
 1

Questions and Answers: May 2002

1. (a) Explain what is meant by saying that an algorithm’s time complexity is
O(n2).

[Notes]

This means that the algorithm takes time proportional to n2 (where n is the
algorithm’s input, or the size of the input).

(2)

 (b) Write down the time complexities of the following sorting algorithms:

(i) radix-sort

(ii) selection sort

(iii) merge-sort

 stating what characteristic operations you are counting in each case.
Briefly justify your answers. (Note: Intuitive explanations are sufficient;
you are not required to derive your answers mathematically.)

[Notes, except for radix-sort which was covered by coursework]

Radix-sort (of an array of fixed-length digit strings) is O(n), in terms of digit
inspections. It performs a fixed number of iterations over the array, and each
iteration inspects a single digit of each string.

Selection sort is O(n2), in terms of comparisons. It performs n-1 iterations
over the array, performing successively n-1, n-2, …, 2, 1 comparisons,
totalling approximately n2/2 comparisons.

Merge-sort is O(n log n), in terms of comparisons. If comps(n) is the number
of comparisons to sort an array of length n, we have comps(n) ≈ 2comps(n/2)
+ n for n > 1. The solution is comps(n) ≈ n log2 n.

(3+3+3)

 2

 (c) A company’s internal telephone directory entries are kept in a serial file,
each entry consisting of a name and number. The entries are kept sorted
by name (each name being assumed to be unique).

 Every month, a batch of new entries is assembled in a serial file
(unsorted). If a new entry has the same name as an existing entry, the new
entry should replace the existing entry. Otherwise the new entry should
be added to the telephone directory.

 Devise an efficient algorithm to update the telephone directory using a
batch of new entries.

[Unseen problem]

To update the telephone directory in file dir1 using new entries in file upd,
writing the result to file dir2:

1. Copy the entries from upd in an auxiliary array a.
2. Sort the entries in a.
3. Merge the entries in dir1 and a into dir2.

Step 2 should use an efficient array sorting algorithm. Step 3 should use a
variant of the array merging algorithm.

[An acceptable alternative would be to combine steps 1 and 2 into a single
step, using insertion sort.]

(6)

 Let n be the number of entries in the telephone directory, and let m be the
number of new entries. What is your algorithm’s time complexity?
Briefly justify your answer.

[Unseen problem]

Step 1 has time complexity O(m).
Step 2 has time complexity O(m log m), if we use (e.g.) merge-sort.
Step 3 has time complexity O(m+n).
Overall, the algorithm has time complexity O(m log m + n).

(3)

 3

2. (a) What is the difference between singly-linked lists (SLLs) and doubly-
linked lists (DLLs)?

[Notes]

In an SLL, each node contains a link to its successor only. In a DLL, each
node contains links to its successor and predecessor.

(2)

 Identify a basic operation on a DLL that is much more efficient than the
corresponding operation on an SLL. Briefly explain your answer.

[Notes]

The operation is to delete an arbitrary node, given only a link to that node. In
an SLL, we must find the node’s predecessor by following links from the first
node. In a DLL, the predecessor is immediately accessible.

(2)

 (b) Appendix 1 shows a contract for the Queue abstract data type (ADT).

 Outline an SLL representation of queues. Illustrate your answer by
showing the SLL representation of: (i) the queue containing Kenny, Kyle,
and Stan (in that order); (ii) the queue after adding Cartman at the rear;
(iii) the queue after removing the element at the front.

[Notes, except for the illustration]

Represent a queue by its length together with links to the first and last nodes
of an SLL.

(3)

 Write an implementation of the addLast method.

[Notes]

public void addLast (Object elem) {
// Add elem as the rear element of this queue.
 SLLNode newest = new SLLNode(elem, null);
 if (last == null) first = newest;
 else last.succ = newest;
 last = newest;
}

(3)

3

Kenny Kyle Stan first
last

length

(i)

4

Kenny Kyle Stan first
last

length

(ii)

3

Kyle Stan Cartmafirst
last

length

(iii)

Cartma

 4

 (c) Appendix 2 shows a contract for the List ADT.

 Outline a DLL representation of lists. Illustrate your answer by showing
the DLL representation of (i) the list containing Kenny, Kyle, and Stan
(in that order); (ii) the list after adding Cartman at index 0; (iii) the list
after removing the element at index 1.

[Notes + background reading]

Represent a list by its length together with links to the first and last nodes of
a DLL.

(4)

 Write an implementation of the second add method (the one that adds a
given element after the last element of this list).

