

Questions and Answers: May 2001

1. (a) Table 1 shows the array quick-sort algorithm. Show that it correctly sorts
the array in every case (on the assumption that step 2.1 correctly
partitions the array).

[Notes]

If left < right, the array’s length is at most 1, so there’s nothing to do.

Otherwise, step 1.1 partitions the array around a pivot element, which ends up in
a[p], so the sort can be completed by sorting the elements to the left of the pivot
(a[left...p-1]) and by sorting the elements to the right of the pivot (a[p+1...right]).

(3)

 (b) Illustrate the quick-sort algorithm’s behaviour as it sorts the following
array of country-codes. Your illustration should show the contents of the
array, and the value of p, after step 1.1, after step 1.2, and after step 1.3.
You should state any assumptions you make about how step 1.1 works.

[Unseen problem]

(3)

 (c) Write down the array merge-sort algorithm. Show that it correctly sorts
the array.

[Notes]

To sort a[left...right]:
1. If left < right:
 1.1. Let m be an integer about midway between left and right.
 1.2. Sort a[left...m].
 1.3. Sort a[m+1...right].
 1.4. Merge a[left...m] and a[m+1...right] into an auxiliary array b.
 1.5. Copy all components of b into a[left...right].
2. Terminate.

If left < right, the array’s length is at most 1, so there’s nothing to do.

Otherwise, step 1.2 sorts the left half of the array, and step 1.3 sorts the right
half of the array, so all that remains is to merge these halves.

(5)

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 4 5 6 7 8 9 10 11

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 p=4 5 6 7 8 9 10 11

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 p=4 5 6 7 8 9 10 11

FR DE IT BE LU NL UK IE DK PT ES GR
0 1 2 3 p=4 5 6 7 8 9 10 11

After step 1.3:

After step 1.2:

After step 1.1:

1. (d) Illustrate the merge-sort algorithm’s behaviour as it sorts the above array
of country-codes. Your illustration should show the contents of the array
after each step.

[Unseen problem]

(3)

 (e) State the time complexities of the merge-sort and quick-sort algorithms
(in terms of the number of comparisons performed). Justify your answers.

 Note: Your justifications may be either mathematical or informal.

[Notes]

Merge-sort is O(n log n). Step 1.1 divides the array into two subarays of length
about n/2, so comps(n) = 2 comps(n/2) + n, with comps(1) = 0, for which the
solution is comps(n) = n log2 n.

Quick-sort is O(n log n) in the best case, but O(n2) in the worst case. Step 1.1
performs about n comparisons. In the best case step 1.1 partitions the array into
two subarrays of length about n/2, so comps(n) = 2 comps(n/2) + n, with
comps(1) = 0, for which the solution is comps(n) = n log2 n. In the worst case
step 1.1 partitions the array into an empty subarray and a subarray of length n-1,
so comps(n) = comps(n-1) + n, with comps(1) = 0, for which the solution is
comps(n) = n(n+1)/2.

(6)

After step 1.3:

After step 1.2:

After step 1.1:

After step 1.5:

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 4 m=5 6 7 8 9 10 11

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 4 m=5 6 7 8 9 10 11

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 4 m=5 6 7 8 9 10 11

FR DE IT BE NL LU UK IE DK PT ES GR
0 1 2 3 4 m=5 6 7 8 9 10 11

2. (a) Stack machine code consists of the instructions summarised in Table 2.
Each of these instructions acts on a value stack.

 Any arithmetic expression can be translated to a sequence of stack
machine instructions, e.g.: [...]

 In terms of the Stack contract of Table 2, implement the following Java
method:

[Unseen problem]

static void execute (byte opcode, int v, Stack values) {
 switch (opcode) {
 case LOAD:
 values.addLast(v); break;
 case ADD:
 v2 = values.removeLast(); v1 = values.removeLast();
 values.addLast(v1+v2); break;
 case SUB:
 v2 = values.removeLast(); v1 = values.removeLast();
 values.addLast(v1-v2); break;
 case MULT:
 v2 = values.removeLast(); v1 = values.removeLast();
 values.addLast(v1*v2); break;
 case DIV:
 v2 = values.removeLast(); v1 = values.removeLast();
 values.addLast(v1/v2); break;
 }
}

(8)

 (b) Outline how stacks can be represented (i) by arrays, and (ii) by linked
lists. Draw diagrams showing each representation of a stack that contains
the words ‘north’ (first in), ‘south’, ‘east’, and ‘west’ (last in).

