:
a generic class’s type parameter X may be covariant only if the class has no
mutator method with a parameter of type X. If this conjecture proves to be
justified, it will strongly influence the design of the next version of Monty.

19

rviai &4

Java 5 and Scala are also likely to be major influences.

Acknowledgement

I am grateful to Simon Gay for reading an earlier version of this paper. I
am also happy to acknowledge numerous comments and suggestions, from
colleagues and LDTA participants, on the ideas presented in this paper.

References

[1] Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. (1991) Dynamic typing in a
statically typed language. ACM Transactions on Programming Languages and
Systems, 13, 2, 237-268.

[2] Agesen, O., Freund, S., and Mitchell, J. (1997) Adding type parameterization to
the Java language. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems and Languages (OOPSLA ’97). ACM Press, New York,
NY, 49-65.

[3] Allen, E., Bannet, J., and Cartwright, R. (2003) A first-class approach
to genericity. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems and Languages (OOPSLA ’03). ACM Press, New York,
NY, 96-114.

[4] Barron, D.W. (2000) The World of Scripting Languages. Wiley, Chichester,
England.

[5] Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. (1998) Making the
future safe for the past: adding genericity to the Java programming language. In
Proceedings of the ACM Conference on Object-Oriented Programming Systems
and Languages (OOPSLA ’98). ACM Press, New York, NY, 183-199.

[6] Cardelli, L. (1986) Amber. In Combinators and Functional Programming
Languages (ed. G. Cousineau, P. Curien, and B. Robinet), LNCS 242, Springer,
Berlin, Germany, 21-47.

[7] Cartwright, R., and Steele, G.L. (1998) Compatible genericity with run-
time types for the Java programming language. In Proceedings of the

ACM Conference on Object-Oriented Programming Systems and Languages
(OOPSLA '98). ACM Press, New York, NY, 201-215.

[8] Igarishi, A., Pierce, B., and Wadler, P. (1999) Featherweight Java: a minimal
core calculus for Java and GJ. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems and Languages (OOPSLA ’99). ACM Press,
New York, NY, 132-146.

[9] Igarishi, A., and Viroli, M. (2002) On variance-based subtyping for parametric
types. In Proceedings of the Furopean Conference on Object-Oriented
Programming (ECOOP ’02). LNCS 2374, Springer, Berlin, Germany, 441-469.

20

rviai &4

[10] Leroy, X. (1992) Unboxed objects and polymorphic typing. In Proceedings of
Principles of Programming Languages (POPL '92). ACM Press, New York, NY,
177-188.

[11] Morrison, R., Dearle, A., Connor, R., and Brown, A. (1991) An ad hoc approach
to the implementation of polymorphism. ACM Transactions on Programming
Languages and Systems, 13, 3, 342-370.

[12] Myers, A., Bank, J., and Liskov, B. (1997) Parameterized types for Java. In
Proceedings of the ACM Conference on Principles of Programming Languages
(POPL ’97). ACM Press, New York, NY, 132-145.

[13] Odersky, M., and Wadler, P. (1997) Pizza into Java: translating theory into
practice. In Proceedings of the ACM Conference on Principles of Programming
Languages (POPL ’97). ACM Press, New York, NY, 146-159.

[14] Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S.,
Mihaylov, N., Schinz, M., Stenman, E., and Zenger, M. (2004) An overview of
the Scala programming language,

[15] Ousterhout, J. (1998) Scripting: higher-level programming for the 21st century.
IEEE Computer, 31, 3, 23-30.

[16] Peyton Jones, S., and Launchbury, J. (1991) Unboxed values as first-class
citizens. In Proceedings of the ACM Conference on Functional Programming
Languages and Computer Architecture (FPCA ’91). LNCS 523, Springer, Berlin,
Germany, 636—666.

[17] van Rossum, G., and Drake, F. (2003) The Python Language Reference Manual,
Network Theory Ltd, Bristol, England.

Appendix: Monty Syntax

This appendix summarizes the syntax of the Monty programming/scripting
language. The language consists of a core plus extensions.

Note that an identifier (Id) starts with a lowercase letter, while a type-
identifier (TyId) starts with an uppercase letter.

Indentation is significant: line terminators (shown here as), indents (—),
and outdents (+) are language tokens.

Programs
Prog == (Com | VarDec | MethDec | ClassDec)*

21

rviai &4

Commands (core language)

Com == skipl
| exit |

return Exp’ |

throw Exp |

Assign |

if Exp : | Block (else if Exp : | Block)*
(else : | Block)’

repeat : | Block

while Exp : | Block

try : | Block (when Id : TyId : | Block)™
(else : | Block)*

Block == — (Com | VarDec)* «+

Ezpressions (core language)

Exp == AExp atomic expression
Type Args object construction
Exp . Id instance variable access
Tyld . 1d static variable access
Exp . Id Args instance method call
Tyld . Id Args static method call
Id Args global method call
Exp is Tyld class test
(Tyld) Exp cast
(Exp)
AExp == Lit literal
| null null reference
| this receiver object
| Id local/global variable access
Args = (Exps’)
| AExp
Exps == Exp (, Exp)*
Assign = Exp
| Exp := Assign

Declarations (core language)

ClassDec := final’ immutable’ class Tyld (< TyPars >)’
(extends Type)’ : | ClassBody

TyPars == TyPar (, TyPar)*

TyPar := immutable’ Tyld (extends Type)°

ClassBody := — CompDec* «+

CompDec VisSpec static’ VarDec

VisSpec (static | virtual)’ MethDec

| VisSpec ConsDec
|
| VisSpec ClassDec

VisSpec := private | protected | public

22

rviai &4

VarDec := (val|var) Id TySpec (:=Exp)’]

ConsDec == cons (Pars’) : | Block
MethDec ::= proc Id (Pars’) : | Block
| func Id (Pars’) TySpec : | Block
Pars := Par(, Par)*
Par == Id TySpec
Types
Type == Tyld (< TyArgs >)’
TyArgs == Type (, Type)*
TySpec == (: Type)’

Commands (extended language)

case Exp : | (when Lit : | Block)T (‘else : | Block)’
typecase Exp : | (when Id : TyId : | Block)™

(else : | Block)*
| for Id TySpec in (Exp | Exp .. Exp) : | Block

Com :=
|
|

Ezpressions (extended language)

Exp = ...
| (Op|\) Args prefix operator call
| Exp \’” Op Args infix operator call
| Exp [Exp] collection indexing
| Type { Exps’ } collection construction
| Type { Qualt Exp } comprehension

Qual := for Id TySpec in Exp :
| if Exp :

Assign =

| Exp Op := Assign

Declarations (extended language)

MethDec = ...
| func Op (Pars’) TySpec : | Block

23

	Introduction
	Overview of Monty
	Mutability
	Generics
	Type System
	Implementation
	Related Work
	Conclusion
	Acknowledgement
	References