[Unseen problem]

public void add (Object elem) {
// Add elem after the last element of this list.
 SLLNode newest = new DLLNode(elem, null, null);
 newest.pred = last;
 if (last == null) first = newest;
 else last.succ = newest;
 last = newest;
}

(4)

 (d) SLLs make a perfectly adequate data representation for the Queue ADT,
but DLLs are to be preferred for the List ADT. Explain.

[Notes + background]

The Queue operations are all O(1) with an SLL representation, so there
would be no point in using a DLL.

List operations like get(i), add(i,x), etc., can be implemented most efficiently
by counting from either the first node or the last node, depending on the
value of i, so a DLL representation is more efficient.

(2)

3

Cartman Kyle first
last

length

(iii) Stan

4

Cartman Kenny Kyle first
last

length

(ii) Stan

3

Kenny Kyle first
last

length

(i) Stan

 5

3. A bag is a collection of members, which may contain duplicate members,
but in which the order of members is of no significance. [...]

 (a) Write a contract for a Bag abstract data type that meets the following
requirements: [...]

[Unseen problem]

public interface Bag {

 // Each Bag object is a bag whose members are objects.

 //////////// Accessors ////////////

 public boolean isEmpty ();
 // Return true if and only if this bag is empty.

 public int size ();
 // Return this bag’s cardinality.

 public int count (Object elem);
 // Return the number of occurrences of elem in this bag.

 public boolean contains (Object elem);
 // Return true iff this bag contains at least one occurrence of elem.

 public boolean equals (Bag that);
 // Return true iff this bag is equal to that bag.

 public Set members ();
 // Return the set of members of this bag.

 //////////// Transformers ////////////

 public void clear ();
 // Make this bag empty.

 public void add (Object elem);
 // Add one occurrence of elem to this bag.

 public void remove (Object elem);
 // Remove one occurrence of elem from this bag.

}
(8)

 6

 (b) Outline an efficient data representation for a bag. Illustrate your answer
by showing your representation of bag (i) above. Briefly explain how you
would determine the number of occurrences of a given value in a bag.

[Unseen problem]

Represent a bag by its cardinality together with a link to the root node of a
BST, each node of which contains a distinct member and its number of
occurrences.

[A hash-table would also be a suitable data representation.]

[Marks will be deducted for a less efficient representation such as an array or
linked list, or for any representation that stores multiple copies of the same
member.]

(4)

 (c) Using your Bag contract, write a piece of application code that reads a
given document and produces a word frequency profile. Your code
should print out all words that occur in the document together with each
word’s relative frequency (expressed as a percentage of the total number
of words in the document). The words need not be printed in any
particular order.

[Unseen problem]

static profileWords (BufferReader doc) {
 Bag wordBag = new TreeBag();
 for (;;) {
 String word = readWord(doc);
 if (word == null) exit;
 wordBag.add(word);
 }
 int card = wordBag.size();
 Set wordSet = wordBag.members();
 Iterator words = wordSet.iterator();
 while (words.hasNext()) {
 String word = (String)words.next();
 int n = wordBag.count(word);
 System.out.println(word + ":" + (100*n/card) + "%");
 }
}

(8)

3
orange 1

apple 2 root
card

 7

4. Write an overview of the Java collections framework. Your answer
should identify the principal interfaces and classes, explain the role of
each, and explain the relationships among them. Illustrate your answer
with appropriate class diagram(s).

[Notes + background reading]

Class diagram showing principal interfaces and classes:

(7)

The Collection interface is a super-contract for both lists and sets.

The List interface is a contract for a list ADT. The ArrayList class implements
List using a variable-length array representation. The LinkedList class
implements List using a DLL representation.

(3)

The Set interface is a contract for a set ADT. The SortedSet sub-interface is
similar, except that it allows members to be accessed (or iterated over) in
ascending or descending order. The TreeSet class implements SortedSet
using a search-tree representation. The HashSet class implements Set using
a hash-table representation.

(4)

The Map interface is a contract for a map ADT, in which each entry is a key–
value pair. The SortedMap sub-interface is similar, except that it allows
entries to be accessed (or iterated over) in ascending or descending order by
key. The TreeMap class implements SortedMap using a search-tree
representation. The HashMap class implements Map using a hash-table
representation.

(4)

The Iterator interface is a contract for an iterator ADT, an iterator being an
object that remembers the state of an iteration (traversal) over an underlying
data structure.

(2)

Key:

implements

extends

ArrayList LinkedList HashSet TreeSet HashMap TreeMap

«interface»
SortedMap

«interface»
SortedSet

«interface»
Map

«interface»
Set

«interface»
List

«interface»
Collection