[Notes]

(i) Represent a stack by an array elems and an integer depth, such that
subarray elems[0...depth-1] contains the stacked elements:

(ii) Represent a stack by a singly-linked list, one element in each node, with the
most-recently-added element in the first node:

(6)

north south east west
0 1 2 3 depth=4 5 6 7

elems

west east south north top

2. (c) Suppose that a new requirement forces us to add the following operation
to the Stack contract:

public Object get (int d);
// Return the element at depth d in this stack. (In particular, if
// d = 0, return the element at the top of this stack.)

 Outline how this operation would be implemented when stacks are
represented (i) by arrays, and (ii) by linked lists. State and justify the
operation’s time complexity in each case.

[Unseen problem]

(i) With the array representation, the get operation should simply fetch
elems[depth-d-1]. This operation is O(1).

(ii) With the SLL representation, the get operation must follow d links from top.
This operation follows n/2 links on average, so it is O(n).

(6)

3. (a) A relation (as in a relational database) may be viewed as a set of objects,
where each object has several fields. The following illustrates a relation
containing certain details about a company’s employees: [...]

 In terms of the Set contract of Table 4, implement the following Java
methods:

[Unseen problem]

static float female (Set employees) {
 int females = 0;
 Iterator iter = employees.iterator();
 while (iter.hasNext()) {
 Employee emp = (Employee) iter.next();
 if (emp.gender == ‘F’) females++;
 }
 return (float) females) / (float) employees.size();
}

static Set wellPaid (Set employees) {
 Set fatCats = newTreeSet();
 Iterator iter = employees.iterator();
 while (iter.hasNext()) {
 Employee emp = (Employee) iter.next();
 if (emp.pay >= 50000) fatCats.add(emp);
 }
 return fatCats;
}

(6)

 (b) A set can be represented by a sorted array or by a binary search tree
(BST). Summarise the advantages and disadvantages of the BST
representation.

[Notes]

With the sorted-array representation, search is O(log n), but insertion and
deletion are O(n). With the BST representation, all three operations are O(log n)
if the BST is well-balanced, but degenerate to O(n) if the BST is ill-balanced.

(4)

3. (c) Suppose that a set of words is represented by a BST. Starting with an
empty set, show the effects of: (i) inserting ‘to’; (ii) inserting ‘be’; (iii)
inserting ‘or’; (iv) inserting ‘be’; (v) inserting ‘that’; (vi) inserting ‘is’;
(vii) inserting ‘the’; (viii) inserting ‘question’; (ix) deleting ‘or’.

[Unseen problem] [The student should show the intermediate steps skipped
here.]

(10)

to

After inserting ‘to’,
..., ‘question’:

be

quest. the

that

is

not

or

to

After deleting ‘or’:

be

the

that

is

not

quest.

4. (a) Compare and contrast the closed-bucket hash table (CBHT) and open-
bucket hash table (OBHT) data structures.

[Notes]

Both: The hash table consists of a fixed number of buckets, numbered 0, ..., m-
1. A hash function translates each key to a bucket number, known as the key’s
home bucket.

CBHT: Each bucket contains a singly-linked list, one entry per node. To insert a
new entry, insert it in its key’s home bucket.

OBHT: Each bucket either contains an entry or is unoccupied. To insert a new
entry, place it in its home bucket b if that is unoccupied; otherwise displace the
entry to the first unoccupied bucket in the sequence (b+s) modulo m, (b+2s)
modulo m, The step length s must be co-prime with m.

(6)

 (b) Consider a map whose entries are employee records, each of which
contains an employee number (key) and other data of no concern here.
Suppose that the map is to be represented by an OBHT. The number of
buckets is 10, the hash function returns the employee number’s rightmost
digit, and the step length is 1.

 Starting with an empty map, show the effects of adding records with the
following employee numbers: 008; 011; 065; 029; 038; 108.

[Unseen problem]

(6)

 011 065
0 1 2 3 4 5 6 7

008
8

029
9

After inserting
008; 011; 065;
029:

038 011 065
0 1 2 3 4 5 6 7

008
8

029
9 After inserting

038:

038 011 108 065
0 1 2 3 4 5 6 7

008
8

029
9 After inserting

108:

4. (c) What undesirable effect do you observe in your answer to part (b)?

[Unseen problem]

A cluster has formed in the consecutive buckets 8, 9, 0, 1, 2. This is undesirable
because a search within the cluster is effectively linear search.

(2)

 Re-design the employee records OBHT to avoid such undesirable effects.
Your answer must cover the number of buckets, the hash function, and
the step length. Justify your design decisions. Assume that the number of
employee records is about 100 at any given time.

[Unseen problem]

Make m = 137 (a prime number, leading to a load factor < 0.75). Make the hash
function return (key modulo m). Compute s from key using a second hash
function.

(6)

