

Algorithms & Data Structures (M) Assessed Exercise 2

Algorithms & Data Structures (M)

Assessed Exercise 2 (2013–14)

This exercise is about design, implementation, and testing of an abstract data
type (ADT).

Its weighting is 0.2 in the ADS(M) course assessment.

The deadline is Friday 21 March 2014 at 16:30.

Design

A binary relation is a collection of pairs (x, y). The pairs are in no fixed order.
Individual x and y values may be duplicated, but no pair (x, y) may be
duplicated.

Example:

The following binary relation relates countries to their official languages:

FR French

DE German

IT Italy

BE French

BE Flemish

NL Dutch

UK English

IE English

IE Irish

Note that some countries are duplicated, and some languages are
duplicated, but no (country, language) pair is duplicated.

Design an abstract data type, Relation, such that each Relation value
represents a binary relation. Relation must be equipped with operations that
enable application code to:

1. test whether the relation contains a given pair (x, y)

2. given x, determine all values y such that the relation contains (x, y)

3. given y, determine all values x such that the relation contains (x, y)

4. make the relation empty

5. add a given pair (x, y) to the relation

6. remove a given pair (x, y) from the relation

7. given x, remove all pairs (x, y) from the relation

8. given y, remove all pairs (x, y) from the relation

9. render the relation’s contents as a string, in a suitable format.

Express your design in the form of a Java interface, Relation. Each operation
must be accompanied by a comment specifying its observable behaviour.

You can choose to make your interface support either heterogeneous or
homogeneous relations:

• In a heterogeneous relation, the x values and the y values may be arbitrary
objects.

• In a homogeneous relation, all the x values must be of type X, and all the
y values must be of type Y. Here the interface has two type parameters, X
and Y.

Algorithms & Data Structures (M) Assessed Exercise 2

Implementation

Now write a Java class that implements your Relation interface:

• If your interface supports heterogeneous relations, your class must also
do so.

• If your interface supports homogeneous relations, your class must also do
so.

You will need to choose a suitable data structure, and algorithms to implement
all the operations of the interface.

Your class must contain implementation notes as comments. The
implementation notes must (a) briefly describe your data structure; and (b) for
each operation, briefly describe your algorithm (if it is a standard algorithm, just
name it) and state its time complexity.

Important note: In this exercise, you must represent a relation using your own
data structure (such as an array, linked-list, binary-search-tree, or hash-table).
Do not use any of the Java collection classes to represent a relation.

Testing

Test your class thoroughly. Your main method must construct a relation, then
call all the operations that meet requirements 1–8 above. At each call to an
operation, your main method must output the name of the operation, its
arguments, and its results. After each operation that updates the relation, your
main method must output the relation’s contents.

Submission

By the deadline stated above, you must submit your deliverables through the
ADS(M) Moodle page. (Click “Assessed exercise 2 submission”.)

The deliverables are all your Java source files, class files, input data files (if
any), and output(s). The output(s) are essential to show that you have tested
your program thoroughly. Submit all the deliverables as a single .zip file.

Important: You must also sign the School’s “declaration of originality” form.

Assessment

Your program will be marked against the following criteria:

Design 9 marks

Implementation correctness 9 marks

Implementation efficiency 6 marks

Testing 6 marks

Your mark for implementation efficiency will depend on the time complexities
of your Relation operations. In particular, the operations that meet
requirements 1, 5, and 6 should be better than O(n) to earn a high mark for
implementation efficiency.

Your total mark will be converted to a grade on the University’s 22-point scale.
Your mark will be reduced if your code is clumsy or hard to read, or if you do
not follow the above submission instructions.

